]> git.proxmox.com Git - mirror_qemu.git/blob - util/uri.c
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[mirror_qemu.git] / util / uri.c
1 /**
2 * uri.c: set of generic URI related routines
3 *
4 * Reference: RFCs 3986, 2732 and 2373
5 *
6 * Copyright (C) 1998-2003 Daniel Veillard. All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21 * DANIEL VEILLARD BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
22 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 *
25 * Except as contained in this notice, the name of Daniel Veillard shall not
26 * be used in advertising or otherwise to promote the sale, use or other
27 * dealings in this Software without prior written authorization from him.
28 *
29 * daniel@veillard.com
30 *
31 **
32 *
33 * Copyright (C) 2007, 2009-2010 Red Hat, Inc.
34 *
35 * This library is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU Lesser General Public
37 * License as published by the Free Software Foundation; either
38 * version 2.1 of the License, or (at your option) any later version.
39 *
40 * This library is distributed in the hope that it will be useful,
41 * but WITHOUT ANY WARRANTY; without even the implied warranty of
42 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
43 * Lesser General Public License for more details.
44 *
45 * You should have received a copy of the GNU Lesser General Public
46 * License along with this library; if not, write to the Free Software
47 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
48 *
49 * Authors:
50 * Richard W.M. Jones <rjones@redhat.com>
51 *
52 */
53
54 #include <glib.h>
55 #include <string.h>
56 #include <stdio.h>
57
58 #include "qemu/uri.h"
59
60 static void uri_clean(URI *uri);
61
62 /*
63 * Old rule from 2396 used in legacy handling code
64 * alpha = lowalpha | upalpha
65 */
66 #define IS_ALPHA(x) (IS_LOWALPHA(x) || IS_UPALPHA(x))
67
68
69 /*
70 * lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" |
71 * "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" |
72 * "u" | "v" | "w" | "x" | "y" | "z"
73 */
74
75 #define IS_LOWALPHA(x) (((x) >= 'a') && ((x) <= 'z'))
76
77 /*
78 * upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" |
79 * "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "T" |
80 * "U" | "V" | "W" | "X" | "Y" | "Z"
81 */
82 #define IS_UPALPHA(x) (((x) >= 'A') && ((x) <= 'Z'))
83
84 #ifdef IS_DIGIT
85 #undef IS_DIGIT
86 #endif
87 /*
88 * digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
89 */
90 #define IS_DIGIT(x) (((x) >= '0') && ((x) <= '9'))
91
92 /*
93 * alphanum = alpha | digit
94 */
95
96 #define IS_ALPHANUM(x) (IS_ALPHA(x) || IS_DIGIT(x))
97
98 /*
99 * mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")"
100 */
101
102 #define IS_MARK(x) (((x) == '-') || ((x) == '_') || ((x) == '.') || \
103 ((x) == '!') || ((x) == '~') || ((x) == '*') || ((x) == '\'') || \
104 ((x) == '(') || ((x) == ')'))
105
106 /*
107 * unwise = "{" | "}" | "|" | "\" | "^" | "`"
108 */
109
110 #define IS_UNWISE(p) \
111 (((*(p) == '{')) || ((*(p) == '}')) || ((*(p) == '|')) || \
112 ((*(p) == '\\')) || ((*(p) == '^')) || ((*(p) == '[')) || \
113 ((*(p) == ']')) || ((*(p) == '`')))
114 /*
115 * reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" | "$" | "," |
116 * "[" | "]"
117 */
118
119 #define IS_RESERVED(x) (((x) == ';') || ((x) == '/') || ((x) == '?') || \
120 ((x) == ':') || ((x) == '@') || ((x) == '&') || ((x) == '=') || \
121 ((x) == '+') || ((x) == '$') || ((x) == ',') || ((x) == '[') || \
122 ((x) == ']'))
123
124 /*
125 * unreserved = alphanum | mark
126 */
127
128 #define IS_UNRESERVED(x) (IS_ALPHANUM(x) || IS_MARK(x))
129
130 /*
131 * Skip to next pointer char, handle escaped sequences
132 */
133
134 #define NEXT(p) ((*p == '%')? p += 3 : p++)
135
136 /*
137 * Productions from the spec.
138 *
139 * authority = server | reg_name
140 * reg_name = 1*( unreserved | escaped | "$" | "," |
141 * ";" | ":" | "@" | "&" | "=" | "+" )
142 *
143 * path = [ abs_path | opaque_part ]
144 */
145
146
147 /************************************************************************
148 * *
149 * RFC 3986 parser *
150 * *
151 ************************************************************************/
152
153 #define ISA_DIGIT(p) ((*(p) >= '0') && (*(p) <= '9'))
154 #define ISA_ALPHA(p) (((*(p) >= 'a') && (*(p) <= 'z')) || \
155 ((*(p) >= 'A') && (*(p) <= 'Z')))
156 #define ISA_HEXDIG(p) \
157 (ISA_DIGIT(p) || ((*(p) >= 'a') && (*(p) <= 'f')) || \
158 ((*(p) >= 'A') && (*(p) <= 'F')))
159
160 /*
161 * sub-delims = "!" / "$" / "&" / "'" / "(" / ")"
162 * / "*" / "+" / "," / ";" / "="
163 */
164 #define ISA_SUB_DELIM(p) \
165 (((*(p) == '!')) || ((*(p) == '$')) || ((*(p) == '&')) || \
166 ((*(p) == '(')) || ((*(p) == ')')) || ((*(p) == '*')) || \
167 ((*(p) == '+')) || ((*(p) == ',')) || ((*(p) == ';')) || \
168 ((*(p) == '=')) || ((*(p) == '\'')))
169
170 /*
171 * gen-delims = ":" / "/" / "?" / "#" / "[" / "]" / "@"
172 */
173 #define ISA_GEN_DELIM(p) \
174 (((*(p) == ':')) || ((*(p) == '/')) || ((*(p) == '?')) || \
175 ((*(p) == '#')) || ((*(p) == '[')) || ((*(p) == ']')) || \
176 ((*(p) == '@')))
177
178 /*
179 * reserved = gen-delims / sub-delims
180 */
181 #define ISA_RESERVED(p) (ISA_GEN_DELIM(p) || (ISA_SUB_DELIM(p)))
182
183 /*
184 * unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
185 */
186 #define ISA_UNRESERVED(p) \
187 ((ISA_ALPHA(p)) || (ISA_DIGIT(p)) || ((*(p) == '-')) || \
188 ((*(p) == '.')) || ((*(p) == '_')) || ((*(p) == '~')))
189
190 /*
191 * pct-encoded = "%" HEXDIG HEXDIG
192 */
193 #define ISA_PCT_ENCODED(p) \
194 ((*(p) == '%') && (ISA_HEXDIG(p + 1)) && (ISA_HEXDIG(p + 2)))
195
196 /*
197 * pchar = unreserved / pct-encoded / sub-delims / ":" / "@"
198 */
199 #define ISA_PCHAR(p) \
200 (ISA_UNRESERVED(p) || ISA_PCT_ENCODED(p) || ISA_SUB_DELIM(p) || \
201 ((*(p) == ':')) || ((*(p) == '@')))
202
203 /**
204 * rfc3986_parse_scheme:
205 * @uri: pointer to an URI structure
206 * @str: pointer to the string to analyze
207 *
208 * Parse an URI scheme
209 *
210 * ALPHA *( ALPHA / DIGIT / "+" / "-" / "." )
211 *
212 * Returns 0 or the error code
213 */
214 static int
215 rfc3986_parse_scheme(URI *uri, const char **str) {
216 const char *cur;
217
218 if (str == NULL)
219 return(-1);
220
221 cur = *str;
222 if (!ISA_ALPHA(cur))
223 return(2);
224 cur++;
225 while (ISA_ALPHA(cur) || ISA_DIGIT(cur) ||
226 (*cur == '+') || (*cur == '-') || (*cur == '.')) cur++;
227 if (uri != NULL) {
228 g_free(uri->scheme);
229 uri->scheme = g_strndup(*str, cur - *str);
230 }
231 *str = cur;
232 return(0);
233 }
234
235 /**
236 * rfc3986_parse_fragment:
237 * @uri: pointer to an URI structure
238 * @str: pointer to the string to analyze
239 *
240 * Parse the query part of an URI
241 *
242 * fragment = *( pchar / "/" / "?" )
243 * NOTE: the strict syntax as defined by 3986 does not allow '[' and ']'
244 * in the fragment identifier but this is used very broadly for
245 * xpointer scheme selection, so we are allowing it here to not break
246 * for example all the DocBook processing chains.
