]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/arm/arch_timer.c
KVM: arm/arm64: timer: Don't set irq as forwarded if no usable GIC
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / arm / arch_timer.c
1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/uaccess.h>
25
26 #include <clocksource/arm_arch_timer.h>
27 #include <asm/arch_timer.h>
28 #include <asm/kvm_hyp.h>
29
30 #include <kvm/arm_vgic.h>
31 #include <kvm/arm_arch_timer.h>
32
33 #include "trace.h"
34
35 static struct timecounter *timecounter;
36 static unsigned int host_vtimer_irq;
37 static u32 host_vtimer_irq_flags;
38
39 static const struct kvm_irq_level default_ptimer_irq = {
40 .irq = 30,
41 .level = 1,
42 };
43
44 static const struct kvm_irq_level default_vtimer_irq = {
45 .irq = 27,
46 .level = 1,
47 };
48
49 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
50 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
51 struct arch_timer_context *timer_ctx);
52 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
53
54 u64 kvm_phys_timer_read(void)
55 {
56 return timecounter->cc->read(timecounter->cc);
57 }
58
59 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
60 {
61 hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
62 HRTIMER_MODE_ABS);
63 }
64
65 static void soft_timer_cancel(struct hrtimer *hrt, struct work_struct *work)
66 {
67 hrtimer_cancel(hrt);
68 if (work)
69 cancel_work_sync(work);
70 }
71
72 static void kvm_vtimer_update_mask_user(struct kvm_vcpu *vcpu)
73 {
74 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
75
76 /*
77 * When using a userspace irqchip with the architected timers, we must
78 * prevent continuously exiting from the guest, and therefore mask the
79 * physical interrupt by disabling it on the host interrupt controller
80 * when the virtual level is high, such that the guest can make
81 * forward progress. Once we detect the output level being
82 * de-asserted, we unmask the interrupt again so that we exit from the
83 * guest when the timer fires.
84 */
85 if (vtimer->irq.level)
86 disable_percpu_irq(host_vtimer_irq);
87 else
88 enable_percpu_irq(host_vtimer_irq, 0);
89 }
90
91 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
92 {
93 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
94 struct arch_timer_context *vtimer;
95
96 if (!vcpu) {
97 pr_warn_once("Spurious arch timer IRQ on non-VCPU thread\n");
98 return IRQ_NONE;
99 }
100 vtimer = vcpu_vtimer(vcpu);
101
102 if (!vtimer->irq.level) {
103 vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
104 if (kvm_timer_irq_can_fire(vtimer))
105 kvm_timer_update_irq(vcpu, true, vtimer);
106 }
107
108 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
109 kvm_vtimer_update_mask_user(vcpu);
110
111 return IRQ_HANDLED;
112 }
113
114 /*
115 * Work function for handling the backup timer that we schedule when a vcpu is
116 * no longer running, but had a timer programmed to fire in the future.
117 */
118 static void kvm_timer_inject_irq_work(struct work_struct *work)
119 {
120 struct kvm_vcpu *vcpu;
121
122 vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
123
124 /*
125 * If the vcpu is blocked we want to wake it up so that it will see
126 * the timer has expired when entering the guest.
127 */
128 kvm_vcpu_wake_up(vcpu);
129 }
130
131 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
132 {
133 u64 cval, now;
134
135 cval = timer_ctx->cnt_cval;
136 now = kvm_phys_timer_read() - timer_ctx->cntvoff;
137
138 if (now < cval) {
139 u64 ns;
140
141 ns = cyclecounter_cyc2ns(timecounter->cc,
142 cval - now,
143 timecounter->mask,
144 &timecounter->frac);
145 return ns;
146 }
147
148 return 0;
149 }
150
151 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
152 {
153 return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
154 (timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
155 }
156
157 /*
158 * Returns the earliest expiration time in ns among guest timers.
159 * Note that it will return 0 if none of timers can fire.
