]> git.proxmox.com Git - mirror_qemu.git/blob - util/thread-pool.c
Merge tag 'block-pull-request' of https://gitlab.com/stefanha/qemu into staging
[mirror_qemu.git] / util / thread-pool.c
1 /*
2 * QEMU block layer thread pool
3 *
4 * Copyright IBM, Corp. 2008
5 * Copyright Red Hat, Inc. 2012
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Paolo Bonzini <pbonzini@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2. See
12 * the COPYING file in the top-level directory.
13 *
14 * Contributions after 2012-01-13 are licensed under the terms of the
15 * GNU GPL, version 2 or (at your option) any later version.
16 */
17 #include "qemu/osdep.h"
18 #include "qemu/queue.h"
19 #include "qemu/thread.h"
20 #include "qemu/coroutine.h"
21 #include "trace.h"
22 #include "block/thread-pool.h"
23 #include "qemu/main-loop.h"
24
25 static void do_spawn_thread(ThreadPool *pool);
26
27 typedef struct ThreadPoolElement ThreadPoolElement;
28
29 enum ThreadState {
30 THREAD_QUEUED,
31 THREAD_ACTIVE,
32 THREAD_DONE,
33 };
34
35 struct ThreadPoolElement {
36 BlockAIOCB common;
37 ThreadPool *pool;
38 ThreadPoolFunc *func;
39 void *arg;
40
41 /* Moving state out of THREAD_QUEUED is protected by lock. After
42 * that, only the worker thread can write to it. Reads and writes
43 * of state and ret are ordered with memory barriers.
44 */
45 enum ThreadState state;
46 int ret;
47
48 /* Access to this list is protected by lock. */
49 QTAILQ_ENTRY(ThreadPoolElement) reqs;
50
51 /* Access to this list is protected by the global mutex. */
52 QLIST_ENTRY(ThreadPoolElement) all;
53 };
54
55 struct ThreadPool {
56 AioContext *ctx;
57 QEMUBH *completion_bh;
58 QemuMutex lock;
59 QemuCond worker_stopped;
60 QemuSemaphore sem;
61 QEMUBH *new_thread_bh;
62
63 /* The following variables are only accessed from one AioContext. */
64 QLIST_HEAD(, ThreadPoolElement) head;
65
66 /* The following variables are protected by lock. */
67 QTAILQ_HEAD(, ThreadPoolElement) request_list;
68 int cur_threads;
69 int idle_threads;
70 int new_threads; /* backlog of threads we need to create */
71 int pending_threads; /* threads created but not running yet */
72 bool stopping;
73 int min_threads;
74 int max_threads;
75 };
76
77 static inline bool back_to_sleep(ThreadPool *pool, int ret)
78 {
79 /*
80 * The semaphore timed out, we should exit the loop except when:
81 * - There is work to do, we raced with the signal.
82 * - The max threads threshold just changed, we raced with the signal.
83 * - The thread pool forces a minimum number of readily available threads.
84 */
85 if (ret == -1 && (!QTAILQ_EMPTY(&pool->request_list) ||
86 pool->cur_threads > pool->max_threads ||
87 pool->cur_threads <= pool->min_threads)) {
88 return true;
89 }
90
91 return false;
92 }
93
94 static void *worker_thread(void *opaque)
95 {
96 ThreadPool *pool = opaque;
97
98 qemu_mutex_lock(&pool->lock);
99 pool->pending_threads--;
100 do_spawn_thread(pool);
101
102 while (!pool->stopping) {
103 ThreadPoolElement *req;
104 int ret;
105
106 do {
107 pool->idle_threads++;
108 qemu_mutex_unlock(&pool->lock);
109 ret = qemu_sem_timedwait(&pool->sem, 10000);
110 qemu_mutex_lock(&pool->lock);
111 pool->idle_threads--;
112 } while (back_to_sleep(pool, ret));
113 if (ret == -1 || pool->stopping ||
114 pool->cur_threads > pool->max_threads) {
115 break;
116 }
117
118 req = QTAILQ_FIRST(&pool->request_list);
119 QTAILQ_REMOVE(&pool->request_list, req, reqs);
120 req->state = THREAD_ACTIVE;
121 qemu_mutex_unlock(&pool->lock);
122
123 ret = req->func(req->arg);
124
125 req->ret = ret;
126 /* Write ret before state. */
127 smp_wmb();
128 req->state = THREAD_DONE;
129
130 qemu_mutex_lock(&pool->lock);
131
132 qemu_bh_schedule(pool->completion_bh);
133 }
134
135 pool->cur_threads--;
136 qemu_cond_signal(&pool->worker_stopped);
137 qemu_mutex_unlock(&pool->lock);
138 return NULL;
139 }
140
141 static void do_spawn_thread(ThreadPool *pool)
142 {
143 QemuThread t;
144
145 /* Runs with lock taken. */
146 if (!pool->new_threads) {
147 return;
148 }
149
150 pool->new_threads--;
151 pool->pending_threads++;
152
153 qemu_thread_create(&t, "worker", worker_thread, pool, QEMU_THREAD_DETACHED);
154 }
155
156 static void spawn_thread_bh_fn(void *opaque)
157 {
158 ThreadPool *pool = opaque;
159
160 qemu_mutex_lock(&pool->lock);
161 do_spawn_thread(pool);
162 qemu_mutex_unlock(&pool->lock);
163 }
164
165 static void spawn_thread(ThreadPool *pool)
166 {
167 pool->cur_threads++;
168 pool->new_threads++;
169 /* If there are threads being created, they will spawn new workers, so
170 * we don't spend time creating many threads in a loop holding a mutex or
171 * starving the current vcpu.
