]> git.proxmox.com Git - mirror_qemu.git/blob - util/cutils.c
Merge remote-tracking branch 'remotes/amit-migration/tags/migration-for-2.6-6' into...
[mirror_qemu.git] / util / cutils.c
1 /*
2 * Simple C functions to supplement the C library
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #include "qemu/host-utils.h"
27 #include <math.h>
28
29 #include "qemu/sockets.h"
30 #include "qemu/iov.h"
31 #include "net/net.h"
32
33 void strpadcpy(char *buf, int buf_size, const char *str, char pad)
34 {
35 int len = qemu_strnlen(str, buf_size);
36 memcpy(buf, str, len);
37 memset(buf + len, pad, buf_size - len);
38 }
39
40 void pstrcpy(char *buf, int buf_size, const char *str)
41 {
42 int c;
43 char *q = buf;
44
45 if (buf_size <= 0)
46 return;
47
48 for(;;) {
49 c = *str++;
50 if (c == 0 || q >= buf + buf_size - 1)
51 break;
52 *q++ = c;
53 }
54 *q = '\0';
55 }
56
57 /* strcat and truncate. */
58 char *pstrcat(char *buf, int buf_size, const char *s)
59 {
60 int len;
61 len = strlen(buf);
62 if (len < buf_size)
63 pstrcpy(buf + len, buf_size - len, s);
64 return buf;
65 }
66
67 int strstart(const char *str, const char *val, const char **ptr)
68 {
69 const char *p, *q;
70 p = str;
71 q = val;
72 while (*q != '\0') {
73 if (*p != *q)
74 return 0;
75 p++;
76 q++;
77 }
78 if (ptr)
79 *ptr = p;
80 return 1;
81 }
82
83 int stristart(const char *str, const char *val, const char **ptr)
84 {
85 const char *p, *q;
86 p = str;
87 q = val;
88 while (*q != '\0') {
89 if (qemu_toupper(*p) != qemu_toupper(*q))
90 return 0;
91 p++;
92 q++;
93 }
94 if (ptr)
95 *ptr = p;
96 return 1;
97 }
98
99 /* XXX: use host strnlen if available ? */
100 int qemu_strnlen(const char *s, int max_len)
101 {
102 int i;
103
104 for(i = 0; i < max_len; i++) {
105 if (s[i] == '\0') {
106 break;
107 }
108 }
109 return i;
110 }
111
112 char *qemu_strsep(char **input, const char *delim)
113 {
114 char *result = *input;
115 if (result != NULL) {
116 char *p;
117
118 for (p = result; *p != '\0'; p++) {
119 if (strchr(delim, *p)) {
120 break;
121 }
122 }
123 if (*p == '\0') {
124 *input = NULL;
125 } else {
126 *p = '\0';
127 *input = p + 1;
128 }
129 }
130 return result;
131 }
132
133 time_t mktimegm(struct tm *tm)
134 {
135 time_t t;
136 int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
137 if (m < 3) {
138 m += 12;
139 y--;
140 }
141 t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
142 y / 400 - 719469);
143 t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
144 return t;
145 }
146
147 /*
148 * Make sure data goes on disk, but if possible do not bother to
149 * write out the inode just for timestamp updates.
150 *
151 * Unfortunately even in 2009 many operating systems do not support
152 * fdatasync and have to fall back to fsync.
153 */
154 int qemu_fdatasync(int fd)
155 {
156 #ifdef CONFIG_FDATASYNC
157 return fdatasync(fd);
158 #else
159 return fsync(fd);
160 #endif
161 }
162
163 static bool
164 can_use_buffer_find_nonzero_offset_inner(const void *buf, size_t len)
165 {
166 return (len % (BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR
167 * sizeof(VECTYPE)) == 0
168 && ((uintptr_t) buf) % sizeof(VECTYPE) == 0);
169 }
170
171 /*
172 * Searches for an area with non-zero content in a buffer
173 *
174 * Attention! The len must be a multiple of
175 * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR * sizeof(VECTYPE)
176 * and addr must be a multiple of sizeof(VECTYPE) due to
177 * restriction of optimizations in this function.
