]> git.proxmox.com Git - mirror_qemu.git/blob - util/qemu-thread-win32.c
hw/pvrdma: Add support to allow guest to configure GID table
[mirror_qemu.git] / util / qemu-thread-win32.c
1 /*
2 * Win32 implementation for mutex/cond/thread functions
3 *
4 * Copyright Red Hat, Inc. 2010
5 *
6 * Author:
7 * Paolo Bonzini <pbonzini@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef _WIN32_WINNT
15 #define _WIN32_WINNT 0x0600
16 #endif
17
18 #include "qemu/osdep.h"
19 #include "qemu-common.h"
20 #include "qemu/thread.h"
21 #include "qemu/notify.h"
22 #include "qemu-thread-common.h"
23 #include <process.h>
24
25 static bool name_threads;
26
27 void qemu_thread_naming(bool enable)
28 {
29 /* But note we don't actually name them on Windows yet */
30 name_threads = enable;
31
32 fprintf(stderr, "qemu: thread naming not supported on this host\n");
33 }
34
35 static void error_exit(int err, const char *msg)
36 {
37 char *pstr;
38
39 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
40 NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
41 fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
42 LocalFree(pstr);
43 abort();
44 }
45
46 void qemu_mutex_init(QemuMutex *mutex)
47 {
48 InitializeSRWLock(&mutex->lock);
49 qemu_mutex_post_init(mutex);
50 }
51
52 void qemu_mutex_destroy(QemuMutex *mutex)
53 {
54 assert(mutex->initialized);
55 mutex->initialized = false;
56 InitializeSRWLock(&mutex->lock);
57 }
58
59 void qemu_mutex_lock_impl(QemuMutex *mutex, const char *file, const int line)
60 {
61 assert(mutex->initialized);
62 qemu_mutex_pre_lock(mutex, file, line);
63 AcquireSRWLockExclusive(&mutex->lock);
64 qemu_mutex_post_lock(mutex, file, line);
65 }
66
67 int qemu_mutex_trylock_impl(QemuMutex *mutex, const char *file, const int line)
68 {
69 int owned;
70
71 assert(mutex->initialized);
72 owned = TryAcquireSRWLockExclusive(&mutex->lock);
73 if (owned) {
74 qemu_mutex_post_lock(mutex, file, line);
75 return 0;
76 }
77 return -EBUSY;
78 }
79
80 void qemu_mutex_unlock_impl(QemuMutex *mutex, const char *file, const int line)
81 {
82 assert(mutex->initialized);
83 qemu_mutex_pre_unlock(mutex, file, line);
84 ReleaseSRWLockExclusive(&mutex->lock);
85 }
86
87 void qemu_rec_mutex_init(QemuRecMutex *mutex)
88 {
89 InitializeCriticalSection(&mutex->lock);
90 mutex->initialized = true;
91 }
92
93 void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
94 {
95 assert(mutex->initialized);
96 mutex->initialized = false;
97 DeleteCriticalSection(&mutex->lock);
98 }
99
100 void qemu_rec_mutex_lock_impl(QemuRecMutex *mutex, const char *file, int line)
101 {
102 assert(mutex->initialized);
103 EnterCriticalSection(&mutex->lock);
104 }
105
106 int qemu_rec_mutex_trylock_impl(QemuRecMutex *mutex, const char *file, int line)
107 {
108 assert(mutex->initialized);
109 return !TryEnterCriticalSection(&mutex->lock);
110 }
111
112 void qemu_rec_mutex_unlock(QemuRecMutex *mutex)
113 {
114 assert(mutex->initialized);
115 LeaveCriticalSection(&mutex->lock);
116 }
117
118 void qemu_cond_init(QemuCond *cond)
119 {
120 memset(cond, 0, sizeof(*cond));
121 InitializeConditionVariable(&cond->var);
122 cond->initialized = true;
123 }
124
125 void qemu_cond_destroy(QemuCond *cond)
126 {
127 assert(cond->initialized);
128 cond->initialized = false;
129 InitializeConditionVariable(&cond->var);
130 }
131
132 void qemu_cond_signal(QemuCond *cond)
133 {
134 assert(cond->initialized);
135 WakeConditionVariable(&cond->var);
136 }
137
138 void qemu_cond_broadcast(QemuCond *cond)
139 {
140 assert(cond->initialized);
141 WakeAllConditionVariable(&cond->var);
142 }
143
144 void qemu_cond_wait_impl(QemuCond *cond, QemuMutex *mutex, const char *file, const int line)
145 {
146 assert(cond->initialized);
147 qemu_mutex_pre_unlock(mutex, file, line);
