]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - virt/kvm/arm/arm.c
Merge tag 'mac80211-next-for-davem-2018-03-29' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-eoan-kernel.git] / virt / kvm / arm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <linux/kvm_irqfd.h>
31 #include <linux/irqbypass.h>
32 #include <trace/events/kvm.h>
33 #include <kvm/arm_pmu.h>
34 #include <kvm/arm_psci.h>
35
36 #define CREATE_TRACE_POINTS
37 #include "trace.h"
38
39 #include <linux/uaccess.h>
40 #include <asm/ptrace.h>
41 #include <asm/mman.h>
42 #include <asm/tlbflush.h>
43 #include <asm/cacheflush.h>
44 #include <asm/virt.h>
45 #include <asm/kvm_arm.h>
46 #include <asm/kvm_asm.h>
47 #include <asm/kvm_mmu.h>
48 #include <asm/kvm_emulate.h>
49 #include <asm/kvm_coproc.h>
50 #include <asm/sections.h>
51
52 #ifdef REQUIRES_VIRT
53 __asm__(".arch_extension virt");
54 #endif
55
56 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
57 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
58
59 /* Per-CPU variable containing the currently running vcpu. */
60 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
61
62 /* The VMID used in the VTTBR */
63 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
64 static u32 kvm_next_vmid;
65 static unsigned int kvm_vmid_bits __read_mostly;
66 static DEFINE_SPINLOCK(kvm_vmid_lock);
67
68 static bool vgic_present;
69
70 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
71
72 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
73 {
74 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 }
76
77 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
78
79 /**
80 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
81 * Must be called from non-preemptible context
82 */
83 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
84 {
85 return __this_cpu_read(kvm_arm_running_vcpu);
86 }
87
88 /**
89 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
90 */
91 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
92 {
93 return &kvm_arm_running_vcpu;
94 }
95
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97 {
98 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
99 }
100
101 int kvm_arch_hardware_setup(void)
102 {
103 return 0;
104 }
105
106 void kvm_arch_check_processor_compat(void *rtn)
107 {
108 *(int *)rtn = 0;
109 }
110
111
112 /**
113 * kvm_arch_init_vm - initializes a VM data structure
114 * @kvm: pointer to the KVM struct
115 */
116 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
117 {
118 int ret, cpu;
119
120 if (type)
121 return -EINVAL;
122
123 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
124 if (!kvm->arch.last_vcpu_ran)
125 return -ENOMEM;
126
127 for_each_possible_cpu(cpu)
128 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
129
130 ret = kvm_alloc_stage2_pgd(kvm);
131 if (ret)
132 goto out_fail_alloc;
133
134 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
135 if (ret)
136 goto out_free_stage2_pgd;
137
138 kvm_vgic_early_init(kvm);
139
140 /* Mark the initial VMID generation invalid */
141 kvm->arch.vmid_gen = 0;
142
143 /* The maximum number of VCPUs is limited by the host's GIC model */
144 kvm->arch.max_vcpus = vgic_present ?
145 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146
147 return ret;
148 out_free_stage2_pgd:
149 kvm_free_stage2_pgd(kvm);
150 out_fail_alloc:
151 free_percpu(kvm->arch.last_vcpu_ran);
152 kvm->arch.last_vcpu_ran = NULL;
153 return ret;
154 }
155
156 bool kvm_arch_has_vcpu_debugfs(void)
157 {
158 return false;
159 }
160
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
162 {
163 return 0;
164 }
165
166 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168 return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173 * kvm_arch_destroy_vm - destroy the VM data structure
174 * @kvm: pointer to the KVM struct
175 */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178 int i;
179
180 kvm_vgic_destroy(kvm);
181
182 free_percpu(kvm->arch.last_vcpu_ran);
183 kvm->arch.last_vcpu_ran = NULL;
184
185 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
186 if (kvm->vcpus[i]) {
187 kvm_arch_vcpu_free(kvm->vcpus[i]);
188 kvm->vcpus[i] = NULL;
189 }
190 }
191 atomic_set(&kvm->online_vcpus, 0);
192 }
193
194 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
195 {
196 int r;
197 switch (ext) {
198 case KVM_CAP_IRQCHIP:
199 r = vgic_present;
200 break;
201 case KVM_CAP_IOEVENTFD:
202 case KVM_CAP_DEVICE_CTRL:
203 case KVM_CAP_USER_MEMORY:
204 case KVM_CAP_SYNC_MMU:
205 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
206 case KVM_CAP_ONE_REG:
207 case KVM_CAP_ARM_PSCI:
208 case KVM_CAP_ARM_PSCI_0_2:
209 case KVM_CAP_READONLY_MEM:
210 case KVM_CAP_MP_STATE:
211 case KVM_CAP_IMMEDIATE_EXIT:
212 r = 1;
213 break;
214 case KVM_CAP_ARM_SET_DEVICE_ADDR:
215 r = 1;
216 break;
217 case KVM_CAP_NR_VCPUS:
218 r = num_online_cpus();
219 break;
220 case KVM_CAP_MAX_VCPUS:
221 r = KVM_MAX_VCPUS;
222 break;
223 case KVM_CAP_NR_MEMSLOTS:
224 r = KVM_USER_MEM_SLOTS;
225 break;
226 case KVM_CAP_MSI_DEVID:
227 if (!kvm)
228 r = -EINVAL;
229 else
230 r = kvm->arch.vgic.msis_require_devid;
231 break;
232 case KVM_CAP_ARM_USER_IRQ:
233 /*
234 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
235 * (bump this number if adding more devices)
236 */
