]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - virt/kvm/arm/arch_timer.c
Merge remote-tracking branches 'asoc/topic/cs35l32', 'asoc/topic/cs35l34', 'asoc...
[mirror_ubuntu-jammy-kernel.git] / virt / kvm / arm / arch_timer.c
1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/uaccess.h>
25
26 #include <clocksource/arm_arch_timer.h>
27 #include <asm/arch_timer.h>
28 #include <asm/kvm_hyp.h>
29
30 #include <kvm/arm_vgic.h>
31 #include <kvm/arm_arch_timer.h>
32
33 #include "trace.h"
34
35 static struct timecounter *timecounter;
36 static unsigned int host_vtimer_irq;
37 static u32 host_vtimer_irq_flags;
38
39 static const struct kvm_irq_level default_ptimer_irq = {
40 .irq = 30,
41 .level = 1,
42 };
43
44 static const struct kvm_irq_level default_vtimer_irq = {
45 .irq = 27,
46 .level = 1,
47 };
48
49 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
50 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
51 struct arch_timer_context *timer_ctx);
52 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
53
54 u64 kvm_phys_timer_read(void)
55 {
56 return timecounter->cc->read(timecounter->cc);
57 }
58
59 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
60 {
61 hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
62 HRTIMER_MODE_ABS);
63 }
64
65 static void soft_timer_cancel(struct hrtimer *hrt, struct work_struct *work)
66 {
67 hrtimer_cancel(hrt);
68 if (work)
69 cancel_work_sync(work);
70 }
71
72 static void kvm_vtimer_update_mask_user(struct kvm_vcpu *vcpu)
73 {
74 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
75
76 /*
77 * When using a userspace irqchip with the architected timers, we must
78 * prevent continuously exiting from the guest, and therefore mask the
79 * physical interrupt by disabling it on the host interrupt controller
80 * when the virtual level is high, such that the guest can make
81 * forward progress. Once we detect the output level being
82 * de-asserted, we unmask the interrupt again so that we exit from the
83 * guest when the timer fires.
84 */
85 if (vtimer->irq.level)
86 disable_percpu_irq(host_vtimer_irq);
87 else
88 enable_percpu_irq(host_vtimer_irq, 0);
89 }
90
91 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
92 {
93 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
94 struct arch_timer_context *vtimer;
95 u32 cnt_ctl;
96
97 /*
98 * We may see a timer interrupt after vcpu_put() has been called which
99 * sets the CPU's vcpu pointer to NULL, because even though the timer
100 * has been disabled in vtimer_save_state(), the hardware interrupt
101 * signal may not have been retired from the interrupt controller yet.
102 */
103 if (!vcpu)
104 return IRQ_HANDLED;
105
106 vtimer = vcpu_vtimer(vcpu);
107 if (!vtimer->irq.level) {
108 cnt_ctl = read_sysreg_el0(cntv_ctl);
109 cnt_ctl &= ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT |
110 ARCH_TIMER_CTRL_IT_MASK;
111 if (cnt_ctl == (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT))
112 kvm_timer_update_irq(vcpu, true, vtimer);
113 }
114
115 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
116 kvm_vtimer_update_mask_user(vcpu);
117
118 return IRQ_HANDLED;
119 }
120
121 /*
122 * Work function for handling the backup timer that we schedule when a vcpu is
123 * no longer running, but had a timer programmed to fire in the future.
124 */
125 static void kvm_timer_inject_irq_work(struct work_struct *work)
126 {
127 struct kvm_vcpu *vcpu;
128
129 vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
130
131 /*
132 * If the vcpu is blocked we want to wake it up so that it will see
133 * the timer has expired when entering the guest.
134 */
135 kvm_vcpu_wake_up(vcpu);
136 }
137
138 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
139 {
140 u64 cval, now;
141
142 cval = timer_ctx->cnt_cval;
143 now = kvm_phys_timer_read() - timer_ctx->cntvoff;
144
145 if (now < cval) {
146 u64 ns;
147
148 ns = cyclecounter_cyc2ns(timecounter->cc,
149 cval - now,
150 timecounter->mask,
151 &timecounter->frac);
152 return ns;
153 }
154
155 return 0;
156 }
157
158 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
159 {
160 return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
161 (timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
162 }
163
164 /*
165 * Returns the earliest expiration time in ns among guest timers.