178 *
179 * can_use_buffer_find_nonzero_offset_inner() can be used to
180 * check these requirements.
181 *
182 * The return value is the offset of the non-zero area rounded
183 * down to a multiple of sizeof(VECTYPE) for the first
184 * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR chunks and down to
185 * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR * sizeof(VECTYPE)
186 * afterwards.
187 *
188 * If the buffer is all zero the return value is equal to len.
189 */
190
191 static size_t buffer_find_nonzero_offset_inner(const void *buf, size_t len)
192 {
193 const VECTYPE *p = buf;
194 const VECTYPE zero = (VECTYPE){0};
195 size_t i;
196
197 assert(can_use_buffer_find_nonzero_offset_inner(buf, len));
198
199 if (!len) {
200 return 0;
201 }
202
203 for (i = 0; i < BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR; i++) {
204 if (!ALL_EQ(p[i], zero)) {
205 return i * sizeof(VECTYPE);
206 }
207 }
208
209 for (i = BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR;
210 i < len / sizeof(VECTYPE);
211 i += BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR) {
212 VECTYPE tmp0 = VEC_OR(p[i + 0], p[i + 1]);
213 VECTYPE tmp1 = VEC_OR(p[i + 2], p[i + 3]);
214 VECTYPE tmp2 = VEC_OR(p[i + 4], p[i + 5]);
215 VECTYPE tmp3 = VEC_OR(p[i + 6], p[i + 7]);
216 VECTYPE tmp01 = VEC_OR(tmp0, tmp1);
217 VECTYPE tmp23 = VEC_OR(tmp2, tmp3);
218 if (!ALL_EQ(VEC_OR(tmp01, tmp23), zero)) {
219 break;
220 }
221 }
222
223 return i * sizeof(VECTYPE);
224 }
225
226 /*
227 * GCC before version 4.9 has a bug which will cause the target
228 * attribute work incorrectly and failed to compile in some case,
229 * restrict the gcc version to 4.9+ to prevent the failure.
230 */
231
232 #if defined CONFIG_AVX2_OPT && QEMU_GNUC_PREREQ(4, 9)
233 #pragma GCC push_options
234 #pragma GCC target("avx2")
235 #include <cpuid.h>
236 #include <immintrin.h>
237
238 #define AVX2_VECTYPE __m256i
239 #define AVX2_SPLAT(p) _mm256_set1_epi8(*(p))
240 #define AVX2_ALL_EQ(v1, v2) \
241 (_mm256_movemask_epi8(_mm256_cmpeq_epi8(v1, v2)) == 0xFFFFFFFF)
242 #define AVX2_VEC_OR(v1, v2) (_mm256_or_si256(v1, v2))
243
244 static bool
245 can_use_buffer_find_nonzero_offset_avx2(const void *buf, size_t len)
246 {
247 return (len % (BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR
248 * sizeof(AVX2_VECTYPE)) == 0
249 && ((uintptr_t) buf) % sizeof(AVX2_VECTYPE) == 0);
250 }
251
252 static size_t buffer_find_nonzero_offset_avx2(const void *buf, size_t len)
253 {
254 const AVX2_VECTYPE *p = buf;
255 const AVX2_VECTYPE zero = (AVX2_VECTYPE){0};
256 size_t i;
257
258 assert(can_use_buffer_find_nonzero_offset_avx2(buf, len));
259
260 if (!len) {
261 return 0;
262 }
263
264 for (i = 0; i < BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR; i++) {
265 if (!AVX2_ALL_EQ(p[i], zero)) {
266 return i * sizeof(AVX2_VECTYPE);
267 }
268 }
269
270 for (i = BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR;
271 i < len / sizeof(AVX2_VECTYPE);
272 i += BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR) {
273 AVX2_VECTYPE tmp0 = AVX2_VEC_OR(p[i + 0], p[i + 1]);
274 AVX2_VECTYPE tmp1 = AVX2_VEC_OR(p[i + 2], p[i + 3]);
275 AVX2_VECTYPE tmp2 = AVX2_VEC_OR(p[i + 4], p[i + 5]);
276 AVX2_VECTYPE tmp3 = AVX2_VEC_OR(p[i + 6], p[i + 7]);
277 AVX2_VECTYPE tmp01 = AVX2_VEC_OR(tmp0, tmp1);
278 AVX2_VECTYPE tmp23 = AVX2_VEC_OR(tmp2, tmp3);
279 if (!AVX2_ALL_EQ(AVX2_VEC_OR(tmp01, tmp23), zero)) {
280 break;
281 }
282 }
283
284 return i * sizeof(AVX2_VECTYPE);
