]> git.proxmox.com Git - mirror_qemu.git/blob - util/qemu-thread-win32.c
virtio: fix reachable assertion due to stale value of cached region size
[mirror_qemu.git] / util / qemu-thread-win32.c
1 /*
2 * Win32 implementation for mutex/cond/thread functions
3 *
4 * Copyright Red Hat, Inc. 2010
5 *
6 * Author:
7 * Paolo Bonzini <pbonzini@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 #include "qemu/osdep.h"
15 #include "qemu/thread.h"
16 #include "qemu/notify.h"
17 #include "qemu-thread-common.h"
18 #include <process.h>
19
20 static bool name_threads;
21
22 typedef HRESULT (WINAPI *pSetThreadDescription) (HANDLE hThread,
23 PCWSTR lpThreadDescription);
24 static pSetThreadDescription SetThreadDescriptionFunc;
25 static HMODULE kernel32_module;
26
27 static bool load_set_thread_description(void)
28 {
29 static gsize _init_once = 0;
30
31 if (g_once_init_enter(&_init_once)) {
32 kernel32_module = LoadLibrary("kernel32.dll");
33 if (kernel32_module) {
34 SetThreadDescriptionFunc =
35 (pSetThreadDescription)GetProcAddress(kernel32_module,
36 "SetThreadDescription");
37 if (!SetThreadDescriptionFunc) {
38 FreeLibrary(kernel32_module);
39 }
40 }
41 g_once_init_leave(&_init_once, 1);
42 }
43
44 return !!SetThreadDescriptionFunc;
45 }
46
47 void qemu_thread_naming(bool enable)
48 {
49 name_threads = enable;
50
51 if (enable && !load_set_thread_description()) {
52 fprintf(stderr, "qemu: thread naming not supported on this host\n");
53 name_threads = false;
54 }
55 }
56
57 static void error_exit(int err, const char *msg)
58 {
59 char *pstr;
60
61 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
62 NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
63 fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
64 LocalFree(pstr);
65 abort();
66 }
67
68 void qemu_mutex_init(QemuMutex *mutex)
69 {
70 InitializeSRWLock(&mutex->lock);
71 qemu_mutex_post_init(mutex);
72 }
73
74 void qemu_mutex_destroy(QemuMutex *mutex)
75 {
76 assert(mutex->initialized);
77 mutex->initialized = false;
78 InitializeSRWLock(&mutex->lock);
79 }
80
81 void qemu_mutex_lock_impl(QemuMutex *mutex, const char *file, const int line)
82 {
83 assert(mutex->initialized);
84 qemu_mutex_pre_lock(mutex, file, line);
85 AcquireSRWLockExclusive(&mutex->lock);
86 qemu_mutex_post_lock(mutex, file, line);
87 }
88
89 int qemu_mutex_trylock_impl(QemuMutex *mutex, const char *file, const int line)
90 {
91 int owned;
92
93 assert(mutex->initialized);
94 owned = TryAcquireSRWLockExclusive(&mutex->lock);
95 if (owned) {
96 qemu_mutex_post_lock(mutex, file, line);
97 return 0;
98 }
99 return -EBUSY;
100 }
101
102 void qemu_mutex_unlock_impl(QemuMutex *mutex, const char *file, const int line)
103 {
104 assert(mutex->initialized);
105 qemu_mutex_pre_unlock(mutex, file, line);
106 ReleaseSRWLockExclusive(&mutex->lock);
107 }
108
109 void qemu_rec_mutex_init(QemuRecMutex *mutex)
110 {
111 InitializeCriticalSection(&mutex->lock);
112 mutex->initialized = true;
113 }
114
115 void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
116 {
117 assert(mutex->initialized);
118 mutex->initialized = false;
119 DeleteCriticalSection(&mutex->lock);
120 }
121
122 void qemu_rec_mutex_lock_impl(QemuRecMutex *mutex, const char *file, int line)
123 {
124 assert(mutex->initialized);
125 EnterCriticalSection(&mutex->lock);
126 }
127
128 int qemu_rec_mutex_trylock_impl(QemuRecMutex *mutex, const char *file, int line)
129 {