247 *
248 * Returns 0 or the error code
249 */
250 static int
251 rfc3986_parse_fragment(URI *uri, const char **str)
252 {
253 const char *cur;
254
255 if (str == NULL)
256 return (-1);
257
258 cur = *str;
259
260 while ((ISA_PCHAR(cur)) || (*cur == '/') || (*cur == '?') ||
261 (*cur == '[') || (*cur == ']') ||
262 ((uri != NULL) && (uri->cleanup & 1) && (IS_UNWISE(cur))))
263 NEXT(cur);
264 if (uri != NULL) {
265 g_free(uri->fragment);
266 if (uri->cleanup & 2)
267 uri->fragment = g_strndup(*str, cur - *str);
268 else
269 uri->fragment = uri_string_unescape(*str, cur - *str, NULL);
270 }
271 *str = cur;
272 return (0);
273 }
274
275 /**
276 * rfc3986_parse_query:
277 * @uri: pointer to an URI structure
278 * @str: pointer to the string to analyze
279 *
280 * Parse the query part of an URI
281 *
282 * query = *uric
283 *
284 * Returns 0 or the error code
285 */
286 static int
287 rfc3986_parse_query(URI *uri, const char **str)
288 {
289 const char *cur;
290
291 if (str == NULL)
292 return (-1);
293
294 cur = *str;
295
296 while ((ISA_PCHAR(cur)) || (*cur == '/') || (*cur == '?') ||
297 ((uri != NULL) && (uri->cleanup & 1) && (IS_UNWISE(cur))))
298 NEXT(cur);
299 if (uri != NULL) {
300 g_free(uri->query);
301 uri->query = g_strndup (*str, cur - *str);
302 }
303 *str = cur;
304 return (0);
305 }
306
307 /**
308 * rfc3986_parse_port:
309 * @uri: pointer to an URI structure
310 * @str: the string to analyze
311 *
312 * Parse a port part and fills in the appropriate fields
313 * of the @uri structure
314 *
315 * port = *DIGIT
316 *
317 * Returns 0 or the error code
318 */
319 static int
320 rfc3986_parse_port(URI *uri, const char **str)
321 {
322 const char *cur = *str;
323
324 if (ISA_DIGIT(cur)) {
325 if (uri != NULL)
326 uri->port = 0;
327 while (ISA_DIGIT(cur)) {
328 if (uri != NULL)
329 uri->port = uri->port * 10 + (*cur - '0');
330 cur++;
331 }
332 *str = cur;
333 return(0);
334 }
335 return(1);
336 }
337
338 /**
339 * rfc3986_parse_user_info:
340 * @uri: pointer to an URI structure
341 * @str: the string to analyze
342 *
343 * Parse an user informations part and fills in the appropriate fields
344 * of the @uri structure
345 *
346 * userinfo = *( unreserved / pct-encoded / sub-delims / ":" )
347 *
348 * Returns 0 or the error code
349 */
350 static int
351 rfc3986_parse_user_info(URI *uri, const char **str)
352 {
353 const char *cur;
354
355 cur = *str;
356 while (ISA_UNRESERVED(cur) || ISA_PCT_ENCODED(cur) ||
357 ISA_SUB_DELIM(cur) || (*cur == ':'))
358 NEXT(cur);
359 if (*cur == '@') {
360 if (uri != NULL) {
361 g_free(uri->user);
362 if (uri->cleanup & 2)
363 uri->user = g_strndup(*str, cur - *str);
364 else
365 uri->user = uri_string_unescape(*str, cur - *str, NULL);
366 }
367 *str = cur;
368 return(0);
369 }
370 return(1);
371 }
372
373 /**
374 * rfc3986_parse_dec_octet:
375 * @str: the string to analyze
376 *
377 * dec-octet = DIGIT ; 0-9
378 * / %x31-39 DIGIT ; 10-99
379 * / "1" 2DIGIT ; 100-199
380 * / "2" %x30-34 DIGIT ; 200-249
381 * / "25" %x30-35 ; 250-255
382 *
383 * Skip a dec-octet.
384 *
385 * Returns 0 if found and skipped, 1 otherwise
386 */
387 static int
388 rfc3986_parse_dec_octet(const char **str) {
389 const char *cur = *str;
390
391 if (!(ISA_DIGIT(cur)))
392 return(1);
393 if (!ISA_DIGIT(cur+1))
394 cur++;
395 else if ((*cur != '0') && (ISA_DIGIT(cur + 1)) && (!ISA_DIGIT(cur+2)))
396 cur += 2;
397 else if ((*cur == '1') && (ISA_DIGIT(cur + 1)) && (ISA_DIGIT(cur + 2)))
398 cur += 3;
399 else if ((*cur == '2') && (*(cur + 1) >= '0') &&
400 (*(cur + 1) <= '4') && (ISA_DIGIT(cur + 2)))
401 cur += 3;
402 else if ((*cur == '2') && (*(cur + 1) == '5') &&
403 (*(cur + 2) >= '0') && (*(cur + 1) <= '5'))
404 cur += 3;
405 else
406 return(1);
407 *str = cur;
408 return(0);
409 }
410 /**
411 * rfc3986_parse_host:
412 * @uri: pointer to an URI structure
413 * @str: the string to analyze
414 *
415 * Parse an host part and fills in the appropriate fields
416 * of the @uri structure
417 *
418 * host = IP-literal / IPv4address / reg-name
419 * IP-literal = "[" ( IPv6address / IPvFuture ) "]"
420 * IPv4address = dec-octet "." dec-octet "." dec-octet "." dec-octet
421 * reg-name = *( unreserved / pct-encoded / sub-delims )
422 *
423 * Returns 0 or the error code
424 */
425 static int
426 rfc3986_parse_host(URI *uri, const char **str)
427 {
428 const char *cur = *str;
429 const char *host;
430
431 host = cur;
432 /*
433 * IPv6 and future addressing scheme are enclosed between brackets
434 */
435 if (*cur == '[') {
436 cur++;
437 while ((*cur != ']') && (*cur != 0))
438 cur++;
439 if (*cur != ']')
440 return(1);
441 cur++;
442 goto found;
443 }
444 /*
445 * try to parse an IPv4
446 */
447 if (ISA_DIGIT(cur)) {
448 if (rfc3986_parse_dec_octet(&cur) != 0)
449 goto not_ipv4;
450 if (*cur != '.')
451 goto not_ipv4;
452 cur++;
453 if (rfc3986_parse_dec_octet(&cur) != 0)
454 goto not_ipv4;
455 if (*cur != '.')
456 goto not_ipv4;
457 if (rfc3986_parse_dec_octet(&cur) != 0)
458 goto not_ipv4;
459 if (*cur != '.')