237 r = 1;
238 break;
239 default:
240 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
241 break;
242 }
243 return r;
244 }
245
246 long kvm_arch_dev_ioctl(struct file *filp,
247 unsigned int ioctl, unsigned long arg)
248 {
249 return -EINVAL;
250 }
251
252
253 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
254 {
255 int err;
256 struct kvm_vcpu *vcpu;
257
258 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
259 err = -EBUSY;
260 goto out;
261 }
262
263 if (id >= kvm->arch.max_vcpus) {
264 err = -EINVAL;
265 goto out;
266 }
267
268 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
269 if (!vcpu) {
270 err = -ENOMEM;
271 goto out;
272 }
273
274 err = kvm_vcpu_init(vcpu, kvm, id);
275 if (err)
276 goto free_vcpu;
277
278 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
279 if (err)
280 goto vcpu_uninit;
281
282 return vcpu;
283 vcpu_uninit:
284 kvm_vcpu_uninit(vcpu);
285 free_vcpu:
286 kmem_cache_free(kvm_vcpu_cache, vcpu);
287 out:
288 return ERR_PTR(err);
289 }
290
291 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292 {
293 kvm_vgic_vcpu_early_init(vcpu);
294 }
295
296 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
297 {
298 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
299 static_branch_dec(&userspace_irqchip_in_use);
300
301 kvm_mmu_free_memory_caches(vcpu);
302 kvm_timer_vcpu_terminate(vcpu);
303 kvm_pmu_vcpu_destroy(vcpu);
304 kvm_vcpu_uninit(vcpu);
305 kmem_cache_free(kvm_vcpu_cache, vcpu);
306 }
307
308 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
309 {
310 kvm_arch_vcpu_free(vcpu);
311 }
312
313 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
314 {
315 return kvm_timer_is_pending(vcpu);
316 }
317
318 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
319 {
320 kvm_timer_schedule(vcpu);
321 kvm_vgic_v4_enable_doorbell(vcpu);
322 }
323
324 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
325 {
326 kvm_timer_unschedule(vcpu);
327 kvm_vgic_v4_disable_doorbell(vcpu);
328 }
329
330 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
331 {
332 /* Force users to call KVM_ARM_VCPU_INIT */
333 vcpu->arch.target = -1;
334 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
335
336 /* Set up the timer */
337 kvm_timer_vcpu_init(vcpu);
338
339 kvm_arm_reset_debug_ptr(vcpu);
340
341 return kvm_vgic_vcpu_init(vcpu);
342 }
343
344 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
345 {
346 int *last_ran;
347
348 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
349
350 /*
351 * We might get preempted before the vCPU actually runs, but
352 * over-invalidation doesn't affect correctness.
353 */
354 if (*last_ran != vcpu->vcpu_id) {
355 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
356 *last_ran = vcpu->vcpu_id;
357 }
358
359 vcpu->cpu = cpu;
360 vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
361
362 kvm_arm_set_running_vcpu(vcpu);
363 kvm_vgic_load(vcpu);
364 kvm_timer_vcpu_load(vcpu);
365 }
366
367 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
368 {
369 kvm_timer_vcpu_put(vcpu);
370 kvm_vgic_put(vcpu);
371
372 vcpu->cpu = -1;
373
374 kvm_arm_set_running_vcpu(NULL);
375 }
376
377 static void vcpu_power_off(struct kvm_vcpu *vcpu)
378 {
379 vcpu->arch.power_off = true;
380 kvm_make_request(KVM_REQ_SLEEP, vcpu);
381 kvm_vcpu_kick(vcpu);
382 }
383
384 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
385 struct kvm_mp_state *mp_state)
386 {
387 if (vcpu->arch.power_off)
388 mp_state->mp_state = KVM_MP_STATE_STOPPED;
389 else
390 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
391
392 return 0;
393 }
394
395 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
396 struct kvm_mp_state *mp_state)
397 {
398 int ret = 0;
399
400 switch (mp_state->mp_state) {
401 case KVM_MP_STATE_RUNNABLE:
402 vcpu->arch.power_off = false;
403 break;
404 case KVM_MP_STATE_STOPPED:
405 vcpu_power_off(vcpu);
406 break;
407 default:
408 ret = -EINVAL;
409 }
410
411 return ret;
412 }
413
414 /**
415 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
416 * @v: The VCPU pointer
417 *
418 * If the guest CPU is not waiting for interrupts or an interrupt line is
419 * asserted, the CPU is by definition runnable.
420 */
421 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
422 {
423 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
424 && !v->arch.power_off && !v->arch.pause);
425 }
426
427 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
428 {
429 return vcpu_mode_priv(vcpu);
430 }
431
432 /* Just ensure a guest exit from a particular CPU */
433 static void exit_vm_noop(void *info)
434 {
435 }
436
437 void force_vm_exit(const cpumask_t *mask)
438 {
439 preempt_disable();
440 smp_call_function_many(mask, exit_vm_noop, NULL, true);
441 preempt_enable();
442 }
443
444 /**
445 * need_new_vmid_gen - check that the VMID is still valid
446 * @kvm: The VM's VMID to check
447 *
448 * return true if there is a new generation of VMIDs being used
449 *
450 * The hardware supports only 256 values with the value zero reserved for the
451 * host, so we check if an assigned value belongs to a previous generation,
452 * which which requires us to assign a new value. If we're the first to use a
453 * VMID for the new generation, we must flush necessary caches and TLBs on all
454 * CPUs.