166 * Note that it will return 0 if none of timers can fire.
167 */
168 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
169 {
170 u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX;
171 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
172 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
173
174 if (kvm_timer_irq_can_fire(vtimer))
175 min_virt = kvm_timer_compute_delta(vtimer);
176
177 if (kvm_timer_irq_can_fire(ptimer))
178 min_phys = kvm_timer_compute_delta(ptimer);
179
180 /* If none of timers can fire, then return 0 */
181 if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX))
182 return 0;
183
184 return min(min_virt, min_phys);
185 }
186
187 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
188 {
189 struct arch_timer_cpu *timer;
190 struct kvm_vcpu *vcpu;
191 u64 ns;
192
193 timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
194 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
195
196 /*
197 * Check that the timer has really expired from the guest's
198 * PoV (NTP on the host may have forced it to expire
199 * early). If we should have slept longer, restart it.
200 */
201 ns = kvm_timer_earliest_exp(vcpu);
202 if (unlikely(ns)) {
203 hrtimer_forward_now(hrt, ns_to_ktime(ns));
204 return HRTIMER_RESTART;
205 }
206
207 schedule_work(&timer->expired);
208 return HRTIMER_NORESTART;
209 }
210
211 static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt)
212 {
213 struct arch_timer_context *ptimer;
214 struct arch_timer_cpu *timer;
215 struct kvm_vcpu *vcpu;
216 u64 ns;
217
218 timer = container_of(hrt, struct arch_timer_cpu, phys_timer);
219 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
220 ptimer = vcpu_ptimer(vcpu);
221
222 /*
223 * Check that the timer has really expired from the guest's
224 * PoV (NTP on the host may have forced it to expire
225 * early). If not ready, schedule for a later time.
226 */
227 ns = kvm_timer_compute_delta(ptimer);
228 if (unlikely(ns)) {
229 hrtimer_forward_now(hrt, ns_to_ktime(ns));
230 return HRTIMER_RESTART;
231 }
232
233 kvm_timer_update_irq(vcpu, true, ptimer);
234 return HRTIMER_NORESTART;
235 }
236
237 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
238 {
239 u64 cval, now;
240
241 if (!kvm_timer_irq_can_fire(timer_ctx))
242 return false;
243
244 cval = timer_ctx->cnt_cval;
245 now = kvm_phys_timer_read() - timer_ctx->cntvoff;
246
247 return cval <= now;
248 }
249
250 bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
251 {
252 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
253 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
254
255 if (vtimer->irq.level || ptimer->irq.level)
256 return true;
257
258 /*
259 * When this is called from withing the wait loop of kvm_vcpu_block(),
260 * the software view of the timer state is up to date (timer->loaded
261 * is false), and so we can simply check if the timer should fire now.
262 */
263 if (!vtimer->loaded && kvm_timer_should_fire(vtimer))
264 return true;
265
266 return kvm_timer_should_fire(ptimer);
267 }
268
269 /*
270 * Reflect the timer output level into the kvm_run structure
271 */
272 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
273 {
274 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
275 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
276 struct kvm_sync_regs *regs = &vcpu->run->s.regs;
277
278 /* Populate the device bitmap with the timer states */
279 regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
280 KVM_ARM_DEV_EL1_PTIMER);
281 if (vtimer->irq.level)
282 regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
283 if (ptimer->irq.level)
284 regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
285 }
286
287 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
288 struct arch_timer_context *timer_ctx)
289 {
290 int ret;
291
292 timer_ctx->irq.level = new_level;
293 trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
294 timer_ctx->irq.level);
295
296 if (likely(irqchip_in_kernel(vcpu->kvm))) {
297 ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
298 timer_ctx->irq.irq,
299 timer_ctx->irq.level,
300 timer_ctx);
301 WARN_ON(ret);
302 }
303 }
304
305 /* Schedule the background timer for the emulated timer. */
306 static void phys_timer_emulate(struct kvm_vcpu *vcpu)
307 {
308 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
309 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
310
311 /*
312 * If the timer can fire now we have just raised the IRQ line and we
313 * don't need to have a soft timer scheduled for the future. If the
314 * timer cannot fire at all, then we also don't need a soft timer.