460 goto not_ipv4;
461 if (rfc3986_parse_dec_octet(&cur) != 0)
462 goto not_ipv4;
463 goto found;
464 not_ipv4:
465 cur = *str;
466 }
467 /*
468 * then this should be a hostname which can be empty
469 */
470 while (ISA_UNRESERVED(cur) || ISA_PCT_ENCODED(cur) || ISA_SUB_DELIM(cur))
471 NEXT(cur);
472 found:
473 if (uri != NULL) {
474 g_free(uri->authority);
475 uri->authority = NULL;
476 g_free(uri->server);
477 if (cur != host) {
478 if (uri->cleanup & 2)
479 uri->server = g_strndup(host, cur - host);
480 else
481 uri->server = uri_string_unescape(host, cur - host, NULL);
482 } else
483 uri->server = NULL;
484 }
485 *str = cur;
486 return(0);
487 }
488
489 /**
490 * rfc3986_parse_authority:
491 * @uri: pointer to an URI structure
492 * @str: the string to analyze
493 *
494 * Parse an authority part and fills in the appropriate fields
495 * of the @uri structure
496 *
497 * authority = [ userinfo "@" ] host [ ":" port ]
498 *
499 * Returns 0 or the error code
500 */
501 static int
502 rfc3986_parse_authority(URI *uri, const char **str)
503 {
504 const char *cur;
505 int ret;
506
507 cur = *str;
508 /*
509 * try to parse an userinfo and check for the trailing @
510 */
511 ret = rfc3986_parse_user_info(uri, &cur);
512 if ((ret != 0) || (*cur != '@'))
513 cur = *str;
514 else
515 cur++;
516 ret = rfc3986_parse_host(uri, &cur);
517 if (ret != 0) return(ret);
518 if (*cur == ':') {
519 cur++;
520 ret = rfc3986_parse_port(uri, &cur);
521 if (ret != 0) return(ret);
522 }
523 *str = cur;
524 return(0);
525 }
526
527 /**
528 * rfc3986_parse_segment:
529 * @str: the string to analyze
530 * @forbid: an optional forbidden character
531 * @empty: allow an empty segment
532 *
533 * Parse a segment and fills in the appropriate fields
534 * of the @uri structure
535 *
536 * segment = *pchar
537 * segment-nz = 1*pchar
538 * segment-nz-nc = 1*( unreserved / pct-encoded / sub-delims / "@" )
539 * ; non-zero-length segment without any colon ":"
540 *
541 * Returns 0 or the error code
542 */
543 static int
544 rfc3986_parse_segment(const char **str, char forbid, int empty)
545 {
546 const char *cur;
547
548 cur = *str;
549 if (!ISA_PCHAR(cur)) {
550 if (empty)
551 return(0);
552 return(1);
553 }
554 while (ISA_PCHAR(cur) && (*cur != forbid))
555 NEXT(cur);
556 *str = cur;
557 return (0);
558 }
559
560 /**
561 * rfc3986_parse_path_ab_empty:
562 * @uri: pointer to an URI structure
563 * @str: the string to analyze
564 *
565 * Parse an path absolute or empty and fills in the appropriate fields
566 * of the @uri structure
567 *
568 * path-abempty = *( "/" segment )
569 *
570 * Returns 0 or the error code
571 */
572 static int
573 rfc3986_parse_path_ab_empty(URI *uri, const char **str)
574 {
575 const char *cur;
576 int ret;
577
578 cur = *str;
579
580 while (*cur == '/') {
581 cur++;
582 ret = rfc3986_parse_segment(&cur, 0, 1);
583 if (ret != 0) return(ret);
584 }
585 if (uri != NULL) {
586 g_free(uri->path);
587 if (*str != cur) {
588 if (uri->cleanup & 2)
589 uri->path = g_strndup(*str, cur - *str);
590 else
591 uri->path = uri_string_unescape(*str, cur - *str, NULL);
592 } else {
593 uri->path = NULL;
594 }
595 }
596 *str = cur;
597 return (0);
598 }
599
600 /**
601 * rfc3986_parse_path_absolute:
602 * @uri: pointer to an URI structure
603 * @str: the string to analyze
604 *
605 * Parse an path absolute and fills in the appropriate fields
606 * of the @uri structure
607 *
608 * path-absolute = "/" [ segment-nz *( "/" segment ) ]
609 *
610 * Returns 0 or the error code
611 */
612 static int
613 rfc3986_parse_path_absolute(URI *uri, const char **str)
614 {
615 const char *cur;
616 int ret;
617
618 cur = *str;
619
620 if (*cur != '/')
621 return(1);
622 cur++;
623 ret = rfc3986_parse_segment(&cur, 0, 0);
624 if (ret == 0) {
625 while (*cur == '/') {
626 cur++;
627 ret = rfc3986_parse_segment(&cur, 0, 1);
628 if (ret != 0) return(ret);
629 }
630 }
631 if (uri != NULL) {
632 g_free(uri->path);
633 if (cur != *str) {
634 if (uri->cleanup & 2)
635 uri->path = g_strndup(*str, cur - *str);
636 else
637 uri->path = uri_string_unescape(*str, cur - *str, NULL);
638 } else {
639 uri->path = NULL;
640 }
641 }
642 *str = cur;
643 return (0);
644 }
645
646 /**
647 * rfc3986_parse_path_rootless:
648 * @uri: pointer to an URI structure
649 * @str: the string to analyze
650 *
651 * Parse an path without root and fills in the appropriate fields
652 * of the @uri structure
653 *
654 * path-rootless = segment-nz *( "/" segment )
655 *
656 * Returns 0 or the error code
657 */
658 static int
659 rfc3986_parse_path_rootless(URI *uri, const char **str)
660 {
661 const char *cur;
662 int ret;
663
664 cur = *str;
665
666 ret = rfc3986_parse_segment(&cur, 0, 0);
667 if (ret != 0) return(ret);
668 while (*cur == '/') {
669 cur++;
670 ret = rfc3986_parse_segment(&cur, 0, 1);
671 if (ret != 0) return(ret);
672 }
673 if (uri != NULL) {
674 g_free(uri->path);
675 if (cur != *str) {
676 if (uri->cleanup & 2)
677 uri->path = g_strndup(*str, cur - *str);
678 else
679 uri->path = uri_string_unescape(*str, cur - *str, NULL);
680 } else {
681 uri->path = NULL;
682 }
683 }
684 *str = cur;
685 return (0);
686 }
687
688 /**
689 * rfc3986_parse_path_no_scheme:
690 * @uri: pointer to an URI structure
691 * @str: the string to analyze
692 *
693 * Parse an path which is not a scheme and fills in the appropriate fields
694 * of the @uri structure
695 *
696 * path-noscheme = segment-nz-nc *( "/" segment )
697 *
698 * Returns 0 or the error code
699 */
700 static int
701 rfc3986_parse_path_no_scheme(URI *uri, const char **str)
702 {
703 const char *cur;
704 int ret;
705
706 cur = *str;
707
708 ret = rfc3986_parse_segment(&cur, ':', 0);
709 if (ret != 0) return(ret);
710 while (*cur == '/') {
711 cur++;
712 ret = rfc3986_parse_segment(&cur, 0, 1);
713 if (ret != 0) return(ret);
714 }
715 if (uri != NULL) {
716 g_free(uri->path);
717 if (cur != *str) {
718 if (uri->cleanup & 2)
719 uri->path = g_strndup(*str, cur - *str);
720 else
721 uri->path = uri_string_unescape(*str, cur - *str, NULL);
722 } else {
723 uri->path = NULL;
724 }
725 }
726 *str = cur;
727 return (0);
728 }
729
730 /**
731 * rfc3986_parse_hier_part:
732 * @uri: pointer to an URI structure
733 * @str: the string to analyze
734 *
735 * Parse an hierarchical part and fills in the appropriate fields
736 * of the @uri structure
737 *
738 * hier-part = "//" authority path-abempty
739 * / path-absolute
740 * / path-rootless
741 * / path-empty
742 *
743 * Returns 0 or the error code
744 */
745 static int
746 rfc3986_parse_hier_part(URI *uri, const char **str)
747 {
748 const char *cur;
749 int ret;
750
751 cur = *str;
752
753 if ((*cur == '/') && (*(cur + 1) == '/')) {
754 cur += 2;
755 ret = rfc3986_parse_authority(uri, &cur);
756 if (ret != 0) return(ret);
757 ret = rfc3986_parse_path_ab_empty(uri, &cur);
758 if (ret != 0) return(ret);
759 *str = cur;
760 return(0);
761 } else if (*cur == '/') {
762 ret = rfc3986_parse_path_absolute(uri, &cur);
763 if (ret != 0) return(ret);
764 } else if (ISA_PCHAR(cur)) {
765 ret = rfc3986_parse_path_rootless(uri, &cur);
766 if (ret != 0) return(ret);
767 } else {
768 /* path-empty is effectively empty */
769 if (uri != NULL) {
770 g_free(uri->path);
771 uri->path = NULL;
772 }
773 }
774 *str = cur;
775 return (0);
776 }
777
778 /**
779 * rfc3986_parse_relative_ref:
780 * @uri: pointer to an URI structure
781 * @str: the string to analyze
782 *
783 * Parse an URI string and fills in the appropriate fields
784 * of the @uri structure
785 *
786 * relative-ref = relative-part [ "?" query ] [ "#" fragment ]
787 * relative-part = "//" authority path-abempty
788 * / path-absolute
789 * / path-noscheme
790 * / path-empty
791 *
792 * Returns 0 or the error code
793 */
794 static int
795 rfc3986_parse_relative_ref(URI *uri, const char *str) {
796 int ret;
797
798 if ((*str == '/') && (*(str + 1) == '/')) {
799 str += 2;
800 ret = rfc3986_parse_authority(uri, &str);
801 if (ret != 0) return(ret);
802 ret = rfc3986_parse_path_ab_empty(uri, &str);
803 if (ret != 0) return(ret);
804 } else if (*str == '/') {
805 ret = rfc3986_parse_path_absolute(uri, &str);
806 if (ret != 0) return(ret);
807 } else if (ISA_PCHAR(str)) {
808 ret = rfc3986_parse_path_no_scheme(uri, &str);
809 if (ret != 0) return(ret);
810 } else {
811 /* path-empty is effectively empty */
812 if (uri != NULL) {
813 g_free(uri->path);
814 uri->path = NULL;
815 }
816 }
817
818 if (*str == '?') {
819 str++;
820 ret = rfc3986_parse_query(uri, &str);
821 if (ret != 0) return(ret);
822 }
823 if (*str == '#') {
824 str++;
825 ret = rfc3986_parse_fragment(uri, &str);
826 if (ret != 0) return(ret);
827 }
828 if (*str != 0) {
829 uri_clean(uri);
830 return(1);
831 }
832 return(0);
833 }
834
835
836 /**
837 * rfc3986_parse:
838 * @uri: pointer to an URI structure
839 * @str: the string to analyze
840 *
841 * Parse an URI string and fills in the appropriate fields
842 * of the @uri structure
843 *
844 * scheme ":" hier-part [ "?" query ] [ "#" fragment ]
845 *
846 * Returns 0 or the error code
847 */
848 static int
849 rfc3986_parse(URI *uri, const char *str) {
850 int ret;
851
852 ret = rfc3986_parse_scheme(uri, &str);
853 if (ret != 0) return(ret);
854 if (*str != ':') {
855 return(1);
856 }
857 str++;
858 ret = rfc3986_parse_hier_part(uri, &str);
859 if (ret != 0) return(ret);
860 if (*str == '?') {
861 str++;
862 ret = rfc3986_parse_query(uri, &str);
863 if (ret != 0) return(ret);
864 }
865 if (*str == '#') {
866 str++;
867 ret = rfc3986_parse_fragment(uri, &str);
868 if (ret != 0) return(ret);
869 }
870 if (*str != 0) {
871 uri_clean(uri);
872 return(1);
873 }
874 return(0);
875 }
876
877 /**
878 * rfc3986_parse_uri_reference:
879 * @uri: pointer to an URI structure
880 * @str: the string to analyze
881 *
882 * Parse an URI reference string and fills in the appropriate fields
883 * of the @uri structure
884 *
885 * URI-reference = URI / relative-ref
886 *
887 * Returns 0 or the error code
888 */
889 static int
890 rfc3986_parse_uri_reference(URI *uri, const char *str) {
891 int ret;
892
893 if (str == NULL)
894 return(-1);
895 uri_clean(uri);
896
897 /*
898 * Try first to parse absolute refs, then fallback to relative if
899 * it fails.
