]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/arm/arm.c
680c401d0faca7295656952bd5af6718dc81f069
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / arm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <linux/kvm_irqfd.h>
31 #include <linux/irqbypass.h>
32 #include <trace/events/kvm.h>
33 #include <kvm/arm_pmu.h>
34 #include <kvm/arm_psci.h>
35
36 #define CREATE_TRACE_POINTS
37 #include "trace.h"
38
39 #include <linux/uaccess.h>
40 #include <asm/ptrace.h>
41 #include <asm/mman.h>
42 #include <asm/tlbflush.h>
43 #include <asm/cacheflush.h>
44 #include <asm/virt.h>
45 #include <asm/kvm_arm.h>
46 #include <asm/kvm_asm.h>
47 #include <asm/kvm_mmu.h>
48 #include <asm/kvm_emulate.h>
49 #include <asm/kvm_coproc.h>
50 #include <asm/sections.h>
51
52 #ifdef REQUIRES_VIRT
53 __asm__(".arch_extension virt");
54 #endif
55
56 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
57 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
58
59 /* Per-CPU variable containing the currently running vcpu. */
60 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
61
62 /* The VMID used in the VTTBR */
63 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
64 static u32 kvm_next_vmid;
65 static unsigned int kvm_vmid_bits __read_mostly;
66 static DEFINE_SPINLOCK(kvm_vmid_lock);
67
68 static bool vgic_present;
69
70 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
71
72 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
73 {
74 BUG_ON(preemptible());
75 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
76 }
77
78 /**
79 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
80 * Must be called from non-preemptible context
81 */
82 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
83 {
84 BUG_ON(preemptible());
85 return __this_cpu_read(kvm_arm_running_vcpu);
86 }
87
88 /**
89 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
90 */
91 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
92 {
93 return &kvm_arm_running_vcpu;
94 }
95
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97 {
98 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
99 }
100
101 int kvm_arch_hardware_setup(void)
102 {
103 return 0;
104 }
105
106 void kvm_arch_check_processor_compat(void *rtn)
107 {
108 *(int *)rtn = 0;
109 }
110
111
112 /**
113 * kvm_arch_init_vm - initializes a VM data structure
114 * @kvm: pointer to the KVM struct
115 */
116 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
117 {
118 int ret, cpu;
119
120 if (type)
121 return -EINVAL;
122
123 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
124 if (!kvm->arch.last_vcpu_ran)
125 return -ENOMEM;
126
127 for_each_possible_cpu(cpu)
128 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
129
130 ret = kvm_alloc_stage2_pgd(kvm);
131 if (ret)
132 goto out_fail_alloc;
133
134 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
135 if (ret)
136 goto out_free_stage2_pgd;
137
138 kvm_vgic_early_init(kvm);
139
140 /* Mark the initial VMID generation invalid */
141 kvm->arch.vmid_gen = 0;
142
143 /* The maximum number of VCPUs is limited by the host's GIC model */
144 kvm->arch.max_vcpus = vgic_present ?