455 */
456 static bool need_new_vmid_gen(struct kvm *kvm)
457 {
458 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
459 }
460
461 /**
462 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
463 * @kvm The guest that we are about to run
464 *
465 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
466 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
467 * caches and TLBs.
468 */
469 static void update_vttbr(struct kvm *kvm)
470 {
471 phys_addr_t pgd_phys;
472 u64 vmid;
473
474 if (!need_new_vmid_gen(kvm))
475 return;
476
477 spin_lock(&kvm_vmid_lock);
478
479 /*
480 * We need to re-check the vmid_gen here to ensure that if another vcpu
481 * already allocated a valid vmid for this vm, then this vcpu should
482 * use the same vmid.
483 */
484 if (!need_new_vmid_gen(kvm)) {
485 spin_unlock(&kvm_vmid_lock);
486 return;
487 }
488
489 /* First user of a new VMID generation? */
490 if (unlikely(kvm_next_vmid == 0)) {
491 atomic64_inc(&kvm_vmid_gen);
492 kvm_next_vmid = 1;
493
494 /*
495 * On SMP we know no other CPUs can use this CPU's or each
496 * other's VMID after force_vm_exit returns since the
497 * kvm_vmid_lock blocks them from reentry to the guest.
498 */
499 force_vm_exit(cpu_all_mask);
500 /*
501 * Now broadcast TLB + ICACHE invalidation over the inner
502 * shareable domain to make sure all data structures are
503 * clean.
504 */
505 kvm_call_hyp(__kvm_flush_vm_context);
506 }
507
508 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
509 kvm->arch.vmid = kvm_next_vmid;
510 kvm_next_vmid++;
511 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
512
513 /* update vttbr to be used with the new vmid */
514 pgd_phys = virt_to_phys(kvm->arch.pgd);
515 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
516 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
517 kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
518
519 spin_unlock(&kvm_vmid_lock);
520 }
521
522 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
523 {
524 struct kvm *kvm = vcpu->kvm;
525 int ret = 0;
526
527 if (likely(vcpu->arch.has_run_once))
528 return 0;
529
530 vcpu->arch.has_run_once = true;
531
532 if (likely(irqchip_in_kernel(kvm))) {
533 /*
534 * Map the VGIC hardware resources before running a vcpu the
535 * first time on this VM.
536 */
537 if (unlikely(!vgic_ready(kvm))) {
538 ret = kvm_vgic_map_resources(kvm);
539 if (ret)
540 return ret;
541 }
542 } else {
543 /*
544 * Tell the rest of the code that there are userspace irqchip
545 * VMs in the wild.
546 */
547 static_branch_inc(&userspace_irqchip_in_use);
548 }
549
550 ret = kvm_timer_enable(vcpu);
551 if (ret)
552 return ret;
553
554 ret = kvm_arm_pmu_v3_enable(vcpu);
555
556 return ret;
557 }
558
559 bool kvm_arch_intc_initialized(struct kvm *kvm)
560 {
561 return vgic_initialized(kvm);
562 }
563
564 void kvm_arm_halt_guest(struct kvm *kvm)
565 {
566 int i;
567 struct kvm_vcpu *vcpu;
568
569 kvm_for_each_vcpu(i, vcpu, kvm)
570 vcpu->arch.pause = true;
571 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
572 }
573
574 void kvm_arm_resume_guest(struct kvm *kvm)
575 {
576 int i;
577 struct kvm_vcpu *vcpu;
578
579 kvm_for_each_vcpu(i, vcpu, kvm) {
580 vcpu->arch.pause = false;
581 swake_up(kvm_arch_vcpu_wq(vcpu));
582 }
583 }
584
585 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
586 {
587 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
588
589 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
590 (!vcpu->arch.pause)));
591
592 if (vcpu->arch.power_off || vcpu->arch.pause) {
593 /* Awaken to handle a signal, request we sleep again later. */
594 kvm_make_request(KVM_REQ_SLEEP, vcpu);
595 }
596 }
597
598 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
599 {
600 return vcpu->arch.target >= 0;
601 }
602
603 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
604 {
605 if (kvm_request_pending(vcpu)) {
606 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
607 vcpu_req_sleep(vcpu);
608
609 /*
610 * Clear IRQ_PENDING requests that were made to guarantee
611 * that a VCPU sees new virtual interrupts.
612 */
613 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
614 }
615 }
616
617 /**
618 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
619 * @vcpu: The VCPU pointer
620 * @run: The kvm_run structure pointer used for userspace state exchange
621 *
622 * This function is called through the VCPU_RUN ioctl called from user space. It
623 * will execute VM code in a loop until the time slice for the process is used
624 * or some emulation is needed from user space in which case the function will
625 * return with return value 0 and with the kvm_run structure filled in with the
626 * required data for the requested emulation.
