]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/arm/arm.c
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / arm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32
33 #define CREATE_TRACE_POINTS
34 #include "trace.h"
35
36 #include <linux/uaccess.h>
37 #include <asm/ptrace.h>
38 #include <asm/mman.h>
39 #include <asm/tlbflush.h>
40 #include <asm/cacheflush.h>
41 #include <asm/virt.h>
42 #include <asm/kvm_arm.h>
43 #include <asm/kvm_asm.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/kvm_emulate.h>
46 #include <asm/kvm_coproc.h>
47 #include <asm/kvm_psci.h>
48 #include <asm/sections.h>
49
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension virt");
52 #endif
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u32 kvm_next_vmid;
63 static unsigned int kvm_vmid_bits __read_mostly;
64 static DEFINE_SPINLOCK(kvm_vmid_lock);
65
66 static bool vgic_present;
67
68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
69
70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
71 {
72 BUG_ON(preemptible());
73 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
74 }
75
76 /**
77 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
78 * Must be called from non-preemptible context
79 */
80 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
81 {
82 BUG_ON(preemptible());
83 return __this_cpu_read(kvm_arm_running_vcpu);
84 }
85
86 /**
87 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
88 */
89 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
90 {
91 return &kvm_arm_running_vcpu;
92 }
93
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98
99 int kvm_arch_hardware_setup(void)
100 {
101 return 0;
102 }
103
104 void kvm_arch_check_processor_compat(void *rtn)
105 {
106 *(int *)rtn = 0;
107 }
108
109
110 /**
111 * kvm_arch_init_vm - initializes a VM data structure
112 * @kvm: pointer to the KVM struct
113 */
114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115 {
116 int ret, cpu;
117
118 if (type)
119 return -EINVAL;
120
121 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
122 if (!kvm->arch.last_vcpu_ran)
123 return -ENOMEM;
124
125 for_each_possible_cpu(cpu)
126 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
127
128 ret = kvm_alloc_stage2_pgd(kvm);
129 if (ret)
130 goto out_fail_alloc;
131
132 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
133 if (ret)
134 goto out_free_stage2_pgd;
135
136 kvm_vgic_early_init(kvm);
137
138 /* Mark the initial VMID generation invalid */
139 kvm->arch.vmid_gen = 0;
140
141 /* The maximum number of VCPUs is limited by the host's GIC model */
142 kvm->arch.max_vcpus = vgic_present ?
143 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
144
145 return ret;
146 out_free_stage2_pgd:
147 kvm_free_stage2_pgd(kvm);
148 out_fail_alloc:
149 free_percpu(kvm->arch.last_vcpu_ran);
150 kvm->arch.last_vcpu_ran = NULL;
151 return ret;
152 }
153
154 bool kvm_arch_has_vcpu_debugfs(void)
155 {
156 return false;
157 }
158
159 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
160 {
161 return 0;
162 }
163
164 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
165 {
166 return VM_FAULT_SIGBUS;
167 }
168
169
170 /**
171 * kvm_arch_destroy_vm - destroy the VM data structure
172 * @kvm: pointer to the KVM struct
173 */
174 void kvm_arch_destroy_vm(struct kvm *kvm)
175 {
176 int i;
177
178 free_percpu(kvm->arch.last_vcpu_ran);
179 kvm->arch.last_vcpu_ran = NULL;
180
181 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
182 if (kvm->vcpus[i]) {
183 kvm_arch_vcpu_free(kvm->vcpus[i]);
184 kvm->vcpus[i] = NULL;
185 }
186 }
187
188 kvm_vgic_destroy(kvm);
189 }
190
191 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
192 {
193 int r;
194 switch (ext) {
195 case KVM_CAP_IRQCHIP:
196 r = vgic_present;
197 break;
198 case KVM_CAP_IOEVENTFD:
199 case KVM_CAP_DEVICE_CTRL:
200 case KVM_CAP_USER_MEMORY:
201 case KVM_CAP_SYNC_MMU:
202 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
203 case KVM_CAP_ONE_REG:
204 case KVM_CAP_ARM_PSCI:
205 case KVM_CAP_ARM_PSCI_0_2:
206 case KVM_CAP_READONLY_MEM:
207 case KVM_CAP_MP_STATE:
208 case KVM_CAP_IMMEDIATE_EXIT:
209 r = 1;
210 break;
211 case KVM_CAP_ARM_SET_DEVICE_ADDR:
212 r = 1;
213 break;
214 case KVM_CAP_NR_VCPUS:
215 r = num_online_cpus();
216 break;
217 case KVM_CAP_MAX_VCPUS:
218 r = KVM_MAX_VCPUS;
219 break;
220 case KVM_CAP_NR_MEMSLOTS:
