]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/arm/arm.c
Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / arm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <linux/kvm_irqfd.h>
31 #include <linux/irqbypass.h>
32 #include <trace/events/kvm.h>
33 #include <kvm/arm_pmu.h>
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #include <linux/uaccess.h>
39 #include <asm/ptrace.h>
40 #include <asm/mman.h>
41 #include <asm/tlbflush.h>
42 #include <asm/cacheflush.h>
43 #include <asm/virt.h>
44 #include <asm/kvm_arm.h>
45 #include <asm/kvm_asm.h>
46 #include <asm/kvm_mmu.h>
47 #include <asm/kvm_emulate.h>
48 #include <asm/kvm_coproc.h>
49 #include <asm/kvm_psci.h>
50 #include <asm/sections.h>
51
52 #ifdef REQUIRES_VIRT
53 __asm__(".arch_extension virt");
54 #endif
55
56 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
57 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
58
59 /* Per-CPU variable containing the currently running vcpu. */
60 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
61
62 /* The VMID used in the VTTBR */
63 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
64 static u32 kvm_next_vmid;
65 static unsigned int kvm_vmid_bits __read_mostly;
66 static DEFINE_SPINLOCK(kvm_vmid_lock);
67
68 static bool vgic_present;
69
70 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
71
72 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
73 {
74 BUG_ON(preemptible());
75 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
76 }
77
78 /**
79 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
80 * Must be called from non-preemptible context
81 */
82 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
83 {
84 BUG_ON(preemptible());
85 return __this_cpu_read(kvm_arm_running_vcpu);
86 }
87
88 /**
89 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
90 */
91 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
92 {
93 return &kvm_arm_running_vcpu;
94 }
95
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97 {
98 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
99 }
100
101 int kvm_arch_hardware_setup(void)
102 {
103 return 0;
104 }
105
106 void kvm_arch_check_processor_compat(void *rtn)
107 {
108 *(int *)rtn = 0;
109 }
110
111
112 /**
113 * kvm_arch_init_vm - initializes a VM data structure
114 * @kvm: pointer to the KVM struct
115 */
116 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
117 {
118 int ret, cpu;
119
120 if (type)
121 return -EINVAL;
122
123 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
124 if (!kvm->arch.last_vcpu_ran)
125 return -ENOMEM;
126
127 for_each_possible_cpu(cpu)
128 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
129
130 ret = kvm_alloc_stage2_pgd(kvm);
131 if (ret)
132 goto out_fail_alloc;
133
134 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
135 if (ret)
136 goto out_free_stage2_pgd;
137
138 kvm_vgic_early_init(kvm);
139
140 /* Mark the initial VMID generation invalid */
141 kvm->arch.vmid_gen = 0;
142
143 /* The maximum number of VCPUs is limited by the host's GIC model */
144 kvm->arch.max_vcpus = vgic_present ?
145 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146
147 return ret;
148 out_free_stage2_pgd:
149 kvm_free_stage2_pgd(kvm);
150 out_fail_alloc:
151 free_percpu(kvm->arch.last_vcpu_ran);
152 kvm->arch.last_vcpu_ran = NULL;
153 return ret;
154 }
155
156 bool kvm_arch_has_vcpu_debugfs(void)
157 {
158 return false;
159 }
160
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
162 {
163 return 0;
164 }
165
166 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168 return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173 * kvm_arch_destroy_vm - destroy the VM data structure
174 * @kvm: pointer to the KVM struct
175 */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178 int i;
179
180 kvm_vgic_destroy(kvm);
181
182 free_percpu(kvm->arch.last_vcpu_ran);
183 kvm->arch.last_vcpu_ran = NULL;
184
185 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
186 if (kvm->vcpus[i]) {
187 kvm_arch_vcpu_free(kvm->vcpus[i]);
188 kvm->vcpus[i] = NULL;
189 }
190 }
191 atomic_set(&kvm->online_vcpus, 0);
192 }
193
194 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
195 {
196 int r;
197 switch (ext) {
198 case KVM_CAP_IRQCHIP:
199 r = vgic_present;
200 break;
201 case KVM_CAP_IOEVENTFD:
202 case KVM_CAP_DEVICE_CTRL:
203 case KVM_CAP_USER_MEMORY:
204 case KVM_CAP_SYNC_MMU:
205 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
206 case KVM_CAP_ONE_REG:
207 case KVM_CAP_ARM_PSCI:
208 case KVM_CAP_ARM_PSCI_0_2:
209 case KVM_CAP_READONLY_MEM:
210 case KVM_CAP_MP_STATE:
211 case KVM_CAP_IMMEDIATE_EXIT:
