]> git.proxmox.com Git - rustc.git/blob - vendor/rand/src/distributions/bernoulli.rs
New upstream version 1.53.0+dfsg1
[rustc.git] / vendor / rand / src / distributions / bernoulli.rs
1 // Copyright 2018 Developers of the Rand project.
2 //
3 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
4 // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
5 // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
6 // option. This file may not be copied, modified, or distributed
7 // except according to those terms.
8
9 //! The Bernoulli distribution.
10
11 use crate::distributions::Distribution;
12 use crate::Rng;
13 use core::{fmt, u64};
14
15 #[cfg(feature = "serde1")]
16 use serde::{Serialize, Deserialize};
17 /// The Bernoulli distribution.
18 ///
19 /// This is a special case of the Binomial distribution where `n = 1`.
20 ///
21 /// # Example
22 ///
23 /// ```rust
24 /// use rand::distributions::{Bernoulli, Distribution};
25 ///
26 /// let d = Bernoulli::new(0.3).unwrap();
27 /// let v = d.sample(&mut rand::thread_rng());
28 /// println!("{} is from a Bernoulli distribution", v);
29 /// ```
30 ///
31 /// # Precision
32 ///
33 /// This `Bernoulli` distribution uses 64 bits from the RNG (a `u64`),
34 /// so only probabilities that are multiples of 2<sup>-64</sup> can be
35 /// represented.
36 #[derive(Clone, Copy, Debug)]
37 #[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
38 pub struct Bernoulli {
39 /// Probability of success, relative to the maximal integer.
40 p_int: u64,
41 }
42
43 // To sample from the Bernoulli distribution we use a method that compares a
44 // random `u64` value `v < (p * 2^64)`.
45 //
46 // If `p == 1.0`, the integer `v` to compare against can not represented as a
47 // `u64`. We manually set it to `u64::MAX` instead (2^64 - 1 instead of 2^64).
48 // Note that value of `p < 1.0` can never result in `u64::MAX`, because an
49 // `f64` only has 53 bits of precision, and the next largest value of `p` will
50 // result in `2^64 - 2048`.
51 //
52 // Also there is a 100% theoretical concern: if someone consistenly wants to
53 // generate `true` using the Bernoulli distribution (i.e. by using a probability
54 // of `1.0`), just using `u64::MAX` is not enough. On average it would return
55 // false once every 2^64 iterations. Some people apparently care about this
56 // case.
57 //
58 // That is why we special-case `u64::MAX` to always return `true`, without using
59 // the RNG, and pay the performance price for all uses that *are* reasonable.
60 // Luckily, if `new()` and `sample` are close, the compiler can optimize out the
61 // extra check.
62 const ALWAYS_TRUE: u64 = u64::MAX;
63
64 // This is just `2.0.powi(64)`, but written this way because it is not available
65 // in `no_std` mode.
66 const SCALE: f64 = 2.0 * (1u64 << 63) as f64;
67
68 /// Error type returned from `Bernoulli::new`.
69 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
70 pub enum BernoulliError {
71 /// `p < 0` or `p > 1`.
72 InvalidProbability,
73 }
74
75 impl fmt::Display for BernoulliError {
76 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
77 f.write_str(match self {
78 BernoulliError::InvalidProbability => "p is outside [0, 1] in Bernoulli distribution",
79 })
80 }
81 }
82
83 #[cfg(feature = "std")]
84 impl ::std::error::Error for BernoulliError {}
85
86 impl Bernoulli {
87 /// Construct a new `Bernoulli` with the given probability of success `p`.
88 ///
89 /// # Precision
90 ///
91 /// For `p = 1.0`, the resulting distribution will always generate true.
92 /// For `p = 0.0`, the resulting distribution will always generate false.
93 ///
94 /// This method is accurate for any input `p` in the range `[0, 1]` which is
95 /// a multiple of 2<sup>-64</sup>. (Note that not all multiples of
96 /// 2<sup>-64</sup> in `[0, 1]` can be represented as a `f64`.)