145 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146
147 return ret;
148 out_free_stage2_pgd:
149 kvm_free_stage2_pgd(kvm);
150 out_fail_alloc:
151 free_percpu(kvm->arch.last_vcpu_ran);
152 kvm->arch.last_vcpu_ran = NULL;
153 return ret;
154 }
155
156 bool kvm_arch_has_vcpu_debugfs(void)
157 {
158 return false;
159 }
160
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
162 {
163 return 0;
164 }
165
166 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168 return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173 * kvm_arch_destroy_vm - destroy the VM data structure
174 * @kvm: pointer to the KVM struct
175 */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178 int i;
179
180 kvm_vgic_destroy(kvm);
181
182 free_percpu(kvm->arch.last_vcpu_ran);
183 kvm->arch.last_vcpu_ran = NULL;
184
185 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
186 if (kvm->vcpus[i]) {
187 kvm_arch_vcpu_free(kvm->vcpus[i]);
188 kvm->vcpus[i] = NULL;
189 }
190 }
191 atomic_set(&kvm->online_vcpus, 0);
192 }
193
194 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
195 {
196 int r;
197 switch (ext) {
198 case KVM_CAP_IRQCHIP:
199 r = vgic_present;
200 break;
201 case KVM_CAP_IOEVENTFD:
202 case KVM_CAP_DEVICE_CTRL:
203 case KVM_CAP_USER_MEMORY:
204 case KVM_CAP_SYNC_MMU:
205 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
206 case KVM_CAP_ONE_REG:
207 case KVM_CAP_ARM_PSCI:
208 case KVM_CAP_ARM_PSCI_0_2:
209 case KVM_CAP_READONLY_MEM:
210 case KVM_CAP_MP_STATE:
211 case KVM_CAP_IMMEDIATE_EXIT:
212 r = 1;
213 break;
214 case KVM_CAP_ARM_SET_DEVICE_ADDR:
215 r = 1;
216 break;
217 case KVM_CAP_NR_VCPUS:
218 r = num_online_cpus();
219 break;
220 case KVM_CAP_MAX_VCPUS:
221 r = KVM_MAX_VCPUS;
222 break;
223 case KVM_CAP_NR_MEMSLOTS:
224 r = KVM_USER_MEM_SLOTS;
225 break;
226 case KVM_CAP_MSI_DEVID:
227 if (!kvm)
228 r = -EINVAL;
229 else
230 r = kvm->arch.vgic.msis_require_devid;
231 break;
232 case KVM_CAP_ARM_USER_IRQ:
233 /*
234 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
235 * (bump this number if adding more devices)
236 */
237 r = 1;
238 break;
239 default:
240 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
241 break;
242 }
243 return r;
244 }
245
246 long kvm_arch_dev_ioctl(struct file *filp,
247 unsigned int ioctl, unsigned long arg)
248 {
249 return -EINVAL;
250 }
251
252
253 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
254 {
255 int err;
256 struct kvm_vcpu *vcpu;
257
258 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
259 err = -EBUSY;
260 goto out;
261 }
262
263 if (id >= kvm->arch.max_vcpus) {
264 err = -EINVAL;
265 goto out;
266 }
267
268 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
269 if (!vcpu) {
270 err = -ENOMEM;
271 goto out;
272 }
273
274 err = kvm_vcpu_init(vcpu, kvm, id);
275 if (err)
276 goto free_vcpu;
277
278 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
279 if (err)
280 goto vcpu_uninit;
281
282 return vcpu;
283 vcpu_uninit:
284 kvm_vcpu_uninit(vcpu);
285 free_vcpu:
286 kmem_cache_free(kvm_vcpu_cache, vcpu);
287 out:
288 return ERR_PTR(err);
289 }
290
291 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292 {
293 kvm_vgic_vcpu_early_init(vcpu);
294 }
295
296 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
297 {
298 kvm_mmu_free_memory_caches(vcpu);
299 kvm_timer_vcpu_terminate(vcpu);
300 kvm_pmu_vcpu_destroy(vcpu);
301 kvm_vcpu_uninit(vcpu);
302 kmem_cache_free(kvm_vcpu_cache, vcpu);
303 }
304
305 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
306 {
307 kvm_arch_vcpu_free(vcpu);
308 }
309
310 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
311 {
312 return kvm_timer_is_pending(vcpu);
313 }
314
315 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
316 {
317 kvm_timer_schedule(vcpu);
318 kvm_vgic_v4_enable_doorbell(vcpu);
319 }
320
321 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
322 {
323 kvm_timer_unschedule(vcpu);
324 kvm_vgic_v4_disable_doorbell(vcpu);
325 }
326
327 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
328 {
329 /* Force users to call KVM_ARM_VCPU_INIT */
330 vcpu->arch.target = -1;
331 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
332
333 /* Set up the timer */
334 kvm_timer_vcpu_init(vcpu);
335
336 kvm_arm_reset_debug_ptr(vcpu);
337
338 return kvm_vgic_vcpu_init(vcpu);
339 }
340
341 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
342 {
343 int *last_ran;
344
345 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
346
347 /*
348 * We might get preempted before the vCPU actually runs, but
349 * over-invalidation doesn't affect correctness.