221 r = KVM_USER_MEM_SLOTS;
222 break;
223 case KVM_CAP_MSI_DEVID:
224 if (!kvm)
225 r = -EINVAL;
226 else
227 r = kvm->arch.vgic.msis_require_devid;
228 break;
229 case KVM_CAP_ARM_USER_IRQ:
230 /*
231 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
232 * (bump this number if adding more devices)
233 */
234 r = 1;
235 break;
236 default:
237 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
238 break;
239 }
240 return r;
241 }
242
243 long kvm_arch_dev_ioctl(struct file *filp,
244 unsigned int ioctl, unsigned long arg)
245 {
246 return -EINVAL;
247 }
248
249
250 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
251 {
252 int err;
253 struct kvm_vcpu *vcpu;
254
255 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
256 err = -EBUSY;
257 goto out;
258 }
259
260 if (id >= kvm->arch.max_vcpus) {
261 err = -EINVAL;
262 goto out;
263 }
264
265 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
266 if (!vcpu) {
267 err = -ENOMEM;
268 goto out;
269 }
270
271 err = kvm_vcpu_init(vcpu, kvm, id);
272 if (err)
273 goto free_vcpu;
274
275 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
276 if (err)
277 goto vcpu_uninit;
278
279 return vcpu;
280 vcpu_uninit:
281 kvm_vcpu_uninit(vcpu);
282 free_vcpu:
283 kmem_cache_free(kvm_vcpu_cache, vcpu);
284 out:
285 return ERR_PTR(err);
286 }
287
288 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
289 {
290 kvm_vgic_vcpu_early_init(vcpu);
291 }
292
293 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
294 {
295 kvm_mmu_free_memory_caches(vcpu);
296 kvm_timer_vcpu_terminate(vcpu);
297 kvm_vgic_vcpu_destroy(vcpu);
298 kvm_pmu_vcpu_destroy(vcpu);
299 kvm_vcpu_uninit(vcpu);
300 kmem_cache_free(kvm_vcpu_cache, vcpu);
301 }
302
303 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
304 {
305 kvm_arch_vcpu_free(vcpu);
306 }
307
308 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
309 {
310 return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
311 kvm_timer_should_fire(vcpu_ptimer(vcpu));
312 }
313
314 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
315 {
316 kvm_timer_schedule(vcpu);
317 }
318
319 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
320 {
321 kvm_timer_unschedule(vcpu);
322 }
323
324 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
325 {
326 /* Force users to call KVM_ARM_VCPU_INIT */
327 vcpu->arch.target = -1;
328 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
329
330 /* Set up the timer */
331 kvm_timer_vcpu_init(vcpu);
332
333 kvm_arm_reset_debug_ptr(vcpu);
334
335 return kvm_vgic_vcpu_init(vcpu);
336 }
337
338 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
339 {
340 int *last_ran;
341
342 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
343
344 /*
345 * We might get preempted before the vCPU actually runs, but
346 * over-invalidation doesn't affect correctness.
347 */
348 if (*last_ran != vcpu->vcpu_id) {
349 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
350 *last_ran = vcpu->vcpu_id;
351 }
352
353 vcpu->cpu = cpu;
354 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
355
356 kvm_arm_set_running_vcpu(vcpu);
357
358 kvm_vgic_load(vcpu);
359 }
360
361 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
362 {
363 kvm_vgic_put(vcpu);
364
365 vcpu->cpu = -1;
366
367 kvm_arm_set_running_vcpu(NULL);
368 kvm_timer_vcpu_put(vcpu);
369 }
370
371 static void vcpu_power_off(struct kvm_vcpu *vcpu)
372 {
373 vcpu->arch.power_off = true;
374 kvm_make_request(KVM_REQ_SLEEP, vcpu);
375 kvm_vcpu_kick(vcpu);
376 }
377
378 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
379 struct kvm_mp_state *mp_state)
380 {
381 if (vcpu->arch.power_off)
382 mp_state->mp_state = KVM_MP_STATE_STOPPED;
383 else
384 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
385
386 return 0;
387 }
388
389 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
390 struct kvm_mp_state *mp_state)
391 {
392 switch (mp_state->mp_state) {
393 case KVM_MP_STATE_RUNNABLE:
394 vcpu->arch.power_off = false;
395 break;
396 case KVM_MP_STATE_STOPPED:
397 vcpu_power_off(vcpu);
398 break;
399 default:
400 return -EINVAL;
401 }
402
403 return 0;
404 }
405
406 /**
407 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
408 * @v: The VCPU pointer
409 *
410 * If the guest CPU is not waiting for interrupts or an interrupt line is
411 * asserted, the CPU is by definition runnable.