285 }
286
287 static bool avx2_support(void)
288 {
289 int a, b, c, d;
290
291 if (__get_cpuid_max(0, NULL) < 7) {
292 return false;
293 }
294
295 __cpuid_count(7, 0, a, b, c, d);
296
297 return b & bit_AVX2;
298 }
299
300 bool can_use_buffer_find_nonzero_offset(const void *buf, size_t len) \
301 __attribute__ ((ifunc("can_use_buffer_find_nonzero_offset_ifunc")));
302 size_t buffer_find_nonzero_offset(const void *buf, size_t len) \
303 __attribute__ ((ifunc("buffer_find_nonzero_offset_ifunc")));
304
305 static void *buffer_find_nonzero_offset_ifunc(void)
306 {
307 typeof(buffer_find_nonzero_offset) *func = (avx2_support()) ?
308 buffer_find_nonzero_offset_avx2 : buffer_find_nonzero_offset_inner;
309
310 return func;
311 }
312
313 static void *can_use_buffer_find_nonzero_offset_ifunc(void)
314 {
315 typeof(can_use_buffer_find_nonzero_offset) *func = (avx2_support()) ?
316 can_use_buffer_find_nonzero_offset_avx2 :
317 can_use_buffer_find_nonzero_offset_inner;
318
319 return func;
320 }
321 #pragma GCC pop_options
322 #else
323 bool can_use_buffer_find_nonzero_offset(const void *buf, size_t len)
324 {
325 return can_use_buffer_find_nonzero_offset_inner(buf, len);
326 }
327
328 size_t buffer_find_nonzero_offset(const void *buf, size_t len)
329 {
330 return buffer_find_nonzero_offset_inner(buf, len);
331 }
332 #endif
333
334 /*
335 * Checks if a buffer is all zeroes
336 *
337 * Attention! The len must be a multiple of 4 * sizeof(long) due to
338 * restriction of optimizations in this function.
339 */
340 bool buffer_is_zero(const void *buf, size_t len)
341 {
342 /*
343 * Use long as the biggest available internal data type that fits into the
344 * CPU register and unroll the loop to smooth out the effect of memory
345 * latency.
346 */
347
348 size_t i;
349 long d0, d1, d2, d3;
350 const long * const data = buf;
351
352 /* use vector optimized zero check if possible */
353 if (can_use_buffer_find_nonzero_offset(buf, len)) {
354 return buffer_find_nonzero_offset(buf, len) == len;
355 }
356
357 assert(len % (4 * sizeof(long)) == 0);
358 len /= sizeof(long);
359
360 for (i = 0; i < len; i += 4) {
361 d0 = data[i + 0];
362 d1 = data[i + 1];
363 d2 = data[i + 2];
364 d3 = data[i + 3];
365
366 if (d0 || d1 || d2 || d3) {
367 return false;
368 }
369 }
370
371 return true;
372 }
373
374 #ifndef _WIN32
375 /* Sets a specific flag */
376 int fcntl_setfl(int fd, int flag)
377 {
378 int flags;
379
380 flags = fcntl(fd, F_GETFL);
381 if (flags == -1)
382 return -errno;
383
384 if (fcntl(fd, F_SETFL, flags | flag) == -1)
385 return -errno;
386
387 return 0;
388 }
389 #endif
390
391 static int64_t suffix_mul(char suffix, int64_t unit)
392 {
393 switch (qemu_toupper(suffix)) {
394 case QEMU_STRTOSZ_DEFSUFFIX_B:
395 return 1;
396 case QEMU_STRTOSZ_DEFSUFFIX_KB:
397 return unit;
398 case QEMU_STRTOSZ_DEFSUFFIX_MB:
399 return unit * unit;
400 case QEMU_STRTOSZ_DEFSUFFIX_GB:
401 return unit * unit * unit;
402 case QEMU_STRTOSZ_DEFSUFFIX_TB:
403 return unit * unit * unit * unit;
404 case QEMU_STRTOSZ_DEFSUFFIX_PB:
405 return unit * unit * unit * unit * unit;
406 case QEMU_STRTOSZ_DEFSUFFIX_EB:
407 return unit * unit * unit * unit * unit * unit;
408 }
409 return -1;
410 }
411
412 /*
413 * Convert string to bytes, allowing either B/b for bytes, K/k for KB,
414 * M/m for MB, G/g for GB or T/t for TB. End pointer will be returned
415 * in *end, if not NULL. Return -ERANGE on overflow, Return -EINVAL on
416 * other error.
