]> git.proxmox.com Git - mirror_qemu.git/blob - util/iov.c
build: move coroutine backend selection to meson
[mirror_qemu.git] / util / iov.c
1 /*
2 * Helpers for getting linearized buffers from iov / filling buffers into iovs
3 *
4 * Copyright IBM, Corp. 2007, 2008
5 * Copyright (C) 2010 Red Hat, Inc.
6 *
7 * Author(s):
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Amit Shah <amit.shah@redhat.com>
10 * Michael Tokarev <mjt@tls.msk.ru>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 * Contributions after 2012-01-13 are licensed under the terms of the
16 * GNU GPL, version 2 or (at your option) any later version.
17 */
18
19 #include "qemu/osdep.h"
20 #include "qemu/iov.h"
21 #include "qemu/sockets.h"
22 #include "qemu/cutils.h"
23
24 size_t iov_from_buf_full(const struct iovec *iov, unsigned int iov_cnt,
25 size_t offset, const void *buf, size_t bytes)
26 {
27 size_t done;
28 unsigned int i;
29 for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
30 if (offset < iov[i].iov_len) {
31 size_t len = MIN(iov[i].iov_len - offset, bytes - done);
32 memcpy(iov[i].iov_base + offset, buf + done, len);
33 done += len;
34 offset = 0;
35 } else {
36 offset -= iov[i].iov_len;
37 }
38 }
39 assert(offset == 0);
40 return done;
41 }
42
43 size_t iov_to_buf_full(const struct iovec *iov, const unsigned int iov_cnt,
44 size_t offset, void *buf, size_t bytes)
45 {
46 size_t done;
47 unsigned int i;
48 for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
49 if (offset < iov[i].iov_len) {
50 size_t len = MIN(iov[i].iov_len - offset, bytes - done);
51 memcpy(buf + done, iov[i].iov_base + offset, len);
52 done += len;
53 offset = 0;
54 } else {
55 offset -= iov[i].iov_len;
56 }
57 }
58 assert(offset == 0);
59 return done;
60 }
61
62 size_t iov_memset(const struct iovec *iov, const unsigned int iov_cnt,
63 size_t offset, int fillc, size_t bytes)
64 {
65 size_t done;
66 unsigned int i;
67 for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
68 if (offset < iov[i].iov_len) {
69 size_t len = MIN(iov[i].iov_len - offset, bytes - done);
70 memset(iov[i].iov_base + offset, fillc, len);
71 done += len;
72 offset = 0;
73 } else {
74 offset -= iov[i].iov_len;
75 }
76 }
77 assert(offset == 0);
78 return done;
79 }
80
81 size_t iov_size(const struct iovec *iov, const unsigned int iov_cnt)
82 {
83 size_t len;
84 unsigned int i;
85
86 len = 0;
87 for (i = 0; i < iov_cnt; i++) {
88 len += iov[i].iov_len;
89 }
90 return len;
91 }
92
93 /* helper function for iov_send_recv() */
94 static ssize_t
95 do_send_recv(int sockfd, struct iovec *iov, unsigned iov_cnt, bool do_send)
96 {
97 #ifdef CONFIG_POSIX
98 ssize_t ret;
99 struct msghdr msg;
100 memset(&msg, 0, sizeof(msg));
101 msg.msg_iov = iov;
102 msg.msg_iovlen = iov_cnt;
103 do {
104 ret = do_send
105 ? sendmsg(sockfd, &msg, 0)
106 : recvmsg(sockfd, &msg, 0);
107 } while (ret < 0 && errno == EINTR);
108 return ret;
109 #else
110 /* else send piece-by-piece */
111 /*XXX Note: windows has WSASend() and WSARecv() */
112 unsigned i = 0;
113 ssize_t ret = 0;
114 ssize_t off = 0;
115 while (i < iov_cnt) {
116 ssize_t r = do_send
117 ? send(sockfd, iov[i].iov_base + off, iov[i].iov_len - off, 0)
118 : recv(sockfd, iov[i].iov_base + off, iov[i].iov_len - off, 0);
119 if (r > 0) {
120 ret += r;
121 off += r;