160 */
161 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
162 {
163 u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX;
164 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
165 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
166
167 if (kvm_timer_irq_can_fire(vtimer))
168 min_virt = kvm_timer_compute_delta(vtimer);
169
170 if (kvm_timer_irq_can_fire(ptimer))
171 min_phys = kvm_timer_compute_delta(ptimer);
172
173 /* If none of timers can fire, then return 0 */
174 if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX))
175 return 0;
176
177 return min(min_virt, min_phys);
178 }
179
180 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
181 {
182 struct arch_timer_cpu *timer;
183 struct kvm_vcpu *vcpu;
184 u64 ns;
185
186 timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
187 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
188
189 /*
190 * Check that the timer has really expired from the guest's
191 * PoV (NTP on the host may have forced it to expire
192 * early). If we should have slept longer, restart it.
193 */
194 ns = kvm_timer_earliest_exp(vcpu);
195 if (unlikely(ns)) {
196 hrtimer_forward_now(hrt, ns_to_ktime(ns));
197 return HRTIMER_RESTART;
198 }
199
200 schedule_work(&timer->expired);
201 return HRTIMER_NORESTART;
202 }
203
204 static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt)
205 {
206 struct arch_timer_context *ptimer;
207 struct arch_timer_cpu *timer;
208 struct kvm_vcpu *vcpu;
209 u64 ns;
210
211 timer = container_of(hrt, struct arch_timer_cpu, phys_timer);
212 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
213 ptimer = vcpu_ptimer(vcpu);
214
215 /*
216 * Check that the timer has really expired from the guest's
217 * PoV (NTP on the host may have forced it to expire
218 * early). If not ready, schedule for a later time.
219 */
220 ns = kvm_timer_compute_delta(ptimer);
221 if (unlikely(ns)) {
222 hrtimer_forward_now(hrt, ns_to_ktime(ns));
223 return HRTIMER_RESTART;
224 }
225
226 kvm_timer_update_irq(vcpu, true, ptimer);
227 return HRTIMER_NORESTART;
228 }
229
230 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
231 {
232 u64 cval, now;
233
234 if (!kvm_timer_irq_can_fire(timer_ctx))
235 return false;
236
237 cval = timer_ctx->cnt_cval;
238 now = kvm_phys_timer_read() - timer_ctx->cntvoff;
239
240 return cval <= now;
241 }
242
243 bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
244 {
245 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
246 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
247
248 if (vtimer->irq.level || ptimer->irq.level)
249 return true;
250
251 /*
252 * When this is called from withing the wait loop of kvm_vcpu_block(),
253 * the software view of the timer state is up to date (timer->loaded
254 * is false), and so we can simply check if the timer should fire now.
255 */
256 if (!vtimer->loaded && kvm_timer_should_fire(vtimer))
257 return true;
258
259 return kvm_timer_should_fire(ptimer);
260 }
261
262 /*
263 * Reflect the timer output level into the kvm_run structure
264 */
265 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
266 {
267 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
268 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
269 struct kvm_sync_regs *regs = &vcpu->run->s.regs;
270
271 /* Populate the device bitmap with the timer states */
272 regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
273 KVM_ARM_DEV_EL1_PTIMER);
274 if (vtimer->irq.level)
275 regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
276 if (ptimer->irq.level)
277 regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
278 }
279
280 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
281 struct arch_timer_context *timer_ctx)
282 {
283 int ret;
284
285 timer_ctx->irq.level = new_level;
286 trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
287 timer_ctx->irq.level);
288
289 if (likely(irqchip_in_kernel(vcpu->kvm))) {
290 ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
291 timer_ctx->irq.irq,
292 timer_ctx->irq.level,
293 timer_ctx);
294 WARN_ON(ret);
295 }
296 }
297
298 /* Schedule the background timer for the emulated timer. */
299 static void phys_timer_emulate(struct kvm_vcpu *vcpu)
300 {
301 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
302 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
303
304 /*
305 * If the timer can fire now we have just raised the IRQ line and we
306 * don't need to have a soft timer scheduled for the future. If the
307 * timer cannot fire at all, then we also don't need a soft timer.
