]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/arm/arch_timer.c
mmc: core: prepend 0x to OCR entry in sysfs
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / arm / arch_timer.c
1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/uaccess.h>
25
26 #include <clocksource/arm_arch_timer.h>
27 #include <asm/arch_timer.h>
28 #include <asm/kvm_hyp.h>
29
30 #include <kvm/arm_vgic.h>
31 #include <kvm/arm_arch_timer.h>
32
33 #include "trace.h"
34
35 static struct timecounter *timecounter;
36 static unsigned int host_vtimer_irq;
37 static u32 host_vtimer_irq_flags;
38
39 static const struct kvm_irq_level default_ptimer_irq = {
40 .irq = 30,
41 .level = 1,
42 };
43
44 static const struct kvm_irq_level default_vtimer_irq = {
45 .irq = 27,
46 .level = 1,
47 };
48
49 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
50 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
51 struct arch_timer_context *timer_ctx);
52 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
53
54 u64 kvm_phys_timer_read(void)
55 {
56 return timecounter->cc->read(timecounter->cc);
57 }
58
59 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
60 {
61 hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
62 HRTIMER_MODE_ABS);
63 }
64
65 static void soft_timer_cancel(struct hrtimer *hrt, struct work_struct *work)
66 {
67 hrtimer_cancel(hrt);
68 if (work)
69 cancel_work_sync(work);
70 }
71
72 static void kvm_vtimer_update_mask_user(struct kvm_vcpu *vcpu)
73 {
74 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
75
76 /*
77 * When using a userspace irqchip with the architected timers, we must
78 * prevent continuously exiting from the guest, and therefore mask the
79 * physical interrupt by disabling it on the host interrupt controller
80 * when the virtual level is high, such that the guest can make
81 * forward progress. Once we detect the output level being
82 * de-asserted, we unmask the interrupt again so that we exit from the
83 * guest when the timer fires.
84 */
85 if (vtimer->irq.level)
86 disable_percpu_irq(host_vtimer_irq);
87 else
88 enable_percpu_irq(host_vtimer_irq, 0);
89 }
90
91 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
92 {
93 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
94 struct arch_timer_context *vtimer;
95
96 if (!vcpu) {
97 pr_warn_once("Spurious arch timer IRQ on non-VCPU thread\n");
98 return IRQ_NONE;
99 }
100 vtimer = vcpu_vtimer(vcpu);
101
102 if (!vtimer->irq.level) {
103 vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
104 if (kvm_timer_irq_can_fire(vtimer))
105 kvm_timer_update_irq(vcpu, true, vtimer);
106 }
107
108 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
109 kvm_vtimer_update_mask_user(vcpu);
110
111 return IRQ_HANDLED;
112 }
113
114 /*
115 * Work function for handling the backup timer that we schedule when a vcpu is
116 * no longer running, but had a timer programmed to fire in the future.
117 */
118 static void kvm_timer_inject_irq_work(struct work_struct *work)
119 {
120 struct kvm_vcpu *vcpu;
121
122 vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
123
124 /*
125 * If the vcpu is blocked we want to wake it up so that it will see
126 * the timer has expired when entering the guest.
127 */
128 kvm_vcpu_wake_up(vcpu);
129 }
130
131 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
132 {
133 u64 cval, now;
134
135 cval = timer_ctx->cnt_cval;
136 now = kvm_phys_timer_read() - timer_ctx->cntvoff;
137
138 if (now < cval) {
139 u64 ns;
140
141 ns = cyclecounter_cyc2ns(timecounter->cc,
142 cval - now,
143 timecounter->mask,
144 &timecounter->frac);
145 return ns;
146 }
147
148 return 0;
149 }
150
151 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
152 {
153 return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
154 (timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
155 }
156
157 /*
158 * Returns the earliest expiration time in ns among guest timers.
159 * Note that it will return 0 if none of timers can fire.