122 if (off < iov[i].iov_len) {
123 continue;
124 }
125 } else if (!r) {
126 break;
127 } else if (errno == EINTR) {
128 continue;
129 } else {
130 /* else it is some "other" error,
131 * only return if there was no data processed. */
132 if (ret == 0) {
133 ret = -1;
134 }
135 break;
136 }
137 off = 0;
138 i++;
139 }
140 return ret;
141 #endif
142 }
143
144 ssize_t iov_send_recv(int sockfd, const struct iovec *_iov, unsigned iov_cnt,
145 size_t offset, size_t bytes,
146 bool do_send)
147 {
148 ssize_t total = 0;
149 ssize_t ret;
150 size_t orig_len, tail;
151 unsigned niov;
152 struct iovec *local_iov, *iov;
153
154 if (bytes <= 0) {
155 return 0;
156 }
157
158 local_iov = g_new0(struct iovec, iov_cnt);
159 iov_copy(local_iov, iov_cnt, _iov, iov_cnt, offset, bytes);
160 offset = 0;
161 iov = local_iov;
162
163 while (bytes > 0) {
164 /* Find the start position, skipping `offset' bytes:
165 * first, skip all full-sized vector elements, */
166 for (niov = 0; niov < iov_cnt && offset >= iov[niov].iov_len; ++niov) {
167 offset -= iov[niov].iov_len;
168 }
169
170 /* niov == iov_cnt would only be valid if bytes == 0, which
171 * we already ruled out in the loop condition. */
172 assert(niov < iov_cnt);
173 iov += niov;
174 iov_cnt -= niov;
175
176 if (offset) {
177 /* second, skip `offset' bytes from the (now) first element,
178 * undo it on exit */
179 iov[0].iov_base += offset;
180 iov[0].iov_len -= offset;
181 }
182 /* Find the end position skipping `bytes' bytes: */
183 /* first, skip all full-sized elements */
184 tail = bytes;
185 for (niov = 0; niov < iov_cnt && iov[niov].iov_len <= tail; ++niov) {
186 tail -= iov[niov].iov_len;
187 }
188 if (tail) {
189 /* second, fixup the last element, and remember the original
190 * length */
191 assert(niov < iov_cnt);
192 assert(iov[niov].iov_len > tail);
193 orig_len = iov[niov].iov_len;
194 iov[niov++].iov_len = tail;
195 ret = do_send_recv(sockfd, iov, niov, do_send);
196 /* Undo the changes above before checking for errors */
197 iov[niov-1].iov_len = orig_len;
198 } else {
199 ret = do_send_recv(sockfd, iov, niov, do_send);
200 }
201 if (offset) {
202 iov[0].iov_base -= offset;
203 iov[0].iov_len += offset;
204 }
205
206 if (ret < 0) {
207 assert(errno != EINTR);
208 g_free(local_iov);
209 if (errno == EAGAIN && total > 0) {
210 return total;
211 }
212 return -1;
213 }
214
215 if (ret == 0 && !do_send) {
216 /* recv returns 0 when the peer has performed an orderly
217 * shutdown. */
218 break;
219 }
220
221 /* Prepare for the next iteration */
222 offset += ret;
223 total += ret;
224 bytes -= ret;
225 }
226
227 g_free(local_iov);
228 return total;
229 }
230
231
232 void iov_hexdump(const struct iovec *iov, const unsigned int iov_cnt,
233 FILE *fp, const char *prefix, size_t limit)
234 {
235 int v;
236 size_t size = 0;
237 char *buf;
238
239 for (v = 0; v < iov_cnt; v++) {
240 size += iov[v].iov_len;
241 }
242 size = size > limit ? limit : size;
243 buf = g_malloc(size);
244 iov_to_buf(iov, iov_cnt, 0, buf, size);
245 qemu_hexdump(fp, prefix, buf, size);
246 g_free(buf);
247 }
248
249 unsigned iov_copy(struct iovec *dst_iov, unsigned int dst_iov_cnt,
250 const struct iovec *iov, unsigned int iov_cnt,
251 size_t offset, size_t bytes)
252 {
253 size_t len;
254 unsigned int i, j;
255 for (i = 0, j = 0;