350 */
351 if (*last_ran != vcpu->vcpu_id) {
352 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
353 *last_ran = vcpu->vcpu_id;
354 }
355
356 vcpu->cpu = cpu;
357 vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
358
359 kvm_arm_set_running_vcpu(vcpu);
360 kvm_vgic_load(vcpu);
361 kvm_timer_vcpu_load(vcpu);
362 }
363
364 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
365 {
366 kvm_timer_vcpu_put(vcpu);
367 kvm_vgic_put(vcpu);
368
369 vcpu->cpu = -1;
370
371 kvm_arm_set_running_vcpu(NULL);
372 }
373
374 static void vcpu_power_off(struct kvm_vcpu *vcpu)
375 {
376 vcpu->arch.power_off = true;
377 kvm_make_request(KVM_REQ_SLEEP, vcpu);
378 kvm_vcpu_kick(vcpu);
379 }
380
381 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
382 struct kvm_mp_state *mp_state)
383 {
384 if (vcpu->arch.power_off)
385 mp_state->mp_state = KVM_MP_STATE_STOPPED;
386 else
387 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
388
389 return 0;
390 }
391
392 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
393 struct kvm_mp_state *mp_state)
394 {
395 switch (mp_state->mp_state) {
396 case KVM_MP_STATE_RUNNABLE:
397 vcpu->arch.power_off = false;
398 break;
399 case KVM_MP_STATE_STOPPED:
400 vcpu_power_off(vcpu);
401 break;
402 default:
403 return -EINVAL;
404 }
405
406 return 0;
407 }
408
409 /**
410 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
411 * @v: The VCPU pointer
412 *
413 * If the guest CPU is not waiting for interrupts or an interrupt line is
414 * asserted, the CPU is by definition runnable.
415 */
416 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
417 {
418 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
419 && !v->arch.power_off && !v->arch.pause);
420 }
421
422 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
423 {
424 return vcpu_mode_priv(vcpu);
425 }
426
427 /* Just ensure a guest exit from a particular CPU */
428 static void exit_vm_noop(void *info)
429 {
430 }
431
432 void force_vm_exit(const cpumask_t *mask)
433 {
434 preempt_disable();
435 smp_call_function_many(mask, exit_vm_noop, NULL, true);
436 preempt_enable();
437 }
438
439 /**
440 * need_new_vmid_gen - check that the VMID is still valid
441 * @kvm: The VM's VMID to check
442 *
443 * return true if there is a new generation of VMIDs being used
444 *
445 * The hardware supports only 256 values with the value zero reserved for the
446 * host, so we check if an assigned value belongs to a previous generation,
447 * which which requires us to assign a new value. If we're the first to use a
448 * VMID for the new generation, we must flush necessary caches and TLBs on all
449 * CPUs.
450 */
451 static bool need_new_vmid_gen(struct kvm *kvm)
452 {
453 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
454 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
455 return unlikely(READ_ONCE(kvm->arch.vmid_gen) != current_vmid_gen);
456 }
457
458 /**
459 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
460 * @kvm The guest that we are about to run
461 *
462 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
463 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
464 * caches and TLBs.
465 */
466 static void update_vttbr(struct kvm *kvm)
467 {
468 phys_addr_t pgd_phys;
469 u64 vmid;
470
471 if (!need_new_vmid_gen(kvm))
472 return;
473
474 spin_lock(&kvm_vmid_lock);
475
476 /*
477 * We need to re-check the vmid_gen here to ensure that if another vcpu
478 * already allocated a valid vmid for this vm, then this vcpu should
479 * use the same vmid.