148 SleepConditionVariableSRW(&cond->var, &mutex->lock, INFINITE, 0);
149 qemu_mutex_post_lock(mutex, file, line);
150 }
151
152 void qemu_sem_init(QemuSemaphore *sem, int init)
153 {
154 /* Manual reset. */
155 sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
156 sem->initialized = true;
157 }
158
159 void qemu_sem_destroy(QemuSemaphore *sem)
160 {
161 assert(sem->initialized);
162 sem->initialized = false;
163 CloseHandle(sem->sema);
164 }
165
166 void qemu_sem_post(QemuSemaphore *sem)
167 {
168 assert(sem->initialized);
169 ReleaseSemaphore(sem->sema, 1, NULL);
170 }
171
172 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
173 {
174 int rc;
175
176 assert(sem->initialized);
177 rc = WaitForSingleObject(sem->sema, ms);
178 if (rc == WAIT_OBJECT_0) {
179 return 0;
180 }
181 if (rc != WAIT_TIMEOUT) {
182 error_exit(GetLastError(), __func__);
183 }
184 return -1;
185 }
186
187 void qemu_sem_wait(QemuSemaphore *sem)
188 {
189 assert(sem->initialized);
190 if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
191 error_exit(GetLastError(), __func__);
192 }
193 }
194
195 /* Wrap a Win32 manual-reset event with a fast userspace path. The idea
196 * is to reset the Win32 event lazily, as part of a test-reset-test-wait
197 * sequence. Such a sequence is, indeed, how QemuEvents are used by
198 * RCU and other subsystems!
199 *
200 * Valid transitions:
201 * - free->set, when setting the event
202 * - busy->set, when setting the event, followed by SetEvent
203 * - set->free, when resetting the event
204 * - free->busy, when waiting
205 *
206 * set->busy does not happen (it can be observed from the outside but
207 * it really is set->free->busy).
208 *
209 * busy->free provably cannot happen; to enforce it, the set->free transition
210 * is done with an OR, which becomes a no-op if the event has concurrently
211 * transitioned to free or busy (and is faster than cmpxchg).
212 */
213
214 #define EV_SET 0
215 #define EV_FREE 1
216 #define EV_BUSY -1
217
218 void qemu_event_init(QemuEvent *ev, bool init)
219 {
220 /* Manual reset. */
221 ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
222 ev->value = (init ? EV_SET : EV_FREE);
223 ev->initialized = true;
224 }
225
226 void qemu_event_destroy(QemuEvent *ev)
227 {
228 assert(ev->initialized);
229 ev->initialized = false;
230 CloseHandle(ev->event);
231 }
232
233 void qemu_event_set(QemuEvent *ev)
234 {
235 assert(ev->initialized);
236 /* qemu_event_set has release semantics, but because it *loads*
237 * ev->value we need a full memory barrier here.
238 */
239 smp_mb();
240 if (atomic_read(&ev->value) != EV_SET) {
241 if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
242 /* There were waiters, wake them up. */
243 SetEvent(ev->event);
244 }
245 }
246 }
247
248 void qemu_event_reset(QemuEvent *ev)
249 {
250 unsigned value;
251
252 assert(ev->initialized);
253 value = atomic_read(&ev->value);
254 smp_mb_acquire();
255 if (value == EV_SET) {
256 /* If there was a concurrent reset (or even reset+wait),
257 * do nothing. Otherwise change EV_SET->EV_FREE.
258 */
259 atomic_or(&ev->value, EV_FREE);
260 }
261 }
262
263 void qemu_event_wait(QemuEvent *ev)
264 {
265 unsigned value;
266
267 assert(ev->initialized);
268 value = atomic_read(&ev->value);
269 smp_mb_acquire();
270 if (value != EV_SET) {
271 if (value == EV_FREE) {
272 /* qemu_event_set is not yet going to call SetEvent, but we are
273 * going to do another check for EV_SET below when setting EV_BUSY.
274 * At that point it is safe to call WaitForSingleObject.
275 */
276 ResetEvent(ev->event);
277
278 /* Tell qemu_event_set that there are waiters. No need to retry
279 * because there cannot be a concurent busy->free transition.
280 * After the CAS, the event will be either set or busy.