212 r = 1;
213 break;
214 case KVM_CAP_ARM_SET_DEVICE_ADDR:
215 r = 1;
216 break;
217 case KVM_CAP_NR_VCPUS:
218 r = num_online_cpus();
219 break;
220 case KVM_CAP_MAX_VCPUS:
221 r = KVM_MAX_VCPUS;
222 break;
223 case KVM_CAP_NR_MEMSLOTS:
224 r = KVM_USER_MEM_SLOTS;
225 break;
226 case KVM_CAP_MSI_DEVID:
227 if (!kvm)
228 r = -EINVAL;
229 else
230 r = kvm->arch.vgic.msis_require_devid;
231 break;
232 case KVM_CAP_ARM_USER_IRQ:
233 /*
234 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
235 * (bump this number if adding more devices)
236 */
237 r = 1;
238 break;
239 default:
240 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
241 break;
242 }
243 return r;
244 }
245
246 long kvm_arch_dev_ioctl(struct file *filp,
247 unsigned int ioctl, unsigned long arg)
248 {
249 return -EINVAL;
250 }
251
252
253 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
254 {
255 int err;
256 struct kvm_vcpu *vcpu;
257
258 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
259 err = -EBUSY;
260 goto out;
261 }
262
263 if (id >= kvm->arch.max_vcpus) {
264 err = -EINVAL;
265 goto out;
266 }
267
268 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
269 if (!vcpu) {
270 err = -ENOMEM;
271 goto out;
272 }
273
274 err = kvm_vcpu_init(vcpu, kvm, id);
275 if (err)
276 goto free_vcpu;
277
278 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
279 if (err)
280 goto vcpu_uninit;
281
282 return vcpu;
283 vcpu_uninit:
284 kvm_vcpu_uninit(vcpu);
285 free_vcpu:
286 kmem_cache_free(kvm_vcpu_cache, vcpu);
287 out:
288 return ERR_PTR(err);
289 }
290
291 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292 {
293 kvm_vgic_vcpu_early_init(vcpu);
294 }
295
296 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
297 {
298 kvm_mmu_free_memory_caches(vcpu);
299 kvm_timer_vcpu_terminate(vcpu);
300 kvm_pmu_vcpu_destroy(vcpu);
301 kvm_vcpu_uninit(vcpu);
302 kmem_cache_free(kvm_vcpu_cache, vcpu);
303 }
304
305 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
306 {
307 kvm_arch_vcpu_free(vcpu);
308 }
309
310 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
311 {
312 return kvm_timer_is_pending(vcpu);
313 }
314
315 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
316 {
317 kvm_timer_schedule(vcpu);
318 kvm_vgic_v4_enable_doorbell(vcpu);
319 }
320
321 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
322 {
323 kvm_timer_unschedule(vcpu);
324 kvm_vgic_v4_disable_doorbell(vcpu);
325 }
326
327 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
328 {
329 /* Force users to call KVM_ARM_VCPU_INIT */
330 vcpu->arch.target = -1;
331 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
332
333 /* Set up the timer */
334 kvm_timer_vcpu_init(vcpu);
335
336 kvm_arm_reset_debug_ptr(vcpu);
337
338 return kvm_vgic_vcpu_init(vcpu);
339 }
340
341 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
342 {
343 int *last_ran;
344
345 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
346
347 /*
348 * We might get preempted before the vCPU actually runs, but
349 * over-invalidation doesn't affect correctness.
350 */
351 if (*last_ran != vcpu->vcpu_id) {
352 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
353 *last_ran = vcpu->vcpu_id;
354 }
355
356 vcpu->cpu = cpu;
357 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
358
359 kvm_arm_set_running_vcpu(vcpu);
360 kvm_vgic_load(vcpu);
361 kvm_timer_vcpu_load(vcpu);
362 }
363
364 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
365 {
366 kvm_timer_vcpu_put(vcpu);
367 kvm_vgic_put(vcpu);
368
369 vcpu->cpu = -1;
370
371 kvm_arm_set_running_vcpu(NULL);
372 }
373
374 static void vcpu_power_off(struct kvm_vcpu *vcpu)
375 {
376 vcpu->arch.power_off = true;
377 kvm_make_request(KVM_REQ_SLEEP, vcpu);
378 kvm_vcpu_kick(vcpu);
379 }
380
381 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
382 struct kvm_mp_state *mp_state)
383 {
384 if (vcpu->arch.power_off)
385 mp_state->mp_state = KVM_MP_STATE_STOPPED;
386 else
387 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
388
389 return 0;
390 }
391
392 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
393 struct kvm_mp_state *mp_state)
394 {
395 switch (mp_state->mp_state) {
396 case KVM_MP_STATE_RUNNABLE:
397 vcpu->arch.power_off = false;
398 break;
399 case KVM_MP_STATE_STOPPED:
400 vcpu_power_off(vcpu);
401 break;
402 default:
403 return -EINVAL;
404 }
405
406 return 0;
407 }
408
409 /**
410 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
411 * @v: The VCPU pointer
412 *
413 * If the guest CPU is not waiting for interrupts or an interrupt line is
414 * asserted, the CPU is by definition runnable.