480 */
481 if (!need_new_vmid_gen(kvm)) {
482 spin_unlock(&kvm_vmid_lock);
483 return;
484 }
485
486 /* First user of a new VMID generation? */
487 if (unlikely(kvm_next_vmid == 0)) {
488 atomic64_inc(&kvm_vmid_gen);
489 kvm_next_vmid = 1;
490
491 /*
492 * On SMP we know no other CPUs can use this CPU's or each
493 * other's VMID after force_vm_exit returns since the
494 * kvm_vmid_lock blocks them from reentry to the guest.
495 */
496 force_vm_exit(cpu_all_mask);
497 /*
498 * Now broadcast TLB + ICACHE invalidation over the inner
499 * shareable domain to make sure all data structures are
500 * clean.
501 */
502 kvm_call_hyp(__kvm_flush_vm_context);
503 }
504
505 kvm->arch.vmid = kvm_next_vmid;
506 kvm_next_vmid++;
507 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
508
509 /* update vttbr to be used with the new vmid */
510 pgd_phys = virt_to_phys(kvm->arch.pgd);
511 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
512 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
513 kvm->arch.vttbr = pgd_phys | vmid;
514
515 smp_wmb();
516 WRITE_ONCE(kvm->arch.vmid_gen, atomic64_read(&kvm_vmid_gen));
517
518 spin_unlock(&kvm_vmid_lock);
519 }
520
521 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
522 {
523 struct kvm *kvm = vcpu->kvm;
524 int ret = 0;
525
526 if (likely(vcpu->arch.has_run_once))
527 return 0;
528
529 vcpu->arch.has_run_once = true;
530
531 /*
532 * Map the VGIC hardware resources before running a vcpu the first
533 * time on this VM.
534 */
535 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
536 ret = kvm_vgic_map_resources(kvm);
537 if (ret)
538 return ret;
539 }
540
541 ret = kvm_timer_enable(vcpu);
542 if (ret)
543 return ret;
544
545 ret = kvm_arm_pmu_v3_enable(vcpu);
546
547 return ret;
548 }
549
550 bool kvm_arch_intc_initialized(struct kvm *kvm)
551 {
552 return vgic_initialized(kvm);
553 }
554
555 void kvm_arm_halt_guest(struct kvm *kvm)
556 {
557 int i;
558 struct kvm_vcpu *vcpu;
559
560 kvm_for_each_vcpu(i, vcpu, kvm)
561 vcpu->arch.pause = true;
562 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
563 }
564
565 void kvm_arm_resume_guest(struct kvm *kvm)
566 {
567 int i;
568 struct kvm_vcpu *vcpu;
569
570 kvm_for_each_vcpu(i, vcpu, kvm) {
571 vcpu->arch.pause = false;
572 swake_up(kvm_arch_vcpu_wq(vcpu));
573 }
574 }
575
576 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
577 {
578 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
579
580 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
581 (!vcpu->arch.pause)));
582
583 if (vcpu->arch.power_off || vcpu->arch.pause) {
584 /* Awaken to handle a signal, request we sleep again later. */
585 kvm_make_request(KVM_REQ_SLEEP, vcpu);
586 }
587
588 /*
589 * Make sure we will observe a potential reset request if we've
590 * observed a change to the power state. Pairs with the smp_wmb() in
591 * kvm_psci_vcpu_on().
592 */
593 smp_rmb();
594 }
595
596 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
597 {
598 return vcpu->arch.target >= 0;
599 }
600
601 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
602 {
603 if (kvm_request_pending(vcpu)) {
604 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
605 vcpu_req_sleep(vcpu);
606
607 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
608 kvm_reset_vcpu(vcpu);
609
610 /*
611 * Clear IRQ_PENDING requests that were made to guarantee
612 * that a VCPU sees new virtual interrupts.
613 */
614 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
615 }
616 }
617
618 /**
619 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
620 * @vcpu: The VCPU pointer
621 * @run: The kvm_run structure pointer used for userspace state exchange
622 *
623 * This function is called through the VCPU_RUN ioctl called from user space. It
624 * will execute VM code in a loop until the time slice for the process is used
625 * or some emulation is needed from user space in which case the function will
626 * return with return value 0 and with the kvm_run structure filled in with the
627 * required data for the requested emulation.