900 */
901 ret = rfc3986_parse(uri, str);
902 if (ret != 0) {
903 uri_clean(uri);
904 ret = rfc3986_parse_relative_ref(uri, str);
905 if (ret != 0) {
906 uri_clean(uri);
907 return(ret);
908 }
909 }
910 return(0);
911 }
912
913 /**
914 * uri_parse:
915 * @str: the URI string to analyze
916 *
917 * Parse an URI based on RFC 3986
918 *
919 * URI-reference = [ absoluteURI | relativeURI ] [ "#" fragment ]
920 *
921 * Returns a newly built URI or NULL in case of error
922 */
923 URI *
924 uri_parse(const char *str) {
925 URI *uri;
926 int ret;
927
928 if (str == NULL)
929 return(NULL);
930 uri = uri_new();
931 if (uri != NULL) {
932 ret = rfc3986_parse_uri_reference(uri, str);
933 if (ret) {
934 uri_free(uri);
935 return(NULL);
936 }
937 }
938 return(uri);
939 }
940
941 /**
942 * uri_parse_into:
943 * @uri: pointer to an URI structure
944 * @str: the string to analyze
945 *
946 * Parse an URI reference string based on RFC 3986 and fills in the
947 * appropriate fields of the @uri structure
948 *
949 * URI-reference = URI / relative-ref
950 *
951 * Returns 0 or the error code
952 */
953 int
954 uri_parse_into(URI *uri, const char *str) {
955 return(rfc3986_parse_uri_reference(uri, str));
956 }
957
958 /**
959 * uri_parse_raw:
960 * @str: the URI string to analyze
961 * @raw: if 1 unescaping of URI pieces are disabled
962 *
963 * Parse an URI but allows to keep intact the original fragments.
964 *
965 * URI-reference = URI / relative-ref
966 *
967 * Returns a newly built URI or NULL in case of error
968 */
969 URI *
970 uri_parse_raw(const char *str, int raw) {
971 URI *uri;
972 int ret;
973
974 if (str == NULL)
975 return(NULL);
976 uri = uri_new();
977 if (uri != NULL) {
978 if (raw) {
979 uri->cleanup |= 2;
980 }
981 ret = uri_parse_into(uri, str);
982 if (ret) {
983 uri_free(uri);
984 return(NULL);
985 }
986 }
987 return(uri);
988 }
989
990 /************************************************************************
991 * *
992 * Generic URI structure functions *
993 * *
994 ************************************************************************/
995
996 /**
997 * uri_new:
998 *
999 * Simply creates an empty URI
1000 *
1001 * Returns the new structure or NULL in case of error
1002 */
1003 URI *
1004 uri_new(void) {
1005 URI *ret;
1006
1007 ret = g_new0(URI, 1);
1008 return(ret);
1009 }
1010
1011 /**
1012 * realloc2n:
1013 *
1014 * Function to handle properly a reallocation when saving an URI
1015 * Also imposes some limit on the length of an URI string output
1016 */
1017 static char *
1018 realloc2n(char *ret, int *max) {
1019 char *temp;
1020 int tmp;
1021
1022 tmp = *max * 2;
1023 temp = g_realloc(ret, (tmp + 1));
1024 *max = tmp;
1025 return(temp);
1026 }
1027
1028 /**
1029 * uri_to_string:
1030 * @uri: pointer to an URI
1031 *
1032 * Save the URI as an escaped string
1033 *
1034 * Returns a new string (to be deallocated by caller)
1035 */
1036 char *
1037 uri_to_string(URI *uri) {
1038 char *ret = NULL;
1039 char *temp;
1040 const char *p;
1041 int len;
1042 int max;
1043
1044 if (uri == NULL) return(NULL);
1045
1046
1047 max = 80;
1048 ret = g_malloc(max + 1);
1049 len = 0;
1050
1051 if (uri->scheme != NULL) {
1052 p = uri->scheme;
1053 while (*p != 0) {
1054 if (len >= max) {
1055 temp = realloc2n(ret, &max);
1056 if (temp == NULL) goto mem_error;
1057 ret = temp;
1058 }
1059 ret[len++] = *p++;
1060 }
1061 if (len >= max) {
1062 temp = realloc2n(ret, &max);
1063 if (temp == NULL) goto mem_error;
1064 ret = temp;
1065 }
1066 ret[len++] = ':';
1067 }
1068 if (uri->opaque != NULL) {
1069 p = uri->opaque;
1070 while (*p != 0) {
1071 if (len + 3 >= max) {
1072 temp = realloc2n(ret, &max);
1073 if (temp == NULL) goto mem_error;
1074 ret = temp;
1075 }
1076 if (IS_RESERVED(*(p)) || IS_UNRESERVED(*(p)))
1077 ret[len++] = *p++;
1078 else {
1079 int val = *(unsigned char *)p++;
1080 int hi = val / 0x10, lo = val % 0x10;
1081 ret[len++] = '%';
1082 ret[len++] = hi + (hi > 9? 'A'-10 : '0');
1083 ret[len++] = lo + (lo > 9? 'A'-10 : '0');
1084 }
1085 }
1086 } else {
1087 if (uri->server != NULL) {
1088 if (len + 3 >= max) {
1089 temp = realloc2n(ret, &max);
1090 if (temp == NULL) goto mem_error;
1091 ret = temp;
1092 }
1093 ret[len++] = '/';
1094 ret[len++] = '/';
1095 if (uri->user != NULL) {
1096 p = uri->user;
1097 while (*p != 0) {
1098 if (len + 3 >= max) {
1099 temp = realloc2n(ret, &max);
1100 if (temp == NULL) goto mem_error;
1101 ret = temp;
1102 }
1103 if ((IS_UNRESERVED(*(p))) ||
1104 ((*(p) == ';')) || ((*(p) == ':')) ||
1105 ((*(p) == '&')) || ((*(p) == '=')) ||
1106 ((*(p) == '+')) || ((*(p) == '$')) ||
1107 ((*(p) == ',')))
1108 ret[len++] = *p++;
1109 else {
1110 int val = *(unsigned char *)p++;
1111 int hi = val / 0x10, lo = val % 0x10;
1112 ret[len++] = '%';
1113 ret[len++] = hi + (hi > 9? 'A'-10 : '0');
1114 ret[len++] = lo + (lo > 9? 'A'-10 : '0');
1115 }
1116 }
1117 if (len + 3 >= max) {
1118 temp = realloc2n(ret, &max);
1119 if (temp == NULL) goto mem_error;
1120 ret = temp;
1121 }
1122 ret[len++] = '@';
1123 }
1124 p = uri->server;
1125 while (*p != 0) {
1126 if (len >= max) {
1127 temp = realloc2n(ret, &max);
1128 if (temp == NULL) goto mem_error;
1129 ret = temp;
1130 }
1131 ret[len++] = *p++;
1132 }
1133 if (uri->port > 0) {
1134 if (len + 10 >= max) {
1135 temp = realloc2n(ret, &max);
1136 if (temp == NULL) goto mem_error;
1137 ret = temp;
1138 }
1139 len += snprintf(&ret[len], max - len, ":%d", uri->port);
1140 }
1141 } else if (uri->authority != NULL) {
1142 if (len + 3 >= max) {
1143 temp = realloc2n(ret, &max);
1144 if (temp == NULL) goto mem_error;
1145 ret = temp;
1146 }
1147 ret[len++] = '/';
1148 ret[len++] = '/';
1149 p = uri->authority;
1150 while (*p != 0) {
1151 if (len + 3 >= max) {
1152 temp = realloc2n(ret, &max);
1153 if (temp == NULL) goto mem_error;
1154 ret = temp;
1155 }
1156 if ((IS_UNRESERVED(*(p))) ||
1157 ((*(p) == '$')) || ((*(p) == ',')) || ((*(p) == ';')) ||
1158 ((*(p) == ':')) || ((*(p) == '@')) || ((*(p) == '&')) ||
1159 ((*(p) == '=')) || ((*(p) == '+')))
1160 ret[len++] = *p++;
1161 else {
1162 int val = *(unsigned char *)p++;
1163 int hi = val / 0x10, lo = val % 0x10;
1164 ret[len++] = '%';
1165 ret[len++] = hi + (hi > 9? 'A'-10 : '0');
1166 ret[len++] = lo + (lo > 9? 'A'-10 : '0');
1167 }
1168 }
1169 } else if (uri->scheme != NULL) {
1170 if (len + 3 >= max) {
1171 temp = realloc2n(ret, &max);
1172 if (temp == NULL) goto mem_error;
1173 ret = temp;
1174 }
1175 ret[len++] = '/';
1176 ret[len++] = '/';
1177 }
1178 if (uri->path != NULL) {
1179 p = uri->path;
1180 /*
1181 * the colon in file:///d: should not be escaped or
1182 * Windows accesses fail later.