412 */
413 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
414 {
415 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
416 && !v->arch.power_off && !v->arch.pause);
417 }
418
419 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
420 {
421 return vcpu_mode_priv(vcpu);
422 }
423
424 /* Just ensure a guest exit from a particular CPU */
425 static void exit_vm_noop(void *info)
426 {
427 }
428
429 void force_vm_exit(const cpumask_t *mask)
430 {
431 preempt_disable();
432 smp_call_function_many(mask, exit_vm_noop, NULL, true);
433 preempt_enable();
434 }
435
436 /**
437 * need_new_vmid_gen - check that the VMID is still valid
438 * @kvm: The VM's VMID to check
439 *
440 * return true if there is a new generation of VMIDs being used
441 *
442 * The hardware supports only 256 values with the value zero reserved for the
443 * host, so we check if an assigned value belongs to a previous generation,
444 * which which requires us to assign a new value. If we're the first to use a
445 * VMID for the new generation, we must flush necessary caches and TLBs on all
446 * CPUs.
447 */
448 static bool need_new_vmid_gen(struct kvm *kvm)
449 {
450 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
451 }
452
453 /**
454 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
455 * @kvm The guest that we are about to run
456 *
457 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
458 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
459 * caches and TLBs.
460 */
461 static void update_vttbr(struct kvm *kvm)
462 {
463 phys_addr_t pgd_phys;
464 u64 vmid;
465
466 if (!need_new_vmid_gen(kvm))
467 return;
468
469 spin_lock(&kvm_vmid_lock);
470
471 /*
472 * We need to re-check the vmid_gen here to ensure that if another vcpu
473 * already allocated a valid vmid for this vm, then this vcpu should
474 * use the same vmid.
475 */
476 if (!need_new_vmid_gen(kvm)) {
477 spin_unlock(&kvm_vmid_lock);
478 return;
479 }
480
481 /* First user of a new VMID generation? */
482 if (unlikely(kvm_next_vmid == 0)) {
483 atomic64_inc(&kvm_vmid_gen);
484 kvm_next_vmid = 1;
485
486 /*
487 * On SMP we know no other CPUs can use this CPU's or each
488 * other's VMID after force_vm_exit returns since the
489 * kvm_vmid_lock blocks them from reentry to the guest.
490 */
491 force_vm_exit(cpu_all_mask);
492 /*
493 * Now broadcast TLB + ICACHE invalidation over the inner
494 * shareable domain to make sure all data structures are
495 * clean.
496 */
497 kvm_call_hyp(__kvm_flush_vm_context);
498 }
499
500 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
501 kvm->arch.vmid = kvm_next_vmid;
502 kvm_next_vmid++;
503 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
504
505 /* update vttbr to be used with the new vmid */
506 pgd_phys = virt_to_phys(kvm->arch.pgd);
507 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
508 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
509 kvm->arch.vttbr = pgd_phys | vmid;
510
511 spin_unlock(&kvm_vmid_lock);
512 }
513
514 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
515 {
516 struct kvm *kvm = vcpu->kvm;
517 int ret = 0;
518
519 if (likely(vcpu->arch.has_run_once))
520 return 0;
521
522 vcpu->arch.has_run_once = true;
523
524 /*
525 * Map the VGIC hardware resources before running a vcpu the first
526 * time on this VM.
527 */
528 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
529 ret = kvm_vgic_map_resources(kvm);
530 if (ret)
531 return ret;
532 }
533
534 ret = kvm_timer_enable(vcpu);
535 if (ret)
536 return ret;
537
538 ret = kvm_arm_pmu_v3_enable(vcpu);
539
540 return ret;
541 }
542
543 bool kvm_arch_intc_initialized(struct kvm *kvm)
544 {
545 return vgic_initialized(kvm);
546 }
547
548 void kvm_arm_halt_guest(struct kvm *kvm)
549 {
550 int i;
551 struct kvm_vcpu *vcpu;
552
553 kvm_for_each_vcpu(i, vcpu, kvm)
554 vcpu->arch.pause = true;
555 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
556 }
557
558 void kvm_arm_resume_guest(struct kvm *kvm)
559 {
560 int i;
561 struct kvm_vcpu *vcpu;
562
563 kvm_for_each_vcpu(i, vcpu, kvm) {
564 vcpu->arch.pause = false;
565 swake_up(kvm_arch_vcpu_wq(vcpu));
566 }
567 }
568
569 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
570 {
571 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
572
573 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
574 (!vcpu->arch.pause)));
575
576 if (vcpu->arch.power_off || vcpu->arch.pause) {
577 /* Awaken to handle a signal, request we sleep again later. */
578 kvm_make_request(KVM_REQ_SLEEP, vcpu);
579 }
580 }
581
582 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
583 {
584 return vcpu->arch.target >= 0;
585 }
586
587 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
588 {
589 if (kvm_request_pending(vcpu)) {
590 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
591 vcpu_req_sleep(vcpu);
592
593 /*
594 * Clear IRQ_PENDING requests that were made to guarantee
595 * that a VCPU sees new virtual interrupts.
596 */
597 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
598 }
599 }
600
601 /**
602 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
603 * @vcpu: The VCPU pointer
604 * @run: The kvm_run structure pointer used for userspace state exchange
605 *
606 * This function is called through the VCPU_RUN ioctl called from user space. It
607 * will execute VM code in a loop until the time slice for the process is used
608 * or some emulation is needed from user space in which case the function will
609 * return with return value 0 and with the kvm_run structure filled in with the
610 * required data for the requested emulation.