308 */
309 if (kvm_timer_should_fire(ptimer) || !kvm_timer_irq_can_fire(ptimer)) {
310 soft_timer_cancel(&timer->phys_timer, NULL);
311 return;
312 }
313
314 soft_timer_start(&timer->phys_timer, kvm_timer_compute_delta(ptimer));
315 }
316
317 /*
318 * Check if there was a change in the timer state, so that we should either
319 * raise or lower the line level to the GIC or schedule a background timer to
320 * emulate the physical timer.
321 */
322 static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
323 {
324 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
325 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
326 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
327
328 if (unlikely(!timer->enabled))
329 return;
330
331 if (kvm_timer_should_fire(vtimer) != vtimer->irq.level)
332 kvm_timer_update_irq(vcpu, !vtimer->irq.level, vtimer);
333
334 if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
335 kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
336
337 phys_timer_emulate(vcpu);
338 }
339
340 static void vtimer_save_state(struct kvm_vcpu *vcpu)
341 {
342 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
343 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
344 unsigned long flags;
345
346 local_irq_save(flags);
347
348 if (!vtimer->loaded)
349 goto out;
350
351 if (timer->enabled) {
352 vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
353 vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
354 }
355
356 /* Disable the virtual timer */
357 write_sysreg_el0(0, cntv_ctl);
358
359 vtimer->loaded = false;
360 out:
361 local_irq_restore(flags);
362 }
363
364 /*
365 * Schedule the background timer before calling kvm_vcpu_block, so that this
366 * thread is removed from its waitqueue and made runnable when there's a timer
367 * interrupt to handle.
368 */
369 void kvm_timer_schedule(struct kvm_vcpu *vcpu)
370 {
371 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
372 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
373 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
374
375 vtimer_save_state(vcpu);
376
377 /*
378 * No need to schedule a background timer if any guest timer has
379 * already expired, because kvm_vcpu_block will return before putting
380 * the thread to sleep.
381 */
382 if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer))
383 return;
384
385 /*
386 * If both timers are not capable of raising interrupts (disabled or
387 * masked), then there's no more work for us to do.
388 */
389 if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer))
390 return;
391
392 /*
393 * The guest timers have not yet expired, schedule a background timer.
394 * Set the earliest expiration time among the guest timers.
395 */
396 soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
397 }
398
399 static void vtimer_restore_state(struct kvm_vcpu *vcpu)
400 {
401 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
402 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
403 unsigned long flags;
404
405 local_irq_save(flags);
406
407 if (vtimer->loaded)
408 goto out;
409
410 if (timer->enabled) {
411 write_sysreg_el0(vtimer->cnt_cval, cntv_cval);
412 isb();
413 write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl);
414 }
415
416 vtimer->loaded = true;
417 out:
418 local_irq_restore(flags);
419 }
420
421 void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
422 {
423 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
424
425 vtimer_restore_state(vcpu);
426
427 soft_timer_cancel(&timer->bg_timer, &timer->expired);
428 }
429
430 static void set_cntvoff(u64 cntvoff)
431 {
432 u32 low = lower_32_bits(cntvoff);
433 u32 high = upper_32_bits(cntvoff);
434
435 /*
436 * Since kvm_call_hyp doesn't fully support the ARM PCS especially on
437 * 32-bit systems, but rather passes register by register shifted one
438 * place (we put the function address in r0/x0), we cannot simply pass
439 * a 64-bit value as an argument, but have to split the value in two
440 * 32-bit halves.
