]> git.proxmox.com Git - mirror_qemu.git/blob - util/rcu.c
rcu: actually register threads that have RCU read-side critical sections
[mirror_qemu.git] / util / rcu.c
1 /*
2 * urcu-mb.c
3 *
4 * Userspace RCU library with explicit memory barriers
5 *
6 * Copyright (c) 2009 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 * Copyright (c) 2009 Paul E. McKenney, IBM Corporation.
8 * Copyright 2015 Red Hat, Inc.
9 *
10 * Ported to QEMU by Paolo Bonzini <pbonzini@redhat.com>
11 *
12 * This library is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public
14 * License as published by the Free Software Foundation; either
15 * version 2.1 of the License, or (at your option) any later version.
16 *
17 * This library is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
21 *
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with this library; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 *
26 * IBM's contributions to this file may be relicensed under LGPLv2 or later.
27 */
28
29 #include "qemu-common.h"
30 #include <stdio.h>
31 #include <assert.h>
32 #include <stdlib.h>
33 #include <stdint.h>
34 #include <errno.h>
35 #include "qemu/rcu.h"
36 #include "qemu/atomic.h"
37 #include "qemu/thread.h"
38 #include "qemu/main-loop.h"
39
40 /*
41 * Global grace period counter. Bit 0 is always one in rcu_gp_ctr.
42 * Bits 1 and above are defined in synchronize_rcu.
43 */
44 #define RCU_GP_LOCKED (1UL << 0)
45 #define RCU_GP_CTR (1UL << 1)
46
47 unsigned long rcu_gp_ctr = RCU_GP_LOCKED;
48
49 QemuEvent rcu_gp_event;
50 static QemuMutex rcu_gp_lock;
51
52 /*
53 * Check whether a quiescent state was crossed between the beginning of
54 * update_counter_and_wait and now.
55 */
56 static inline int rcu_gp_ongoing(unsigned long *ctr)
57 {
58 unsigned long v;
59
60 v = atomic_read(ctr);
61 return v && (v != rcu_gp_ctr);
62 }
63
64 /* Written to only by each individual reader. Read by both the reader and the
65 * writers.
66 */
67 __thread struct rcu_reader_data rcu_reader;
68
69 /* Protected by rcu_gp_lock. */
70 typedef QLIST_HEAD(, rcu_reader_data) ThreadList;
71 static ThreadList registry = QLIST_HEAD_INITIALIZER(registry);
72
73 /* Wait for previous parity/grace period to be empty of readers. */
74 static void wait_for_readers(void)
75 {
76 ThreadList qsreaders = QLIST_HEAD_INITIALIZER(qsreaders);
77 struct rcu_reader_data *index, *tmp;
78
79 for (;;) {
80 /* We want to be notified of changes made to rcu_gp_ongoing
81 * while we walk the list.
82 */
83 qemu_event_reset(&rcu_gp_event);
84
85 /* Instead of using atomic_mb_set for index->waiting, and
86 * atomic_mb_read for index->ctr, memory barriers are placed
87 * manually since writes to different threads are independent.
88 * atomic_mb_set has a smp_wmb before...
89 */
90 smp_wmb();
91 QLIST_FOREACH(index, &registry, node) {
92 atomic_set(&index->waiting, true);
93 }
94
95 /* ... and a smp_mb after. */
96 smp_mb();
97
98 QLIST_FOREACH_SAFE(index, &registry, node, tmp) {
99 if (!rcu_gp_ongoing(&index->ctr)) {
100 QLIST_REMOVE(index, node);
101 QLIST_INSERT_HEAD(&qsreaders, index, node);
102
103 /* No need for mb_set here, worst of all we
104 * get some extra futex wakeups.
105 */
106 atomic_set(&index->waiting, false);
107 }
108 }
109
110 /* atomic_mb_read has smp_rmb after. */
111 smp_rmb();
112
113 if (QLIST_EMPTY(&registry)) {
114 break;
115 }
116
117 /* Wait for one thread to report a quiescent state and
118 * try again.
119 */
120 qemu_event_wait(&rcu_gp_event);
121 }
122
123 /* put back the reader list in the registry */
124 QLIST_SWAP(&registry, &qsreaders, node);
125 }
126
127 void synchronize_rcu(void)
128 {
129 qemu_mutex_lock(&rcu_gp_lock);
130
131 if (!QLIST_EMPTY(&registry)) {
132 /* In either case, the atomic_mb_set below blocks stores that free
133 * old RCU-protected pointers.
134 */
135 if (sizeof(rcu_gp_ctr) < 8) {
136 /* For architectures with 32-bit longs, a two-subphases algorithm
137 * ensures we do not encounter overflow bugs.
138 *
139 * Switch parity: 0 -> 1, 1 -> 0.
140 */
141 atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr ^ RCU_GP_CTR);
142 wait_for_readers();
143 atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr ^ RCU_GP_CTR);
144 } else {
145 /* Increment current grace period. */
146 atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr + RCU_GP_CTR);
147 }
148
149 wait_for_readers();
150 }
151
152 qemu_mutex_unlock(&rcu_gp_lock);
153 }
154
155
156 #define RCU_CALL_MIN_SIZE 30
157
158 /* Multi-producer, single-consumer queue based on urcu/static/wfqueue.h
159 * from liburcu. Note that head is only used by the consumer.