627 */
628 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
629 {
630 int ret;
631
632 if (unlikely(!kvm_vcpu_initialized(vcpu)))
633 return -ENOEXEC;
634
635 vcpu_load(vcpu);
636
637 ret = kvm_vcpu_first_run_init(vcpu);
638 if (ret)
639 goto out;
640
641 if (run->exit_reason == KVM_EXIT_MMIO) {
642 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
643 if (ret)
644 goto out;
645 if (kvm_arm_handle_step_debug(vcpu, vcpu->run)) {
646 ret = 0;
647 goto out;
648 }
649
650 }
651
652 if (run->immediate_exit) {
653 ret = -EINTR;
654 goto out;
655 }
656
657 kvm_sigset_activate(vcpu);
658
659 ret = 1;
660 run->exit_reason = KVM_EXIT_UNKNOWN;
661 while (ret > 0) {
662 /*
663 * Check conditions before entering the guest
664 */
665 cond_resched();
666
667 update_vttbr(vcpu->kvm);
668
669 check_vcpu_requests(vcpu);
670
671 /*
672 * Preparing the interrupts to be injected also
673 * involves poking the GIC, which must be done in a
674 * non-preemptible context.
675 */
676 preempt_disable();
677
678 /* Flush FP/SIMD state that can't survive guest entry/exit */
679 kvm_fpsimd_flush_cpu_state();
680
681 kvm_pmu_flush_hwstate(vcpu);
682
683 local_irq_disable();
684
685 kvm_vgic_flush_hwstate(vcpu);
686
687 /*
688 * Exit if we have a signal pending so that we can deliver the
689 * signal to user space.
690 */
691 if (signal_pending(current)) {
692 ret = -EINTR;
693 run->exit_reason = KVM_EXIT_INTR;
694 }
695
696 /*
697 * If we're using a userspace irqchip, then check if we need
698 * to tell a userspace irqchip about timer or PMU level
699 * changes and if so, exit to userspace (the actual level
700 * state gets updated in kvm_timer_update_run and
701 * kvm_pmu_update_run below).
702 */
703 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
704 if (kvm_timer_should_notify_user(vcpu) ||
705 kvm_pmu_should_notify_user(vcpu)) {
706 ret = -EINTR;
707 run->exit_reason = KVM_EXIT_INTR;
708 }
709 }
710
711 /*
712 * Ensure we set mode to IN_GUEST_MODE after we disable
713 * interrupts and before the final VCPU requests check.
714 * See the comment in kvm_vcpu_exiting_guest_mode() and
715 * Documentation/virtual/kvm/vcpu-requests.rst
716 */
717 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
718
719 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
720 kvm_request_pending(vcpu)) {
721 vcpu->mode = OUTSIDE_GUEST_MODE;
722 kvm_pmu_sync_hwstate(vcpu);
723 if (static_branch_unlikely(&userspace_irqchip_in_use))
724 kvm_timer_sync_hwstate(vcpu);
725 kvm_vgic_sync_hwstate(vcpu);
726 local_irq_enable();
727 preempt_enable();
728 continue;
729 }
730
731 kvm_arm_setup_debug(vcpu);
732
733 /**************************************************************
734 * Enter the guest
735 */
736 trace_kvm_entry(*vcpu_pc(vcpu));
737 guest_enter_irqoff();
738 if (has_vhe())
739 kvm_arm_vhe_guest_enter();
740
741 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
742
743 if (has_vhe())
744 kvm_arm_vhe_guest_exit();
745 vcpu->mode = OUTSIDE_GUEST_MODE;
746 vcpu->stat.exits++;
747 /*
748 * Back from guest
749 *************************************************************/
750
751 kvm_arm_clear_debug(vcpu);
752
753 /*
754 * We must sync the PMU state before the vgic state so
755 * that the vgic can properly sample the updated state of the
756 * interrupt line.
757 */
758 kvm_pmu_sync_hwstate(vcpu);
759
760 /*
761 * Sync the vgic state before syncing the timer state because
762 * the timer code needs to know if the virtual timer
763 * interrupts are active.
764 */
765 kvm_vgic_sync_hwstate(vcpu);
766
767 /*
768 * Sync the timer hardware state before enabling interrupts as
769 * we don't want vtimer interrupts to race with syncing the
770 * timer virtual interrupt state.
771 */
772 if (static_branch_unlikely(&userspace_irqchip_in_use))
773 kvm_timer_sync_hwstate(vcpu);
774
775 /*
776 * We may have taken a host interrupt in HYP mode (ie
777 * while executing the guest). This interrupt is still
778 * pending, as we haven't serviced it yet!
779 *
780 * We're now back in SVC mode, with interrupts
781 * disabled. Enabling the interrupts now will have
782 * the effect of taking the interrupt again, in SVC
783 * mode this time.
784 */
785 local_irq_enable();
786
787 /*
788 * We do local_irq_enable() before calling guest_exit() so
789 * that if a timer interrupt hits while running the guest we
790 * account that tick as being spent in the guest. We enable
791 * preemption after calling guest_exit() so that if we get
792 * preempted we make sure ticks after that is not counted as
793 * guest time.