160 */
161 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
162 {
163 u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX;
164 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
165 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
166
167 if (kvm_timer_irq_can_fire(vtimer))
168 min_virt = kvm_timer_compute_delta(vtimer);
169
170 if (kvm_timer_irq_can_fire(ptimer))
171 min_phys = kvm_timer_compute_delta(ptimer);
172
173 /* If none of timers can fire, then return 0 */
174 if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX))
175 return 0;
176
177 return min(min_virt, min_phys);
178 }
179
180 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
181 {
182 struct arch_timer_cpu *timer;
183 struct kvm_vcpu *vcpu;
184 u64 ns;
185
186 timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
187 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
188
189 /*
190 * Check that the timer has really expired from the guest's
191 * PoV (NTP on the host may have forced it to expire
192 * early). If we should have slept longer, restart it.
193 */
194 ns = kvm_timer_earliest_exp(vcpu);
195 if (unlikely(ns)) {
196 hrtimer_forward_now(hrt, ns_to_ktime(ns));
197 return HRTIMER_RESTART;
198 }
199
200 schedule_work(&timer->expired);
201 return HRTIMER_NORESTART;
202 }
203
204 static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt)
205 {
206 struct arch_timer_context *ptimer;
207 struct arch_timer_cpu *timer;
208 struct kvm_vcpu *vcpu;
209 u64 ns;
210
211 timer = container_of(hrt, struct arch_timer_cpu, phys_timer);
212 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
213 ptimer = vcpu_ptimer(vcpu);
214
215 /*
216 * Check that the timer has really expired from the guest's
217 * PoV (NTP on the host may have forced it to expire
218 * early). If not ready, schedule for a later time.
219 */
220 ns = kvm_timer_compute_delta(ptimer);
221 if (unlikely(ns)) {
222 hrtimer_forward_now(hrt, ns_to_ktime(ns));
223 return HRTIMER_RESTART;
224 }
225
226 kvm_timer_update_irq(vcpu, true, ptimer);
227 return HRTIMER_NORESTART;
228 }
229
230 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
231 {
232 u64 cval, now;
233
234 if (!kvm_timer_irq_can_fire(timer_ctx))
235 return false;
236
237 cval = timer_ctx->cnt_cval;
238 now = kvm_phys_timer_read() - timer_ctx->cntvoff;
239
240 return cval <= now;
241 }
242
243 bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
244 {
245 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
246 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
247
248 if (vtimer->irq.level || ptimer->irq.level)
249 return true;
250
251 /*
252 * When this is called from withing the wait loop of kvm_vcpu_block(),
253 * the software view of the timer state is up to date (timer->loaded
254 * is false), and so we can simply check if the timer should fire now.
255 */
256 if (!vtimer->loaded && kvm_timer_should_fire(vtimer))
257 return true;
258
259 return kvm_timer_should_fire(ptimer);
260 }
261
262 /*
263 * Reflect the timer output level into the kvm_run structure
264 */
265 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
266 {
267 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
268 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
269 struct kvm_sync_regs *regs = &vcpu->run->s.regs;
270
271 /* Populate the device bitmap with the timer states */
272 regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
273 KVM_ARM_DEV_EL1_PTIMER);
274 if (vtimer->irq.level)
275 regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
276 if (ptimer->irq.level)
277 regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
278 }
279
280 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
281 struct arch_timer_context *timer_ctx)
282 {
283 int ret;
284
285 timer_ctx->irq.level = new_level;
286 trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
287 timer_ctx->irq.level);
288
289 if (likely(irqchip_in_kernel(vcpu->kvm))) {
290 ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
291 timer_ctx->irq.irq,
292 timer_ctx->irq.level,
293 timer_ctx);
294 WARN_ON(ret);
295 }
296 }
297
298 /* Schedule the background timer for the emulated timer. */
299 static void phys_timer_emulate(struct kvm_vcpu *vcpu)
300 {
301 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
302 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
303
304 /*
305 * If the timer can fire now we have just raised the IRQ line and we
306 * don't need to have a soft timer scheduled for the future. If the
307 * timer cannot fire at all, then we also don't need a soft timer.
308 */
309 if (kvm_timer_should_fire(ptimer) || !kvm_timer_irq_can_fire(ptimer)) {
310 soft_timer_cancel(&timer->phys_timer, NULL);
311 return;
312 }
313
314 soft_timer_start(&timer->phys_timer, kvm_timer_compute_delta(ptimer));
315 }
316
317 /*
318 * Check if there was a change in the timer state, so that we should either
319 * raise or lower the line level to the GIC or schedule a background timer to
320 * emulate the physical timer.