160 */
161 static struct rcu_head dummy;
162 static struct rcu_head *head = &dummy, **tail = &dummy.next;
163 static int rcu_call_count;
164 static QemuEvent rcu_call_ready_event;
165
166 static void enqueue(struct rcu_head *node)
167 {
168 struct rcu_head **old_tail;
169
170 node->next = NULL;
171 old_tail = atomic_xchg(&tail, &node->next);
172 atomic_mb_set(old_tail, node);
173 }
174
175 static struct rcu_head *try_dequeue(void)
176 {
177 struct rcu_head *node, *next;
178
179 retry:
180 /* Test for an empty list, which we do not expect. Note that for
181 * the consumer head and tail are always consistent. The head
182 * is consistent because only the consumer reads/writes it.
183 * The tail, because it is the first step in the enqueuing.
184 * It is only the next pointers that might be inconsistent.
185 */
186 if (head == &dummy && atomic_mb_read(&tail) == &dummy.next) {
187 abort();
188 }
189
190 /* If the head node has NULL in its next pointer, the value is
191 * wrong and we need to wait until its enqueuer finishes the update.
192 */
193 node = head;
194 next = atomic_mb_read(&head->next);
195 if (!next) {
196 return NULL;
197 }
198
199 /* Since we are the sole consumer, and we excluded the empty case
200 * above, the queue will always have at least two nodes: the
201 * dummy node, and the one being removed. So we do not need to update
202 * the tail pointer.
203 */
204 head = next;
205
206 /* If we dequeued the dummy node, add it back at the end and retry. */
207 if (node == &dummy) {
208 enqueue(node);
209 goto retry;
210 }
211
212 return node;
213 }
214
215 static void *call_rcu_thread(void *opaque)
216 {
217 struct rcu_head *node;
218
219 rcu_register_thread();
220
221 for (;;) {
222 int tries = 0;
223 int n = atomic_read(&rcu_call_count);
224
225 /* Heuristically wait for a decent number of callbacks to pile up.
226 * Fetch rcu_call_count now, we only must process elements that were
227 * added before synchronize_rcu() starts.
228 */
229 while (n == 0 || (n < RCU_CALL_MIN_SIZE && ++tries <= 5)) {
230 g_usleep(10000);
231 if (n == 0) {
232 qemu_event_reset(&rcu_call_ready_event);
233 n = atomic_read(&rcu_call_count);
234 if (n == 0) {
235 qemu_event_wait(&rcu_call_ready_event);
236 }
237 }
238 n = atomic_read(&rcu_call_count);
239 }
240
241 atomic_sub(&rcu_call_count, n);
242 synchronize_rcu();
243 qemu_mutex_lock_iothread();
244 while (n > 0) {
245 node = try_dequeue();
246 while (!node) {
247 qemu_mutex_unlock_iothread();
248 qemu_event_reset(&rcu_call_ready_event);
249 node = try_dequeue();
250 if (!node) {
251 qemu_event_wait(&rcu_call_ready_event);
252 node = try_dequeue();
253 }
254 qemu_mutex_lock_iothread();
255 }
256
257 n--;
258 node->func(node);
259 }
260 qemu_mutex_unlock_iothread();
261 }
262 abort();
263 }
264
265 void call_rcu1(struct rcu_head *node, void (*func)(struct rcu_head *node))
266 {
267 node->func = func;
268 enqueue(node);
269 atomic_inc(&rcu_call_count);
270 qemu_event_set(&rcu_call_ready_event);
271 }
272
273 void rcu_register_thread(void)
274 {
275 assert(rcu_reader.ctr == 0);
276 qemu_mutex_lock(&rcu_gp_lock);
277 QLIST_INSERT_HEAD(&registry, &rcu_reader, node);
278 qemu_mutex_unlock(&rcu_gp_lock);
279 }
280
281 void rcu_unregister_thread(void)
282 {
283 qemu_mutex_lock(&rcu_gp_lock);
284 QLIST_REMOVE(&rcu_reader, node);
285 qemu_mutex_unlock(&rcu_gp_lock);
286 }
287
288 static void rcu_init_complete(void)
289 {
290 QemuThread thread;
291
292 qemu_mutex_init(&rcu_gp_lock);
293 qemu_event_init(&rcu_gp_event, true);
294
295 qemu_event_init(&rcu_call_ready_event, false);
296
297 /* The caller is assumed to have iothread lock, so the call_rcu thread
298 * must have been quiescent even after forking, just recreate it.
299 */
300 qemu_thread_create(&thread, "call_rcu", call_rcu_thread,
301 NULL, QEMU_THREAD_DETACHED);
302
303 rcu_register_thread();
304 }
305
306 #ifdef CONFIG_POSIX
307 static void rcu_init_lock(void)
308 {
309 qemu_mutex_lock(&rcu_gp_lock);
310 }
311
312 static void rcu_init_unlock(void)
313 {
314 qemu_mutex_unlock(&rcu_gp_lock);
315 }
316 #endif
317
318 void rcu_after_fork(void)
319 {
320 memset(&registry, 0, sizeof(registry));
321 rcu_init_complete();
322 }
323
324 static void __attribute__((__constructor__)) rcu_init(void)
325 {
326 #ifdef CONFIG_POSIX
327 pthread_atfork(rcu_init_lock, rcu_init_unlock, rcu_init_unlock);
328 #endif
329 rcu_init_complete();
330 }