]> git.proxmox.com Git - rustc.git/blob - vendor/aho-corasick/src/classes.rs
New upstream version 1.57.0+dfsg1
[rustc.git] / vendor / aho-corasick / src / classes.rs
1 use std::fmt;
2
3 /// A representation of byte oriented equivalence classes.
4 ///
5 /// This is used in an FSM to reduce the size of the transition table. This can
6 /// have a particularly large impact not only on the total size of an FSM, but
7 /// also on compile times.
8 #[derive(Clone, Copy)]
9 pub struct ByteClasses([u8; 256]);
10
11 impl ByteClasses {
12 /// Creates a new set of equivalence classes where all bytes are mapped to
13 /// the same class.
14 pub fn empty() -> ByteClasses {
15 ByteClasses([0; 256])
16 }
17
18 /// Creates a new set of equivalence classes where each byte belongs to
19 /// its own equivalence class.
20 pub fn singletons() -> ByteClasses {
21 let mut classes = ByteClasses::empty();
22 for i in 0..256 {
23 classes.set(i as u8, i as u8);
24 }
25 classes
26 }
27
28 /// Set the equivalence class for the given byte.
29 #[inline]
30 pub fn set(&mut self, byte: u8, class: u8) {
31 self.0[byte as usize] = class;
32 }
33
34 /// Get the equivalence class for the given byte.
35 #[inline]
36 pub fn get(&self, byte: u8) -> u8 {
37 // SAFETY: This is safe because all dense transitions have
38 // exactly 256 elements, so all u8 values are valid indices.
39 self.0[byte as usize]
40 }
41
42 /// Return the total number of elements in the alphabet represented by
43 /// these equivalence classes. Equivalently, this returns the total number
44 /// of equivalence classes.
45 #[inline]
46 pub fn alphabet_len(&self) -> usize {
47 self.0[255] as usize + 1
48 }
49
50 /// Returns true if and only if every byte in this class maps to its own
51 /// equivalence class. Equivalently, there are 256 equivalence classes
52 /// and each class contains exactly one byte.
53 #[inline]
54 pub fn is_singleton(&self) -> bool {
55 self.alphabet_len() == 256
56 }
57
58 /// Returns an iterator over a sequence of representative bytes from each
59 /// equivalence class. Namely, this yields exactly N items, where N is
60 /// equivalent to the number of equivalence classes. Each item is an
61 /// arbitrary byte drawn from each equivalence class.
62 ///
63 /// This is useful when one is determinizing an NFA and the NFA's alphabet
64 /// hasn't been converted to equivalence classes yet. Picking an arbitrary
65 /// byte from each equivalence class then permits a full exploration of
66 /// the NFA instead of using every possible byte value.
67 pub fn representatives(&self) -> ByteClassRepresentatives<'_> {
68 ByteClassRepresentatives { classes: self, byte: 0, last_class: None }
69 }
70
71 /// Returns all of the bytes in the given equivalence class.
72 ///
73 /// The second element in the tuple indicates the number of elements in
74 /// the array.
75 fn elements(&self, equiv: u8) -> ([u8; 256], usize) {
76 let (mut array, mut len) = ([0; 256], 0);
77 for b in 0..256 {
78 if self.get(b as u8) == equiv {
79 array[len] = b as u8;
80 len += 1;
81 }
82 }
83 (array, len)
84 }
85 }
86
87 impl fmt::Debug for ByteClasses {
88 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
89 if self.is_singleton() {
90 write!(f, "ByteClasses({{singletons}})")
91 } else {
92 write!(f, "ByteClasses(")?;
93 for equiv in 0..self.alphabet_len() {
94 let (members, len) = self.elements(equiv as u8);
95 write!(f, " {} => {:?}", equiv, &members[..len])?;
96 }
97 write!(f, ")")
98 }
99 }
100 }
101
102 /// An iterator over representative bytes from each equivalence class.
103 #[derive(Debug)]
104 pub struct ByteClassRepresentatives<'a> {
105 classes: &'a ByteClasses,
106 byte: usize,
107 last_class: Option<u8>,
108 }
109
110 impl<'a> Iterator for ByteClassRepresentatives<'a> {
111 type Item = u8;
112
113 fn next(&mut self) -> Option<u8> {
114 while self.byte < 256 {
115 let byte = self.byte as u8;
116 let class = self.classes.get(byte);
117 self.byte += 1;
118
119 if self.last_class != Some(class) {
120 self.last_class = Some(class);
121 return Some(byte);
122 }
123 }
124 None
125 }
126 }
127
128 /// A byte class builder keeps track of an *approximation* of equivalence
129 /// classes of bytes during NFA construction. That is, every byte in an
130 /// equivalence class cannot discriminate between a match and a non-match.