321 */
322 static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
323 {
324 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
325 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
326 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
327
328 if (unlikely(!timer->enabled))
329 return;
330
331 if (kvm_timer_should_fire(vtimer) != vtimer->irq.level)
332 kvm_timer_update_irq(vcpu, !vtimer->irq.level, vtimer);
333
334 if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
335 kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
336
337 phys_timer_emulate(vcpu);
338 }
339
340 static void vtimer_save_state(struct kvm_vcpu *vcpu)
341 {
342 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
343 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
344 unsigned long flags;
345
346 local_irq_save(flags);
347
348 if (!vtimer->loaded)
349 goto out;
350
351 if (timer->enabled) {
352 vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
353 vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
354 }
355
356 /* Disable the virtual timer */
357 write_sysreg_el0(0, cntv_ctl);
358
359 vtimer->loaded = false;
360 out:
361 local_irq_restore(flags);
362 }
363
364 /*
365 * Schedule the background timer before calling kvm_vcpu_block, so that this
366 * thread is removed from its waitqueue and made runnable when there's a timer
367 * interrupt to handle.
368 */
369 void kvm_timer_schedule(struct kvm_vcpu *vcpu)
370 {
371 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
372 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
373 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
374
375 vtimer_save_state(vcpu);
376
377 /*
378 * No need to schedule a background timer if any guest timer has
379 * already expired, because kvm_vcpu_block will return before putting
380 * the thread to sleep.
381 */
382 if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer))
383 return;
384
385 /*
386 * If both timers are not capable of raising interrupts (disabled or
387 * masked), then there's no more work for us to do.
388 */
389 if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer))
390 return;
391
392 /*
393 * The guest timers have not yet expired, schedule a background timer.
394 * Set the earliest expiration time among the guest timers.
395 */
396 soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
397 }
398
399 static void vtimer_restore_state(struct kvm_vcpu *vcpu)
400 {
401 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
402 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
403 unsigned long flags;
404
405 local_irq_save(flags);
406
407 if (vtimer->loaded)
408 goto out;
409
410 if (timer->enabled) {
411 write_sysreg_el0(vtimer->cnt_cval, cntv_cval);
412 isb();
413 write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl);
414 }
415
416 vtimer->loaded = true;
417 out:
418 local_irq_restore(flags);
419 }
420
421 void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
422 {
423 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
424
425 vtimer_restore_state(vcpu);
426
427 soft_timer_cancel(&timer->bg_timer, &timer->expired);
428 }
429
430 static void set_cntvoff(u64 cntvoff)
431 {
432 u32 low = lower_32_bits(cntvoff);
433 u32 high = upper_32_bits(cntvoff);
434
435 /*
436 * Since kvm_call_hyp doesn't fully support the ARM PCS especially on
437 * 32-bit systems, but rather passes register by register shifted one
438 * place (we put the function address in r0/x0), we cannot simply pass
439 * a 64-bit value as an argument, but have to split the value in two
440 * 32-bit halves.
441 */
442 kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
443 }
444
445 static void kvm_timer_vcpu_load_vgic(struct kvm_vcpu *vcpu)
446 {
447 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
448 bool phys_active;
449 int ret;
450
451 phys_active = vtimer->irq.level ||
452 kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
453
454 ret = irq_set_irqchip_state(host_vtimer_irq,
455 IRQCHIP_STATE_ACTIVE,
456 phys_active);
457 WARN_ON(ret);
458 }
459
460 static void kvm_timer_vcpu_load_user(struct kvm_vcpu *vcpu)
461 {
462 kvm_vtimer_update_mask_user(vcpu);
463 }
464
465 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
466 {
467 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
468 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
469
470 if (unlikely(!timer->enabled))
471 return;
472
473 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
474 kvm_timer_vcpu_load_user(vcpu);
475 else
476 kvm_timer_vcpu_load_vgic(vcpu);
477
478 set_cntvoff(vtimer->cntvoff);
479
480 vtimer_restore_state(vcpu);
481
482 if (has_vhe())
483 disable_el1_phys_timer_access();
484
485 /* Set the background timer for the physical timer emulation. */
486 phys_timer_emulate(vcpu);
487 }
488
489 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
490 {
491 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
492 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
493 struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
494 bool vlevel, plevel;
495
496 if (likely(irqchip_in_kernel(vcpu->kvm)))
497 return false;
498
499 vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
500 plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
501
502 return vtimer->irq.level != vlevel ||
503 ptimer->irq.level != plevel;
504 }
505
506 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
507 {
508 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
509
510 if (unlikely(!timer->enabled))
511 return;
512
513 if (has_vhe())
514 enable_el1_phys_timer_access();
515
516 vtimer_save_state(vcpu);
517
518 /*
519 * Cancel the physical timer emulation, because the only case where we
520 * need it after a vcpu_put is in the context of a sleeping VCPU, and
521 * in that case we already factor in the deadline for the physical
522 * timer when scheduling the bg_timer.