611 */
612 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
613 {
614 int ret;
615 sigset_t sigsaved;
616
617 if (unlikely(!kvm_vcpu_initialized(vcpu)))
618 return -ENOEXEC;
619
620 ret = kvm_vcpu_first_run_init(vcpu);
621 if (ret)
622 return ret;
623
624 if (run->exit_reason == KVM_EXIT_MMIO) {
625 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
626 if (ret)
627 return ret;
628 }
629
630 if (run->immediate_exit)
631 return -EINTR;
632
633 if (vcpu->sigset_active)
634 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
635
636 ret = 1;
637 run->exit_reason = KVM_EXIT_UNKNOWN;
638 while (ret > 0) {
639 /*
640 * Check conditions before entering the guest
641 */
642 cond_resched();
643
644 update_vttbr(vcpu->kvm);
645
646 check_vcpu_requests(vcpu);
647
648 /*
649 * Preparing the interrupts to be injected also
650 * involves poking the GIC, which must be done in a
651 * non-preemptible context.
652 */
653 preempt_disable();
654
655 /* Flush FP/SIMD state that can't survive guest entry/exit */
656 kvm_fpsimd_flush_cpu_state();
657
658 kvm_pmu_flush_hwstate(vcpu);
659
660 kvm_timer_flush_hwstate(vcpu);
661 kvm_vgic_flush_hwstate(vcpu);
662
663 local_irq_disable();
664
665 /*
666 * If we have a singal pending, or need to notify a userspace
667 * irqchip about timer or PMU level changes, then we exit (and
668 * update the timer level state in kvm_timer_update_run
669 * below).
670 */
671 if (signal_pending(current) ||
672 kvm_timer_should_notify_user(vcpu) ||
673 kvm_pmu_should_notify_user(vcpu)) {
674 ret = -EINTR;
675 run->exit_reason = KVM_EXIT_INTR;
676 }
677
678 /*
679 * Ensure we set mode to IN_GUEST_MODE after we disable
680 * interrupts and before the final VCPU requests check.
681 * See the comment in kvm_vcpu_exiting_guest_mode() and
682 * Documentation/virtual/kvm/vcpu-requests.rst
683 */
684 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
685
686 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
687 kvm_request_pending(vcpu)) {
688 vcpu->mode = OUTSIDE_GUEST_MODE;
689 local_irq_enable();
690 kvm_pmu_sync_hwstate(vcpu);
691 kvm_timer_sync_hwstate(vcpu);
692 kvm_vgic_sync_hwstate(vcpu);
693 preempt_enable();
694 continue;
695 }
696
697 kvm_arm_setup_debug(vcpu);
698
699 /**************************************************************
700 * Enter the guest
701 */
702 trace_kvm_entry(*vcpu_pc(vcpu));
703 guest_enter_irqoff();
704
705 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
706
707 vcpu->mode = OUTSIDE_GUEST_MODE;
708 vcpu->stat.exits++;
709 /*
710 * Back from guest
711 *************************************************************/
712
713 kvm_arm_clear_debug(vcpu);
714
715 /*
716 * We may have taken a host interrupt in HYP mode (ie
717 * while executing the guest). This interrupt is still
718 * pending, as we haven't serviced it yet!
719 *
720 * We're now back in SVC mode, with interrupts
721 * disabled. Enabling the interrupts now will have
722 * the effect of taking the interrupt again, in SVC
723 * mode this time.
724 */
725 local_irq_enable();
726
727 /*
728 * We do local_irq_enable() before calling guest_exit() so
729 * that if a timer interrupt hits while running the guest we
730 * account that tick as being spent in the guest. We enable
731 * preemption after calling guest_exit() so that if we get
732 * preempted we make sure ticks after that is not counted as
733 * guest time.
734 */
735 guest_exit();
736 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
737
738 /*
739 * We must sync the PMU and timer state before the vgic state so
740 * that the vgic can properly sample the updated state of the
741 * interrupt line.
742 */
743 kvm_pmu_sync_hwstate(vcpu);
744 kvm_timer_sync_hwstate(vcpu);
745
746 kvm_vgic_sync_hwstate(vcpu);
747
748 preempt_enable();
749
750 ret = handle_exit(vcpu, run, ret);
751 }
752
753 /* Tell userspace about in-kernel device output levels */
754 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
755 kvm_timer_update_run(vcpu);
756 kvm_pmu_update_run(vcpu);
757 }
758
759 if (vcpu->sigset_active)
760 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
761 return ret;
762 }
763
764 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
765 {
766 int bit_index;
767 bool set;
768 unsigned long *ptr;
769
770 if (number == KVM_ARM_IRQ_CPU_IRQ)
771 bit_index = __ffs(HCR_VI);
772 else /* KVM_ARM_IRQ_CPU_FIQ */
773 bit_index = __ffs(HCR_VF);
774
775 ptr = (unsigned long *)&vcpu->arch.irq_lines;
776 if (level)
777 set = test_and_set_bit(bit_index, ptr);
778 else
779 set = test_and_clear_bit(bit_index, ptr);
780
781 /*
782 * If we didn't change anything, no need to wake up or kick other CPUs
783 */
784 if (set == level)
785 return 0;
786
787 /*
788 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
789 * trigger a world-switch round on the running physical CPU to set the
790 * virtual IRQ/FIQ fields in the HCR appropriately.