441 */
442 kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
443 }
444
445 static void kvm_timer_vcpu_load_vgic(struct kvm_vcpu *vcpu)
446 {
447 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
448 bool phys_active;
449 int ret;
450
451 phys_active = vtimer->irq.level ||
452 kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
453
454 ret = irq_set_irqchip_state(host_vtimer_irq,
455 IRQCHIP_STATE_ACTIVE,
456 phys_active);
457 WARN_ON(ret);
458 }
459
460 static void kvm_timer_vcpu_load_user(struct kvm_vcpu *vcpu)
461 {
462 kvm_vtimer_update_mask_user(vcpu);
463 }
464
465 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
466 {
467 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
468 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
469
470 if (unlikely(!timer->enabled))
471 return;
472
473 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
474 kvm_timer_vcpu_load_user(vcpu);
475 else
476 kvm_timer_vcpu_load_vgic(vcpu);
477
478 set_cntvoff(vtimer->cntvoff);
479
480 vtimer_restore_state(vcpu);
481
482 /* Set the background timer for the physical timer emulation. */
483 phys_timer_emulate(vcpu);
484 }
485
486 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
487 {
488 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
489 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
490 struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
491 bool vlevel, plevel;
492
493 if (likely(irqchip_in_kernel(vcpu->kvm)))
494 return false;
495
496 vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
497 plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
498
499 return vtimer->irq.level != vlevel ||
500 ptimer->irq.level != plevel;
501 }
502
503 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
504 {
505 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
506
507 if (unlikely(!timer->enabled))
508 return;
509
510 vtimer_save_state(vcpu);
511
512 /*
513 * Cancel the physical timer emulation, because the only case where we
514 * need it after a vcpu_put is in the context of a sleeping VCPU, and
515 * in that case we already factor in the deadline for the physical
516 * timer when scheduling the bg_timer.
517 *
518 * In any case, we re-schedule the hrtimer for the physical timer when
519 * coming back to the VCPU thread in kvm_timer_vcpu_load().
520 */
521 soft_timer_cancel(&timer->phys_timer, NULL);
522
523 /*
524 * The kernel may decide to run userspace after calling vcpu_put, so
525 * we reset cntvoff to 0 to ensure a consistent read between user
526 * accesses to the virtual counter and kernel access to the physical
527 * counter.
528 */
529 set_cntvoff(0);
530 }
531
532 static void unmask_vtimer_irq(struct kvm_vcpu *vcpu)
533 {
534 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
535
536 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
537 kvm_vtimer_update_mask_user(vcpu);
538 return;
539 }
540
541 /*
542 * If the guest disabled the timer without acking the interrupt, then
543 * we must make sure the physical and virtual active states are in
544 * sync by deactivating the physical interrupt, because otherwise we
545 * wouldn't see the next timer interrupt in the host.
546 */
547 if (!kvm_vgic_map_is_active(vcpu, vtimer->irq.irq)) {
548 int ret;
549 ret = irq_set_irqchip_state(host_vtimer_irq,
550 IRQCHIP_STATE_ACTIVE,
551 false);
552 WARN_ON(ret);
553 }
554 }
555
556 /**
557 * kvm_timer_sync_hwstate - sync timer state from cpu
558 * @vcpu: The vcpu pointer
559 *
560 * Check if any of the timers have expired while we were running in the guest,
561 * and inject an interrupt if that was the case.
562 */
563 void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
564 {
565 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
566
567 /*
568 * If we entered the guest with the vtimer output asserted we have to
569 * check if the guest has modified the timer so that we should lower
570 * the line at this point.
571 */
572 if (vtimer->irq.level) {
573 vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
574 vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
575 if (!kvm_timer_should_fire(vtimer)) {
576 kvm_timer_update_irq(vcpu, false, vtimer);
577 unmask_vtimer_irq(vcpu);
578 }
579 }
580 }
581
582 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
583 {
584 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
585 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
586
587 /*
588 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
589 * and to 0 for ARMv7. We provide an implementation that always
590 * resets the timer to be disabled and unmasked and is compliant with
591 * the ARMv7 architecture.
592 */
593 vtimer->cnt_ctl = 0;
594 ptimer->cnt_ctl = 0;
595 kvm_timer_update_state(vcpu);
596
597 return 0;
598 }
599
600 /* Make the updates of cntvoff for all vtimer contexts atomic */
601 static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
602 {
603 int i;
604 struct kvm *kvm = vcpu->kvm;
605 struct kvm_vcpu *tmp;
606
607 mutex_lock(&kvm->lock);
608 kvm_for_each_vcpu(i, tmp, kvm)
609 vcpu_vtimer(tmp)->cntvoff = cntvoff;
610
611 /*
612 * When called from the vcpu create path, the CPU being created is not
613 * included in the loop above, so we just set it here as well.