130 assert(mutex->initialized);
131 return !TryEnterCriticalSection(&mutex->lock);
132 }
133
134 void qemu_rec_mutex_unlock_impl(QemuRecMutex *mutex, const char *file, int line)
135 {
136 assert(mutex->initialized);
137 LeaveCriticalSection(&mutex->lock);
138 }
139
140 void qemu_cond_init(QemuCond *cond)
141 {
142 memset(cond, 0, sizeof(*cond));
143 InitializeConditionVariable(&cond->var);
144 cond->initialized = true;
145 }
146
147 void qemu_cond_destroy(QemuCond *cond)
148 {
149 assert(cond->initialized);
150 cond->initialized = false;
151 InitializeConditionVariable(&cond->var);
152 }
153
154 void qemu_cond_signal(QemuCond *cond)
155 {
156 assert(cond->initialized);
157 WakeConditionVariable(&cond->var);
158 }
159
160 void qemu_cond_broadcast(QemuCond *cond)
161 {
162 assert(cond->initialized);
163 WakeAllConditionVariable(&cond->var);
164 }
165
166 void qemu_cond_wait_impl(QemuCond *cond, QemuMutex *mutex, const char *file, const int line)
167 {
168 assert(cond->initialized);
169 qemu_mutex_pre_unlock(mutex, file, line);
170 SleepConditionVariableSRW(&cond->var, &mutex->lock, INFINITE, 0);
171 qemu_mutex_post_lock(mutex, file, line);
172 }
173
174 bool qemu_cond_timedwait_impl(QemuCond *cond, QemuMutex *mutex, int ms,
175 const char *file, const int line)
176 {
177 int rc = 0;
178
179 assert(cond->initialized);
180 trace_qemu_mutex_unlock(mutex, file, line);
181 if (!SleepConditionVariableSRW(&cond->var, &mutex->lock, ms, 0)) {
182 rc = GetLastError();
183 }
184 trace_qemu_mutex_locked(mutex, file, line);
185 if (rc && rc != ERROR_TIMEOUT) {
186 error_exit(rc, __func__);
187 }
188 return rc != ERROR_TIMEOUT;
189 }
190
191 void qemu_sem_init(QemuSemaphore *sem, int init)
192 {
193 /* Manual reset. */
194 sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
195 sem->initialized = true;
196 }
197
198 void qemu_sem_destroy(QemuSemaphore *sem)
199 {
200 assert(sem->initialized);
201 sem->initialized = false;
202 CloseHandle(sem->sema);
203 }
204
205 void qemu_sem_post(QemuSemaphore *sem)
206 {
207 assert(sem->initialized);
208 ReleaseSemaphore(sem->sema, 1, NULL);
209 }
210
211 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
212 {
213 int rc;
214
215 assert(sem->initialized);
216 rc = WaitForSingleObject(sem->sema, ms);
217 if (rc == WAIT_OBJECT_0) {
218 return 0;
219 }
220 if (rc != WAIT_TIMEOUT) {
221 error_exit(GetLastError(), __func__);
222 }
223 return -1;
224 }
225
226 void qemu_sem_wait(QemuSemaphore *sem)
227 {
228 assert(sem->initialized);
229 if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
230 error_exit(GetLastError(), __func__);
231 }
232 }
233
234 /* Wrap a Win32 manual-reset event with a fast userspace path. The idea
235 * is to reset the Win32 event lazily, as part of a test-reset-test-wait
236 * sequence. Such a sequence is, indeed, how QemuEvents are used by
237 * RCU and other subsystems!
238 *
239 * Valid transitions:
240 * - free->set, when setting the event
241 * - busy->set, when setting the event, followed by SetEvent
242 * - set->free, when resetting the event
243 * - free->busy, when waiting
244 *
245 * set->busy does not happen (it can be observed from the outside but
246 * it really is set->free->busy).
247 *
248 * busy->free provably cannot happen; to enforce it, the set->free transition
249 * is done with an OR, which becomes a no-op if the event has concurrently
250 * transitioned to free or busy (and is faster than cmpxchg).