1183 */
1184 if ((uri->scheme != NULL) &&
1185 (p[0] == '/') &&
1186 (((p[1] >= 'a') && (p[1] <= 'z')) ||
1187 ((p[1] >= 'A') && (p[1] <= 'Z'))) &&
1188 (p[2] == ':') &&
1189 (!strcmp(uri->scheme, "file"))) {
1190 if (len + 3 >= max) {
1191 temp = realloc2n(ret, &max);
1192 if (temp == NULL) goto mem_error;
1193 ret = temp;
1194 }
1195 ret[len++] = *p++;
1196 ret[len++] = *p++;
1197 ret[len++] = *p++;
1198 }
1199 while (*p != 0) {
1200 if (len + 3 >= max) {
1201 temp = realloc2n(ret, &max);
1202 if (temp == NULL) goto mem_error;
1203 ret = temp;
1204 }
1205 if ((IS_UNRESERVED(*(p))) || ((*(p) == '/')) ||
1206 ((*(p) == ';')) || ((*(p) == '@')) || ((*(p) == '&')) ||
1207 ((*(p) == '=')) || ((*(p) == '+')) || ((*(p) == '$')) ||
1208 ((*(p) == ',')))
1209 ret[len++] = *p++;
1210 else {
1211 int val = *(unsigned char *)p++;
1212 int hi = val / 0x10, lo = val % 0x10;
1213 ret[len++] = '%';
1214 ret[len++] = hi + (hi > 9? 'A'-10 : '0');
1215 ret[len++] = lo + (lo > 9? 'A'-10 : '0');
1216 }
1217 }
1218 }
1219 if (uri->query != NULL) {
1220 if (len + 1 >= max) {
1221 temp = realloc2n(ret, &max);
1222 if (temp == NULL) goto mem_error;
1223 ret = temp;
1224 }
1225 ret[len++] = '?';
1226 p = uri->query;
1227 while (*p != 0) {
1228 if (len + 1 >= max) {
1229 temp = realloc2n(ret, &max);
1230 if (temp == NULL) goto mem_error;
1231 ret = temp;
1232 }
1233 ret[len++] = *p++;
1234 }
1235 }
1236 }
1237 if (uri->fragment != NULL) {
1238 if (len + 3 >= max) {
1239 temp = realloc2n(ret, &max);
1240 if (temp == NULL) goto mem_error;
1241 ret = temp;
1242 }
1243 ret[len++] = '#';
1244 p = uri->fragment;
1245 while (*p != 0) {
1246 if (len + 3 >= max) {
1247 temp = realloc2n(ret, &max);
1248 if (temp == NULL) goto mem_error;
1249 ret = temp;
1250 }
1251 if ((IS_UNRESERVED(*(p))) || (IS_RESERVED(*(p))))
1252 ret[len++] = *p++;
1253 else {
1254 int val = *(unsigned char *)p++;
1255 int hi = val / 0x10, lo = val % 0x10;
1256 ret[len++] = '%';
1257 ret[len++] = hi + (hi > 9? 'A'-10 : '0');
1258 ret[len++] = lo + (lo > 9? 'A'-10 : '0');
1259 }
1260 }
1261 }
1262 if (len >= max) {
1263 temp = realloc2n(ret, &max);
1264 if (temp == NULL) goto mem_error;
1265 ret = temp;
1266 }
1267 ret[len] = 0;
1268 return(ret);
1269
1270 mem_error:
1271 g_free(ret);
1272 return(NULL);
1273 }
1274
1275 /**
1276 * uri_clean:
1277 * @uri: pointer to an URI
1278 *
1279 * Make sure the URI struct is free of content
1280 */
1281 static void
1282 uri_clean(URI *uri) {
1283 if (uri == NULL) return;
1284
1285 g_free(uri->scheme);
1286 uri->scheme = NULL;
1287 g_free(uri->server);
1288 uri->server = NULL;
1289 g_free(uri->user);
1290 uri->user = NULL;
1291 g_free(uri->path);
1292 uri->path = NULL;
1293 g_free(uri->fragment);
1294 uri->fragment = NULL;
1295 g_free(uri->opaque);
1296 uri->opaque = NULL;
1297 g_free(uri->authority);
1298 uri->authority = NULL;
1299 g_free(uri->query);
1300 uri->query = NULL;
1301 }
1302
1303 /**
1304 * uri_free:
1305 * @uri: pointer to an URI
1306 *
1307 * Free up the URI struct
1308 */
1309 void
1310 uri_free(URI *uri) {
1311 uri_clean(uri);
1312 g_free(uri);
1313 }
1314
1315 /************************************************************************
1316 * *
1317 * Helper functions *
1318 * *
1319 ************************************************************************/
1320
1321 /**
1322 * normalize_uri_path:
1323 * @path: pointer to the path string
1324 *
1325 * Applies the 5 normalization steps to a path string--that is, RFC 2396
1326 * Section 5.2, steps 6.c through 6.g.
1327 *
1328 * Normalization occurs directly on the string, no new allocation is done
1329 *
1330 * Returns 0 or an error code
1331 */
1332 static int
1333 normalize_uri_path(char *path) {
1334 char *cur, *out;
1335
1336 if (path == NULL)
1337 return(-1);
1338
1339 /* Skip all initial "/" chars. We want to get to the beginning of the
1340 * first non-empty segment.
1341 */
1342 cur = path;
1343 while (cur[0] == '/')
1344 ++cur;
1345 if (cur[0] == '\0')
1346 return(0);
1347
1348 /* Keep everything we've seen so far. */
1349 out = cur;
1350
1351 /*
1352 * Analyze each segment in sequence for cases (c) and (d).
1353 */
1354 while (cur[0] != '\0') {
1355 /*
1356 * c) All occurrences of "./", where "." is a complete path segment,
1357 * are removed from the buffer string.
1358 */
1359 if ((cur[0] == '.') && (cur[1] == '/')) {
1360 cur += 2;
1361 /* '//' normalization should be done at this point too */
1362 while (cur[0] == '/')
1363 cur++;
1364 continue;
1365 }
1366
1367 /*
1368 * d) If the buffer string ends with "." as a complete path segment,
1369 * that "." is removed.
1370 */
1371 if ((cur[0] == '.') && (cur[1] == '\0'))
1372 break;
1373
1374 /* Otherwise keep the segment. */
1375 while (cur[0] != '/') {
1376 if (cur[0] == '\0')
1377 goto done_cd;
1378 (out++)[0] = (cur++)[0];
1379 }
1380 /* nomalize // */
1381 while ((cur[0] == '/') && (cur[1] == '/'))
1382 cur++;
1383
1384 (out++)[0] = (cur++)[0];
1385 }
1386 done_cd:
1387 out[0] = '\0';
1388
1389 /* Reset to the beginning of the first segment for the next sequence. */
1390 cur = path;
1391 while (cur[0] == '/')
1392 ++cur;
1393 if (cur[0] == '\0')
1394 return(0);
1395
1396 /*
1397 * Analyze each segment in sequence for cases (e) and (f).
1398 *
1399 * e) All occurrences of "<segment>/../", where <segment> is a
1400 * complete path segment not equal to "..", are removed from the
1401 * buffer string. Removal of these path segments is performed
1402 * iteratively, removing the leftmost matching pattern on each
1403 * iteration, until no matching pattern remains.
1404 *
1405 * f) If the buffer string ends with "<segment>/..", where <segment>
1406 * is a complete path segment not equal to "..", that
1407 * "<segment>/.." is removed.
1408 *
1409 * To satisfy the "iterative" clause in (e), we need to collapse the
1410 * string every time we find something that needs to be removed. Thus,
1411 * we don't need to keep two pointers into the string: we only need a
1412 * "current position" pointer.
1413 */
1414 while (1) {
1415 char *segp, *tmp;
1416
1417 /* At the beginning of each iteration of this loop, "cur" points to
1418 * the first character of the segment we want to examine.