256 i < iov_cnt && j < dst_iov_cnt && (offset || bytes); i++) {
257 if (offset >= iov[i].iov_len) {
258 offset -= iov[i].iov_len;
259 continue;
260 }
261 len = MIN(bytes, iov[i].iov_len - offset);
262
263 dst_iov[j].iov_base = iov[i].iov_base + offset;
264 dst_iov[j].iov_len = len;
265 j++;
266 bytes -= len;
267 offset = 0;
268 }
269 assert(offset == 0);
270 return j;
271 }
272
273 /* io vectors */
274
275 void qemu_iovec_init(QEMUIOVector *qiov, int alloc_hint)
276 {
277 qiov->iov = g_new(struct iovec, alloc_hint);
278 qiov->niov = 0;
279 qiov->nalloc = alloc_hint;
280 qiov->size = 0;
281 }
282
283 void qemu_iovec_init_external(QEMUIOVector *qiov, struct iovec *iov, int niov)
284 {
285 int i;
286
287 qiov->iov = iov;
288 qiov->niov = niov;
289 qiov->nalloc = -1;
290 qiov->size = 0;
291 for (i = 0; i < niov; i++)
292 qiov->size += iov[i].iov_len;
293 }
294
295 void qemu_iovec_add(QEMUIOVector *qiov, void *base, size_t len)
296 {
297 assert(qiov->nalloc != -1);
298
299 if (qiov->niov == qiov->nalloc) {
300 qiov->nalloc = 2 * qiov->nalloc + 1;
301 qiov->iov = g_renew(struct iovec, qiov->iov, qiov->nalloc);
302 }
303 qiov->iov[qiov->niov].iov_base = base;
304 qiov->iov[qiov->niov].iov_len = len;
305 qiov->size += len;
306 ++qiov->niov;
307 }
308
309 /*
310 * Concatenates (partial) iovecs from src_iov to the end of dst.
311 * It starts copying after skipping `soffset' bytes at the
312 * beginning of src and adds individual vectors from src to
313 * dst copies up to `sbytes' bytes total, or up to the end
314 * of src_iov if it comes first. This way, it is okay to specify
315 * very large value for `sbytes' to indicate "up to the end
316 * of src".
317 * Only vector pointers are processed, not the actual data buffers.
318 */
319 size_t qemu_iovec_concat_iov(QEMUIOVector *dst,
320 struct iovec *src_iov, unsigned int src_cnt,
321 size_t soffset, size_t sbytes)
322 {
323 int i;
324 size_t done;
325
326 if (!sbytes) {
327 return 0;
328 }
329 assert(dst->nalloc != -1);
330 for (i = 0, done = 0; done < sbytes && i < src_cnt; i++) {
331 if (soffset < src_iov[i].iov_len) {
332 size_t len = MIN(src_iov[i].iov_len - soffset, sbytes - done);
333 qemu_iovec_add(dst, src_iov[i].iov_base + soffset, len);
334 done += len;
335 soffset = 0;
336 } else {
337 soffset -= src_iov[i].iov_len;
338 }
339 }
340 assert(soffset == 0); /* offset beyond end of src */
341
342 return done;
343 }
344
345 /*
346 * Concatenates (partial) iovecs from src to the end of dst.
347 * It starts copying after skipping `soffset' bytes at the
348 * beginning of src and adds individual vectors from src to
349 * dst copies up to `sbytes' bytes total, or up to the end
350 * of src if it comes first. This way, it is okay to specify
351 * very large value for `sbytes' to indicate "up to the end
352 * of src".
353 * Only vector pointers are processed, not the actual data buffers.
354 */
355 void qemu_iovec_concat(QEMUIOVector *dst,
356 QEMUIOVector *src, size_t soffset, size_t sbytes)
357 {
358 qemu_iovec_concat_iov(dst, src->iov, src->niov, soffset, sbytes);
359 }
360
361 /*
362 * qiov_find_iov
363 *
364 * Return pointer to iovec structure, where byte at @offset in original vector
365 * @iov exactly is.
366 * Set @remaining_offset to be offset inside that iovec to the same byte.