415 */
416 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
417 {
418 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
419 && !v->arch.power_off && !v->arch.pause);
420 }
421
422 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
423 {
424 return vcpu_mode_priv(vcpu);
425 }
426
427 /* Just ensure a guest exit from a particular CPU */
428 static void exit_vm_noop(void *info)
429 {
430 }
431
432 void force_vm_exit(const cpumask_t *mask)
433 {
434 preempt_disable();
435 smp_call_function_many(mask, exit_vm_noop, NULL, true);
436 preempt_enable();
437 }
438
439 /**
440 * need_new_vmid_gen - check that the VMID is still valid
441 * @kvm: The VM's VMID to check
442 *
443 * return true if there is a new generation of VMIDs being used
444 *
445 * The hardware supports only 256 values with the value zero reserved for the
446 * host, so we check if an assigned value belongs to a previous generation,
447 * which which requires us to assign a new value. If we're the first to use a
448 * VMID for the new generation, we must flush necessary caches and TLBs on all
449 * CPUs.
450 */
451 static bool need_new_vmid_gen(struct kvm *kvm)
452 {
453 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
454 }
455
456 /**
457 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
458 * @kvm The guest that we are about to run
459 *
460 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
461 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
462 * caches and TLBs.
463 */
464 static void update_vttbr(struct kvm *kvm)
465 {
466 phys_addr_t pgd_phys;
467 u64 vmid;
468
469 if (!need_new_vmid_gen(kvm))
470 return;
471
472 spin_lock(&kvm_vmid_lock);
473
474 /*
475 * We need to re-check the vmid_gen here to ensure that if another vcpu
476 * already allocated a valid vmid for this vm, then this vcpu should
477 * use the same vmid.
478 */
479 if (!need_new_vmid_gen(kvm)) {
480 spin_unlock(&kvm_vmid_lock);
481 return;
482 }
483
484 /* First user of a new VMID generation? */
485 if (unlikely(kvm_next_vmid == 0)) {
486 atomic64_inc(&kvm_vmid_gen);
487 kvm_next_vmid = 1;
488
489 /*
490 * On SMP we know no other CPUs can use this CPU's or each
491 * other's VMID after force_vm_exit returns since the
492 * kvm_vmid_lock blocks them from reentry to the guest.
493 */
494 force_vm_exit(cpu_all_mask);
495 /*
496 * Now broadcast TLB + ICACHE invalidation over the inner
497 * shareable domain to make sure all data structures are
498 * clean.
499 */
500 kvm_call_hyp(__kvm_flush_vm_context);
501 }
502
503 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
504 kvm->arch.vmid = kvm_next_vmid;
505 kvm_next_vmid++;
506 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
507
508 /* update vttbr to be used with the new vmid */
509 pgd_phys = virt_to_phys(kvm->arch.pgd);
510 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
511 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
512 kvm->arch.vttbr = pgd_phys | vmid;
513
514 spin_unlock(&kvm_vmid_lock);
515 }
516
517 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
518 {
519 struct kvm *kvm = vcpu->kvm;
520 int ret = 0;
521
522 if (likely(vcpu->arch.has_run_once))
523 return 0;
524
525 vcpu->arch.has_run_once = true;
526
527 /*
528 * Map the VGIC hardware resources before running a vcpu the first
529 * time on this VM.
530 */
531 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
532 ret = kvm_vgic_map_resources(kvm);
533 if (ret)
534 return ret;
535 }
536
537 ret = kvm_timer_enable(vcpu);
538 if (ret)
539 return ret;
540
541 ret = kvm_arm_pmu_v3_enable(vcpu);
542
543 return ret;
544 }
545
546 bool kvm_arch_intc_initialized(struct kvm *kvm)
547 {
548 return vgic_initialized(kvm);
549 }
550
551 void kvm_arm_halt_guest(struct kvm *kvm)
552 {
553 int i;
554 struct kvm_vcpu *vcpu;
555
556 kvm_for_each_vcpu(i, vcpu, kvm)
557 vcpu->arch.pause = true;
558 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
559 }
560
561 void kvm_arm_resume_guest(struct kvm *kvm)
562 {
563 int i;
564 struct kvm_vcpu *vcpu;
565
566 kvm_for_each_vcpu(i, vcpu, kvm) {
567 vcpu->arch.pause = false;
568 swake_up(kvm_arch_vcpu_wq(vcpu));
569 }
570 }
571
572 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
573 {
574 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
575
576 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
577 (!vcpu->arch.pause)));
578
579 if (vcpu->arch.power_off || vcpu->arch.pause) {
580 /* Awaken to handle a signal, request we sleep again later. */
581 kvm_make_request(KVM_REQ_SLEEP, vcpu);
582 }
583 }
584
585 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
586 {
587 return vcpu->arch.target >= 0;
588 }
589
590 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
591 {
592 if (kvm_request_pending(vcpu)) {
593 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
594 vcpu_req_sleep(vcpu);
595
596 /*
597 * Clear IRQ_PENDING requests that were made to guarantee
598 * that a VCPU sees new virtual interrupts.
599 */
600 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
601 }
602 }
603
604 /**
605 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
606 * @vcpu: The VCPU pointer
607 * @run: The kvm_run structure pointer used for userspace state exchange
608 *
609 * This function is called through the VCPU_RUN ioctl called from user space. It
610 * will execute VM code in a loop until the time slice for the process is used
611 * or some emulation is needed from user space in which case the function will
612 * return with return value 0 and with the kvm_run structure filled in with the
613 * required data for the requested emulation.