1419 */
1420
1421 /* Find the end of the current segment. */
1422 segp = cur;
1423 while ((segp[0] != '/') && (segp[0] != '\0'))
1424 ++segp;
1425
1426 /* If this is the last segment, we're done (we need at least two
1427 * segments to meet the criteria for the (e) and (f) cases).
1428 */
1429 if (segp[0] == '\0')
1430 break;
1431
1432 /* If the first segment is "..", or if the next segment _isn't_ "..",
1433 * keep this segment and try the next one.
1434 */
1435 ++segp;
1436 if (((cur[0] == '.') && (cur[1] == '.') && (segp == cur+3))
1437 || ((segp[0] != '.') || (segp[1] != '.')
1438 || ((segp[2] != '/') && (segp[2] != '\0')))) {
1439 cur = segp;
1440 continue;
1441 }
1442
1443 /* If we get here, remove this segment and the next one and back up
1444 * to the previous segment (if there is one), to implement the
1445 * "iteratively" clause. It's pretty much impossible to back up
1446 * while maintaining two pointers into the buffer, so just compact
1447 * the whole buffer now.
1448 */
1449
1450 /* If this is the end of the buffer, we're done. */
1451 if (segp[2] == '\0') {
1452 cur[0] = '\0';
1453 break;
1454 }
1455 /* Valgrind complained, strcpy(cur, segp + 3); */
1456 /* string will overlap, do not use strcpy */
1457 tmp = cur;
1458 segp += 3;
1459 while ((*tmp++ = *segp++) != 0)
1460 ;
1461
1462 /* If there are no previous segments, then keep going from here. */
1463 segp = cur;
1464 while ((segp > path) && ((--segp)[0] == '/'))
1465 ;
1466 if (segp == path)
1467 continue;
1468
1469 /* "segp" is pointing to the end of a previous segment; find it's
1470 * start. We need to back up to the previous segment and start
1471 * over with that to handle things like "foo/bar/../..". If we
1472 * don't do this, then on the first pass we'll remove the "bar/..",
1473 * but be pointing at the second ".." so we won't realize we can also
1474 * remove the "foo/..".
1475 */
1476 cur = segp;
1477 while ((cur > path) && (cur[-1] != '/'))
1478 --cur;
1479 }
1480 out[0] = '\0';
1481
1482 /*
1483 * g) If the resulting buffer string still begins with one or more
1484 * complete path segments of "..", then the reference is
1485 * considered to be in error. Implementations may handle this
1486 * error by retaining these components in the resolved path (i.e.,
1487 * treating them as part of the final URI), by removing them from
1488 * the resolved path (i.e., discarding relative levels above the
1489 * root), or by avoiding traversal of the reference.
1490 *
1491 * We discard them from the final path.
1492 */
1493 if (path[0] == '/') {
1494 cur = path;
1495 while ((cur[0] == '/') && (cur[1] == '.') && (cur[2] == '.')
1496 && ((cur[3] == '/') || (cur[3] == '\0')))
1497 cur += 3;
1498
1499 if (cur != path) {
1500 out = path;
1501 while (cur[0] != '\0')
1502 (out++)[0] = (cur++)[0];
1503 out[0] = 0;
1504 }
1505 }
1506
1507 return(0);
1508 }
1509
1510 static int is_hex(char c) {
1511 if (((c >= '0') && (c <= '9')) ||
1512 ((c >= 'a') && (c <= 'f')) ||
1513 ((c >= 'A') && (c <= 'F')))
1514 return(1);
1515 return(0);
1516 }
1517
1518
1519 /**
1520 * uri_string_unescape:
1521 * @str: the string to unescape
1522 * @len: the length in bytes to unescape (or <= 0 to indicate full string)
1523 * @target: optional destination buffer
1524 *
1525 * Unescaping routine, but does not check that the string is an URI. The
1526 * output is a direct unsigned char translation of %XX values (no encoding)
1527 * Note that the length of the result can only be smaller or same size as
1528 * the input string.
1529 *
1530 * Returns a copy of the string, but unescaped, will return NULL only in case
1531 * of error
1532 */
1533 char *
1534 uri_string_unescape(const char *str, int len, char *target) {
1535 char *ret, *out;
1536 const char *in;
1537
1538 if (str == NULL)
1539 return(NULL);
1540 if (len <= 0) len = strlen(str);
1541 if (len < 0) return(NULL);
1542
1543 if (target == NULL) {
1544 ret = g_malloc(len + 1);
1545 } else
1546 ret = target;
1547 in = str;
1548 out = ret;
1549 while(len > 0) {
1550 if ((len > 2) && (*in == '%') && (is_hex(in[1])) && (is_hex(in[2]))) {
1551 in++;
1552 if ((*in >= '0') && (*in <= '9'))
1553 *out = (*in - '0');
1554 else if ((*in >= 'a') && (*in <= 'f'))
1555 *out = (*in - 'a') + 10;
1556 else if ((*in >= 'A') && (*in <= 'F'))
1557 *out = (*in - 'A') + 10;
1558 in++;
1559 if ((*in >= '0') && (*in <= '9'))
1560 *out = *out * 16 + (*in - '0');
1561 else if ((*in >= 'a') && (*in <= 'f'))
1562 *out = *out * 16 + (*in - 'a') + 10;
1563 else if ((*in >= 'A') && (*in <= 'F'))
1564 *out = *out * 16 + (*in - 'A') + 10;
1565 in++;
1566 len -= 3;
1567 out++;
1568 } else {
1569 *out++ = *in++;
1570 len--;
1571 }
1572 }
1573 *out = 0;
1574 return(ret);
1575 }
1576
1577 /**
1578 * uri_string_escape:
1579 * @str: string to escape
1580 * @list: exception list string of chars not to escape
1581 *
1582 * This routine escapes a string to hex, ignoring reserved characters (a-z)
1583 * and the characters in the exception list.
1584 *
1585 * Returns a new escaped string or NULL in case of error.
1586 */
1587 char *
1588 uri_string_escape(const char *str, const char *list) {
1589 char *ret, ch;
1590 char *temp;
1591 const char *in;
1592 int len, out;
1593
1594 if (str == NULL)
1595 return(NULL);
1596 if (str[0] == 0)
1597 return(g_strdup(str));
1598 len = strlen(str);
1599 if (!(len > 0)) return(NULL);
1600
1601 len += 20;
1602 ret = g_malloc(len);
1603 in = str;
1604 out = 0;
1605 while(*in != 0) {
1606 if (len - out <= 3) {
1607 temp = realloc2n(ret, &len);
1608 ret = temp;
1609 }
1610
1611 ch = *in;
1612
1613 if ((ch != '@') && (!IS_UNRESERVED(ch)) && (!strchr(list, ch))) {
1614 unsigned char val;
1615 ret[out++] = '%';
1616 val = ch >> 4;
1617 if (val <= 9)
1618 ret[out++] = '0' + val;
1619 else
1620 ret[out++] = 'A' + val - 0xA;
1621 val = ch & 0xF;
1622 if (val <= 9)
1623 ret[out++] = '0' + val;
1624 else
1625 ret[out++] = 'A' + val - 0xA;
1626 in++;
1627 } else {
1628 ret[out++] = *in++;
1629 }
1630
1631 }
1632 ret[out] = 0;
1633 return(ret);
1634 }
1635
1636 /************************************************************************
1637 * *
1638 * Public functions *
1639 * *
1640 ************************************************************************/
1641
1642 /**
1643 * uri_resolve:
1644 * @URI: the URI instance found in the document
1645 * @base: the base value
1646 *
1647 * Computes he final URI of the reference done by checking that
1648 * the given URI is valid, and building the final URI using the
1649 * base URI. This is processed according to section 5.2 of the
1650 * RFC 2396
1651 *
1652 * 5.2. Resolving Relative References to Absolute Form
1653 *
1654 * Returns a new URI string (to be freed by the caller) or NULL in case
1655 * of error.
1656 */
1657 char *
1658 uri_resolve(const char *uri, const char *base) {
1659 char *val = NULL;
1660 int ret, len, indx, cur, out;
1661 URI *ref = NULL;
1662 URI *bas = NULL;
1663 URI *res = NULL;
1664
1665 /*
1666 * 1) The URI reference is parsed into the potential four components and
1667 * fragment identifier, as described in Section 4.3.
1668 *
1669 * NOTE that a completely empty URI is treated by modern browsers
1670 * as a reference to "." rather than as a synonym for the current
1671 * URI. Should we do that here?
1672 */
1673 if (uri == NULL)
1674 ret = -1;
1675 else {
1676 if (*uri) {
1677 ref = uri_new();
1678 if (ref == NULL)
1679 goto done;
1680 ret = uri_parse_into(ref, uri);
1681 }
1682 else
1683 ret = 0;
1684 }
1685 if (ret != 0)
1686 goto done;
1687 if ((ref != NULL) && (ref->scheme != NULL)) {
1688 /*
1689 * The URI is absolute don't modify.