794 */
795 guest_exit();
796 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
797
798 /* Exit types that need handling before we can be preempted */
799 handle_exit_early(vcpu, run, ret);
800
801 preempt_enable();
802
803 ret = handle_exit(vcpu, run, ret);
804 }
805
806 /* Tell userspace about in-kernel device output levels */
807 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
808 kvm_timer_update_run(vcpu);
809 kvm_pmu_update_run(vcpu);
810 }
811
812 kvm_sigset_deactivate(vcpu);
813
814 out:
815 vcpu_put(vcpu);
816 return ret;
817 }
818
819 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
820 {
821 int bit_index;
822 bool set;
823 unsigned long *ptr;
824
825 if (number == KVM_ARM_IRQ_CPU_IRQ)
826 bit_index = __ffs(HCR_VI);
827 else /* KVM_ARM_IRQ_CPU_FIQ */
828 bit_index = __ffs(HCR_VF);
829
830 ptr = (unsigned long *)&vcpu->arch.irq_lines;
831 if (level)
832 set = test_and_set_bit(bit_index, ptr);
833 else
834 set = test_and_clear_bit(bit_index, ptr);
835
836 /*
837 * If we didn't change anything, no need to wake up or kick other CPUs
838 */
839 if (set == level)
840 return 0;
841
842 /*
843 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
844 * trigger a world-switch round on the running physical CPU to set the
845 * virtual IRQ/FIQ fields in the HCR appropriately.
846 */
847 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
848 kvm_vcpu_kick(vcpu);
849
850 return 0;
851 }
852
853 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
854 bool line_status)
855 {
856 u32 irq = irq_level->irq;
857 unsigned int irq_type, vcpu_idx, irq_num;
858 int nrcpus = atomic_read(&kvm->online_vcpus);
859 struct kvm_vcpu *vcpu = NULL;
860 bool level = irq_level->level;
861
862 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
863 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
864 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
865
866 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
867
868 switch (irq_type) {
869 case KVM_ARM_IRQ_TYPE_CPU:
870 if (irqchip_in_kernel(kvm))
871 return -ENXIO;
872
873 if (vcpu_idx >= nrcpus)
874 return -EINVAL;
875
876 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
877 if (!vcpu)
878 return -EINVAL;
879
880 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
881 return -EINVAL;
882
883 return vcpu_interrupt_line(vcpu, irq_num, level);
884 case KVM_ARM_IRQ_TYPE_PPI:
885 if (!irqchip_in_kernel(kvm))
886 return -ENXIO;
887
888 if (vcpu_idx >= nrcpus)
889 return -EINVAL;
890
891 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
892 if (!vcpu)
893 return -EINVAL;
894
895 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
896 return -EINVAL;
897
898 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
899 case KVM_ARM_IRQ_TYPE_SPI:
900 if (!irqchip_in_kernel(kvm))
901 return -ENXIO;
902
903 if (irq_num < VGIC_NR_PRIVATE_IRQS)
904 return -EINVAL;
905
906 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
907 }
908
909 return -EINVAL;
910 }
911
912 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
913 const struct kvm_vcpu_init *init)
914 {
915 unsigned int i;
916 int phys_target = kvm_target_cpu();
917
918 if (init->target != phys_target)
919 return -EINVAL;
920
921 /*
922 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
923 * use the same target.
924 */
925 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
926 return -EINVAL;
927
928 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
929 for (i = 0; i < sizeof(init->features) * 8; i++) {
930 bool set = (init->features[i / 32] & (1 << (i % 32)));
931
932 if (set && i >= KVM_VCPU_MAX_FEATURES)
933 return -ENOENT;
934
935 /*
936 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
937 * use the same feature set.
938 */
939 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
940 test_bit(i, vcpu->arch.features) != set)
941 return -EINVAL;
942
943 if (set)
944 set_bit(i, vcpu->arch.features);
945 }
946
947 vcpu->arch.target = phys_target;
948
949 /* Now we know what it is, we can reset it. */
950 return kvm_reset_vcpu(vcpu);
951 }
952
953
954 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
955 struct kvm_vcpu_init *init)
956 {
957 int ret;
958
959 ret = kvm_vcpu_set_target(vcpu, init);
960 if (ret)
961 return ret;
962
963 /*
964 * Ensure a rebooted VM will fault in RAM pages and detect if the
965 * guest MMU is turned off and flush the caches as needed.
966 */
967 if (vcpu->arch.has_run_once)
968 stage2_unmap_vm(vcpu->kvm);
969
970 vcpu_reset_hcr(vcpu);
971
972 /*
973 * Handle the "start in power-off" case.