614 */
615 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
616 {
617 int ret;
618
619 if (unlikely(!kvm_vcpu_initialized(vcpu)))
620 return -ENOEXEC;
621
622 ret = kvm_vcpu_first_run_init(vcpu);
623 if (ret)
624 return ret;
625
626 if (run->exit_reason == KVM_EXIT_MMIO) {
627 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
628 if (ret)
629 return ret;
630 if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
631 return 0;
632
633 }
634
635 if (run->immediate_exit)
636 return -EINTR;
637
638 kvm_sigset_activate(vcpu);
639
640 ret = 1;
641 run->exit_reason = KVM_EXIT_UNKNOWN;
642 while (ret > 0) {
643 /*
644 * Check conditions before entering the guest
645 */
646 cond_resched();
647
648 update_vttbr(vcpu->kvm);
649
650 check_vcpu_requests(vcpu);
651
652 /*
653 * Preparing the interrupts to be injected also
654 * involves poking the GIC, which must be done in a
655 * non-preemptible context.
656 */
657 preempt_disable();
658
659 /* Flush FP/SIMD state that can't survive guest entry/exit */
660 kvm_fpsimd_flush_cpu_state();
661
662 kvm_pmu_flush_hwstate(vcpu);
663
664 local_irq_disable();
665
666 kvm_vgic_flush_hwstate(vcpu);
667
668 /*
669 * If we have a singal pending, or need to notify a userspace
670 * irqchip about timer or PMU level changes, then we exit (and
671 * update the timer level state in kvm_timer_update_run
672 * below).
673 */
674 if (signal_pending(current) ||
675 kvm_timer_should_notify_user(vcpu) ||
676 kvm_pmu_should_notify_user(vcpu)) {
677 ret = -EINTR;
678 run->exit_reason = KVM_EXIT_INTR;
679 }
680
681 /*
682 * Ensure we set mode to IN_GUEST_MODE after we disable
683 * interrupts and before the final VCPU requests check.
684 * See the comment in kvm_vcpu_exiting_guest_mode() and
685 * Documentation/virtual/kvm/vcpu-requests.rst
686 */
687 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
688
689 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
690 kvm_request_pending(vcpu)) {
691 vcpu->mode = OUTSIDE_GUEST_MODE;
692 kvm_pmu_sync_hwstate(vcpu);
693 kvm_timer_sync_hwstate(vcpu);
694 kvm_vgic_sync_hwstate(vcpu);
695 local_irq_enable();
696 preempt_enable();
697 continue;
698 }
699
700 kvm_arm_setup_debug(vcpu);
701
702 /**************************************************************
703 * Enter the guest
704 */
705 trace_kvm_entry(*vcpu_pc(vcpu));
706 guest_enter_irqoff();
707
708 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
709
710 vcpu->mode = OUTSIDE_GUEST_MODE;
711 vcpu->stat.exits++;
712 /*
713 * Back from guest
714 *************************************************************/
715
716 kvm_arm_clear_debug(vcpu);
717
718 /*
719 * We must sync the PMU state before the vgic state so
720 * that the vgic can properly sample the updated state of the
721 * interrupt line.
722 */
723 kvm_pmu_sync_hwstate(vcpu);
724
725 /*
726 * Sync the vgic state before syncing the timer state because
727 * the timer code needs to know if the virtual timer
728 * interrupts are active.
729 */
730 kvm_vgic_sync_hwstate(vcpu);
731
732 /*
733 * Sync the timer hardware state before enabling interrupts as
734 * we don't want vtimer interrupts to race with syncing the
735 * timer virtual interrupt state.
736 */
737 kvm_timer_sync_hwstate(vcpu);
738
739 /*
740 * We may have taken a host interrupt in HYP mode (ie
741 * while executing the guest). This interrupt is still
742 * pending, as we haven't serviced it yet!
743 *
744 * We're now back in SVC mode, with interrupts
745 * disabled. Enabling the interrupts now will have
746 * the effect of taking the interrupt again, in SVC
747 * mode this time.
748 */
749 local_irq_enable();
750
751 /*
752 * We do local_irq_enable() before calling guest_exit() so
753 * that if a timer interrupt hits while running the guest we
754 * account that tick as being spent in the guest. We enable
755 * preemption after calling guest_exit() so that if we get
756 * preempted we make sure ticks after that is not counted as
757 * guest time.
758 */
759 guest_exit();
760 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
761
762 preempt_enable();
763
764 ret = handle_exit(vcpu, run, ret);
765 }
766
767 /* Tell userspace about in-kernel device output levels */
768 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
769 kvm_timer_update_run(vcpu);
770 kvm_pmu_update_run(vcpu);
771 }
772
773 kvm_sigset_deactivate(vcpu);
774
775 return ret;
776 }
777
778 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
779 {
780 int bit_index;
781 bool set;
782 unsigned long *ptr;
783
784 if (number == KVM_ARM_IRQ_CPU_IRQ)
785 bit_index = __ffs(HCR_VI);
786 else /* KVM_ARM_IRQ_CPU_FIQ */
787 bit_index = __ffs(HCR_VF);
788
789 ptr = (unsigned long *)&vcpu->arch.irq_lines;
790 if (level)
791 set = test_and_set_bit(bit_index, ptr);
792 else
793 set = test_and_clear_bit(bit_index, ptr);
794
795 /*
796 * If we didn't change anything, no need to wake up or kick other CPUs
797 */
798 if (set == level)
799 return 0;
800
801 /*
802 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
803 * trigger a world-switch round on the running physical CPU to set the
804 * virtual IRQ/FIQ fields in the HCR appropriately.
