]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - virt/kvm/arm/arch_timer.c
ASoC: cs42xx8: fix the noise in the right dac channel with mono playback
[mirror_ubuntu-zesty-kernel.git] / virt / kvm / arm / arch_timer.c
1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/of_irq.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24
25 #include <clocksource/arm_arch_timer.h>
26 #include <asm/arch_timer.h>
27
28 #include <kvm/arm_vgic.h>
29 #include <kvm/arm_arch_timer.h>
30
31 #include "trace.h"
32
33 static struct timecounter *timecounter;
34 static struct workqueue_struct *wqueue;
35 static unsigned int host_vtimer_irq;
36
37 static cycle_t kvm_phys_timer_read(void)
38 {
39 return timecounter->cc->read(timecounter->cc);
40 }
41
42 static bool timer_is_armed(struct arch_timer_cpu *timer)
43 {
44 return timer->armed;
45 }
46
47 /* timer_arm: as in "arm the timer", not as in ARM the company */
48 static void timer_arm(struct arch_timer_cpu *timer, u64 ns)
49 {
50 timer->armed = true;
51 hrtimer_start(&timer->timer, ktime_add_ns(ktime_get(), ns),
52 HRTIMER_MODE_ABS);
53 }
54
55 static void timer_disarm(struct arch_timer_cpu *timer)
56 {
57 if (timer_is_armed(timer)) {
58 hrtimer_cancel(&timer->timer);
59 cancel_work_sync(&timer->expired);
60 timer->armed = false;
61 }
62 }
63
64 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
65 {
66 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
67
68 /*
69 * We disable the timer in the world switch and let it be
70 * handled by kvm_timer_sync_hwstate(). Getting a timer
71 * interrupt at this point is a sure sign of some major
72 * breakage.
73 */
74 pr_warn("Unexpected interrupt %d on vcpu %p\n", irq, vcpu);
75 return IRQ_HANDLED;
76 }
77
78 /*
79 * Work function for handling the backup timer that we schedule when a vcpu is
80 * no longer running, but had a timer programmed to fire in the future.
81 */
82 static void kvm_timer_inject_irq_work(struct work_struct *work)
83 {
84 struct kvm_vcpu *vcpu;
85
86 vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
87 vcpu->arch.timer_cpu.armed = false;
88
89 /*
90 * If the vcpu is blocked we want to wake it up so that it will see
91 * the timer has expired when entering the guest.
92 */
93 kvm_vcpu_kick(vcpu);
94 }
95
96 static enum hrtimer_restart kvm_timer_expire(struct hrtimer *hrt)
97 {
98 struct arch_timer_cpu *timer;
99 timer = container_of(hrt, struct arch_timer_cpu, timer);
100 queue_work(wqueue, &timer->expired);
101 return HRTIMER_NORESTART;
102 }
103
104 static bool kvm_timer_irq_can_fire(struct kvm_vcpu *vcpu)
105 {
106 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
107
108 return !(timer->cntv_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
109 (timer->cntv_ctl & ARCH_TIMER_CTRL_ENABLE);
110 }
111
112 bool kvm_timer_should_fire(struct kvm_vcpu *vcpu)
113 {
114 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
115 cycle_t cval, now;
116
117 if (!kvm_timer_irq_can_fire(vcpu))
118 return false;
119
120 cval = timer->cntv_cval;
121 now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
122
123 return cval <= now;
124 }
125
126 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level)
127 {
128 int ret;
129 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
130
131 BUG_ON(!vgic_initialized(vcpu->kvm));
132
133 timer->irq.level = new_level;
134 trace_kvm_timer_update_irq(vcpu->vcpu_id, timer->map->virt_irq,
135 timer->irq.level);
136 ret = kvm_vgic_inject_mapped_irq(vcpu->kvm, vcpu->vcpu_id,
137 timer->map,
138 timer->irq.level);
139 WARN_ON(ret);
140 }
141
142 /*
143 * Check if there was a change in the timer state (should we raise or lower
144 * the line level to the GIC).
145 */
146 static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
147 {
148 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
149
150 /*
151 * If userspace modified the timer registers via SET_ONE_REG before
152 * the vgic was initialized, we mustn't set the timer->irq.level value
153 * because the guest would never see the interrupt. Instead wait
154 * until we call this function from kvm_timer_flush_hwstate.
155 */
156 if (!vgic_initialized(vcpu->kvm))
157 return;
158
159 if (kvm_timer_should_fire(vcpu) != timer->irq.level)
160 kvm_timer_update_irq(vcpu, !timer->irq.level);
161 }
162
163 /*
164 * Schedule the background timer before calling kvm_vcpu_block, so that this
165 * thread is removed from its waitqueue and made runnable when there's a timer
166 * interrupt to handle.