974 */
975 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
976 vcpu_power_off(vcpu);
977 else
978 vcpu->arch.power_off = false;
979
980 return 0;
981 }
982
983 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
984 struct kvm_device_attr *attr)
985 {
986 int ret = -ENXIO;
987
988 switch (attr->group) {
989 default:
990 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
991 break;
992 }
993
994 return ret;
995 }
996
997 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
998 struct kvm_device_attr *attr)
999 {
1000 int ret = -ENXIO;
1001
1002 switch (attr->group) {
1003 default:
1004 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1005 break;
1006 }
1007
1008 return ret;
1009 }
1010
1011 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1012 struct kvm_device_attr *attr)
1013 {
1014 int ret = -ENXIO;
1015
1016 switch (attr->group) {
1017 default:
1018 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1019 break;
1020 }
1021
1022 return ret;
1023 }
1024
1025 long kvm_arch_vcpu_ioctl(struct file *filp,
1026 unsigned int ioctl, unsigned long arg)
1027 {
1028 struct kvm_vcpu *vcpu = filp->private_data;
1029 void __user *argp = (void __user *)arg;
1030 struct kvm_device_attr attr;
1031 long r;
1032
1033 switch (ioctl) {
1034 case KVM_ARM_VCPU_INIT: {
1035 struct kvm_vcpu_init init;
1036
1037 r = -EFAULT;
1038 if (copy_from_user(&init, argp, sizeof(init)))
1039 break;
1040
1041 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1042 break;
1043 }
1044 case KVM_SET_ONE_REG:
1045 case KVM_GET_ONE_REG: {
1046 struct kvm_one_reg reg;
1047
1048 r = -ENOEXEC;
1049 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1050 break;
1051
1052 r = -EFAULT;
1053 if (copy_from_user(&reg, argp, sizeof(reg)))
1054 break;
1055
1056 if (ioctl == KVM_SET_ONE_REG)
1057 r = kvm_arm_set_reg(vcpu, &reg);
1058 else
1059 r = kvm_arm_get_reg(vcpu, &reg);
1060 break;
1061 }
1062 case KVM_GET_REG_LIST: {
1063 struct kvm_reg_list __user *user_list = argp;
1064 struct kvm_reg_list reg_list;
1065 unsigned n;
1066
1067 r = -ENOEXEC;
1068 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1069 break;
1070
1071 r = -EFAULT;
1072 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1073 break;
1074 n = reg_list.n;
1075 reg_list.n = kvm_arm_num_regs(vcpu);
1076 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1077 break;
1078 r = -E2BIG;
1079 if (n < reg_list.n)
1080 break;
1081 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1082 break;
1083 }
1084 case KVM_SET_DEVICE_ATTR: {
1085 r = -EFAULT;
1086 if (copy_from_user(&attr, argp, sizeof(attr)))
1087 break;
1088 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1089 break;
1090 }
1091 case KVM_GET_DEVICE_ATTR: {
1092 r = -EFAULT;
1093 if (copy_from_user(&attr, argp, sizeof(attr)))
1094 break;
1095 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1096 break;
1097 }
1098 case KVM_HAS_DEVICE_ATTR: {
1099 r = -EFAULT;
1100 if (copy_from_user(&attr, argp, sizeof(attr)))
1101 break;
1102 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1103 break;
1104 }
1105 default:
1106 r = -EINVAL;
1107 }
1108
1109 return r;
1110 }
1111
1112 /**
1113 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1114 * @kvm: kvm instance
1115 * @log: slot id and address to which we copy the log
1116 *
1117 * Steps 1-4 below provide general overview of dirty page logging. See
1118 * kvm_get_dirty_log_protect() function description for additional details.
1119 *
1120 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1121 * always flush the TLB (step 4) even if previous step failed and the dirty
1122 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1123 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1124 * writes will be marked dirty for next log read.
1125 *
1126 * 1. Take a snapshot of the bit and clear it if needed.
1127 * 2. Write protect the corresponding page.
1128 * 3. Copy the snapshot to the userspace.
1129 * 4. Flush TLB's if needed.
1130 */
1131 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1132 {
1133 bool is_dirty = false;
1134 int r;
1135
1136 mutex_lock(&kvm->slots_lock);
1137
1138 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1139
1140 if (is_dirty)
1141 kvm_flush_remote_tlbs(kvm);
1142
1143 mutex_unlock(&kvm->slots_lock);
1144 return r;
1145 }
1146
1147 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1148 struct kvm_arm_device_addr *dev_addr)
1149 {
1150 unsigned long dev_id, type;
1151
1152 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1153 KVM_ARM_DEVICE_ID_SHIFT;
1154 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1155 KVM_ARM_DEVICE_TYPE_SHIFT;
1156
1157 switch (dev_id) {
1158 case KVM_ARM_DEVICE_VGIC_V2:
1159 if (!vgic_present)
1160 return -ENXIO;
1161 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1162 default:
1163 return -ENODEV;
1164 }
1165 }
1166
1167 long kvm_arch_vm_ioctl(struct file *filp,
1168 unsigned int ioctl, unsigned long arg)
1169 {
1170 struct kvm *kvm = filp->private_data;
1171 void __user *argp = (void __user *)arg;
1172
1173 switch (ioctl) {
1174 case KVM_CREATE_IRQCHIP: {
1175 int ret;
1176 if (!vgic_present)
1177 return -ENXIO;
1178 mutex_lock(&kvm->lock);
1179 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1180 mutex_unlock(&kvm->lock);
1181 return ret;
1182 }
1183 case KVM_ARM_SET_DEVICE_ADDR: {
1184 struct kvm_arm_device_addr dev_addr;
1185
1186 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1187 return -EFAULT;
1188 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1189 }
1190 case KVM_ARM_PREFERRED_TARGET: {
1191 int err;
1192 struct kvm_vcpu_init init;
1193
1194 err = kvm_vcpu_preferred_target(&init);
1195 if (err)
1196 return err;
1197
1198 if (copy_to_user(argp, &init, sizeof(init)))
1199 return -EFAULT;
1200
1201 return 0;
1202 }
1203 default:
1204 return -EINVAL;
1205 }
1206 }
1207
1208 static void cpu_init_hyp_mode(void *dummy)
1209 {
1210 phys_addr_t pgd_ptr;
1211 unsigned long hyp_stack_ptr;
1212 unsigned long stack_page;
1213 unsigned long vector_ptr;
1214
1215 /* Switch from the HYP stub to our own HYP init vector */
1216 __hyp_set_vectors(kvm_get_idmap_vector());
1217
1218 pgd_ptr = kvm_mmu_get_httbr();
1219 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1220 hyp_stack_ptr = stack_page + PAGE_SIZE;
1221 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1222
1223 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1224 __cpu_init_stage2();
1225
1226 kvm_arm_init_debug();
1227 }
1228
1229 static void cpu_hyp_reset(void)
1230 {
1231 if (!is_kernel_in_hyp_mode())
1232 __hyp_reset_vectors();
1233 }
1234
1235 static void cpu_hyp_reinit(void)
1236 {
1237 cpu_hyp_reset();
1238
1239 if (is_kernel_in_hyp_mode()) {
1240 /*
1241 * __cpu_init_stage2() is safe to call even if the PM
1242 * event was cancelled before the CPU was reset.