805 */
806 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
807 kvm_vcpu_kick(vcpu);
808
809 return 0;
810 }
811
812 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
813 bool line_status)
814 {
815 u32 irq = irq_level->irq;
816 unsigned int irq_type, vcpu_idx, irq_num;
817 int nrcpus = atomic_read(&kvm->online_vcpus);
818 struct kvm_vcpu *vcpu = NULL;
819 bool level = irq_level->level;
820
821 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
822 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
823 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
824
825 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
826
827 switch (irq_type) {
828 case KVM_ARM_IRQ_TYPE_CPU:
829 if (irqchip_in_kernel(kvm))
830 return -ENXIO;
831
832 if (vcpu_idx >= nrcpus)
833 return -EINVAL;
834
835 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
836 if (!vcpu)
837 return -EINVAL;
838
839 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
840 return -EINVAL;
841
842 return vcpu_interrupt_line(vcpu, irq_num, level);
843 case KVM_ARM_IRQ_TYPE_PPI:
844 if (!irqchip_in_kernel(kvm))
845 return -ENXIO;
846
847 if (vcpu_idx >= nrcpus)
848 return -EINVAL;
849
850 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
851 if (!vcpu)
852 return -EINVAL;
853
854 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
855 return -EINVAL;
856
857 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
858 case KVM_ARM_IRQ_TYPE_SPI:
859 if (!irqchip_in_kernel(kvm))
860 return -ENXIO;
861
862 if (irq_num < VGIC_NR_PRIVATE_IRQS)
863 return -EINVAL;
864
865 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
866 }
867
868 return -EINVAL;
869 }
870
871 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
872 const struct kvm_vcpu_init *init)
873 {
874 unsigned int i;
875 int phys_target = kvm_target_cpu();
876
877 if (init->target != phys_target)
878 return -EINVAL;
879
880 /*
881 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
882 * use the same target.
883 */
884 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
885 return -EINVAL;
886
887 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
888 for (i = 0; i < sizeof(init->features) * 8; i++) {
889 bool set = (init->features[i / 32] & (1 << (i % 32)));
890
891 if (set && i >= KVM_VCPU_MAX_FEATURES)
892 return -ENOENT;
893
894 /*
895 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
896 * use the same feature set.
897 */
898 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
899 test_bit(i, vcpu->arch.features) != set)
900 return -EINVAL;
901
902 if (set)
903 set_bit(i, vcpu->arch.features);
904 }
905
906 vcpu->arch.target = phys_target;
907
908 /* Now we know what it is, we can reset it. */
909 return kvm_reset_vcpu(vcpu);
910 }
911
912
913 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
914 struct kvm_vcpu_init *init)
915 {
916 int ret;
917
918 ret = kvm_vcpu_set_target(vcpu, init);
919 if (ret)
920 return ret;
921
922 /*
923 * Ensure a rebooted VM will fault in RAM pages and detect if the
924 * guest MMU is turned off and flush the caches as needed.
925 */
926 if (vcpu->arch.has_run_once)
927 stage2_unmap_vm(vcpu->kvm);
928
929 vcpu_reset_hcr(vcpu);
930
931 /*
932 * Handle the "start in power-off" case.
933 */
934 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
935 vcpu_power_off(vcpu);
936 else
937 vcpu->arch.power_off = false;
938
939 return 0;
940 }
941
942 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
943 struct kvm_device_attr *attr)
944 {
945 int ret = -ENXIO;
946
947 switch (attr->group) {
948 default:
949 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
950 break;
951 }
952
953 return ret;
954 }
955
956 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
957 struct kvm_device_attr *attr)
958 {
959 int ret = -ENXIO;
960
961 switch (attr->group) {
962 default:
963 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
964 break;
965 }
966
967 return ret;
968 }
969
970 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
971 struct kvm_device_attr *attr)
972 {
973 int ret = -ENXIO;
974
975 switch (attr->group) {
976 default:
977 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
978 break;
979 }
980
981 return ret;
982 }
983
984 long kvm_arch_vcpu_ioctl(struct file *filp,
985 unsigned int ioctl, unsigned long arg)
986 {
987 struct kvm_vcpu *vcpu = filp->private_data;
988 void __user *argp = (void __user *)arg;
989 struct kvm_device_attr attr;
990
991 switch (ioctl) {
992 case KVM_ARM_VCPU_INIT: {
993 struct kvm_vcpu_init init;
994
995 if (copy_from_user(&init, argp, sizeof(init)))
996 return -EFAULT;
997
998 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
999 }
1000 case KVM_SET_ONE_REG:
1001 case KVM_GET_ONE_REG: {
1002 struct kvm_one_reg reg;
1003
1004 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1005 return -ENOEXEC;
1006
1007 if (copy_from_user(&reg, argp, sizeof(reg)))
1008 return -EFAULT;