281 */
282 if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
283 value = EV_SET;
284 } else {
285 value = EV_BUSY;
286 }
287 }
288 if (value == EV_BUSY) {
289 WaitForSingleObject(ev->event, INFINITE);
290 }
291 }
292 }
293
294 struct QemuThreadData {
295 /* Passed to win32_start_routine. */
296 void *(*start_routine)(void *);
297 void *arg;
298 short mode;
299 NotifierList exit;
300
301 /* Only used for joinable threads. */
302 bool exited;
303 void *ret;
304 CRITICAL_SECTION cs;
305 };
306
307 static bool atexit_registered;
308 static NotifierList main_thread_exit;
309
310 static __thread QemuThreadData *qemu_thread_data;
311
312 static void run_main_thread_exit(void)
313 {
314 notifier_list_notify(&main_thread_exit, NULL);
315 }
316
317 void qemu_thread_atexit_add(Notifier *notifier)
318 {
319 if (!qemu_thread_data) {
320 if (!atexit_registered) {
321 atexit_registered = true;
322 atexit(run_main_thread_exit);
323 }
324 notifier_list_add(&main_thread_exit, notifier);
325 } else {
326 notifier_list_add(&qemu_thread_data->exit, notifier);
327 }
328 }
329
330 void qemu_thread_atexit_remove(Notifier *notifier)
331 {
332 notifier_remove(notifier);
333 }
334
335 static unsigned __stdcall win32_start_routine(void *arg)
336 {
337 QemuThreadData *data = (QemuThreadData *) arg;
338 void *(*start_routine)(void *) = data->start_routine;
339 void *thread_arg = data->arg;
340
341 qemu_thread_data = data;
342 qemu_thread_exit(start_routine(thread_arg));
343 abort();
344 }
345
346 void qemu_thread_exit(void *arg)
347 {
348 QemuThreadData *data = qemu_thread_data;
349
350 notifier_list_notify(&data->exit, NULL);
351 if (data->mode == QEMU_THREAD_JOINABLE) {
352 data->ret = arg;
353 EnterCriticalSection(&data->cs);
354 data->exited = true;
355 LeaveCriticalSection(&data->cs);
356 } else {
357 g_free(data);
358 }
359 _endthreadex(0);
360 }
361
362 void *qemu_thread_join(QemuThread *thread)
363 {
364 QemuThreadData *data;
365 void *ret;
366 HANDLE handle;
367
368 data = thread->data;
369 if (data->mode == QEMU_THREAD_DETACHED) {
370 return NULL;
371 }
372
373 /*
374 * Because multiple copies of the QemuThread can exist via
375 * qemu_thread_get_self, we need to store a value that cannot
376 * leak there. The simplest, non racy way is to store the TID,
377 * discard the handle that _beginthreadex gives back, and
378 * get another copy of the handle here.
379 */
380 handle = qemu_thread_get_handle(thread);
381 if (handle) {
382 WaitForSingleObject(handle, INFINITE);
383 CloseHandle(handle);
384 }
385 ret = data->ret;
386 DeleteCriticalSection(&data->cs);
387 g_free(data);
388 return ret;
389 }
390
391 void qemu_thread_create(QemuThread *thread, const char *name,
392 void *(*start_routine)(void *),
393 void *arg, int mode)
394 {
395 HANDLE hThread;
396 struct QemuThreadData *data;
397
398 data = g_malloc(sizeof *data);
399 data->start_routine = start_routine;
400 data->arg = arg;
401 data->mode = mode;
402 data->exited = false;
403 notifier_list_init(&data->exit);
404
405 if (data->mode != QEMU_THREAD_DETACHED) {
406 InitializeCriticalSection(&data->cs);
407 }
408
409 hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
410 data, 0, &thread->tid);
411 if (!hThread) {
412 error_exit(GetLastError(), __func__);
413 }
414 CloseHandle(hThread);
415 thread->data = data;
416 }
417
418 void qemu_thread_get_self(QemuThread *thread)
419 {
420 thread->data = qemu_thread_data;
421 thread->tid = GetCurrentThreadId();
422 }
423
424 HANDLE qemu_thread_get_handle(QemuThread *thread)
425 {
426 QemuThreadData *data;
427 HANDLE handle;
428
429 data = thread->data;
430 if (data->mode == QEMU_THREAD_DETACHED) {
431 return NULL;
432 }
433
434 EnterCriticalSection(&data->cs);
435 if (!data->exited) {
436 handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME |
437 THREAD_SET_CONTEXT, FALSE, thread->tid);
438 } else {
439 handle = NULL;
440 }
441 LeaveCriticalSection(&data->cs);
442 return handle;
443 }
444
445 bool qemu_thread_is_self(QemuThread *thread)
446 {
447 return GetCurrentThreadId() == thread->tid;
448 }