614 */
615 vcpu_vtimer(vcpu)->cntvoff = cntvoff;
616 mutex_unlock(&kvm->lock);
617 }
618
619 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
620 {
621 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
622 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
623 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
624
625 /* Synchronize cntvoff across all vtimers of a VM. */
626 update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
627 vcpu_ptimer(vcpu)->cntvoff = 0;
628
629 INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
630 hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
631 timer->bg_timer.function = kvm_bg_timer_expire;
632
633 hrtimer_init(&timer->phys_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
634 timer->phys_timer.function = kvm_phys_timer_expire;
635
636 vtimer->irq.irq = default_vtimer_irq.irq;
637 ptimer->irq.irq = default_ptimer_irq.irq;
638 }
639
640 static void kvm_timer_init_interrupt(void *info)
641 {
642 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
643 }
644
645 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
646 {
647 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
648 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
649
650 switch (regid) {
651 case KVM_REG_ARM_TIMER_CTL:
652 vtimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
653 break;
654 case KVM_REG_ARM_TIMER_CNT:
655 update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
656 break;
657 case KVM_REG_ARM_TIMER_CVAL:
658 vtimer->cnt_cval = value;
659 break;
660 case KVM_REG_ARM_PTIMER_CTL:
661 ptimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
662 break;
663 case KVM_REG_ARM_PTIMER_CVAL:
664 ptimer->cnt_cval = value;
665 break;
666
667 default:
668 return -1;
669 }
670
671 kvm_timer_update_state(vcpu);
672 return 0;
673 }
674
675 static u64 read_timer_ctl(struct arch_timer_context *timer)
676 {
677 /*
678 * Set ISTATUS bit if it's expired.
679 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
680 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
681 * regardless of ENABLE bit for our implementation convenience.
682 */
683 if (!kvm_timer_compute_delta(timer))
684 return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
685 else
686 return timer->cnt_ctl;
687 }
688
689 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
690 {
691 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
692 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
693
694 switch (regid) {
695 case KVM_REG_ARM_TIMER_CTL:
696 return read_timer_ctl(vtimer);
697 case KVM_REG_ARM_TIMER_CNT:
698 return kvm_phys_timer_read() - vtimer->cntvoff;
699 case KVM_REG_ARM_TIMER_CVAL:
700 return vtimer->cnt_cval;
701 case KVM_REG_ARM_PTIMER_CTL:
702 return read_timer_ctl(ptimer);
703 case KVM_REG_ARM_PTIMER_CVAL:
704 return ptimer->cnt_cval;
705 case KVM_REG_ARM_PTIMER_CNT:
706 return kvm_phys_timer_read();
707 }
708 return (u64)-1;
709 }
710
711 static int kvm_timer_starting_cpu(unsigned int cpu)
712 {
713 kvm_timer_init_interrupt(NULL);
714 return 0;
715 }
716
717 static int kvm_timer_dying_cpu(unsigned int cpu)
718 {
719 disable_percpu_irq(host_vtimer_irq);
720 return 0;
721 }
722
723 int kvm_timer_hyp_init(bool has_gic)
724 {
725 struct arch_timer_kvm_info *info;
726 int err;
727
728 info = arch_timer_get_kvm_info();
729 timecounter = &info->timecounter;
730
731 if (!timecounter->cc) {
732 kvm_err("kvm_arch_timer: uninitialized timecounter\n");
733 return -ENODEV;
734 }
735
736 if (info->virtual_irq <= 0) {
737 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
738 info->virtual_irq);
739 return -ENODEV;
740 }
741 host_vtimer_irq = info->virtual_irq;
742
743 host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
744 if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
745 host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
746 kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
747 host_vtimer_irq);
748 host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
749 }
750
751 err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
752 "kvm guest timer", kvm_get_running_vcpus());
753 if (err) {
754 kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
755 host_vtimer_irq, err);
756 return err;
757 }
758
759 if (has_gic) {
760 err = irq_set_vcpu_affinity(host_vtimer_irq,
761 kvm_get_running_vcpus());
762 if (err) {
763 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
764 goto out_free_irq;
765 }
766 }
767
768 kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
769
770 cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
771 "kvm/arm/timer:starting", kvm_timer_starting_cpu,
772 kvm_timer_dying_cpu);