1009 if (ioctl == KVM_SET_ONE_REG)
1010 return kvm_arm_set_reg(vcpu, &reg);
1011 else
1012 return kvm_arm_get_reg(vcpu, &reg);
1013 }
1014 case KVM_GET_REG_LIST: {
1015 struct kvm_reg_list __user *user_list = argp;
1016 struct kvm_reg_list reg_list;
1017 unsigned n;
1018
1019 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1020 return -ENOEXEC;
1021
1022 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1023 return -EFAULT;
1024 n = reg_list.n;
1025 reg_list.n = kvm_arm_num_regs(vcpu);
1026 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1027 return -EFAULT;
1028 if (n < reg_list.n)
1029 return -E2BIG;
1030 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1031 }
1032 case KVM_SET_DEVICE_ATTR: {
1033 if (copy_from_user(&attr, argp, sizeof(attr)))
1034 return -EFAULT;
1035 return kvm_arm_vcpu_set_attr(vcpu, &attr);
1036 }
1037 case KVM_GET_DEVICE_ATTR: {
1038 if (copy_from_user(&attr, argp, sizeof(attr)))
1039 return -EFAULT;
1040 return kvm_arm_vcpu_get_attr(vcpu, &attr);
1041 }
1042 case KVM_HAS_DEVICE_ATTR: {
1043 if (copy_from_user(&attr, argp, sizeof(attr)))
1044 return -EFAULT;
1045 return kvm_arm_vcpu_has_attr(vcpu, &attr);
1046 }
1047 default:
1048 return -EINVAL;
1049 }
1050 }
1051
1052 /**
1053 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1054 * @kvm: kvm instance
1055 * @log: slot id and address to which we copy the log
1056 *
1057 * Steps 1-4 below provide general overview of dirty page logging. See
1058 * kvm_get_dirty_log_protect() function description for additional details.
1059 *
1060 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1061 * always flush the TLB (step 4) even if previous step failed and the dirty
1062 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1063 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1064 * writes will be marked dirty for next log read.
1065 *
1066 * 1. Take a snapshot of the bit and clear it if needed.
1067 * 2. Write protect the corresponding page.
1068 * 3. Copy the snapshot to the userspace.
1069 * 4. Flush TLB's if needed.
1070 */
1071 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1072 {
1073 bool is_dirty = false;
1074 int r;
1075
1076 mutex_lock(&kvm->slots_lock);
1077
1078 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1079
1080 if (is_dirty)
1081 kvm_flush_remote_tlbs(kvm);
1082
1083 mutex_unlock(&kvm->slots_lock);
1084 return r;
1085 }
1086
1087 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1088 struct kvm_arm_device_addr *dev_addr)
1089 {
1090 unsigned long dev_id, type;
1091
1092 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1093 KVM_ARM_DEVICE_ID_SHIFT;
1094 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1095 KVM_ARM_DEVICE_TYPE_SHIFT;
1096
1097 switch (dev_id) {
1098 case KVM_ARM_DEVICE_VGIC_V2:
1099 if (!vgic_present)
1100 return -ENXIO;
1101 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1102 default:
1103 return -ENODEV;
1104 }
1105 }
1106
1107 long kvm_arch_vm_ioctl(struct file *filp,
1108 unsigned int ioctl, unsigned long arg)
1109 {
1110 struct kvm *kvm = filp->private_data;
1111 void __user *argp = (void __user *)arg;
1112
1113 switch (ioctl) {
1114 case KVM_CREATE_IRQCHIP: {
1115 int ret;
1116 if (!vgic_present)
1117 return -ENXIO;
1118 mutex_lock(&kvm->lock);
1119 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1120 mutex_unlock(&kvm->lock);
1121 return ret;
1122 }
1123 case KVM_ARM_SET_DEVICE_ADDR: {
1124 struct kvm_arm_device_addr dev_addr;
1125
1126 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1127 return -EFAULT;
1128 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1129 }
1130 case KVM_ARM_PREFERRED_TARGET: {
1131 int err;
1132 struct kvm_vcpu_init init;
1133
1134 err = kvm_vcpu_preferred_target(&init);
1135 if (err)
1136 return err;
1137
1138 if (copy_to_user(argp, &init, sizeof(init)))
1139 return -EFAULT;
1140
1141 return 0;
1142 }
1143 default:
1144 return -EINVAL;
1145 }
1146 }
1147
1148 static void cpu_init_hyp_mode(void *dummy)
1149 {
1150 phys_addr_t pgd_ptr;
1151 unsigned long hyp_stack_ptr;
1152 unsigned long stack_page;
1153 unsigned long vector_ptr;
1154
1155 /* Switch from the HYP stub to our own HYP init vector */
1156 __hyp_set_vectors(kvm_get_idmap_vector());
1157
1158 pgd_ptr = kvm_mmu_get_httbr();
1159 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1160 hyp_stack_ptr = stack_page + PAGE_SIZE;
1161 vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1162
1163 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1164 __cpu_init_stage2();
1165
1166 kvm_arm_init_debug();
1167 }
1168
1169 static void cpu_hyp_reset(void)
1170 {
1171 if (!is_kernel_in_hyp_mode())
1172 __hyp_reset_vectors();
1173 }
1174
1175 static void cpu_hyp_reinit(void)
1176 {
1177 cpu_hyp_reset();
1178
1179 if (is_kernel_in_hyp_mode()) {
1180 /*
1181 * __cpu_init_stage2() is safe to call even if the PM
1182 * event was cancelled before the CPU was reset.