367 */
368 static struct iovec *iov_skip_offset(struct iovec *iov, size_t offset,
369 size_t *remaining_offset)
370 {
371 while (offset > 0 && offset >= iov->iov_len) {
372 offset -= iov->iov_len;
373 iov++;
374 }
375 *remaining_offset = offset;
376
377 return iov;
378 }
379
380 /*
381 * qiov_slice
382 *
383 * Find subarray of iovec's, containing requested range. @head would
384 * be offset in first iov (returned by the function), @tail would be
385 * count of extra bytes in last iovec (returned iov + @niov - 1).
386 */
387 static struct iovec *qiov_slice(QEMUIOVector *qiov,
388 size_t offset, size_t len,
389 size_t *head, size_t *tail, int *niov)
390 {
391 struct iovec *iov, *end_iov;
392
393 assert(offset + len <= qiov->size);
394
395 iov = iov_skip_offset(qiov->iov, offset, head);
396 end_iov = iov_skip_offset(iov, *head + len, tail);
397
398 if (*tail > 0) {
399 assert(*tail < end_iov->iov_len);
400 *tail = end_iov->iov_len - *tail;
401 end_iov++;
402 }
403
404 *niov = end_iov - iov;
405
406 return iov;
407 }
408
409 int qemu_iovec_subvec_niov(QEMUIOVector *qiov, size_t offset, size_t len)
410 {
411 size_t head, tail;
412 int niov;
413
414 qiov_slice(qiov, offset, len, &head, &tail, &niov);
415
416 return niov;
417 }
418
419 /*
420 * Compile new iovec, combining @head_buf buffer, sub-qiov of @mid_qiov,
421 * and @tail_buf buffer into new qiov.
422 */
423 int qemu_iovec_init_extended(
424 QEMUIOVector *qiov,
425 void *head_buf, size_t head_len,
426 QEMUIOVector *mid_qiov, size_t mid_offset, size_t mid_len,
427 void *tail_buf, size_t tail_len)
428 {
429 size_t mid_head, mid_tail;
430 int total_niov, mid_niov = 0;
431 struct iovec *p, *mid_iov = NULL;
432
433 assert(mid_qiov->niov <= IOV_MAX);
434
435 if (SIZE_MAX - head_len < mid_len ||
436 SIZE_MAX - head_len - mid_len < tail_len)
437 {
438 return -EINVAL;
439 }
440
441 if (mid_len) {
442 mid_iov = qiov_slice(mid_qiov, mid_offset, mid_len,
443 &mid_head, &mid_tail, &mid_niov);
444 }
445
446 total_niov = !!head_len + mid_niov + !!tail_len;
447 if (total_niov > IOV_MAX) {
448 return -EINVAL;
449 }
450
451 if (total_niov == 1) {
452 qemu_iovec_init_buf(qiov, NULL, 0);
453 p = &qiov->local_iov;
454 } else {
455 qiov->niov = qiov->nalloc = total_niov;
456 qiov->size = head_len + mid_len + tail_len;
457 p = qiov->iov = g_new(struct iovec, qiov->niov);
458 }
459
460 if (head_len) {
461 p->iov_base = head_buf;
462 p->iov_len = head_len;
463 p++;
464 }
465
466 assert(!mid_niov == !mid_len);
467 if (mid_niov) {
468 memcpy(p, mid_iov, mid_niov * sizeof(*p));
469 p[0].iov_base = (uint8_t *)p[0].iov_base + mid_head;
470 p[0].iov_len -= mid_head;
471 p[mid_niov - 1].iov_len -= mid_tail;
472 p += mid_niov;
473 }
474
475 if (tail_len) {
476 p->iov_base = tail_buf;
477 p->iov_len = tail_len;
478 }
479
480 return 0;
481 }
482
483 /*
484 * Check if the contents of subrange of qiov data is all zeroes.