417 */
418 int64_t qemu_strtosz_suffix_unit(const char *nptr, char **end,
419 const char default_suffix, int64_t unit)
420 {
421 int64_t retval = -EINVAL;
422 char *endptr;
423 unsigned char c;
424 int mul_required = 0;
425 double val, mul, integral, fraction;
426
427 errno = 0;
428 val = strtod(nptr, &endptr);
429 if (isnan(val) || endptr == nptr || errno != 0) {
430 goto fail;
431 }
432 fraction = modf(val, &integral);
433 if (fraction != 0) {
434 mul_required = 1;
435 }
436 c = *endptr;
437 mul = suffix_mul(c, unit);
438 if (mul >= 0) {
439 endptr++;
440 } else {
441 mul = suffix_mul(default_suffix, unit);
442 assert(mul >= 0);
443 }
444 if (mul == 1 && mul_required) {
445 goto fail;
446 }
447 if ((val * mul >= INT64_MAX) || val < 0) {
448 retval = -ERANGE;
449 goto fail;
450 }
451 retval = val * mul;
452
453 fail:
454 if (end) {
455 *end = endptr;
456 }
457
458 return retval;
459 }
460
461 int64_t qemu_strtosz_suffix(const char *nptr, char **end,
462 const char default_suffix)
463 {
464 return qemu_strtosz_suffix_unit(nptr, end, default_suffix, 1024);
465 }
466
467 int64_t qemu_strtosz(const char *nptr, char **end)
468 {
469 return qemu_strtosz_suffix(nptr, end, QEMU_STRTOSZ_DEFSUFFIX_MB);
470 }
471
472 /**
473 * Helper function for qemu_strto*l() functions.
474 */
475 static int check_strtox_error(const char *p, char *endptr, const char **next,
476 int err)
477 {
478 /* If no conversion was performed, prefer BSD behavior over glibc
479 * behavior.
480 */
481 if (err == 0 && endptr == p) {
482 err = EINVAL;
483 }
484 if (!next && *endptr) {
485 return -EINVAL;
486 }
487 if (next) {
488 *next = endptr;
489 }
490 return -err;
491 }
492
493 /**
494 * QEMU wrappers for strtol(), strtoll(), strtoul(), strotull() C functions.
495 *
496 * Convert ASCII string @nptr to a long integer value
497 * from the given @base. Parameters @nptr, @endptr, @base
498 * follows same semantics as strtol() C function.
499 *
500 * Unlike from strtol() function, if @endptr is not NULL, this
501 * function will return -EINVAL whenever it cannot fully convert
502 * the string in @nptr with given @base to a long. This function returns
503 * the result of the conversion only through the @result parameter.
504 *
505 * If NULL is passed in @endptr, then the whole string in @ntpr
506 * is a number otherwise it returns -EINVAL.
507 *
508 * RETURN VALUE
509 * Unlike from strtol() function, this wrapper returns either
510 * -EINVAL or the errno set by strtol() function (e.g -ERANGE).
511 * If the conversion overflows, -ERANGE is returned, and @result
512 * is set to the max value of the desired type
513 * (e.g. LONG_MAX, LLONG_MAX, ULONG_MAX, ULLONG_MAX). If the case
514 * of underflow, -ERANGE is returned, and @result is set to the min
515 * value of the desired type. For strtol(), strtoll(), @result is set to
516 * LONG_MIN, LLONG_MIN, respectively, and for strtoul(), strtoull() it
517 * is set to 0.