1183 */
1184 __cpu_init_stage2();
1185 kvm_timer_init_vhe();
1186 } else {
1187 cpu_init_hyp_mode(NULL);
1188 }
1189
1190 if (vgic_present)
1191 kvm_vgic_init_cpu_hardware();
1192 }
1193
1194 static void _kvm_arch_hardware_enable(void *discard)
1195 {
1196 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1197 cpu_hyp_reinit();
1198 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1199 }
1200 }
1201
1202 int kvm_arch_hardware_enable(void)
1203 {
1204 _kvm_arch_hardware_enable(NULL);
1205 return 0;
1206 }
1207
1208 static void _kvm_arch_hardware_disable(void *discard)
1209 {
1210 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1211 cpu_hyp_reset();
1212 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1213 }
1214 }
1215
1216 void kvm_arch_hardware_disable(void)
1217 {
1218 _kvm_arch_hardware_disable(NULL);
1219 }
1220
1221 #ifdef CONFIG_CPU_PM
1222 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1223 unsigned long cmd,
1224 void *v)
1225 {
1226 /*
1227 * kvm_arm_hardware_enabled is left with its old value over
1228 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1229 * re-enable hyp.
1230 */
1231 switch (cmd) {
1232 case CPU_PM_ENTER:
1233 if (__this_cpu_read(kvm_arm_hardware_enabled))
1234 /*
1235 * don't update kvm_arm_hardware_enabled here
1236 * so that the hardware will be re-enabled
1237 * when we resume. See below.
1238 */
1239 cpu_hyp_reset();
1240
1241 return NOTIFY_OK;
1242 case CPU_PM_EXIT:
1243 if (__this_cpu_read(kvm_arm_hardware_enabled))
1244 /* The hardware was enabled before suspend. */
1245 cpu_hyp_reinit();
1246
1247 return NOTIFY_OK;
1248
1249 default:
1250 return NOTIFY_DONE;
1251 }
1252 }
1253
1254 static struct notifier_block hyp_init_cpu_pm_nb = {
1255 .notifier_call = hyp_init_cpu_pm_notifier,
1256 };
1257
1258 static void __init hyp_cpu_pm_init(void)
1259 {
1260 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1261 }
1262 static void __init hyp_cpu_pm_exit(void)
1263 {
1264 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1265 }
1266 #else
1267 static inline void hyp_cpu_pm_init(void)
1268 {
1269 }
1270 static inline void hyp_cpu_pm_exit(void)
1271 {
1272 }
1273 #endif
1274
1275 static void teardown_common_resources(void)
1276 {
1277 free_percpu(kvm_host_cpu_state);
1278 }
1279
1280 static int init_common_resources(void)
1281 {
1282 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1283 if (!kvm_host_cpu_state) {
1284 kvm_err("Cannot allocate host CPU state\n");
1285 return -ENOMEM;
1286 }
1287
1288 /* set size of VMID supported by CPU */
1289 kvm_vmid_bits = kvm_get_vmid_bits();
1290 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1291
1292 return 0;
1293 }
1294
1295 static int init_subsystems(void)
1296 {
1297 int err = 0;
1298
1299 /*
1300 * Enable hardware so that subsystem initialisation can access EL2.