1690 */
1691 val = g_strdup(uri);
1692 goto done;
1693 }
1694 if (base == NULL)
1695 ret = -1;
1696 else {
1697 bas = uri_new();
1698 if (bas == NULL)
1699 goto done;
1700 ret = uri_parse_into(bas, base);
1701 }
1702 if (ret != 0) {
1703 if (ref)
1704 val = uri_to_string(ref);
1705 goto done;
1706 }
1707 if (ref == NULL) {
1708 /*
1709 * the base fragment must be ignored
1710 */
1711 g_free(bas->fragment);
1712 bas->fragment = NULL;
1713 val = uri_to_string(bas);
1714 goto done;
1715 }
1716
1717 /*
1718 * 2) If the path component is empty and the scheme, authority, and
1719 * query components are undefined, then it is a reference to the
1720 * current document and we are done. Otherwise, the reference URI's
1721 * query and fragment components are defined as found (or not found)
1722 * within the URI reference and not inherited from the base URI.
1723 *
1724 * NOTE that in modern browsers, the parsing differs from the above
1725 * in the following aspect: the query component is allowed to be
1726 * defined while still treating this as a reference to the current
1727 * document.
1728 */
1729 res = uri_new();
1730 if (res == NULL)
1731 goto done;
1732 if ((ref->scheme == NULL) && (ref->path == NULL) &&
1733 ((ref->authority == NULL) && (ref->server == NULL))) {
1734 res->scheme = g_strdup(bas->scheme);
1735 if (bas->authority != NULL)
1736 res->authority = g_strdup(bas->authority);
1737 else if (bas->server != NULL) {
1738 res->server = g_strdup(bas->server);
1739 res->user = g_strdup(bas->user);
1740 res->port = bas->port;
1741 }
1742 res->path = g_strdup(bas->path);
1743 if (ref->query != NULL) {
1744 res->query = g_strdup (ref->query);
1745 } else {
1746 res->query = g_strdup(bas->query);
1747 }
1748 res->fragment = g_strdup(ref->fragment);
1749 goto step_7;
1750 }
1751
1752 /*
1753 * 3) If the scheme component is defined, indicating that the reference
1754 * starts with a scheme name, then the reference is interpreted as an
1755 * absolute URI and we are done. Otherwise, the reference URI's
1756 * scheme is inherited from the base URI's scheme component.
1757 */
1758 if (ref->scheme != NULL) {
1759 val = uri_to_string(ref);
1760 goto done;
1761 }
1762 res->scheme = g_strdup(bas->scheme);
1763
1764 res->query = g_strdup(ref->query);
1765 res->fragment = g_strdup(ref->fragment);
1766
1767 /*
1768 * 4) If the authority component is defined, then the reference is a
1769 * network-path and we skip to step 7. Otherwise, the reference
1770 * URI's authority is inherited from the base URI's authority
1771 * component, which will also be undefined if the URI scheme does not
1772 * use an authority component.
1773 */
1774 if ((ref->authority != NULL) || (ref->server != NULL)) {
1775 if (ref->authority != NULL)
1776 res->authority = g_strdup(ref->authority);
1777 else {
1778 res->server = g_strdup(ref->server);
1779 res->user = g_strdup(ref->user);
1780 res->port = ref->port;
1781 }
1782 res->path = g_strdup(ref->path);
1783 goto step_7;
1784 }
1785 if (bas->authority != NULL)
1786 res->authority = g_strdup(bas->authority);
1787 else if (bas->server != NULL) {
1788 res->server = g_strdup(bas->server);
1789 res->user = g_strdup(bas->user);
1790 res->port = bas->port;
1791 }
1792
1793 /*
1794 * 5) If the path component begins with a slash character ("/"), then
1795 * the reference is an absolute-path and we skip to step 7.
1796 */
1797 if ((ref->path != NULL) && (ref->path[0] == '/')) {
1798 res->path = g_strdup(ref->path);
1799 goto step_7;
1800 }
1801
1802
1803 /*
1804 * 6) If this step is reached, then we are resolving a relative-path
1805 * reference. The relative path needs to be merged with the base
1806 * URI's path. Although there are many ways to do this, we will
1807 * describe a simple method using a separate string buffer.
1808 *
1809 * Allocate a buffer large enough for the result string.
1810 */
1811 len = 2; /* extra / and 0 */
1812 if (ref->path != NULL)
1813 len += strlen(ref->path);
1814 if (bas->path != NULL)
1815 len += strlen(bas->path);
1816 res->path = g_malloc(len);
1817 res->path[0] = 0;
1818
1819 /*
1820 * a) All but the last segment of the base URI's path component is
1821 * copied to the buffer. In other words, any characters after the
1822 * last (right-most) slash character, if any, are excluded.
1823 */
1824 cur = 0;
1825 out = 0;
1826 if (bas->path != NULL) {
1827 while (bas->path[cur] != 0) {
1828 while ((bas->path[cur] != 0) && (bas->path[cur] != '/'))
1829 cur++;
1830 if (bas->path[cur] == 0)
1831 break;
1832
1833 cur++;
1834 while (out < cur) {
1835 res->path[out] = bas->path[out];
1836 out++;
1837 }
1838 }
1839 }
1840 res->path[out] = 0;
1841
1842 /*
1843 * b) The reference's path component is appended to the buffer
1844 * string.
1845 */
1846 if (ref->path != NULL && ref->path[0] != 0) {
1847 indx = 0;
1848 /*
1849 * Ensure the path includes a '/'
1850 */
1851 if ((out == 0) && (bas->server != NULL))
1852 res->path[out++] = '/';
1853 while (ref->path[indx] != 0) {
1854 res->path[out++] = ref->path[indx++];
1855 }
1856 }
1857 res->path[out] = 0;
1858
1859 /*
1860 * Steps c) to h) are really path normalization steps
1861 */
1862 normalize_uri_path(res->path);
1863
1864 step_7:
1865
1866 /*
1867 * 7) The resulting URI components, including any inherited from the
1868 * base URI, are recombined to give the absolute form of the URI
1869 * reference.
1870 */
1871 val = uri_to_string(res);
1872
1873 done:
1874 if (ref != NULL)
1875 uri_free(ref);
1876 if (bas != NULL)
1877 uri_free(bas);
1878 if (res != NULL)
1879 uri_free(res);
1880 return(val);
1881 }
1882
1883 /**
1884 * uri_resolve_relative:
1885 * @URI: the URI reference under consideration
1886 * @base: the base value
1887 *
1888 * Expresses the URI of the reference in terms relative to the
1889 * base. Some examples of this operation include:
1890 * base = "http://site1.com/docs/book1.html"
1891 * URI input URI returned
1892 * docs/pic1.gif pic1.gif
1893 * docs/img/pic1.gif img/pic1.gif
1894 * img/pic1.gif ../img/pic1.gif
1895 * http://site1.com/docs/pic1.gif pic1.gif
1896 * http://site2.com/docs/pic1.gif http://site2.com/docs/pic1.gif
1897 *
1898 * base = "docs/book1.html"
1899 * URI input URI returned
1900 * docs/pic1.gif pic1.gif
1901 * docs/img/pic1.gif img/pic1.gif
1902 * img/pic1.gif ../img/pic1.gif
1903 * http://site1.com/docs/pic1.gif http://site1.com/docs/pic1.gif
1904 *
1905 *
1906 * Note: if the URI reference is really weird or complicated, it may be
1907 * worthwhile to first convert it into a "nice" one by calling
1908 * uri_resolve (using 'base') before calling this routine,
1909 * since this routine (for reasonable efficiency) assumes URI has
1910 * already been through some validation.
1911 *
1912 * Returns a new URI string (to be freed by the caller) or NULL in case
1913 * error.