167 */
168 void kvm_timer_schedule(struct kvm_vcpu *vcpu)
169 {
170 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
171 u64 ns;
172 cycle_t cval, now;
173
174 BUG_ON(timer_is_armed(timer));
175
176 /*
177 * No need to schedule a background timer if the guest timer has
178 * already expired, because kvm_vcpu_block will return before putting
179 * the thread to sleep.
180 */
181 if (kvm_timer_should_fire(vcpu))
182 return;
183
184 /*
185 * If the timer is not capable of raising interrupts (disabled or
186 * masked), then there's no more work for us to do.
187 */
188 if (!kvm_timer_irq_can_fire(vcpu))
189 return;
190
191 /* The timer has not yet expired, schedule a background timer */
192 cval = timer->cntv_cval;
193 now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
194
195 ns = cyclecounter_cyc2ns(timecounter->cc,
196 cval - now,
197 timecounter->mask,
198 &timecounter->frac);
199 timer_arm(timer, ns);
200 }
201
202 void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
203 {
204 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
205 timer_disarm(timer);
206 }
207
208 /**
209 * kvm_timer_flush_hwstate - prepare to move the virt timer to the cpu
210 * @vcpu: The vcpu pointer
211 *
212 * Check if the virtual timer has expired while we were running in the host,
213 * and inject an interrupt if that was the case.
214 */
215 void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
216 {
217 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
218 bool phys_active;
219 int ret;
220
221 kvm_timer_update_state(vcpu);
222
223 /*
224 * If we enter the guest with the virtual input level to the VGIC
225 * asserted, then we have already told the VGIC what we need to, and
226 * we don't need to exit from the guest until the guest deactivates
227 * the already injected interrupt, so therefore we should set the
228 * hardware active state to prevent unnecessary exits from the guest.
229 *
230 * Also, if we enter the guest with the virtual timer interrupt active,
231 * then it must be active on the physical distributor, because we set
232 * the HW bit and the guest must be able to deactivate the virtual and
233 * physical interrupt at the same time.
234 *
235 * Conversely, if the virtual input level is deasserted and the virtual
236 * interrupt is not active, then always clear the hardware active state
237 * to ensure that hardware interrupts from the timer triggers a guest
238 * exit.
239 */
240 if (timer->irq.level || kvm_vgic_map_is_active(vcpu, timer->map))
241 phys_active = true;
242 else
243 phys_active = false;
244
245 ret = irq_set_irqchip_state(timer->map->irq,
246 IRQCHIP_STATE_ACTIVE,
247 phys_active);
248 WARN_ON(ret);
249 }
250
251 /**
252 * kvm_timer_sync_hwstate - sync timer state from cpu
253 * @vcpu: The vcpu pointer
254 *
255 * Check if the virtual timer has expired while we were running in the guest,
256 * and inject an interrupt if that was the case.
257 */
258 void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
259 {
260 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
261
262 BUG_ON(timer_is_armed(timer));
263
264 /*
265 * The guest could have modified the timer registers or the timer
266 * could have expired, update the timer state.
267 */
268 kvm_timer_update_state(vcpu);
269 }
270
271 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu,
272 const struct kvm_irq_level *irq)
273 {
274 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
275 struct irq_phys_map *map;
276
277 /*
278 * The vcpu timer irq number cannot be determined in
279 * kvm_timer_vcpu_init() because it is called much before
280 * kvm_vcpu_set_target(). To handle this, we determine
281 * vcpu timer irq number when the vcpu is reset.
282 */
283 timer->irq.irq = irq->irq;
284
285 /*
286 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
287 * and to 0 for ARMv7. We provide an implementation that always
288 * resets the timer to be disabled and unmasked and is compliant with
289 * the ARMv7 architecture.
290 */
291 timer->cntv_ctl = 0;
292 kvm_timer_update_state(vcpu);
293
294 /*
295 * Tell the VGIC that the virtual interrupt is tied to a
296 * physical interrupt. We do that once per VCPU.