1301 */
1302 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1303
1304 /*
1305 * Register CPU lower-power notifier
1306 */
1307 hyp_cpu_pm_init();
1308
1309 /*
1310 * Init HYP view of VGIC
1311 */
1312 err = kvm_vgic_hyp_init();
1313 switch (err) {
1314 case 0:
1315 vgic_present = true;
1316 break;
1317 case -ENODEV:
1318 case -ENXIO:
1319 vgic_present = false;
1320 err = 0;
1321 break;
1322 default:
1323 goto out;
1324 }
1325
1326 /*
1327 * Init HYP architected timer support
1328 */
1329 err = kvm_timer_hyp_init(vgic_present);
1330 if (err)
1331 goto out;
1332
1333 kvm_perf_init();
1334 kvm_coproc_table_init();
1335
1336 out:
1337 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1338
1339 return err;
1340 }
1341
1342 static void teardown_hyp_mode(void)
1343 {
1344 int cpu;
1345
1346 free_hyp_pgds();
1347 for_each_possible_cpu(cpu)
1348 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1349 hyp_cpu_pm_exit();
1350 }
1351
1352 /**
1353 * Inits Hyp-mode on all online CPUs
1354 */
1355 static int init_hyp_mode(void)
1356 {
1357 int cpu;
1358 int err = 0;
1359
1360 /*
1361 * Allocate Hyp PGD and setup Hyp identity mapping
1362 */
1363 err = kvm_mmu_init();
1364 if (err)
1365 goto out_err;
1366
1367 /*
1368 * Allocate stack pages for Hypervisor-mode
1369 */
1370 for_each_possible_cpu(cpu) {
1371 unsigned long stack_page;
1372
1373 stack_page = __get_free_page(GFP_KERNEL);
1374 if (!stack_page) {
1375 err = -ENOMEM;
1376 goto out_err;
1377 }
1378
1379 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1380 }
1381
1382 /*
1383 * Map the Hyp-code called directly from the host
1384 */
1385 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1386 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1387 if (err) {
1388 kvm_err("Cannot map world-switch code\n");
1389 goto out_err;
1390 }
1391
1392 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1393 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1394 if (err) {
1395 kvm_err("Cannot map rodata section\n");
1396 goto out_err;
1397 }
1398
1399 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1400 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1401 if (err) {
1402 kvm_err("Cannot map bss section\n");
1403 goto out_err;
1404 }
1405
1406 /*
1407 * Map the Hyp stack pages
1408 */
1409 for_each_possible_cpu(cpu) {
1410 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1411 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1412 PAGE_HYP);
1413
1414 if (err) {
1415 kvm_err("Cannot map hyp stack\n");
1416 goto out_err;
1417 }
1418 }
1419
1420 for_each_possible_cpu(cpu) {
1421 kvm_cpu_context_t *cpu_ctxt;
1422
1423 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1424 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1425
1426 if (err) {
1427 kvm_err("Cannot map host CPU state: %d\n", err);
1428 goto out_err;
1429 }
1430 }
1431
1432 return 0;
1433
1434 out_err:
1435 teardown_hyp_mode();
1436 kvm_err("error initializing Hyp mode: %d\n", err);
1437 return err;
1438 }
1439
1440 static void check_kvm_target_cpu(void *ret)
1441 {
1442 *(int *)ret = kvm_target_cpu();
1443 }
1444
1445 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1446 {
1447 struct kvm_vcpu *vcpu;
1448 int i;
1449
1450 mpidr &= MPIDR_HWID_BITMASK;
1451 kvm_for_each_vcpu(i, vcpu, kvm) {
1452 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1453 return vcpu;
1454 }
1455 return NULL;
1456 }
1457
1458 bool kvm_arch_has_irq_bypass(void)
1459 {
1460 return true;
1461 }
1462
1463 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1464 struct irq_bypass_producer *prod)
1465 {
1466 struct kvm_kernel_irqfd *irqfd =
1467 container_of(cons, struct kvm_kernel_irqfd, consumer);
1468
1469 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1470 &irqfd->irq_entry);
1471 }
1472 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1473 struct irq_bypass_producer *prod)
1474 {
1475 struct kvm_kernel_irqfd *irqfd =
1476 container_of(cons, struct kvm_kernel_irqfd, consumer);
1477
1478 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1479 &irqfd->irq_entry);
1480 }
1481
1482 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1483 {
1484 struct kvm_kernel_irqfd *irqfd =
1485 container_of(cons, struct kvm_kernel_irqfd, consumer);
1486
1487 kvm_arm_halt_guest(irqfd->kvm);
1488 }
1489
1490 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1491 {
1492 struct kvm_kernel_irqfd *irqfd =
1493 container_of(cons, struct kvm_kernel_irqfd, consumer);
1494
1495 kvm_arm_resume_guest(irqfd->kvm);
1496 }
1497
1498 /**
1499 * Initialize Hyp-mode and memory mappings on all CPUs.
1500 */
1501 int kvm_arch_init(void *opaque)
1502 {
1503 int err;
1504 int ret, cpu;
1505 bool in_hyp_mode;
1506
1507 if (!is_hyp_mode_available()) {
1508 kvm_info("HYP mode not available\n");
1509 return -ENODEV;
1510 }
1511
1512 for_each_online_cpu(cpu) {
1513 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1514 if (ret < 0) {
1515 kvm_err("Error, CPU %d not supported!\n", cpu);
1516 return -ENODEV;
1517 }
1518 }
1519
1520 err = init_common_resources();
1521 if (err)
1522 return err;
1523
1524 in_hyp_mode = is_kernel_in_hyp_mode();
1525
1526 if (!in_hyp_mode) {
1527 err = init_hyp_mode();
1528 if (err)
1529 goto out_err;
1530 }
1531
1532 err = init_subsystems();
1533 if (err)
1534 goto out_hyp;
1535
1536 if (in_hyp_mode)
1537 kvm_info("VHE mode initialized successfully\n");
1538 else
1539 kvm_info("Hyp mode initialized successfully\n");
1540
1541 return 0;
1542
1543 out_hyp:
1544 if (!in_hyp_mode)
1545 teardown_hyp_mode();
1546 out_err:
1547 teardown_common_resources();
1548 return err;
1549 }
1550
1551 /* NOP: Compiling as a module not supported */
1552 void kvm_arch_exit(void)
1553 {
1554 kvm_perf_teardown();
1555 }
1556
1557 static int arm_init(void)
1558 {
1559 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1560 return rc;
1561 }
1562
1563 module_init(arm_init);