518 */
519 int qemu_strtol(const char *nptr, const char **endptr, int base,
520 long *result)
521 {
522 char *p;
523 int err = 0;
524 if (!nptr) {
525 if (endptr) {
526 *endptr = nptr;
527 }
528 err = -EINVAL;
529 } else {
530 errno = 0;
531 *result = strtol(nptr, &p, base);
532 err = check_strtox_error(nptr, p, endptr, errno);
533 }
534 return err;
535 }
536
537 /**
538 * Converts ASCII string to an unsigned long integer.
539 *
540 * If string contains a negative number, value will be converted to
541 * the unsigned representation of the signed value, unless the original
542 * (nonnegated) value would overflow, in this case, it will set @result
543 * to ULONG_MAX, and return ERANGE.
544 *
545 * The same behavior holds, for qemu_strtoull() but sets @result to
546 * ULLONG_MAX instead of ULONG_MAX.
547 *
548 * See qemu_strtol() documentation for more info.
549 */
550 int qemu_strtoul(const char *nptr, const char **endptr, int base,
551 unsigned long *result)
552 {
553 char *p;
554 int err = 0;
555 if (!nptr) {
556 if (endptr) {
557 *endptr = nptr;
558 }
559 err = -EINVAL;
560 } else {
561 errno = 0;
562 *result = strtoul(nptr, &p, base);
563 /* Windows returns 1 for negative out-of-range values. */
564 if (errno == ERANGE) {
565 *result = -1;
566 }
567 err = check_strtox_error(nptr, p, endptr, errno);
568 }
569 return err;
570 }
571
572 /**
573 * Converts ASCII string to a long long integer.
574 *
575 * See qemu_strtol() documentation for more info.
576 */
577 int qemu_strtoll(const char *nptr, const char **endptr, int base,
578 int64_t *result)
579 {
580 char *p;
581 int err = 0;
582 if (!nptr) {
583 if (endptr) {
584 *endptr = nptr;
585 }
586 err = -EINVAL;
587 } else {
588 errno = 0;
589 *result = strtoll(nptr, &p, base);
590 err = check_strtox_error(nptr, p, endptr, errno);
591 }
592 return err;
593 }
594
595 /**
596 * Converts ASCII string to an unsigned long long integer.
597 *
598 * See qemu_strtol() documentation for more info.
599 */
600 int qemu_strtoull(const char *nptr, const char **endptr, int base,
601 uint64_t *result)
602 {
603 char *p;
604 int err = 0;
605 if (!nptr) {
606 if (endptr) {
607 *endptr = nptr;
608 }
609 err = -EINVAL;
610 } else {
611 errno = 0;
612 *result = strtoull(nptr, &p, base);
613 /* Windows returns 1 for negative out-of-range values. */
614 if (errno == ERANGE) {
615 *result = -1;
616 }
617 err = check_strtox_error(nptr, p, endptr, errno);
618 }
619 return err;
620 }
621
622 /**
623 * parse_uint:
624 *
625 * @s: String to parse
626 * @value: Destination for parsed integer value
627 * @endptr: Destination for pointer to first character not consumed
628 * @base: integer base, between 2 and 36 inclusive, or 0
629 *
630 * Parse unsigned integer
631 *
632 * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional
633 * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits.
634 *
635 * If @s is null, or @base is invalid, or @s doesn't start with an
636 * integer in the syntax above, set *@value to 0, *@endptr to @s, and
637 * return -EINVAL.
638 *
639 * Set *@endptr to point right beyond the parsed integer (even if the integer
640 * overflows or is negative, all digits will be parsed and *@endptr will
641 * point right beyond them).
642 *
643 * If the integer is negative, set *@value to 0, and return -ERANGE.
644 *
645 * If the integer overflows unsigned long long, set *@value to
646 * ULLONG_MAX, and return -ERANGE.
647 *
648 * Else, set *@value to the parsed integer, and return 0.