628 */
629 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
630 {
631 int ret;
632
633 if (unlikely(!kvm_vcpu_initialized(vcpu)))
634 return -ENOEXEC;
635
636 ret = kvm_vcpu_first_run_init(vcpu);
637 if (ret)
638 return ret;
639
640 if (run->exit_reason == KVM_EXIT_MMIO) {
641 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
642 if (ret)
643 return ret;
644 if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
645 return 0;
646
647 }
648
649 if (run->immediate_exit)
650 return -EINTR;
651
652 kvm_sigset_activate(vcpu);
653
654 ret = 1;
655 run->exit_reason = KVM_EXIT_UNKNOWN;
656 while (ret > 0) {
657 /*
658 * Check conditions before entering the guest
659 */
660 cond_resched();
661
662 update_vttbr(vcpu->kvm);
663
664 check_vcpu_requests(vcpu);
665
666 /*
667 * Preparing the interrupts to be injected also
668 * involves poking the GIC, which must be done in a
669 * non-preemptible context.
670 */
671 preempt_disable();
672
673 /* Flush FP/SIMD state that can't survive guest entry/exit */
674 kvm_fpsimd_flush_cpu_state();
675
676 kvm_pmu_flush_hwstate(vcpu);
677
678 local_irq_disable();
679
680 kvm_vgic_flush_hwstate(vcpu);
681
682 /*
683 * If we have a singal pending, or need to notify a userspace
684 * irqchip about timer or PMU level changes, then we exit (and
685 * update the timer level state in kvm_timer_update_run
686 * below).
687 */
688 if (signal_pending(current) ||
689 kvm_timer_should_notify_user(vcpu) ||
690 kvm_pmu_should_notify_user(vcpu)) {
691 ret = -EINTR;
692 run->exit_reason = KVM_EXIT_INTR;
693 }
694
695 /*
696 * Ensure we set mode to IN_GUEST_MODE after we disable
697 * interrupts and before the final VCPU requests check.
698 * See the comment in kvm_vcpu_exiting_guest_mode() and
699 * Documentation/virtual/kvm/vcpu-requests.rst
700 */
701 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
702
703 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
704 kvm_request_pending(vcpu)) {
705 vcpu->mode = OUTSIDE_GUEST_MODE;
706 kvm_pmu_sync_hwstate(vcpu);
707 kvm_timer_sync_hwstate(vcpu);
708 kvm_vgic_sync_hwstate(vcpu);
709 local_irq_enable();
710 preempt_enable();
711 continue;
712 }
713
714 kvm_arm_setup_debug(vcpu);
715
716 /**************************************************************
717 * Enter the guest
718 */
719 trace_kvm_entry(*vcpu_pc(vcpu));
720 guest_enter_irqoff();
721 if (has_vhe())
722 kvm_arm_vhe_guest_enter();
723
724 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
725
726 if (has_vhe())
727 kvm_arm_vhe_guest_exit();
728 vcpu->mode = OUTSIDE_GUEST_MODE;
729 vcpu->stat.exits++;
730 /*
731 * Back from guest
732 *************************************************************/
733
734 kvm_arm_clear_debug(vcpu);
735
736 /*
737 * We must sync the PMU state before the vgic state so
738 * that the vgic can properly sample the updated state of the
739 * interrupt line.
740 */
741 kvm_pmu_sync_hwstate(vcpu);
742
743 /*
744 * Sync the vgic state before syncing the timer state because
745 * the timer code needs to know if the virtual timer
746 * interrupts are active.
747 */
748 kvm_vgic_sync_hwstate(vcpu);
749
750 /*
751 * Sync the timer hardware state before enabling interrupts as
752 * we don't want vtimer interrupts to race with syncing the
753 * timer virtual interrupt state.
754 */
755 kvm_timer_sync_hwstate(vcpu);
756
757 /*
758 * We may have taken a host interrupt in HYP mode (ie
759 * while executing the guest). This interrupt is still
760 * pending, as we haven't serviced it yet!