791 */
792 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
793 kvm_vcpu_kick(vcpu);
794
795 return 0;
796 }
797
798 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
799 bool line_status)
800 {
801 u32 irq = irq_level->irq;
802 unsigned int irq_type, vcpu_idx, irq_num;
803 int nrcpus = atomic_read(&kvm->online_vcpus);
804 struct kvm_vcpu *vcpu = NULL;
805 bool level = irq_level->level;
806
807 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
808 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
809 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
810
811 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
812
813 switch (irq_type) {
814 case KVM_ARM_IRQ_TYPE_CPU:
815 if (irqchip_in_kernel(kvm))
816 return -ENXIO;
817
818 if (vcpu_idx >= nrcpus)
819 return -EINVAL;
820
821 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
822 if (!vcpu)
823 return -EINVAL;
824
825 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
826 return -EINVAL;
827
828 return vcpu_interrupt_line(vcpu, irq_num, level);
829 case KVM_ARM_IRQ_TYPE_PPI:
830 if (!irqchip_in_kernel(kvm))
831 return -ENXIO;
832
833 if (vcpu_idx >= nrcpus)
834 return -EINVAL;
835
836 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
837 if (!vcpu)
838 return -EINVAL;
839
840 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
841 return -EINVAL;
842
843 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
844 case KVM_ARM_IRQ_TYPE_SPI:
845 if (!irqchip_in_kernel(kvm))
846 return -ENXIO;
847
848 if (irq_num < VGIC_NR_PRIVATE_IRQS)
849 return -EINVAL;
850
851 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
852 }
853
854 return -EINVAL;
855 }
856
857 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
858 const struct kvm_vcpu_init *init)
859 {
860 unsigned int i;
861 int phys_target = kvm_target_cpu();
862
863 if (init->target != phys_target)
864 return -EINVAL;
865
866 /*
867 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
868 * use the same target.
869 */
870 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
871 return -EINVAL;
872
873 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
874 for (i = 0; i < sizeof(init->features) * 8; i++) {
875 bool set = (init->features[i / 32] & (1 << (i % 32)));
876
877 if (set && i >= KVM_VCPU_MAX_FEATURES)
878 return -ENOENT;
879
880 /*
881 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
882 * use the same feature set.
883 */
884 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
885 test_bit(i, vcpu->arch.features) != set)
886 return -EINVAL;
887
888 if (set)
889 set_bit(i, vcpu->arch.features);
890 }
891
892 vcpu->arch.target = phys_target;
893
894 /* Now we know what it is, we can reset it. */
895 return kvm_reset_vcpu(vcpu);
896 }
897
898
899 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
900 struct kvm_vcpu_init *init)
901 {
902 int ret;
903
904 ret = kvm_vcpu_set_target(vcpu, init);
905 if (ret)
906 return ret;
907
908 /*
909 * Ensure a rebooted VM will fault in RAM pages and detect if the
910 * guest MMU is turned off and flush the caches as needed.
911 */
912 if (vcpu->arch.has_run_once)
913 stage2_unmap_vm(vcpu->kvm);
914
915 vcpu_reset_hcr(vcpu);
916
917 /*
918 * Handle the "start in power-off" case.