485 */
486 bool qemu_iovec_is_zero(QEMUIOVector *qiov, size_t offset, size_t bytes)
487 {
488 struct iovec *iov;
489 size_t current_offset;
490
491 assert(offset + bytes <= qiov->size);
492
493 iov = iov_skip_offset(qiov->iov, offset, &current_offset);
494
495 while (bytes) {
496 uint8_t *base = (uint8_t *)iov->iov_base + current_offset;
497 size_t len = MIN(iov->iov_len - current_offset, bytes);
498
499 if (!buffer_is_zero(base, len)) {
500 return false;
501 }
502
503 current_offset = 0;
504 bytes -= len;
505 iov++;
506 }
507
508 return true;
509 }
510
511 void qemu_iovec_init_slice(QEMUIOVector *qiov, QEMUIOVector *source,
512 size_t offset, size_t len)
513 {
514 int ret;
515
516 assert(source->size >= len);
517 assert(source->size - len >= offset);
518
519 /* We shrink the request, so we can't overflow neither size_t nor MAX_IOV */
520 ret = qemu_iovec_init_extended(qiov, NULL, 0, source, offset, len, NULL, 0);
521 assert(ret == 0);
522 }
523
524 void qemu_iovec_destroy(QEMUIOVector *qiov)
525 {
526 if (qiov->nalloc != -1) {
527 g_free(qiov->iov);
528 }
529
530 memset(qiov, 0, sizeof(*qiov));
531 }
532
533 void qemu_iovec_reset(QEMUIOVector *qiov)
534 {
535 assert(qiov->nalloc != -1);
536
537 qiov->niov = 0;
538 qiov->size = 0;
539 }
540
541 size_t qemu_iovec_to_buf(QEMUIOVector *qiov, size_t offset,
542 void *buf, size_t bytes)
543 {
544 return iov_to_buf(qiov->iov, qiov->niov, offset, buf, bytes);
545 }
546
547 size_t qemu_iovec_from_buf(QEMUIOVector *qiov, size_t offset,
548 const void *buf, size_t bytes)
549 {
550 return iov_from_buf(qiov->iov, qiov->niov, offset, buf, bytes);
551 }
552
553 size_t qemu_iovec_memset(QEMUIOVector *qiov, size_t offset,
554 int fillc, size_t bytes)
555 {
556 return iov_memset(qiov->iov, qiov->niov, offset, fillc, bytes);
557 }
558
559 /**
560 * Check that I/O vector contents are identical
561 *
562 * The IO vectors must have the same structure (same length of all parts).
563 * A typical usage is to compare vectors created with qemu_iovec_clone().
564 *
565 * @a: I/O vector
566 * @b: I/O vector
567 * @ret: Offset to first mismatching byte or -1 if match
568 */
569 ssize_t qemu_iovec_compare(QEMUIOVector *a, QEMUIOVector *b)
570 {
571 int i;
572 ssize_t offset = 0;
573
574 assert(a->niov == b->niov);
575 for (i = 0; i < a->niov; i++) {
576 size_t len = 0;
577 uint8_t *p = (uint8_t *)a->iov[i].iov_base;
578 uint8_t *q = (uint8_t *)b->iov[i].iov_base;
579
580 assert(a->iov[i].iov_len == b->iov[i].iov_len);
581 while (len < a->iov[i].iov_len && *p++ == *q++) {
582 len++;
583 }
584
585 offset += len;
586
587 if (len != a->iov[i].iov_len) {
588 return offset;
589 }
590 }
591 return -1;
592 }
593
594 typedef struct {
595 int src_index;
596 struct iovec *src_iov;
597 void *dest_base;
598 } IOVectorSortElem;
599
600 static int sortelem_cmp_src_base(const void *a, const void *b)
601 {
602 const IOVectorSortElem *elem_a = a;
603 const IOVectorSortElem *elem_b = b;
604
605 /* Don't overflow */
606 if (elem_a->src_iov->iov_base < elem_b->src_iov->iov_base) {
607 return -1;
608 } else if (elem_a->src_iov->iov_base > elem_b->src_iov->iov_base) {
609 return 1;
610 } else {
611 return 0;
612 }
613 }
614
615 static int sortelem_cmp_src_index(const void *a, const void *b)
616 {
617 const IOVectorSortElem *elem_a = a;
618 const IOVectorSortElem *elem_b = b;
619
620 return elem_a->src_index - elem_b->src_index;
621 }
622
623 /**
624 * Copy contents of I/O vector
625 *
626 * The relative relationships of overlapping iovecs are preserved. This is
627 * necessary to ensure identical semantics in the cloned I/O vector.