97 #[inline]
98 pub fn new(p: f64) -> Result<Bernoulli, BernoulliError> {
99 if !(p >= 0.0 && p < 1.0) {
100 if p == 1.0 {
101 return Ok(Bernoulli { p_int: ALWAYS_TRUE });
102 }
103 return Err(BernoulliError::InvalidProbability);
104 }
105 Ok(Bernoulli {
106 p_int: (p * SCALE) as u64,
107 })
108 }
109
110 /// Construct a new `Bernoulli` with the probability of success of
111 /// `numerator`-in-`denominator`. I.e. `new_ratio(2, 3)` will return
112 /// a `Bernoulli` with a 2-in-3 chance, or about 67%, of returning `true`.
113 ///
114 /// return `true`. If `numerator == 0` it will always return `false`.
115 /// For `numerator > denominator` and `denominator == 0`, this returns an
116 /// error. Otherwise, for `numerator == denominator`, samples are always
117 /// true; for `numerator == 0` samples are always false.
118 #[inline]
119 pub fn from_ratio(numerator: u32, denominator: u32) -> Result<Bernoulli, BernoulliError> {
120 if numerator > denominator || denominator == 0 {
121 return Err(BernoulliError::InvalidProbability);
122 }
123 if numerator == denominator {
124 return Ok(Bernoulli { p_int: ALWAYS_TRUE });
125 }
126 let p_int = ((f64::from(numerator) / f64::from(denominator)) * SCALE) as u64;
127 Ok(Bernoulli { p_int })
128 }
129 }
130
131 impl Distribution<bool> for Bernoulli {
132 #[inline]
133 fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool {
134 // Make sure to always return true for p = 1.0.
135 if self.p_int == ALWAYS_TRUE {
136 return true;
137 }
138 let v: u64 = rng.gen();
139 v < self.p_int
140 }
141 }
142
143 #[cfg(test)]
144 mod test {
145 use super::Bernoulli;
146 use crate::distributions::Distribution;
147 use crate::Rng;
148
149 #[test]
150 #[cfg(feature="serde1")]
151 fn test_serializing_deserializing_bernoulli() {
152 let coin_flip = Bernoulli::new(0.5).unwrap();
153 let de_coin_flip : Bernoulli = bincode::deserialize(&bincode::serialize(&coin_flip).unwrap()).unwrap();
154
155 assert_eq!(coin_flip.p_int, de_coin_flip.p_int);
156 }
157
158 #[test]
159 fn test_trivial() {
160 let mut r = crate::test::rng(1);
161 let always_false = Bernoulli::new(0.0).unwrap();
162 let always_true = Bernoulli::new(1.0).unwrap();
163 for _ in 0..5 {
164 assert_eq!(r.sample::<bool, _>(&always_false), false);
165 assert_eq!(r.sample::<bool, _>(&always_true), true);
166 assert_eq!(Distribution::<bool>::sample(&always_false, &mut r), false);
167 assert_eq!(Distribution::<bool>::sample(&always_true, &mut r), true);
168 }
169 }
170
171 #[test]
172 #[cfg_attr(miri, ignore)] // Miri is too slow
173 fn test_average() {
174 const P: f64 = 0.3;
175 const NUM: u32 = 3;
176 const DENOM: u32 = 10;
177 let d1 = Bernoulli::new(P).unwrap();
178 let d2 = Bernoulli::from_ratio(NUM, DENOM).unwrap();
179 const N: u32 = 100_000;
180
181 let mut sum1: u32 = 0;
182 let mut sum2: u32 = 0;
183 let mut rng = crate::test::rng(2);
184 for _ in 0..N {
185 if d1.sample(&mut rng) {
186 sum1 += 1;
187 }
188 if d2.sample(&mut rng) {
189 sum2 += 1;
190 }
191 }
192 let avg1 = (sum1 as f64) / (N as f64);
193 assert!((avg1 - P).abs() < 5e-3);
194
195 let avg2 = (sum2 as f64) / (N as f64);
196 assert!((avg2 - (NUM as f64) / (DENOM as f64)).abs() < 5e-3);
197 }
198
199 #[test]
200 fn value_stability() {
201 let mut rng = crate::test::rng(3);
202 let distr = Bernoulli::new(0.4532).unwrap();
203 let mut buf = [false; 10];
204 for x in &mut buf {
205 *x = rng.sample(&distr);
206 }
207 assert_eq!(buf, [
208 true, false, false, true, false, false, true, true, true, true
209 ]);
210 }
211 }