131 ///
132 /// For example, in the literals `abc` and `xyz`, the bytes [\x00-`], [d-w]
133 /// and [{-\xFF] never discriminate between a match and a non-match, precisely
134 /// because they never occur in the literals anywhere.
135 ///
136 /// Note though that this does not necessarily compute the minimal set of
137 /// equivalence classes. For example, in the literals above, the byte ranges
138 /// [\x00-`], [d-w] and [{-\xFF] are all treated as distinct equivalence
139 /// classes even though they could be treated a single class. The reason for
140 /// this is implementation complexity. In the future, we should endeavor to
141 /// compute the minimal equivalence classes since they can have a rather large
142 /// impact on the size of the DFA.
143 ///
144 /// The representation here is 256 booleans, all initially set to false. Each
145 /// boolean maps to its corresponding byte based on position. A `true` value
146 /// indicates the end of an equivalence class, where its corresponding byte
147 /// and all of the bytes corresponding to all previous contiguous `false`
148 /// values are in the same equivalence class.
149 ///
150 /// This particular representation only permits contiguous ranges of bytes to
151 /// be in the same equivalence class, which means that we can never discover
152 /// the true minimal set of equivalence classes.
153 #[derive(Debug)]
154 pub struct ByteClassBuilder(Vec<bool>);
155
156 impl ByteClassBuilder {
157 /// Create a new builder of byte classes where all bytes are part of the
158 /// same equivalence class.
159 pub fn new() -> ByteClassBuilder {
160 ByteClassBuilder(vec![false; 256])
161 }
162
163 /// Indicate the the range of byte given (inclusive) can discriminate a
164 /// match between it and all other bytes outside of the range.
165 pub fn set_range(&mut self, start: u8, end: u8) {
166 debug_assert!(start <= end);
167 if start > 0 {
168 self.0[start as usize - 1] = true;
169 }
170 self.0[end as usize] = true;
171 }
172
173 /// Build byte classes that map all byte values to their corresponding
174 /// equivalence class. The last mapping indicates the largest equivalence
175 /// class identifier (which is never bigger than 255).
176 pub fn build(&self) -> ByteClasses {
177 let mut classes = ByteClasses::empty();
178 let mut class = 0u8;
179 let mut i = 0;
180 loop {
181 classes.set(i as u8, class as u8);
182 if i >= 255 {
183 break;
184 }
185 if self.0[i] {
186 class = class.checked_add(1).unwrap();
187 }
188 i += 1;
189 }
190 classes
191 }
192 }
193
194 #[cfg(test)]
195 mod tests {
196 use super::*;
197
198 #[test]
199 fn byte_classes() {
200 let mut set = ByteClassBuilder::new();
201 set.set_range(b'a', b'z');
202
203 let classes = set.build();
204 assert_eq!(classes.get(0), 0);
205 assert_eq!(classes.get(1), 0);
206 assert_eq!(classes.get(2), 0);
207 assert_eq!(classes.get(b'a' - 1), 0);
208 assert_eq!(classes.get(b'a'), 1);
209 assert_eq!(classes.get(b'm'), 1);
210 assert_eq!(classes.get(b'z'), 1);
211 assert_eq!(classes.get(b'z' + 1), 2);
212 assert_eq!(classes.get(254), 2);
213 assert_eq!(classes.get(255), 2);
214
215 let mut set = ByteClassBuilder::new();
216 set.set_range(0, 2);
217 set.set_range(4, 6);
218 let classes = set.build();
219 assert_eq!(classes.get(0), 0);
220 assert_eq!(classes.get(1), 0);
221 assert_eq!(classes.get(2), 0);
222 assert_eq!(classes.get(3), 1);
223 assert_eq!(classes.get(4), 2);
224 assert_eq!(classes.get(5), 2);
225 assert_eq!(classes.get(6), 2);
226 assert_eq!(classes.get(7), 3);
227 assert_eq!(classes.get(255), 3);
228 }
229
230 #[test]
231 fn full_byte_classes() {
232 let mut set = ByteClassBuilder::new();
233 for i in 0..256u16 {
234 set.set_range(i as u8, i as u8);
235 }
236 assert_eq!(set.build().alphabet_len(), 256);
237 }
238 }