628 */
629 void qemu_iovec_clone(QEMUIOVector *dest, const QEMUIOVector *src, void *buf)
630 {
631 IOVectorSortElem sortelems[src->niov];
632 void *last_end;
633 int i;
634
635 /* Sort by source iovecs by base address */
636 for (i = 0; i < src->niov; i++) {
637 sortelems[i].src_index = i;
638 sortelems[i].src_iov = &src->iov[i];
639 }
640 qsort(sortelems, src->niov, sizeof(sortelems[0]), sortelem_cmp_src_base);
641
642 /* Allocate buffer space taking into account overlapping iovecs */
643 last_end = NULL;
644 for (i = 0; i < src->niov; i++) {
645 struct iovec *cur = sortelems[i].src_iov;
646 ptrdiff_t rewind = 0;
647
648 /* Detect overlap */
649 if (last_end && last_end > cur->iov_base) {
650 rewind = last_end - cur->iov_base;
651 }
652
653 sortelems[i].dest_base = buf - rewind;
654 buf += cur->iov_len - MIN(rewind, cur->iov_len);
655 last_end = MAX(cur->iov_base + cur->iov_len, last_end);
656 }
657
658 /* Sort by source iovec index and build destination iovec */
659 qsort(sortelems, src->niov, sizeof(sortelems[0]), sortelem_cmp_src_index);
660 for (i = 0; i < src->niov; i++) {
661 qemu_iovec_add(dest, sortelems[i].dest_base, src->iov[i].iov_len);
662 }
663 }
664
665 void iov_discard_undo(IOVDiscardUndo *undo)
666 {
667 /* Restore original iovec if it was modified */
668 if (undo->modified_iov) {
669 *undo->modified_iov = undo->orig;
670 }
671 }
672
673 size_t iov_discard_front_undoable(struct iovec **iov,
674 unsigned int *iov_cnt,
675 size_t bytes,
676 IOVDiscardUndo *undo)
677 {
678 size_t total = 0;
679 struct iovec *cur;
680
681 if (undo) {
682 undo->modified_iov = NULL;
683 }
684
685 for (cur = *iov; *iov_cnt > 0; cur++) {
686 if (cur->iov_len > bytes) {
687 if (undo) {
688 undo->modified_iov = cur;
689 undo->orig = *cur;
690 }
691
692 cur->iov_base += bytes;
693 cur->iov_len -= bytes;
694 total += bytes;
695 break;
696 }
697
698 bytes -= cur->iov_len;
699 total += cur->iov_len;
700 *iov_cnt -= 1;
701 }
702
703 *iov = cur;
704 return total;
705 }
706
707 size_t iov_discard_front(struct iovec **iov, unsigned int *iov_cnt,
708 size_t bytes)
709 {
710 return iov_discard_front_undoable(iov, iov_cnt, bytes, NULL);
711 }
712
713 size_t iov_discard_back_undoable(struct iovec *iov,
714 unsigned int *iov_cnt,
715 size_t bytes,
716 IOVDiscardUndo *undo)
717 {
718 size_t total = 0;
719 struct iovec *cur;
720
721 if (undo) {
722 undo->modified_iov = NULL;
723 }
724
725 if (*iov_cnt == 0) {
726 return 0;
727 }
728
729 cur = iov + (*iov_cnt - 1);
730
731 while (*iov_cnt > 0) {
732 if (cur->iov_len > bytes) {
733 if (undo) {
734 undo->modified_iov = cur;
735 undo->orig = *cur;
736 }
737
738 cur->iov_len -= bytes;
739 total += bytes;
740 break;
741 }
742
743 bytes -= cur->iov_len;
744 total += cur->iov_len;
745 cur--;
746 *iov_cnt -= 1;
747 }
748
749 return total;
750 }
751
752 size_t iov_discard_back(struct iovec *iov, unsigned int *iov_cnt,
753 size_t bytes)
754 {
755 return iov_discard_back_undoable(iov, iov_cnt, bytes, NULL);
756 }
757
758 void qemu_iovec_discard_back(QEMUIOVector *qiov, size_t bytes)
759 {
760 size_t total;
761 unsigned int niov = qiov->niov;
762
763 assert(qiov->size >= bytes);
764 total = iov_discard_back(qiov->iov, &niov, bytes);
765 assert(total == bytes);
766
767 qiov->niov = niov;
768 qiov->size -= bytes;
769 }