919 */
920 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
921 vcpu_power_off(vcpu);
922 else
923 vcpu->arch.power_off = false;
924
925 return 0;
926 }
927
928 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
929 struct kvm_device_attr *attr)
930 {
931 int ret = -ENXIO;
932
933 switch (attr->group) {
934 default:
935 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
936 break;
937 }
938
939 return ret;
940 }
941
942 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
943 struct kvm_device_attr *attr)
944 {
945 int ret = -ENXIO;
946
947 switch (attr->group) {
948 default:
949 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
950 break;
951 }
952
953 return ret;
954 }
955
956 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
957 struct kvm_device_attr *attr)
958 {
959 int ret = -ENXIO;
960
961 switch (attr->group) {
962 default:
963 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
964 break;
965 }
966
967 return ret;
968 }
969
970 long kvm_arch_vcpu_ioctl(struct file *filp,
971 unsigned int ioctl, unsigned long arg)
972 {
973 struct kvm_vcpu *vcpu = filp->private_data;
974 void __user *argp = (void __user *)arg;
975 struct kvm_device_attr attr;
976
977 switch (ioctl) {
978 case KVM_ARM_VCPU_INIT: {
979 struct kvm_vcpu_init init;
980
981 if (copy_from_user(&init, argp, sizeof(init)))
982 return -EFAULT;
983
984 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
985 }
986 case KVM_SET_ONE_REG:
987 case KVM_GET_ONE_REG: {
988 struct kvm_one_reg reg;
989
990 if (unlikely(!kvm_vcpu_initialized(vcpu)))
991 return -ENOEXEC;
992
993 if (copy_from_user(&reg, argp, sizeof(reg)))
994 return -EFAULT;
995 if (ioctl == KVM_SET_ONE_REG)
996 return kvm_arm_set_reg(vcpu, &reg);
997 else
998 return kvm_arm_get_reg(vcpu, &reg);
999 }
1000 case KVM_GET_REG_LIST: {
1001 struct kvm_reg_list __user *user_list = argp;
1002 struct kvm_reg_list reg_list;
1003 unsigned n;
1004
1005 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1006 return -ENOEXEC;
1007
1008 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1009 return -EFAULT;
1010 n = reg_list.n;
1011 reg_list.n = kvm_arm_num_regs(vcpu);
1012 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1013 return -EFAULT;
1014 if (n < reg_list.n)
1015 return -E2BIG;
1016 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1017 }
1018 case KVM_SET_DEVICE_ATTR: {
1019 if (copy_from_user(&attr, argp, sizeof(attr)))
1020 return -EFAULT;
1021 return kvm_arm_vcpu_set_attr(vcpu, &attr);
1022 }
1023 case KVM_GET_DEVICE_ATTR: {
1024 if (copy_from_user(&attr, argp, sizeof(attr)))
1025 return -EFAULT;
1026 return kvm_arm_vcpu_get_attr(vcpu, &attr);
1027 }
1028 case KVM_HAS_DEVICE_ATTR: {
1029 if (copy_from_user(&attr, argp, sizeof(attr)))
1030 return -EFAULT;
1031 return kvm_arm_vcpu_has_attr(vcpu, &attr);
1032 }
1033 default:
1034 return -EINVAL;
1035 }
1036 }
1037
1038 /**
1039 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1040 * @kvm: kvm instance
1041 * @log: slot id and address to which we copy the log
1042 *
1043 * Steps 1-4 below provide general overview of dirty page logging. See
1044 * kvm_get_dirty_log_protect() function description for additional details.
1045 *
1046 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1047 * always flush the TLB (step 4) even if previous step failed and the dirty
1048 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1049 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1050 * writes will be marked dirty for next log read.
1051 *
1052 * 1. Take a snapshot of the bit and clear it if needed.
1053 * 2. Write protect the corresponding page.
1054 * 3. Copy the snapshot to the userspace.
1055 * 4. Flush TLB's if needed.
1056 */
1057 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1058 {
1059 bool is_dirty = false;
1060 int r;
1061
1062 mutex_lock(&kvm->slots_lock);
1063
1064 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1065
1066 if (is_dirty)
1067 kvm_flush_remote_tlbs(kvm);
1068
1069 mutex_unlock(&kvm->slots_lock);
1070 return r;
1071 }
1072
1073 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1074 struct kvm_arm_device_addr *dev_addr)
1075 {
1076 unsigned long dev_id, type;
1077
1078 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1079 KVM_ARM_DEVICE_ID_SHIFT;
1080 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1081 KVM_ARM_DEVICE_TYPE_SHIFT;
1082
1083 switch (dev_id) {
1084 case KVM_ARM_DEVICE_VGIC_V2:
1085 if (!vgic_present)
1086 return -ENXIO;
1087 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1088 default:
1089 return -ENODEV;
1090 }
1091 }
1092
1093 long kvm_arch_vm_ioctl(struct file *filp,
1094 unsigned int ioctl, unsigned long arg)
1095 {
1096 struct kvm *kvm = filp->private_data;
1097 void __user *argp = (void __user *)arg;
1098
1099 switch (ioctl) {
1100 case KVM_CREATE_IRQCHIP: {
1101 int ret;
1102 if (!vgic_present)
1103 return -ENXIO;
1104 mutex_lock(&kvm->lock);
1105 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1106 mutex_unlock(&kvm->lock);
1107 return ret;
1108 }
1109 case KVM_ARM_SET_DEVICE_ADDR: {
1110 struct kvm_arm_device_addr dev_addr;
1111
1112 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1113 return -EFAULT;
1114 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1115 }
1116 case KVM_ARM_PREFERRED_TARGET: {
1117 int err;
1118 struct kvm_vcpu_init init;
1119
1120 err = kvm_vcpu_preferred_target(&init);
1121 if (err)
1122 return err;
1123
1124 if (copy_to_user(argp, &init, sizeof(init)))
1125 return -EFAULT;
1126
1127 return 0;
1128 }
1129 default:
1130 return -EINVAL;
1131 }
1132 }
1133
1134 static void cpu_init_hyp_mode(void *dummy)
1135 {
1136 phys_addr_t pgd_ptr;
1137 unsigned long hyp_stack_ptr;
1138 unsigned long stack_page;
1139 unsigned long vector_ptr;
1140
1141 /* Switch from the HYP stub to our own HYP init vector */
1142 __hyp_set_vectors(kvm_get_idmap_vector());
1143
1144 pgd_ptr = kvm_mmu_get_httbr();
1145 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1146 hyp_stack_ptr = stack_page + PAGE_SIZE;
1147 vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1148
1149 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1150 __cpu_init_stage2();
1151
1152 kvm_arm_init_debug();
1153 }
1154
1155 static void cpu_hyp_reset(void)
1156 {
1157 if (!is_kernel_in_hyp_mode())
1158 __hyp_reset_vectors();
1159 }
1160
1161 static void cpu_hyp_reinit(void)
1162 {
1163 cpu_hyp_reset();
1164
1165 if (is_kernel_in_hyp_mode()) {
1166 /*
1167 * __cpu_init_stage2() is safe to call even if the PM
1168 * event was cancelled before the CPU was reset.