1243 */
1244 __cpu_init_stage2();
1245 kvm_timer_init_vhe();
1246 } else {
1247 cpu_init_hyp_mode(NULL);
1248 }
1249
1250 if (vgic_present)
1251 kvm_vgic_init_cpu_hardware();
1252 }
1253
1254 static void _kvm_arch_hardware_enable(void *discard)
1255 {
1256 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1257 cpu_hyp_reinit();
1258 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1259 }
1260 }
1261
1262 int kvm_arch_hardware_enable(void)
1263 {
1264 _kvm_arch_hardware_enable(NULL);
1265 return 0;
1266 }
1267
1268 static void _kvm_arch_hardware_disable(void *discard)
1269 {
1270 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1271 cpu_hyp_reset();
1272 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1273 }
1274 }
1275
1276 void kvm_arch_hardware_disable(void)
1277 {
1278 _kvm_arch_hardware_disable(NULL);
1279 }
1280
1281 #ifdef CONFIG_CPU_PM
1282 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1283 unsigned long cmd,
1284 void *v)
1285 {
1286 /*
1287 * kvm_arm_hardware_enabled is left with its old value over
1288 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1289 * re-enable hyp.
1290 */
1291 switch (cmd) {
1292 case CPU_PM_ENTER:
1293 if (__this_cpu_read(kvm_arm_hardware_enabled))
1294 /*
1295 * don't update kvm_arm_hardware_enabled here
1296 * so that the hardware will be re-enabled
1297 * when we resume. See below.
1298 */
1299 cpu_hyp_reset();
1300
1301 return NOTIFY_OK;
1302 case CPU_PM_ENTER_FAILED:
1303 case CPU_PM_EXIT:
1304 if (__this_cpu_read(kvm_arm_hardware_enabled))
1305 /* The hardware was enabled before suspend. */
1306 cpu_hyp_reinit();
1307
1308 return NOTIFY_OK;
1309
1310 default:
1311 return NOTIFY_DONE;
1312 }
1313 }
1314
1315 static struct notifier_block hyp_init_cpu_pm_nb = {
1316 .notifier_call = hyp_init_cpu_pm_notifier,
1317 };
1318
1319 static void __init hyp_cpu_pm_init(void)
1320 {
1321 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1322 }
1323 static void __init hyp_cpu_pm_exit(void)
1324 {
1325 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1326 }
1327 #else
1328 static inline void hyp_cpu_pm_init(void)
1329 {
1330 }
1331 static inline void hyp_cpu_pm_exit(void)
1332 {
1333 }
1334 #endif
1335
1336 static int init_common_resources(void)
1337 {
1338 /* set size of VMID supported by CPU */
1339 kvm_vmid_bits = kvm_get_vmid_bits();
1340 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1341
1342 return 0;
1343 }
1344
1345 static int init_subsystems(void)
1346 {
1347 int err = 0;
1348
1349 /*
1350 * Enable hardware so that subsystem initialisation can access EL2.