172 *
173 * If there are no idle threads, ask the main thread to create one, so we
174 * inherit the correct affinity instead of the vcpu affinity.
175 */
176 if (!pool->pending_threads) {
177 qemu_bh_schedule(pool->new_thread_bh);
178 }
179 }
180
181 static void thread_pool_completion_bh(void *opaque)
182 {
183 ThreadPool *pool = opaque;
184 ThreadPoolElement *elem, *next;
185
186 aio_context_acquire(pool->ctx);
187 restart:
188 QLIST_FOREACH_SAFE(elem, &pool->head, all, next) {
189 if (elem->state != THREAD_DONE) {
190 continue;
191 }
192
193 trace_thread_pool_complete(pool, elem, elem->common.opaque,
194 elem->ret);
195 QLIST_REMOVE(elem, all);
196
197 if (elem->common.cb) {
198 /* Read state before ret. */
199 smp_rmb();
200
201 /* Schedule ourselves in case elem->common.cb() calls aio_poll() to
202 * wait for another request that completed at the same time.
203 */
204 qemu_bh_schedule(pool->completion_bh);
205
206 aio_context_release(pool->ctx);
207 elem->common.cb(elem->common.opaque, elem->ret);
208 aio_context_acquire(pool->ctx);
209
210 /* We can safely cancel the completion_bh here regardless of someone
211 * else having scheduled it meanwhile because we reenter the
212 * completion function anyway (goto restart).
213 */
214 qemu_bh_cancel(pool->completion_bh);
215
216 qemu_aio_unref(elem);
217 goto restart;
218 } else {
219 qemu_aio_unref(elem);
220 }
221 }
222 aio_context_release(pool->ctx);
223 }
224
225 static void thread_pool_cancel(BlockAIOCB *acb)
226 {
227 ThreadPoolElement *elem = (ThreadPoolElement *)acb;
228 ThreadPool *pool = elem->pool;
229
230 trace_thread_pool_cancel(elem, elem->common.opaque);
231
232 QEMU_LOCK_GUARD(&pool->lock);
233 if (elem->state == THREAD_QUEUED &&
234 /* No thread has yet started working on elem. we can try to "steal"
235 * the item from the worker if we can get a signal from the
236 * semaphore. Because this is non-blocking, we can do it with
237 * the lock taken and ensure that elem will remain THREAD_QUEUED.