1169 */
1170 __cpu_init_stage2();
1171 kvm_timer_init_vhe();
1172 } else {
1173 cpu_init_hyp_mode(NULL);
1174 }
1175
1176 if (vgic_present)
1177 kvm_vgic_init_cpu_hardware();
1178 }
1179
1180 static void _kvm_arch_hardware_enable(void *discard)
1181 {
1182 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1183 cpu_hyp_reinit();
1184 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1185 }
1186 }
1187
1188 int kvm_arch_hardware_enable(void)
1189 {
1190 _kvm_arch_hardware_enable(NULL);
1191 return 0;
1192 }
1193
1194 static void _kvm_arch_hardware_disable(void *discard)
1195 {
1196 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1197 cpu_hyp_reset();
1198 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1199 }
1200 }
1201
1202 void kvm_arch_hardware_disable(void)
1203 {
1204 _kvm_arch_hardware_disable(NULL);
1205 }
1206
1207 #ifdef CONFIG_CPU_PM
1208 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1209 unsigned long cmd,
1210 void *v)
1211 {
1212 /*
1213 * kvm_arm_hardware_enabled is left with its old value over
1214 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1215 * re-enable hyp.
1216 */
1217 switch (cmd) {
1218 case CPU_PM_ENTER:
1219 if (__this_cpu_read(kvm_arm_hardware_enabled))
1220 /*
1221 * don't update kvm_arm_hardware_enabled here
1222 * so that the hardware will be re-enabled
1223 * when we resume. See below.
1224 */
1225 cpu_hyp_reset();
1226
1227 return NOTIFY_OK;
1228 case CPU_PM_EXIT:
1229 if (__this_cpu_read(kvm_arm_hardware_enabled))
1230 /* The hardware was enabled before suspend. */
1231 cpu_hyp_reinit();
1232
1233 return NOTIFY_OK;
1234
1235 default:
1236 return NOTIFY_DONE;
1237 }
1238 }
1239
1240 static struct notifier_block hyp_init_cpu_pm_nb = {
1241 .notifier_call = hyp_init_cpu_pm_notifier,
1242 };
1243
1244 static void __init hyp_cpu_pm_init(void)
1245 {
1246 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1247 }
1248 static void __init hyp_cpu_pm_exit(void)
1249 {
1250 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1251 }
1252 #else
1253 static inline void hyp_cpu_pm_init(void)
1254 {
1255 }
1256 static inline void hyp_cpu_pm_exit(void)
1257 {
1258 }
1259 #endif
1260
1261 static void teardown_common_resources(void)
1262 {
1263 free_percpu(kvm_host_cpu_state);
1264 }
1265
1266 static int init_common_resources(void)
1267 {
1268 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1269 if (!kvm_host_cpu_state) {
1270 kvm_err("Cannot allocate host CPU state\n");
1271 return -ENOMEM;
1272 }
1273
1274 /* set size of VMID supported by CPU */
1275 kvm_vmid_bits = kvm_get_vmid_bits();
1276 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1277
1278 return 0;
1279 }
1280
1281 static int init_subsystems(void)
1282 {
1283 int err = 0;
1284
1285 /*
1286 * Enable hardware so that subsystem initialisation can access EL2.