523 *
524 * In any case, we re-schedule the hrtimer for the physical timer when
525 * coming back to the VCPU thread in kvm_timer_vcpu_load().
526 */
527 soft_timer_cancel(&timer->phys_timer, NULL);
528
529 /*
530 * The kernel may decide to run userspace after calling vcpu_put, so
531 * we reset cntvoff to 0 to ensure a consistent read between user
532 * accesses to the virtual counter and kernel access to the physical
533 * counter.
534 */
535 set_cntvoff(0);
536 }
537
538 static void unmask_vtimer_irq(struct kvm_vcpu *vcpu)
539 {
540 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
541
542 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
543 kvm_vtimer_update_mask_user(vcpu);
544 return;
545 }
546
547 /*
548 * If the guest disabled the timer without acking the interrupt, then
549 * we must make sure the physical and virtual active states are in
550 * sync by deactivating the physical interrupt, because otherwise we
551 * wouldn't see the next timer interrupt in the host.
552 */
553 if (!kvm_vgic_map_is_active(vcpu, vtimer->irq.irq)) {
554 int ret;
555 ret = irq_set_irqchip_state(host_vtimer_irq,
556 IRQCHIP_STATE_ACTIVE,
557 false);
558 WARN_ON(ret);
559 }
560 }
561
562 /**
563 * kvm_timer_sync_hwstate - sync timer state from cpu
564 * @vcpu: The vcpu pointer
565 *
566 * Check if any of the timers have expired while we were running in the guest,
567 * and inject an interrupt if that was the case.
568 */
569 void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
570 {
571 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
572
573 /*
574 * If we entered the guest with the vtimer output asserted we have to
575 * check if the guest has modified the timer so that we should lower
576 * the line at this point.
577 */
578 if (vtimer->irq.level) {
579 vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
580 vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
581 if (!kvm_timer_should_fire(vtimer)) {
582 kvm_timer_update_irq(vcpu, false, vtimer);
583 unmask_vtimer_irq(vcpu);
584 }
585 }
586 }
587
588 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
589 {
590 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
591 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
592
593 /*
594 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
595 * and to 0 for ARMv7. We provide an implementation that always
596 * resets the timer to be disabled and unmasked and is compliant with
597 * the ARMv7 architecture.
598 */
599 vtimer->cnt_ctl = 0;
600 ptimer->cnt_ctl = 0;
601 kvm_timer_update_state(vcpu);
602
603 return 0;
604 }
605
606 /* Make the updates of cntvoff for all vtimer contexts atomic */
607 static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
608 {
609 int i;
610 struct kvm *kvm = vcpu->kvm;
611 struct kvm_vcpu *tmp;
612
613 mutex_lock(&kvm->lock);
614 kvm_for_each_vcpu(i, tmp, kvm)
615 vcpu_vtimer(tmp)->cntvoff = cntvoff;
616
617 /*
618 * When called from the vcpu create path, the CPU being created is not
619 * included in the loop above, so we just set it here as well.