315 */
316 if (kvm_timer_should_fire(ptimer) || !kvm_timer_irq_can_fire(ptimer)) {
317 soft_timer_cancel(&timer->phys_timer, NULL);
318 return;
319 }
320
321 soft_timer_start(&timer->phys_timer, kvm_timer_compute_delta(ptimer));
322 }
323
324 /*
325 * Check if there was a change in the timer state, so that we should either
326 * raise or lower the line level to the GIC or schedule a background timer to
327 * emulate the physical timer.
328 */
329 static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
330 {
331 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
332 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
333 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
334
335 if (unlikely(!timer->enabled))
336 return;
337
338 if (kvm_timer_should_fire(vtimer) != vtimer->irq.level)
339 kvm_timer_update_irq(vcpu, !vtimer->irq.level, vtimer);
340
341 if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
342 kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
343
344 phys_timer_emulate(vcpu);
345 }
346
347 static void vtimer_save_state(struct kvm_vcpu *vcpu)
348 {
349 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
350 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
351 unsigned long flags;
352
353 local_irq_save(flags);
354
355 if (!vtimer->loaded)
356 goto out;
357
358 if (timer->enabled) {
359 vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
360 vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
361 }
362
363 /* Disable the virtual timer */
364 write_sysreg_el0(0, cntv_ctl);
365 isb();
366
367 vtimer->loaded = false;
368 out:
369 local_irq_restore(flags);
370 }
371
372 /*
373 * Schedule the background timer before calling kvm_vcpu_block, so that this
374 * thread is removed from its waitqueue and made runnable when there's a timer
375 * interrupt to handle.
376 */
377 void kvm_timer_schedule(struct kvm_vcpu *vcpu)
378 {
379 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
380 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
381 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
382
383 vtimer_save_state(vcpu);
384
385 /*
386 * No need to schedule a background timer if any guest timer has
387 * already expired, because kvm_vcpu_block will return before putting
388 * the thread to sleep.
389 */
390 if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer))
391 return;
392
393 /*
394 * If both timers are not capable of raising interrupts (disabled or
395 * masked), then there's no more work for us to do.
396 */
397 if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer))
398 return;
399
400 /*
401 * The guest timers have not yet expired, schedule a background timer.
402 * Set the earliest expiration time among the guest timers.
403 */
404 soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
405 }
406
407 static void vtimer_restore_state(struct kvm_vcpu *vcpu)
408 {
409 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
410 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
411 unsigned long flags;
412
413 local_irq_save(flags);
414
415 if (vtimer->loaded)
416 goto out;
417
418 if (timer->enabled) {
419 write_sysreg_el0(vtimer->cnt_cval, cntv_cval);
420 isb();
421 write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl);
422 }
423
424 vtimer->loaded = true;
425 out:
426 local_irq_restore(flags);
427 }
428
429 void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
430 {
431 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
432
433 vtimer_restore_state(vcpu);
434
435 soft_timer_cancel(&timer->bg_timer, &timer->expired);
436 }
437
438 static void set_cntvoff(u64 cntvoff)
439 {
440 u32 low = lower_32_bits(cntvoff);
441 u32 high = upper_32_bits(cntvoff);
442
443 /*
444 * Since kvm_call_hyp doesn't fully support the ARM PCS especially on
445 * 32-bit systems, but rather passes register by register shifted one
446 * place (we put the function address in r0/x0), we cannot simply pass
447 * a 64-bit value as an argument, but have to split the value in two
448 * 32-bit halves.