773 return 0;
774 out_free_irq:
775 free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
776 return err;
777 }
778
779 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
780 {
781 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
782 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
783
784 soft_timer_cancel(&timer->bg_timer, &timer->expired);
785 soft_timer_cancel(&timer->phys_timer, NULL);
786 kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
787 }
788
789 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
790 {
791 int vtimer_irq, ptimer_irq;
792 int i, ret;
793
794 vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
795 ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
796 if (ret)
797 return false;
798
799 ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
800 ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
801 if (ret)
802 return false;
803
804 kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
805 if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
806 vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
807 return false;
808 }
809
810 return true;
811 }
812
813 int kvm_timer_enable(struct kvm_vcpu *vcpu)
814 {
815 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
816 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
817 int ret;
818
819 if (timer->enabled)
820 return 0;
821
822 /* Without a VGIC we do not map virtual IRQs to physical IRQs */
823 if (!irqchip_in_kernel(vcpu->kvm))
824 goto no_vgic;
825
826 if (!vgic_initialized(vcpu->kvm))
827 return -ENODEV;
828
829 if (!timer_irqs_are_valid(vcpu)) {
830 kvm_debug("incorrectly configured timer irqs\n");
831 return -EINVAL;
832 }
833
834 ret = kvm_vgic_map_phys_irq(vcpu, host_vtimer_irq, vtimer->irq.irq);
835 if (ret)
836 return ret;
837
838 no_vgic:
839 preempt_disable();
840 timer->enabled = 1;
841 if (!irqchip_in_kernel(vcpu->kvm))
842 kvm_timer_vcpu_load_user(vcpu);
843 else
844 kvm_timer_vcpu_load_vgic(vcpu);
845 preempt_enable();
846
847 return 0;
848 }
849
850 /*
851 * On VHE system, we only need to configure trap on physical timer and counter
852 * accesses in EL0 and EL1 once, not for every world switch.
853 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
854 * and this makes those bits have no effect for the host kernel execution.
855 */
856 void kvm_timer_init_vhe(void)
857 {
858 /* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
859 u32 cnthctl_shift = 10;
860 u64 val;
861
862 /*
863 * Disallow physical timer access for the guest.
864 * Physical counter access is allowed.
865 */
866 val = read_sysreg(cnthctl_el2);
867 val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
868 val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
869 write_sysreg(val, cnthctl_el2);
870 }
871
872 static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
873 {
874 struct kvm_vcpu *vcpu;
875 int i;
876
877 kvm_for_each_vcpu(i, vcpu, kvm) {
878 vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
879 vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
880 }
881 }
882
883 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
884 {
885 int __user *uaddr = (int __user *)(long)attr->addr;
886 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
887 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
888 int irq;
889
890 if (!irqchip_in_kernel(vcpu->kvm))
891 return -EINVAL;
892
893 if (get_user(irq, uaddr))
894 return -EFAULT;
895
896 if (!(irq_is_ppi(irq)))
897 return -EINVAL;
898
899 if (vcpu->arch.timer_cpu.enabled)
900 return -EBUSY;
901
902 switch (attr->attr) {
903 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
904 set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
905 break;
906 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
907 set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
908 break;
909 default:
910 return -ENXIO;
911 }
912
913 return 0;
914 }
915
916 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
917 {
918 int __user *uaddr = (int __user *)(long)attr->addr;
919 struct arch_timer_context *timer;
920 int irq;
921
922 switch (attr->attr) {
923 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
924 timer = vcpu_vtimer(vcpu);
925 break;
926 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
927 timer = vcpu_ptimer(vcpu);
928 break;
929 default:
930 return -ENXIO;
931 }
932
933 irq = timer->irq.irq;
934 return put_user(irq, uaddr);
935 }
936
937 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
938 {
939 switch (attr->attr) {
940 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
941 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
942 return 0;
943 }
944
945 return -ENXIO;
946 }