620 */
621 vcpu_vtimer(vcpu)->cntvoff = cntvoff;
622 mutex_unlock(&kvm->lock);
623 }
624
625 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
626 {
627 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
628 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
629 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
630
631 /* Synchronize cntvoff across all vtimers of a VM. */
632 update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
633 vcpu_ptimer(vcpu)->cntvoff = 0;
634
635 INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
636 hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
637 timer->bg_timer.function = kvm_bg_timer_expire;
638
639 hrtimer_init(&timer->phys_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
640 timer->phys_timer.function = kvm_phys_timer_expire;
641
642 vtimer->irq.irq = default_vtimer_irq.irq;
643 ptimer->irq.irq = default_ptimer_irq.irq;
644 }
645
646 static void kvm_timer_init_interrupt(void *info)
647 {
648 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
649 }
650
651 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
652 {
653 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
654 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
655
656 switch (regid) {
657 case KVM_REG_ARM_TIMER_CTL:
658 vtimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
659 break;
660 case KVM_REG_ARM_TIMER_CNT:
661 update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
662 break;
663 case KVM_REG_ARM_TIMER_CVAL:
664 vtimer->cnt_cval = value;
665 break;
666 case KVM_REG_ARM_PTIMER_CTL:
667 ptimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
668 break;
669 case KVM_REG_ARM_PTIMER_CVAL:
670 ptimer->cnt_cval = value;
671 break;
672
673 default:
674 return -1;
675 }
676
677 kvm_timer_update_state(vcpu);
678 return 0;
679 }
680
681 static u64 read_timer_ctl(struct arch_timer_context *timer)
682 {
683 /*
684 * Set ISTATUS bit if it's expired.
685 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
686 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
687 * regardless of ENABLE bit for our implementation convenience.
688 */
689 if (!kvm_timer_compute_delta(timer))
690 return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
691 else
692 return timer->cnt_ctl;
693 }
694
695 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
696 {
697 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
698 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
699
700 switch (regid) {
701 case KVM_REG_ARM_TIMER_CTL:
702 return read_timer_ctl(vtimer);
703 case KVM_REG_ARM_TIMER_CNT:
704 return kvm_phys_timer_read() - vtimer->cntvoff;
705 case KVM_REG_ARM_TIMER_CVAL:
706 return vtimer->cnt_cval;
707 case KVM_REG_ARM_PTIMER_CTL:
708 return read_timer_ctl(ptimer);
709 case KVM_REG_ARM_PTIMER_CVAL:
710 return ptimer->cnt_cval;
711 case KVM_REG_ARM_PTIMER_CNT:
712 return kvm_phys_timer_read();
713 }
714 return (u64)-1;
715 }
716
717 static int kvm_timer_starting_cpu(unsigned int cpu)
718 {
719 kvm_timer_init_interrupt(NULL);
720 return 0;
721 }
722
723 static int kvm_timer_dying_cpu(unsigned int cpu)
724 {
725 disable_percpu_irq(host_vtimer_irq);
726 return 0;
727 }
728
729 int kvm_timer_hyp_init(void)
730 {
731 struct arch_timer_kvm_info *info;
732 int err;
733
734 info = arch_timer_get_kvm_info();
735 timecounter = &info->timecounter;
736
737 if (!timecounter->cc) {
738 kvm_err("kvm_arch_timer: uninitialized timecounter\n");
739 return -ENODEV;
740 }
741
742 if (info->virtual_irq <= 0) {
743 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
744 info->virtual_irq);
745 return -ENODEV;
746 }
747 host_vtimer_irq = info->virtual_irq;
748
749 host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
750 if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
751 host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
752 kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
753 host_vtimer_irq);
754 host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
755 }
756
757 err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
758 "kvm guest timer", kvm_get_running_vcpus());
759 if (err) {
760 kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
761 host_vtimer_irq, err);
762 return err;
763 }
764
765 err = irq_set_vcpu_affinity(host_vtimer_irq, kvm_get_running_vcpus());
766 if (err) {
767 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
768 goto out_free_irq;
769 }
770
771 kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
772
773 cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
774 "kvm/arm/timer:starting", kvm_timer_starting_cpu,
775 kvm_timer_dying_cpu);
776 return 0;
777 out_free_irq:
778 free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
779 return err;
780 }
781
782 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
783 {
784 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