297 */
298 map = kvm_vgic_map_phys_irq(vcpu, irq->irq, host_vtimer_irq);
299 if (WARN_ON(IS_ERR(map)))
300 return PTR_ERR(map);
301
302 timer->map = map;
303 return 0;
304 }
305
306 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
307 {
308 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
309
310 INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
311 hrtimer_init(&timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
312 timer->timer.function = kvm_timer_expire;
313 }
314
315 static void kvm_timer_init_interrupt(void *info)
316 {
317 enable_percpu_irq(host_vtimer_irq, 0);
318 }
319
320 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
321 {
322 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
323
324 switch (regid) {
325 case KVM_REG_ARM_TIMER_CTL:
326 timer->cntv_ctl = value;
327 break;
328 case KVM_REG_ARM_TIMER_CNT:
329 vcpu->kvm->arch.timer.cntvoff = kvm_phys_timer_read() - value;
330 break;
331 case KVM_REG_ARM_TIMER_CVAL:
332 timer->cntv_cval = value;
333 break;
334 default:
335 return -1;
336 }
337
338 kvm_timer_update_state(vcpu);
339 return 0;
340 }
341
342 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
343 {
344 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
345
346 switch (regid) {
347 case KVM_REG_ARM_TIMER_CTL:
348 return timer->cntv_ctl;
349 case KVM_REG_ARM_TIMER_CNT:
350 return kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
351 case KVM_REG_ARM_TIMER_CVAL:
352 return timer->cntv_cval;
353 }
354 return (u64)-1;
355 }
356
357 static int kvm_timer_cpu_notify(struct notifier_block *self,
358 unsigned long action, void *cpu)
359 {
360 switch (action) {
361 case CPU_STARTING:
362 case CPU_STARTING_FROZEN:
363 kvm_timer_init_interrupt(NULL);
364 break;
365 case CPU_DYING:
366 case CPU_DYING_FROZEN:
367 disable_percpu_irq(host_vtimer_irq);
368 break;
369 }
370
371 return NOTIFY_OK;
372 }
373
374 static struct notifier_block kvm_timer_cpu_nb = {
375 .notifier_call = kvm_timer_cpu_notify,
376 };
377
378 static const struct of_device_id arch_timer_of_match[] = {
379 { .compatible = "arm,armv7-timer", },
380 { .compatible = "arm,armv8-timer", },
381 {},
382 };
383
384 int kvm_timer_hyp_init(void)
385 {
386 struct device_node *np;
387 unsigned int ppi;
388 int err;
389
390 timecounter = arch_timer_get_timecounter();
391 if (!timecounter)
392 return -ENODEV;
393
394 np = of_find_matching_node(NULL, arch_timer_of_match);
395 if (!np) {
396 kvm_err("kvm_arch_timer: can't find DT node\n");
397 return -ENODEV;
398 }
399
400 ppi = irq_of_parse_and_map(np, 2);
401 if (!ppi) {
402 kvm_err("kvm_arch_timer: no virtual timer interrupt\n");
403 err = -EINVAL;
404 goto out;
405 }
406
407 err = request_percpu_irq(ppi, kvm_arch_timer_handler,
408 "kvm guest timer", kvm_get_running_vcpus());
409 if (err) {
410 kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
411 ppi, err);
412 goto out;
413 }
414
415 host_vtimer_irq = ppi;
416
417 err = __register_cpu_notifier(&kvm_timer_cpu_nb);
418 if (err) {
419 kvm_err("Cannot register timer CPU notifier\n");
420 goto out_free;
421 }
422
423 wqueue = create_singlethread_workqueue("kvm_arch_timer");
424 if (!wqueue) {
425 err = -ENOMEM;
426 goto out_free;
427 }
428
429 kvm_info("%s IRQ%d\n", np->name, ppi);
430 on_each_cpu(kvm_timer_init_interrupt, NULL, 1);
431
432 goto out;
433 out_free:
434 free_percpu_irq(ppi, kvm_get_running_vcpus());
435 out:
436 of_node_put(np);
437 return err;
438 }
439
440 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
441 {
442 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
443
444 timer_disarm(timer);
445 if (timer->map)
446 kvm_vgic_unmap_phys_irq(vcpu, timer->map);
447 }
448
449 void kvm_timer_enable(struct kvm *kvm)
450 {
451 if (kvm->arch.timer.enabled)
452 return;
453
454 /*
455 * There is a potential race here between VCPUs starting for the first
456 * time, which may be enabling the timer multiple times. That doesn't
457 * hurt though, because we're just setting a variable to the same
458 * variable that it already was. The important thing is that all
459 * VCPUs have the enabled variable set, before entering the guest, if
460 * the arch timers are enabled.
461 */
462 if (timecounter && wqueue)
463 kvm->arch.timer.enabled = 1;
464 }
465
466 void kvm_timer_init(struct kvm *kvm)
467 {
468 kvm->arch.timer.cntvoff = kvm_phys_timer_read();
469 }