649 */
650 int parse_uint(const char *s, unsigned long long *value, char **endptr,
651 int base)
652 {
653 int r = 0;
654 char *endp = (char *)s;
655 unsigned long long val = 0;
656
657 if (!s) {
658 r = -EINVAL;
659 goto out;
660 }
661
662 errno = 0;
663 val = strtoull(s, &endp, base);
664 if (errno) {
665 r = -errno;
666 goto out;
667 }
668
669 if (endp == s) {
670 r = -EINVAL;
671 goto out;
672 }
673
674 /* make sure we reject negative numbers: */
675 while (isspace((unsigned char)*s)) {
676 s++;
677 }
678 if (*s == '-') {
679 val = 0;
680 r = -ERANGE;
681 goto out;
682 }
683
684 out:
685 *value = val;
686 *endptr = endp;
687 return r;
688 }
689
690 /**
691 * parse_uint_full:
692 *
693 * @s: String to parse
694 * @value: Destination for parsed integer value
695 * @base: integer base, between 2 and 36 inclusive, or 0
696 *
697 * Parse unsigned integer from entire string
698 *
699 * Have the same behavior of parse_uint(), but with an additional check
700 * for additional data after the parsed number. If extra characters are present
701 * after the parsed number, the function will return -EINVAL, and *@v will
702 * be set to 0.
703 */
704 int parse_uint_full(const char *s, unsigned long long *value, int base)
705 {
706 char *endp;
707 int r;
708
709 r = parse_uint(s, value, &endp, base);
710 if (r < 0) {
711 return r;
712 }
713 if (*endp) {
714 *value = 0;
715 return -EINVAL;
716 }
717
718 return 0;
719 }
720
721 int qemu_parse_fd(const char *param)
722 {
723 long fd;
724 char *endptr;
725
726 errno = 0;
727 fd = strtol(param, &endptr, 10);
728 if (param == endptr /* no conversion performed */ ||
729 errno != 0 /* not representable as long; possibly others */ ||
730 *endptr != '\0' /* final string not empty */ ||
731 fd < 0 /* invalid as file descriptor */ ||
732 fd > INT_MAX /* not representable as int */) {
733 return -1;
734 }
735 return fd;
736 }
737
738 /*
739 * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128)
740 * Input is limited to 14-bit numbers
741 */
742 int uleb128_encode_small(uint8_t *out, uint32_t n)
743 {
744 g_assert(n <= 0x3fff);
745 if (n < 0x80) {
746 *out++ = n;
747 return 1;
748 } else {
749 *out++ = (n & 0x7f) | 0x80;
750 *out++ = n >> 7;
751 return 2;
752 }
753 }
754
755 int uleb128_decode_small(const uint8_t *in, uint32_t *n)
756 {
757 if (!(*in & 0x80)) {
758 *n = *in++;
759 return 1;
760 } else {
761 *n = *in++ & 0x7f;
762 /* we exceed 14 bit number */
763 if (*in & 0x80) {
764 return -1;
765 }
766 *n |= *in++ << 7;
767 return 2;
768 }
769 }
770
771 /*
772 * helper to parse debug environment variables
773 */
774 int parse_debug_env(const char *name, int max, int initial)
775 {
776 char *debug_env = getenv(name);
777 char *inv = NULL;
778 long debug;
779
780 if (!debug_env) {
781 return initial;
782 }
783 errno = 0;
784 debug = strtol(debug_env, &inv, 10);
785 if (inv == debug_env) {
786 return initial;
787 }
788 if (debug < 0 || debug > max || errno != 0) {
789 fprintf(stderr, "warning: %s not in [0, %d]", name, max);
790 return initial;
791 }
792 return debug;
793 }
794
795 /*
796 * Helper to print ethernet mac address
797 */
798 const char *qemu_ether_ntoa(const MACAddr *mac)
799 {
800 static char ret[18];
801
802 snprintf(ret, sizeof(ret), "%02x:%02x:%02x:%02x:%02x:%02x",
803 mac->a[0], mac->a[1], mac->a[2], mac->a[3], mac->a[4], mac->a[5]);
804
805 return ret;
806 }