785 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
786
787 soft_timer_cancel(&timer->bg_timer, &timer->expired);
788 soft_timer_cancel(&timer->phys_timer, NULL);
789 kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
790 }
791
792 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
793 {
794 int vtimer_irq, ptimer_irq;
795 int i, ret;
796
797 vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
798 ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
799 if (ret)
800 return false;
801
802 ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
803 ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
804 if (ret)
805 return false;
806
807 kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
808 if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
809 vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
810 return false;
811 }
812
813 return true;
814 }
815
816 int kvm_timer_enable(struct kvm_vcpu *vcpu)
817 {
818 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
819 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
820 struct irq_desc *desc;
821 struct irq_data *data;
822 int phys_irq;
823 int ret;
824
825 if (timer->enabled)
826 return 0;
827
828 /* Without a VGIC we do not map virtual IRQs to physical IRQs */
829 if (!irqchip_in_kernel(vcpu->kvm))
830 goto no_vgic;
831
832 if (!vgic_initialized(vcpu->kvm))
833 return -ENODEV;
834
835 if (!timer_irqs_are_valid(vcpu)) {
836 kvm_debug("incorrectly configured timer irqs\n");
837 return -EINVAL;
838 }
839
840 /*
841 * Find the physical IRQ number corresponding to the host_vtimer_irq
842 */
843 desc = irq_to_desc(host_vtimer_irq);
844 if (!desc) {
845 kvm_err("%s: no interrupt descriptor\n", __func__);
846 return -EINVAL;
847 }
848
849 data = irq_desc_get_irq_data(desc);
850 while (data->parent_data)
851 data = data->parent_data;
852
853 phys_irq = data->hwirq;
854
855 /*
856 * Tell the VGIC that the virtual interrupt is tied to a
857 * physical interrupt. We do that once per VCPU.
858 */
859 ret = kvm_vgic_map_phys_irq(vcpu, vtimer->irq.irq, phys_irq);
860 if (ret)
861 return ret;
862
863 no_vgic:
864 preempt_disable();
865 timer->enabled = 1;
866 kvm_timer_vcpu_load_vgic(vcpu);
867 preempt_enable();
868
869 return 0;
870 }
871
872 /*
873 * On VHE system, we only need to configure trap on physical timer and counter
874 * accesses in EL0 and EL1 once, not for every world switch.
875 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
876 * and this makes those bits have no effect for the host kernel execution.
877 */
878 void kvm_timer_init_vhe(void)
879 {
880 /* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
881 u32 cnthctl_shift = 10;
882 u64 val;
883
884 /*
885 * Disallow physical timer access for the guest.
886 * Physical counter access is allowed.
887 */
888 val = read_sysreg(cnthctl_el2);
889 val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
890 val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
891 write_sysreg(val, cnthctl_el2);
892 }
893
894 static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
895 {
896 struct kvm_vcpu *vcpu;
897 int i;
898
899 kvm_for_each_vcpu(i, vcpu, kvm) {
900 vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
901 vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
902 }
903 }
904
905 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
906 {
907 int __user *uaddr = (int __user *)(long)attr->addr;
908 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
909 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
910 int irq;
911
912 if (!irqchip_in_kernel(vcpu->kvm))
913 return -EINVAL;
914
915 if (get_user(irq, uaddr))
916 return -EFAULT;
917
918 if (!(irq_is_ppi(irq)))
919 return -EINVAL;
920
921 if (vcpu->arch.timer_cpu.enabled)
922 return -EBUSY;
923
924 switch (attr->attr) {
925 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
926 set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
927 break;
928 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
929 set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
930 break;
931 default:
932 return -ENXIO;
933 }
934
935 return 0;
936 }
937
938 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
939 {
940 int __user *uaddr = (int __user *)(long)attr->addr;
941 struct arch_timer_context *timer;
942 int irq;
943
944 switch (attr->attr) {
945 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
946 timer = vcpu_vtimer(vcpu);
947 break;
948 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
949 timer = vcpu_ptimer(vcpu);
950 break;
951 default:
952 return -ENXIO;
953 }
954
955 irq = timer->irq.irq;
956 return put_user(irq, uaddr);
957 }
958
959 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
960 {
961 switch (attr->attr) {
962 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
963 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
964 return 0;
965 }
966
967 return -ENXIO;
968 }