251 */
252
253 #define EV_SET 0
254 #define EV_FREE 1
255 #define EV_BUSY -1
256
257 void qemu_event_init(QemuEvent *ev, bool init)
258 {
259 /* Manual reset. */
260 ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
261 ev->value = (init ? EV_SET : EV_FREE);
262 ev->initialized = true;
263 }
264
265 void qemu_event_destroy(QemuEvent *ev)
266 {
267 assert(ev->initialized);
268 ev->initialized = false;
269 CloseHandle(ev->event);
270 }
271
272 void qemu_event_set(QemuEvent *ev)
273 {
274 assert(ev->initialized);
275 /* qemu_event_set has release semantics, but because it *loads*
276 * ev->value we need a full memory barrier here.
277 */
278 smp_mb();
279 if (qatomic_read(&ev->value) != EV_SET) {
280 if (qatomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
281 /* There were waiters, wake them up. */
282 SetEvent(ev->event);
283 }
284 }
285 }
286
287 void qemu_event_reset(QemuEvent *ev)
288 {
289 unsigned value;
290
291 assert(ev->initialized);
292 value = qatomic_read(&ev->value);
293 smp_mb_acquire();
294 if (value == EV_SET) {
295 /* If there was a concurrent reset (or even reset+wait),
296 * do nothing. Otherwise change EV_SET->EV_FREE.
297 */
298 qatomic_or(&ev->value, EV_FREE);
299 }
300 }
301
302 void qemu_event_wait(QemuEvent *ev)
303 {
304 unsigned value;
305
306 assert(ev->initialized);
307 value = qatomic_read(&ev->value);
308 smp_mb_acquire();
309 if (value != EV_SET) {
310 if (value == EV_FREE) {
311 /* qemu_event_set is not yet going to call SetEvent, but we are
312 * going to do another check for EV_SET below when setting EV_BUSY.
313 * At that point it is safe to call WaitForSingleObject.
314 */
315 ResetEvent(ev->event);
316
317 /* Tell qemu_event_set that there are waiters. No need to retry
318 * because there cannot be a concurrent busy->free transition.
319 * After the CAS, the event will be either set or busy.
320 */
321 if (qatomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
322 value = EV_SET;
323 } else {
324 value = EV_BUSY;
325 }
326 }
327 if (value == EV_BUSY) {
328 WaitForSingleObject(ev->event, INFINITE);
329 }
330 }
331 }
332
333 struct QemuThreadData {
334 /* Passed to win32_start_routine. */
335 void *(*start_routine)(void *);
336 void *arg;
337 short mode;
338 NotifierList exit;
339
340 /* Only used for joinable threads. */
341 bool exited;
342 void *ret;
343 CRITICAL_SECTION cs;
344 };
345
346 static bool atexit_registered;
347 static NotifierList main_thread_exit;
348
349 static __thread QemuThreadData *qemu_thread_data;
350
351 static void run_main_thread_exit(void)
352 {
353 notifier_list_notify(&main_thread_exit, NULL);
354 }
355
356 void qemu_thread_atexit_add(Notifier *notifier)
357 {
358 if (!qemu_thread_data) {
359 if (!atexit_registered) {
360 atexit_registered = true;
361 atexit(run_main_thread_exit);
362 }
363 notifier_list_add(&main_thread_exit, notifier);
364 } else {
365 notifier_list_add(&qemu_thread_data->exit, notifier);
366 }
367 }
368
369 void qemu_thread_atexit_remove(Notifier *notifier)
370 {
371 notifier_remove(notifier);
372 }
373
374 static unsigned __stdcall win32_start_routine(void *arg)
375 {
376 QemuThreadData *data = (QemuThreadData *) arg;
377 void *(*start_routine)(void *) = data->start_routine;
378 void *thread_arg = data->arg;
379
380 qemu_thread_data = data;
381 qemu_thread_exit(start_routine(thread_arg));
382 abort();
383 }
384
385 void qemu_thread_exit(void *arg)
386 {
387 QemuThreadData *data = qemu_thread_data;
388
389 notifier_list_notify(&data->exit, NULL);
390 if (data->mode == QEMU_THREAD_JOINABLE) {
391 data->ret = arg;
392 EnterCriticalSection(&data->cs);
393 data->exited = true;
394 LeaveCriticalSection(&data->cs);
395 } else {
396 g_free(data);
397 }
398 _endthreadex(0);
399 }
400
401 void *qemu_thread_join(QemuThread *thread)
402 {
403 QemuThreadData *data;
404 void *ret;
405 HANDLE handle;
406
407 data = thread->data;
408 if (data->mode == QEMU_THREAD_DETACHED) {
409 return NULL;
410 }
411
412 /*
413 * Because multiple copies of the QemuThread can exist via
414 * qemu_thread_get_self, we need to store a value that cannot
415 * leak there. The simplest, non racy way is to store the TID,
416 * discard the handle that _beginthreadex gives back, and
417 * get another copy of the handle here.