449 */
450 kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
451 }
452
453 static void kvm_timer_vcpu_load_vgic(struct kvm_vcpu *vcpu)
454 {
455 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
456 bool phys_active;
457 int ret;
458
459 phys_active = vtimer->irq.level ||
460 kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
461
462 ret = irq_set_irqchip_state(host_vtimer_irq,
463 IRQCHIP_STATE_ACTIVE,
464 phys_active);
465 WARN_ON(ret);
466 }
467
468 static void kvm_timer_vcpu_load_user(struct kvm_vcpu *vcpu)
469 {
470 kvm_vtimer_update_mask_user(vcpu);
471 }
472
473 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
474 {
475 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
476 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
477
478 if (unlikely(!timer->enabled))
479 return;
480
481 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
482 kvm_timer_vcpu_load_user(vcpu);
483 else
484 kvm_timer_vcpu_load_vgic(vcpu);
485
486 set_cntvoff(vtimer->cntvoff);
487
488 vtimer_restore_state(vcpu);
489
490 /* Set the background timer for the physical timer emulation. */
491 phys_timer_emulate(vcpu);
492 }
493
494 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
495 {
496 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
497 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
498 struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
499 bool vlevel, plevel;
500
501 if (likely(irqchip_in_kernel(vcpu->kvm)))
502 return false;
503
504 vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
505 plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
506
507 return vtimer->irq.level != vlevel ||
508 ptimer->irq.level != plevel;
509 }
510
511 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
512 {
513 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
514
515 if (unlikely(!timer->enabled))
516 return;
517
518 vtimer_save_state(vcpu);
519
520 /*
521 * Cancel the physical timer emulation, because the only case where we
522 * need it after a vcpu_put is in the context of a sleeping VCPU, and
523 * in that case we already factor in the deadline for the physical
524 * timer when scheduling the bg_timer.
525 *
526 * In any case, we re-schedule the hrtimer for the physical timer when
527 * coming back to the VCPU thread in kvm_timer_vcpu_load().
528 */
529 soft_timer_cancel(&timer->phys_timer, NULL);
530
531 /*
532 * The kernel may decide to run userspace after calling vcpu_put, so
533 * we reset cntvoff to 0 to ensure a consistent read between user
534 * accesses to the virtual counter and kernel access to the physical
535 * counter.
536 */
537 set_cntvoff(0);
538 }
539
540 static void unmask_vtimer_irq(struct kvm_vcpu *vcpu)
541 {
542 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
543
544 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
545 kvm_vtimer_update_mask_user(vcpu);
546 return;
547 }
548
549 /*
550 * If the guest disabled the timer without acking the interrupt, then
551 * we must make sure the physical and virtual active states are in
552 * sync by deactivating the physical interrupt, because otherwise we
553 * wouldn't see the next timer interrupt in the host.
554 */
555 if (!kvm_vgic_map_is_active(vcpu, vtimer->irq.irq)) {
556 int ret;
557 ret = irq_set_irqchip_state(host_vtimer_irq,
558 IRQCHIP_STATE_ACTIVE,
559 false);
560 WARN_ON(ret);
561 }
562 }
563
564 /**
565 * kvm_timer_sync_hwstate - sync timer state from cpu
566 * @vcpu: The vcpu pointer
567 *
568 * Check if any of the timers have expired while we were running in the guest,
569 * and inject an interrupt if that was the case.
570 */
571 void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
572 {
573 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
574
575 /*
576 * If we entered the guest with the vtimer output asserted we have to
577 * check if the guest has modified the timer so that we should lower
578 * the line at this point.
579 */
580 if (vtimer->irq.level) {
581 vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
582 vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
583 if (!kvm_timer_should_fire(vtimer)) {
584 kvm_timer_update_irq(vcpu, false, vtimer);
585 unmask_vtimer_irq(vcpu);
586 }
587 }
588 }
589
590 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
591 {
592 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
593 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
594
595 /*
596 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
597 * and to 0 for ARMv7. We provide an implementation that always
598 * resets the timer to be disabled and unmasked and is compliant with
599 * the ARMv7 architecture.
600 */
601 vtimer->cnt_ctl = 0;
602 ptimer->cnt_ctl = 0;
603 kvm_timer_update_state(vcpu);
604
605 return 0;
606 }
607
608 /* Make the updates of cntvoff for all vtimer contexts atomic */
609 static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
610 {
611 int i;
612 struct kvm *kvm = vcpu->kvm;
613 struct kvm_vcpu *tmp;
614
615 mutex_lock(&kvm->lock);
616 kvm_for_each_vcpu(i, tmp, kvm)
617 vcpu_vtimer(tmp)->cntvoff = cntvoff;
618
619 /*
620 * When called from the vcpu create path, the CPU being created is not
621 * included in the loop above, so we just set it here as well.