1287 */
1288 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1289
1290 /*
1291 * Register CPU lower-power notifier
1292 */
1293 hyp_cpu_pm_init();
1294
1295 /*
1296 * Init HYP view of VGIC
1297 */
1298 err = kvm_vgic_hyp_init();
1299 switch (err) {
1300 case 0:
1301 vgic_present = true;
1302 break;
1303 case -ENODEV:
1304 case -ENXIO:
1305 vgic_present = false;
1306 err = 0;
1307 break;
1308 default:
1309 goto out;
1310 }
1311
1312 /*
1313 * Init HYP architected timer support
1314 */
1315 err = kvm_timer_hyp_init();
1316 if (err)
1317 goto out;
1318
1319 kvm_perf_init();
1320 kvm_coproc_table_init();
1321
1322 out:
1323 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1324
1325 return err;
1326 }
1327
1328 static void teardown_hyp_mode(void)
1329 {
1330 int cpu;
1331
1332 free_hyp_pgds();
1333 for_each_possible_cpu(cpu)
1334 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1335 hyp_cpu_pm_exit();
1336 }
1337
1338 /**
1339 * Inits Hyp-mode on all online CPUs
1340 */
1341 static int init_hyp_mode(void)
1342 {
1343 int cpu;
1344 int err = 0;
1345
1346 /*
1347 * Allocate Hyp PGD and setup Hyp identity mapping
1348 */
1349 err = kvm_mmu_init();
1350 if (err)
1351 goto out_err;
1352
1353 /*
1354 * Allocate stack pages for Hypervisor-mode
1355 */
1356 for_each_possible_cpu(cpu) {
1357 unsigned long stack_page;
1358
1359 stack_page = __get_free_page(GFP_KERNEL);
1360 if (!stack_page) {
1361 err = -ENOMEM;
1362 goto out_err;
1363 }
1364
1365 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1366 }
1367
1368 /*
1369 * Map the Hyp-code called directly from the host
1370 */
1371 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1372 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1373 if (err) {
1374 kvm_err("Cannot map world-switch code\n");
1375 goto out_err;
1376 }
1377
1378 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1379 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1380 if (err) {
1381 kvm_err("Cannot map rodata section\n");
1382 goto out_err;
1383 }
1384
1385 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1386 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1387 if (err) {
1388 kvm_err("Cannot map bss section\n");
1389 goto out_err;
1390 }
1391
1392 /*
1393 * Map the Hyp stack pages
1394 */
1395 for_each_possible_cpu(cpu) {
1396 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1397 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1398 PAGE_HYP);
1399
1400 if (err) {
1401 kvm_err("Cannot map hyp stack\n");
1402 goto out_err;
1403 }
1404 }
1405
1406 for_each_possible_cpu(cpu) {
1407 kvm_cpu_context_t *cpu_ctxt;
1408
1409 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1410 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1411
1412 if (err) {
1413 kvm_err("Cannot map host CPU state: %d\n", err);
1414 goto out_err;
1415 }
1416 }
1417
1418 return 0;
1419
1420 out_err:
1421 teardown_hyp_mode();
1422 kvm_err("error initializing Hyp mode: %d\n", err);
1423 return err;
1424 }
1425
1426 static void check_kvm_target_cpu(void *ret)
1427 {
1428 *(int *)ret = kvm_target_cpu();
1429 }
1430
1431 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1432 {
1433 struct kvm_vcpu *vcpu;
1434 int i;
1435
1436 mpidr &= MPIDR_HWID_BITMASK;
1437 kvm_for_each_vcpu(i, vcpu, kvm) {
1438 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1439 return vcpu;
1440 }
1441 return NULL;
1442 }
1443
1444 /**
1445 * Initialize Hyp-mode and memory mappings on all CPUs.
1446 */
1447 int kvm_arch_init(void *opaque)
1448 {
1449 int err;
1450 int ret, cpu;
1451 bool in_hyp_mode;
1452
1453 if (!is_hyp_mode_available()) {
1454 kvm_err("HYP mode not available\n");
1455 return -ENODEV;
1456 }
1457
1458 for_each_online_cpu(cpu) {
1459 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1460 if (ret < 0) {
1461 kvm_err("Error, CPU %d not supported!\n", cpu);
1462 return -ENODEV;
1463 }
1464 }
1465
1466 err = init_common_resources();
1467 if (err)
1468 return err;
1469
1470 in_hyp_mode = is_kernel_in_hyp_mode();
1471
1472 if (!in_hyp_mode) {
1473 err = init_hyp_mode();
1474 if (err)
1475 goto out_err;
1476 }
1477
1478 err = init_subsystems();
1479 if (err)
1480 goto out_hyp;
1481
1482 if (in_hyp_mode)
1483 kvm_info("VHE mode initialized successfully\n");
1484 else
1485 kvm_info("Hyp mode initialized successfully\n");
1486
1487 return 0;
1488
1489 out_hyp:
1490 if (!in_hyp_mode)
1491 teardown_hyp_mode();
1492 out_err:
1493 teardown_common_resources();
1494 return err;
1495 }
1496
1497 /* NOP: Compiling as a module not supported */
1498 void kvm_arch_exit(void)
1499 {
1500 kvm_perf_teardown();
1501 }
1502
1503 static int arm_init(void)
1504 {
1505 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1506 return rc;
1507 }
1508
1509 module_init(arm_init);