418 */
419 handle = qemu_thread_get_handle(thread);
420 if (handle) {
421 WaitForSingleObject(handle, INFINITE);
422 CloseHandle(handle);
423 }
424 ret = data->ret;
425 DeleteCriticalSection(&data->cs);
426 g_free(data);
427 return ret;
428 }
429
430 static bool set_thread_description(HANDLE h, const char *name)
431 {
432 HRESULT hr;
433 g_autofree wchar_t *namew = NULL;
434
435 if (!load_set_thread_description()) {
436 return false;
437 }
438
439 namew = g_utf8_to_utf16(name, -1, NULL, NULL, NULL);
440 if (!namew) {
441 return false;
442 }
443
444 hr = SetThreadDescriptionFunc(h, namew);
445
446 return SUCCEEDED(hr);
447 }
448
449 void qemu_thread_create(QemuThread *thread, const char *name,
450 void *(*start_routine)(void *),
451 void *arg, int mode)
452 {
453 HANDLE hThread;
454 struct QemuThreadData *data;
455
456 data = g_malloc(sizeof *data);
457 data->start_routine = start_routine;
458 data->arg = arg;
459 data->mode = mode;
460 data->exited = false;
461 notifier_list_init(&data->exit);
462
463 if (data->mode != QEMU_THREAD_DETACHED) {
464 InitializeCriticalSection(&data->cs);
465 }
466
467 hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
468 data, 0, &thread->tid);
469 if (!hThread) {
470 error_exit(GetLastError(), __func__);
471 }
472 if (name_threads && name && !set_thread_description(hThread, name)) {
473 fprintf(stderr, "qemu: failed to set thread description: %s\n", name);
474 }
475 CloseHandle(hThread);
476
477 thread->data = data;
478 }
479
480 int qemu_thread_set_affinity(QemuThread *thread, unsigned long *host_cpus,
481 unsigned long nbits)
482 {
483 return -ENOSYS;
484 }
485
486 int qemu_thread_get_affinity(QemuThread *thread, unsigned long **host_cpus,
487 unsigned long *nbits)
488 {
489 return -ENOSYS;
490 }
491
492 void qemu_thread_get_self(QemuThread *thread)
493 {
494 thread->data = qemu_thread_data;
495 thread->tid = GetCurrentThreadId();
496 }
497
498 HANDLE qemu_thread_get_handle(QemuThread *thread)
499 {
500 QemuThreadData *data;
501 HANDLE handle;
502
503 data = thread->data;
504 if (data->mode == QEMU_THREAD_DETACHED) {
505 return NULL;
506 }
507
508 EnterCriticalSection(&data->cs);
509 if (!data->exited) {
510 handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME |
511 THREAD_SET_CONTEXT, FALSE, thread->tid);
512 } else {
513 handle = NULL;
514 }
515 LeaveCriticalSection(&data->cs);
516 return handle;
517 }
518
519 bool qemu_thread_is_self(QemuThread *thread)
520 {
521 return GetCurrentThreadId() == thread->tid;
522 }