622 */
623 vcpu_vtimer(vcpu)->cntvoff = cntvoff;
624 mutex_unlock(&kvm->lock);
625 }
626
627 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
628 {
629 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
630 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
631 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
632
633 /* Synchronize cntvoff across all vtimers of a VM. */
634 update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
635 vcpu_ptimer(vcpu)->cntvoff = 0;
636
637 INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
638 hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
639 timer->bg_timer.function = kvm_bg_timer_expire;
640
641 hrtimer_init(&timer->phys_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
642 timer->phys_timer.function = kvm_phys_timer_expire;
643
644 vtimer->irq.irq = default_vtimer_irq.irq;
645 ptimer->irq.irq = default_ptimer_irq.irq;
646 }
647
648 static void kvm_timer_init_interrupt(void *info)
649 {
650 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
651 }
652
653 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
654 {
655 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
656 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
657
658 switch (regid) {
659 case KVM_REG_ARM_TIMER_CTL:
660 vtimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
661 break;
662 case KVM_REG_ARM_TIMER_CNT:
663 update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
664 break;
665 case KVM_REG_ARM_TIMER_CVAL:
666 vtimer->cnt_cval = value;
667 break;
668 case KVM_REG_ARM_PTIMER_CTL:
669 ptimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
670 break;
671 case KVM_REG_ARM_PTIMER_CVAL:
672 ptimer->cnt_cval = value;
673 break;
674
675 default:
676 return -1;
677 }
678
679 kvm_timer_update_state(vcpu);
680 return 0;
681 }
682
683 static u64 read_timer_ctl(struct arch_timer_context *timer)
684 {
685 /*
686 * Set ISTATUS bit if it's expired.
687 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
688 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
689 * regardless of ENABLE bit for our implementation convenience.
690 */
691 if (!kvm_timer_compute_delta(timer))
692 return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
693 else
694 return timer->cnt_ctl;
695 }
696
697 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
698 {
699 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
700 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
701
702 switch (regid) {
703 case KVM_REG_ARM_TIMER_CTL:
704 return read_timer_ctl(vtimer);
705 case KVM_REG_ARM_TIMER_CNT:
706 return kvm_phys_timer_read() - vtimer->cntvoff;
707 case KVM_REG_ARM_TIMER_CVAL:
708 return vtimer->cnt_cval;
709 case KVM_REG_ARM_PTIMER_CTL:
710 return read_timer_ctl(ptimer);
711 case KVM_REG_ARM_PTIMER_CVAL:
712 return ptimer->cnt_cval;
713 case KVM_REG_ARM_PTIMER_CNT:
714 return kvm_phys_timer_read();
715 }
716 return (u64)-1;
717 }
718
719 static int kvm_timer_starting_cpu(unsigned int cpu)
720 {
721 kvm_timer_init_interrupt(NULL);
722 return 0;
723 }
724
725 static int kvm_timer_dying_cpu(unsigned int cpu)
726 {
727 disable_percpu_irq(host_vtimer_irq);
728 return 0;
729 }
730
731 int kvm_timer_hyp_init(bool has_gic)
732 {
733 struct arch_timer_kvm_info *info;
734 int err;
735
736 info = arch_timer_get_kvm_info();
737 timecounter = &info->timecounter;
738
739 if (!timecounter->cc) {
740 kvm_err("kvm_arch_timer: uninitialized timecounter\n");
741 return -ENODEV;
742 }
743
744 if (info->virtual_irq <= 0) {
745 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
746 info->virtual_irq);
747 return -ENODEV;
748 }
749 host_vtimer_irq = info->virtual_irq;
750
751 host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
752 if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
753 host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
754 kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
755 host_vtimer_irq);
756 host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
757 }
758
759 err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
760 "kvm guest timer", kvm_get_running_vcpus());
761 if (err) {
762 kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
763 host_vtimer_irq, err);
764 return err;
765 }
766
767 if (has_gic) {
768 err = irq_set_vcpu_affinity(host_vtimer_irq,
769 kvm_get_running_vcpus());
770 if (err) {
771 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
772 goto out_free_irq;
773 }
774 }
775
776 kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
777
778 cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
779 "kvm/arm/timer:starting", kvm_timer_starting_cpu,