1914 */
1915 char *
1916 uri_resolve_relative (const char *uri, const char * base)
1917 {
1918 char *val = NULL;
1919 int ret;
1920 int ix;
1921 int pos = 0;
1922 int nbslash = 0;
1923 int len;
1924 URI *ref = NULL;
1925 URI *bas = NULL;
1926 char *bptr, *uptr, *vptr;
1927 int remove_path = 0;
1928
1929 if ((uri == NULL) || (*uri == 0))
1930 return NULL;
1931
1932 /*
1933 * First parse URI into a standard form
1934 */
1935 ref = uri_new ();
1936 if (ref == NULL)
1937 return NULL;
1938 /* If URI not already in "relative" form */
1939 if (uri[0] != '.') {
1940 ret = uri_parse_into (ref, uri);
1941 if (ret != 0)
1942 goto done; /* Error in URI, return NULL */
1943 } else
1944 ref->path = g_strdup(uri);
1945
1946 /*
1947 * Next parse base into the same standard form
1948 */
1949 if ((base == NULL) || (*base == 0)) {
1950 val = g_strdup (uri);
1951 goto done;
1952 }
1953 bas = uri_new ();
1954 if (bas == NULL)
1955 goto done;
1956 if (base[0] != '.') {
1957 ret = uri_parse_into (bas, base);
1958 if (ret != 0)
1959 goto done; /* Error in base, return NULL */
1960 } else
1961 bas->path = g_strdup(base);
1962
1963 /*
1964 * If the scheme / server on the URI differs from the base,
1965 * just return the URI
1966 */
1967 if ((ref->scheme != NULL) &&
1968 ((bas->scheme == NULL) ||
1969 (strcmp (bas->scheme, ref->scheme)) ||
1970 (strcmp (bas->server, ref->server)))) {
1971 val = g_strdup (uri);
1972 goto done;
1973 }
1974 if (!strcmp(bas->path, ref->path)) {
1975 val = g_strdup("");
1976 goto done;
1977 }
1978 if (bas->path == NULL) {
1979 val = g_strdup(ref->path);
1980 goto done;
1981 }
1982 if (ref->path == NULL) {
1983 ref->path = (char *) "/";
1984 remove_path = 1;
1985 }
1986
1987 /*
1988 * At this point (at last!) we can compare the two paths
1989 *
1990 * First we take care of the special case where either of the
1991 * two path components may be missing (bug 316224)
1992 */
1993 if (bas->path == NULL) {
1994 if (ref->path != NULL) {
1995 uptr = ref->path;
1996 if (*uptr == '/')
1997 uptr++;
1998 /* exception characters from uri_to_string */
1999 val = uri_string_escape(uptr, "/;&=+$,");
2000 }
2001 goto done;
2002 }
2003 bptr = bas->path;
2004 if (ref->path == NULL) {
2005 for (ix = 0; bptr[ix] != 0; ix++) {
2006 if (bptr[ix] == '/')
2007 nbslash++;
2008 }
2009 uptr = NULL;
2010 len = 1; /* this is for a string terminator only */
2011 } else {
2012 /*
2013 * Next we compare the two strings and find where they first differ
2014 */
2015 if ((ref->path[pos] == '.') && (ref->path[pos+1] == '/'))
2016 pos += 2;
2017 if ((*bptr == '.') && (bptr[1] == '/'))
2018 bptr += 2;
2019 else if ((*bptr == '/') && (ref->path[pos] != '/'))
2020 bptr++;
2021 while ((bptr[pos] == ref->path[pos]) && (bptr[pos] != 0))
2022 pos++;
2023
2024 if (bptr[pos] == ref->path[pos]) {
2025 val = g_strdup("");
2026 goto done; /* (I can't imagine why anyone would do this) */
2027 }
2028
2029 /*
2030 * In URI, "back up" to the last '/' encountered. This will be the
2031 * beginning of the "unique" suffix of URI
2032 */
2033 ix = pos;
2034 if ((ref->path[ix] == '/') && (ix > 0))
2035 ix--;
2036 else if ((ref->path[ix] == 0) && (ix > 1) && (ref->path[ix - 1] == '/'))
2037 ix -= 2;
2038 for (; ix > 0; ix--) {
2039 if (ref->path[ix] == '/')
2040 break;
2041 }
2042 if (ix == 0) {
2043 uptr = ref->path;
2044 } else {
2045 ix++;
2046 uptr = &ref->path[ix];
2047 }
2048
2049 /*
2050 * In base, count the number of '/' from the differing point
2051 */
2052 if (bptr[pos] != ref->path[pos]) {/* check for trivial URI == base */
2053 for (; bptr[ix] != 0; ix++) {
2054 if (bptr[ix] == '/')
2055 nbslash++;
2056 }
2057 }
2058 len = strlen (uptr) + 1;
2059 }
2060
2061 if (nbslash == 0) {
2062 if (uptr != NULL)
2063 /* exception characters from uri_to_string */
2064 val = uri_string_escape(uptr, "/;&=+$,");
2065 goto done;
2066 }
2067
2068 /*
2069 * Allocate just enough space for the returned string -
2070 * length of the remainder of the URI, plus enough space
2071 * for the "../" groups, plus one for the terminator
2072 */
2073 val = g_malloc (len + 3 * nbslash);
2074 vptr = val;
2075 /*
2076 * Put in as many "../" as needed
2077 */
2078 for (; nbslash>0; nbslash--) {
2079 *vptr++ = '.';
2080 *vptr++ = '.';
2081 *vptr++ = '/';
2082 }
2083 /*
2084 * Finish up with the end of the URI
2085 */
2086 if (uptr != NULL) {
2087 if ((vptr > val) && (len > 0) &&
2088 (uptr[0] == '/') && (vptr[-1] == '/')) {
2089 memcpy (vptr, uptr + 1, len - 1);
2090 vptr[len - 2] = 0;
2091 } else {
2092 memcpy (vptr, uptr, len);
2093 vptr[len - 1] = 0;
2094 }
2095 } else {
2096 vptr[len - 1] = 0;
2097 }
2098
2099 /* escape the freshly-built path */
2100 vptr = val;
2101 /* exception characters from uri_to_string */
2102 val = uri_string_escape(vptr, "/;&=+$,");
2103 g_free(vptr);
2104
2105 done:
2106 /*
2107 * Free the working variables
2108 */
2109 if (remove_path != 0)
2110 ref->path = NULL;
2111 if (ref != NULL)
2112 uri_free (ref);
2113 if (bas != NULL)
2114 uri_free (bas);
2115
2116 return val;
2117 }
2118
2119 /*
2120 * Utility functions to help parse and assemble query strings.
2121 */
2122
2123 struct QueryParams *
2124 query_params_new (int init_alloc)
2125 {
2126 struct QueryParams *ps;
2127
2128 if (init_alloc <= 0) init_alloc = 1;
2129
2130 ps = g_new(QueryParams, 1);
2131 ps->n = 0;
2132 ps->alloc = init_alloc;
2133 ps->p = g_new(QueryParam, ps->alloc);
2134
2135 return ps;
2136 }
2137
2138 /* Ensure there is space to store at least one more parameter
2139 * at the end of the set.
2140 */
2141 static int
2142 query_params_append (struct QueryParams *ps,
2143 const char *name, const char *value)
2144 {
2145 if (ps->n >= ps->alloc) {
2146 ps->p = g_renew(QueryParam, ps->p, ps->alloc * 2);
2147 ps->alloc *= 2;
2148 }
2149
2150 ps->p[ps->n].name = g_strdup(name);
2151 ps->p[ps->n].value = g_strdup(value);
2152 ps->p[ps->n].ignore = 0;
2153 ps->n++;
2154
2155 return 0;
2156 }
2157
2158 void
2159 query_params_free (struct QueryParams *ps)
2160 {
2161 int i;
2162
2163 for (i = 0; i < ps->n; ++i) {
2164 g_free (ps->p[i].name);
2165 g_free (ps->p[i].value);
2166 }
2167 g_free (ps->p);
2168 g_free (ps);
2169 }
2170
2171 struct QueryParams *
2172 query_params_parse (const char *query)
2173 {
2174 struct QueryParams *ps;
2175 const char *end, *eq;
2176
2177 ps = query_params_new (0);
2178 if (!query || query[0] == '\0') return ps;
2179
2180 while (*query) {
2181 char *name = NULL, *value = NULL;
2182
2183 /* Find the next separator, or end of the string. */
2184 end = strchr (query, '&');
2185 if (!end)
2186 end = strchr (query, ';');
2187 if (!end)
2188 end = query + strlen (query);
2189
2190 /* Find the first '=' character between here and end. */
2191 eq = strchr (query, '=');
2192 if (eq && eq >= end) eq = NULL;
2193
2194 /* Empty section (eg. "&&"). */
2195 if (end == query)
2196 goto next;
2197
2198 /* If there is no '=' character, then we have just "name"
2199 * and consistent with CGI.pm we assume value is "".
2200 */
2201 else if (!eq) {
2202 name = uri_string_unescape (query, end - query, NULL);
2203 value = NULL;
2204 }
2205 /* Or if we have "name=" here (works around annoying
2206 * problem when calling uri_string_unescape with len = 0).
2207 */
2208 else if (eq+1 == end) {
2209 name = uri_string_unescape (query, eq - query, NULL);
2210 value = g_new0(char, 1);
2211 }
2212 /* If the '=' character is at the beginning then we have
2213 * "=value" and consistent with CGI.pm we _ignore_ this.
2214 */
2215 else if (query == eq)
2216 goto next;
2217
2218 /* Otherwise it's "name=value". */
2219 else {
2220 name = uri_string_unescape (query, eq - query, NULL);
2221 value = uri_string_unescape (eq+1, end - (eq+1), NULL);
2222 }
2223
2224 /* Append to the parameter set. */
2225 query_params_append (ps, name, value);
2226 g_free(name);
2227 g_free(value);
2228
2229 next:
2230 query = end;
2231 if (*query) query ++; /* skip '&' separator */
2232 }
2233
2234 return ps;
2235 }