1351 */
1352 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1353
1354 /*
1355 * Register CPU lower-power notifier
1356 */
1357 hyp_cpu_pm_init();
1358
1359 /*
1360 * Init HYP view of VGIC
1361 */
1362 err = kvm_vgic_hyp_init();
1363 switch (err) {
1364 case 0:
1365 vgic_present = true;
1366 break;
1367 case -ENODEV:
1368 case -ENXIO:
1369 vgic_present = false;
1370 err = 0;
1371 break;
1372 default:
1373 goto out;
1374 }
1375
1376 /*
1377 * Init HYP architected timer support
1378 */
1379 err = kvm_timer_hyp_init(vgic_present);
1380 if (err)
1381 goto out;
1382
1383 kvm_perf_init();
1384 kvm_coproc_table_init();
1385
1386 out:
1387 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1388
1389 return err;
1390 }
1391
1392 static void teardown_hyp_mode(void)
1393 {
1394 int cpu;
1395
1396 free_hyp_pgds();
1397 for_each_possible_cpu(cpu)
1398 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1399 hyp_cpu_pm_exit();
1400 }
1401
1402 /**
1403 * Inits Hyp-mode on all online CPUs
1404 */
1405 static int init_hyp_mode(void)
1406 {
1407 int cpu;
1408 int err = 0;
1409
1410 /*
1411 * Allocate Hyp PGD and setup Hyp identity mapping
1412 */
1413 err = kvm_mmu_init();
1414 if (err)
1415 goto out_err;
1416
1417 /*
1418 * Allocate stack pages for Hypervisor-mode
1419 */
1420 for_each_possible_cpu(cpu) {
1421 unsigned long stack_page;
1422
1423 stack_page = __get_free_page(GFP_KERNEL);
1424 if (!stack_page) {
1425 err = -ENOMEM;
1426 goto out_err;
1427 }
1428
1429 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1430 }
1431
1432 /*
1433 * Map the Hyp-code called directly from the host
1434 */
1435 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1436 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1437 if (err) {
1438 kvm_err("Cannot map world-switch code\n");
1439 goto out_err;
1440 }
1441
1442 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1443 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1444 if (err) {
1445 kvm_err("Cannot map rodata section\n");
1446 goto out_err;
1447 }
1448
1449 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1450 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1451 if (err) {
1452 kvm_err("Cannot map bss section\n");
1453 goto out_err;
1454 }
1455
1456 err = kvm_map_vectors();
1457 if (err) {
1458 kvm_err("Cannot map vectors\n");
1459 goto out_err;
1460 }
1461
1462 /*
1463 * Map the Hyp stack pages
1464 */
1465 for_each_possible_cpu(cpu) {
1466 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1467 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1468 PAGE_HYP);
1469
1470 if (err) {
1471 kvm_err("Cannot map hyp stack\n");
1472 goto out_err;
1473 }
1474 }
1475
1476 for_each_possible_cpu(cpu) {
1477 kvm_cpu_context_t *cpu_ctxt;
1478
1479 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1480 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1481
1482 if (err) {
1483 kvm_err("Cannot map host CPU state: %d\n", err);
1484 goto out_err;
1485 }
1486 }
1487
1488 return 0;
1489
1490 out_err:
1491 teardown_hyp_mode();
1492 kvm_err("error initializing Hyp mode: %d\n", err);
1493 return err;
1494 }
1495
1496 static void check_kvm_target_cpu(void *ret)
1497 {
1498 *(int *)ret = kvm_target_cpu();
1499 }
1500
1501 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1502 {
1503 struct kvm_vcpu *vcpu;
1504 int i;
1505
1506 mpidr &= MPIDR_HWID_BITMASK;
1507 kvm_for_each_vcpu(i, vcpu, kvm) {
1508 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1509 return vcpu;
1510 }
1511 return NULL;
1512 }
1513
1514 bool kvm_arch_has_irq_bypass(void)
1515 {
1516 return true;
1517 }
1518
1519 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1520 struct irq_bypass_producer *prod)
1521 {
1522 struct kvm_kernel_irqfd *irqfd =
1523 container_of(cons, struct kvm_kernel_irqfd, consumer);
1524
1525 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1526 &irqfd->irq_entry);
1527 }
1528 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1529 struct irq_bypass_producer *prod)
1530 {
1531 struct kvm_kernel_irqfd *irqfd =
1532 container_of(cons, struct kvm_kernel_irqfd, consumer);
1533
1534 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1535 &irqfd->irq_entry);
1536 }
1537
1538 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1539 {
1540 struct kvm_kernel_irqfd *irqfd =
1541 container_of(cons, struct kvm_kernel_irqfd, consumer);
1542
1543 kvm_arm_halt_guest(irqfd->kvm);
1544 }
1545
1546 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1547 {
1548 struct kvm_kernel_irqfd *irqfd =
1549 container_of(cons, struct kvm_kernel_irqfd, consumer);
1550
1551 kvm_arm_resume_guest(irqfd->kvm);
1552 }
1553
1554 /**
1555 * Initialize Hyp-mode and memory mappings on all CPUs.
1556 */
1557 int kvm_arch_init(void *opaque)
1558 {
1559 int err;
1560 int ret, cpu;
1561 bool in_hyp_mode;
1562
1563 if (!is_hyp_mode_available()) {
1564 kvm_info("HYP mode not available\n");
1565 return -ENODEV;
1566 }
1567
1568 for_each_online_cpu(cpu) {
1569 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1570 if (ret < 0) {
1571 kvm_err("Error, CPU %d not supported!\n", cpu);
1572 return -ENODEV;
1573 }
1574 }
1575
1576 err = init_common_resources();
1577 if (err)
1578 return err;
1579
1580 in_hyp_mode = is_kernel_in_hyp_mode();
1581
1582 if (!in_hyp_mode) {
1583 err = init_hyp_mode();
1584 if (err)
1585 goto out_err;
1586 }
1587
1588 err = init_subsystems();
1589 if (err)
1590 goto out_hyp;
1591
1592 if (in_hyp_mode)
1593 kvm_info("VHE mode initialized successfully\n");
1594 else
1595 kvm_info("Hyp mode initialized successfully\n");
1596
1597 return 0;
1598
1599 out_hyp:
1600 if (!in_hyp_mode)
1601 teardown_hyp_mode();
1602 out_err:
1603 return err;
1604 }
1605
1606 /* NOP: Compiling as a module not supported */
1607 void kvm_arch_exit(void)
1608 {
1609 kvm_perf_teardown();
1610 }
1611
1612 static int arm_init(void)
1613 {
1614 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1615 return rc;
1616 }
1617
1618 module_init(arm_init);