780 kvm_timer_dying_cpu);
781 return 0;
782 out_free_irq:
783 free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
784 return err;
785 }
786
787 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
788 {
789 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
790 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
791
792 soft_timer_cancel(&timer->bg_timer, &timer->expired);
793 soft_timer_cancel(&timer->phys_timer, NULL);
794 kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
795 }
796
797 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
798 {
799 int vtimer_irq, ptimer_irq;
800 int i, ret;
801
802 vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
803 ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
804 if (ret)
805 return false;
806
807 ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
808 ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
809 if (ret)
810 return false;
811
812 kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
813 if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
814 vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
815 return false;
816 }
817
818 return true;
819 }
820
821 int kvm_timer_enable(struct kvm_vcpu *vcpu)
822 {
823 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
824 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
825 int ret;
826
827 if (timer->enabled)
828 return 0;
829
830 /* Without a VGIC we do not map virtual IRQs to physical IRQs */
831 if (!irqchip_in_kernel(vcpu->kvm))
832 goto no_vgic;
833
834 if (!vgic_initialized(vcpu->kvm))
835 return -ENODEV;
836
837 if (!timer_irqs_are_valid(vcpu)) {
838 kvm_debug("incorrectly configured timer irqs\n");
839 return -EINVAL;
840 }
841
842 ret = kvm_vgic_map_phys_irq(vcpu, host_vtimer_irq, vtimer->irq.irq);
843 if (ret)
844 return ret;
845
846 no_vgic:
847 preempt_disable();
848 timer->enabled = 1;
849 kvm_timer_vcpu_load(vcpu);
850 preempt_enable();
851
852 return 0;
853 }
854
855 /*
856 * On VHE system, we only need to configure trap on physical timer and counter
857 * accesses in EL0 and EL1 once, not for every world switch.
858 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
859 * and this makes those bits have no effect for the host kernel execution.
860 */
861 void kvm_timer_init_vhe(void)
862 {
863 /* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
864 u32 cnthctl_shift = 10;
865 u64 val;
866
867 /*
868 * Disallow physical timer access for the guest.
869 * Physical counter access is allowed.
870 */
871 val = read_sysreg(cnthctl_el2);
872 val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
873 val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
874 write_sysreg(val, cnthctl_el2);
875 }
876
877 static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
878 {
879 struct kvm_vcpu *vcpu;
880 int i;
881
882 kvm_for_each_vcpu(i, vcpu, kvm) {
883 vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
884 vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
885 }
886 }
887
888 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
889 {
890 int __user *uaddr = (int __user *)(long)attr->addr;
891 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
892 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
893 int irq;
894
895 if (!irqchip_in_kernel(vcpu->kvm))
896 return -EINVAL;
897
898 if (get_user(irq, uaddr))
899 return -EFAULT;
900
901 if (!(irq_is_ppi(irq)))
902 return -EINVAL;
903
904 if (vcpu->arch.timer_cpu.enabled)
905 return -EBUSY;
906
907 switch (attr->attr) {
908 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
909 set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
910 break;
911 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
912 set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
913 break;
914 default:
915 return -ENXIO;
916 }
917
918 return 0;
919 }
920
921 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
922 {
923 int __user *uaddr = (int __user *)(long)attr->addr;
924 struct arch_timer_context *timer;
925 int irq;
926
927 switch (attr->attr) {
928 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
929 timer = vcpu_vtimer(vcpu);
930 break;
931 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
932 timer = vcpu_ptimer(vcpu);
933 break;
934 default:
935 return -ENXIO;
936 }
937
938 irq = timer->irq.irq;
939 return put_user(irq, uaddr);
940 }
941
942 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
943 {
944 switch (attr->attr) {
945 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
946 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
947 return 0;
948 }
949
950 return -ENXIO;
951 }