238 */
239 qemu_sem_timedwait(&pool->sem, 0) == 0) {
240 QTAILQ_REMOVE(&pool->request_list, elem, reqs);
241 qemu_bh_schedule(pool->completion_bh);
242
243 elem->state = THREAD_DONE;
244 elem->ret = -ECANCELED;
245 }
246
247 }
248
249 static AioContext *thread_pool_get_aio_context(BlockAIOCB *acb)
250 {
251 ThreadPoolElement *elem = (ThreadPoolElement *)acb;
252 ThreadPool *pool = elem->pool;
253 return pool->ctx;
254 }
255
256 static const AIOCBInfo thread_pool_aiocb_info = {
257 .aiocb_size = sizeof(ThreadPoolElement),
258 .cancel_async = thread_pool_cancel,
259 .get_aio_context = thread_pool_get_aio_context,
260 };
261
262 BlockAIOCB *thread_pool_submit_aio(ThreadPool *pool,
263 ThreadPoolFunc *func, void *arg,
264 BlockCompletionFunc *cb, void *opaque)
265 {
266 ThreadPoolElement *req;
267
268 req = qemu_aio_get(&thread_pool_aiocb_info, NULL, cb, opaque);
269 req->func = func;
270 req->arg = arg;
271 req->state = THREAD_QUEUED;
272 req->pool = pool;
273
274 QLIST_INSERT_HEAD(&pool->head, req, all);
275
276 trace_thread_pool_submit(pool, req, arg);
277
278 qemu_mutex_lock(&pool->lock);
279 if (pool->idle_threads == 0 && pool->cur_threads < pool->max_threads) {
280 spawn_thread(pool);
281 }
282 QTAILQ_INSERT_TAIL(&pool->request_list, req, reqs);
283 qemu_mutex_unlock(&pool->lock);
284 qemu_sem_post(&pool->sem);
285 return &req->common;
286 }
287
288 typedef struct ThreadPoolCo {
289 Coroutine *co;
290 int ret;
291 } ThreadPoolCo;
292
293 static void thread_pool_co_cb(void *opaque, int ret)
294 {
295 ThreadPoolCo *co = opaque;
296
297 co->ret = ret;
298 aio_co_wake(co->co);
299 }
300
301 int coroutine_fn thread_pool_submit_co(ThreadPool *pool, ThreadPoolFunc *func,
302 void *arg)
303 {
304 ThreadPoolCo tpc = { .co = qemu_coroutine_self(), .ret = -EINPROGRESS };
305 assert(qemu_in_coroutine());
306 thread_pool_submit_aio(pool, func, arg, thread_pool_co_cb, &tpc);
307 qemu_coroutine_yield();
308 return tpc.ret;
309 }
310
311 void thread_pool_submit(ThreadPool *pool, ThreadPoolFunc *func, void *arg)
312 {
313 thread_pool_submit_aio(pool, func, arg, NULL, NULL);
314 }
315
316 void thread_pool_update_params(ThreadPool *pool, AioContext *ctx)
317 {
318 qemu_mutex_lock(&pool->lock);
319
320 pool->min_threads = ctx->thread_pool_min;
321 pool->max_threads = ctx->thread_pool_max;
322
323 /*
324 * We either have to:
325 * - Increase the number available of threads until over the min_threads
326 * threshold.
327 * - Decrease the number of available threads until under the max_threads
328 * threshold.
329 * - Do nothing. The current number of threads fall in between the min and
330 * max thresholds. We'll let the pool manage itself.
331 */
332 for (int i = pool->cur_threads; i < pool->min_threads; i++) {
333 spawn_thread(pool);
334 }
335
336 for (int i = pool->cur_threads; i > pool->max_threads; i--) {
337 qemu_sem_post(&pool->sem);
338 }
339
340 qemu_mutex_unlock(&pool->lock);
341 }
342
343 static void thread_pool_init_one(ThreadPool *pool, AioContext *ctx)
344 {
345 if (!ctx) {
346 ctx = qemu_get_aio_context();
347 }
348
349 memset(pool, 0, sizeof(*pool));
350 pool->ctx = ctx;
351 pool->completion_bh = aio_bh_new(ctx, thread_pool_completion_bh, pool);
352 qemu_mutex_init(&pool->lock);
353 qemu_cond_init(&pool->worker_stopped);
354 qemu_sem_init(&pool->sem, 0);
355 pool->new_thread_bh = aio_bh_new(ctx, spawn_thread_bh_fn, pool);
356
357 QLIST_INIT(&pool->head);
358 QTAILQ_INIT(&pool->request_list);
359
360 thread_pool_update_params(pool, ctx);
361 }
362
363 ThreadPool *thread_pool_new(AioContext *ctx)
364 {
365 ThreadPool *pool = g_new(ThreadPool, 1);
366 thread_pool_init_one(pool, ctx);
367 return pool;
368 }
369
370 void thread_pool_free(ThreadPool *pool)
371 {
372 if (!pool) {
373 return;
374 }
375
376 assert(QLIST_EMPTY(&pool->head));
377
378 qemu_mutex_lock(&pool->lock);
379
380 /* Stop new threads from spawning */
381 qemu_bh_delete(pool->new_thread_bh);
382 pool->cur_threads -= pool->new_threads;
383 pool->new_threads = 0;
384
385 /* Wait for worker threads to terminate */
386 pool->stopping = true;
387 while (pool->cur_threads > 0) {
388 qemu_sem_post(&pool->sem);
389 qemu_cond_wait(&pool->worker_stopped, &pool->lock);
390 }
391
392 qemu_mutex_unlock(&pool->lock);
393
394 qemu_bh_delete(pool->completion_bh);
395 qemu_sem_destroy(&pool->sem);
396 qemu_cond_destroy(&pool->worker_stopped);
397 qemu_mutex_destroy(&pool->lock);
398 g_free(pool);
399 }