761 *
762 * We're now back in SVC mode, with interrupts
763 * disabled. Enabling the interrupts now will have
764 * the effect of taking the interrupt again, in SVC
765 * mode this time.
766 */
767 local_irq_enable();
768
769 /*
770 * We do local_irq_enable() before calling guest_exit() so
771 * that if a timer interrupt hits while running the guest we
772 * account that tick as being spent in the guest. We enable
773 * preemption after calling guest_exit() so that if we get
774 * preempted we make sure ticks after that is not counted as
775 * guest time.
776 */
777 guest_exit();
778 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
779
780 /* Exit types that need handling before we can be preempted */
781 handle_exit_early(vcpu, run, ret);
782
783 preempt_enable();
784
785 ret = handle_exit(vcpu, run, ret);
786 }
787
788 /* Tell userspace about in-kernel device output levels */
789 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
790 kvm_timer_update_run(vcpu);
791 kvm_pmu_update_run(vcpu);
792 }
793
794 kvm_sigset_deactivate(vcpu);
795
796 return ret;
797 }
798
799 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
800 {
801 int bit_index;
802 bool set;
803 unsigned long *ptr;
804
805 if (number == KVM_ARM_IRQ_CPU_IRQ)
806 bit_index = __ffs(HCR_VI);
807 else /* KVM_ARM_IRQ_CPU_FIQ */
808 bit_index = __ffs(HCR_VF);
809
810 ptr = (unsigned long *)&vcpu->arch.irq_lines;
811 if (level)
812 set = test_and_set_bit(bit_index, ptr);
813 else
814 set = test_and_clear_bit(bit_index, ptr);
815
816 /*
817 * If we didn't change anything, no need to wake up or kick other CPUs
818 */
819 if (set == level)
820 return 0;
821
822 /*
823 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
824 * trigger a world-switch round on the running physical CPU to set the
825 * virtual IRQ/FIQ fields in the HCR appropriately.
826 */
827 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
828 kvm_vcpu_kick(vcpu);
829
830 return 0;
831 }
832
833 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
834 bool line_status)
835 {
836 u32 irq = irq_level->irq;
837 unsigned int irq_type, vcpu_idx, irq_num;
838 int nrcpus = atomic_read(&kvm->online_vcpus);
839 struct kvm_vcpu *vcpu = NULL;
840 bool level = irq_level->level;
841
842 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
843 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
844 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
845
846 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
847
848 switch (irq_type) {
849 case KVM_ARM_IRQ_TYPE_CPU:
850 if (irqchip_in_kernel(kvm))
851 return -ENXIO;
852
853 if (vcpu_idx >= nrcpus)
854 return -EINVAL;
855
856 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
857 if (!vcpu)
858 return -EINVAL;
859
860 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
861 return -EINVAL;
862
863 return vcpu_interrupt_line(vcpu, irq_num, level);
864 case KVM_ARM_IRQ_TYPE_PPI:
865 if (!irqchip_in_kernel(kvm))
866 return -ENXIO;
867
868 if (vcpu_idx >= nrcpus)
869 return -EINVAL;
870
871 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
872 if (!vcpu)
873 return -EINVAL;
874
875 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
876 return -EINVAL;
877
878 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
879 case KVM_ARM_IRQ_TYPE_SPI:
880 if (!irqchip_in_kernel(kvm))
881 return -ENXIO;
882
883 if (irq_num < VGIC_NR_PRIVATE_IRQS)
884 return -EINVAL;
885
886 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
887 }
888
889 return -EINVAL;
890 }
891
892 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
893 const struct kvm_vcpu_init *init)
894 {
895 unsigned int i;
896 int phys_target = kvm_target_cpu();
897
898 if (init->target != phys_target)
899 return -EINVAL;
900
901 /*
902 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
903 * use the same target.
904 */
905 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
906 return -EINVAL;
907
908 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
909 for (i = 0; i < sizeof(init->features) * 8; i++) {
910 bool set = (init->features[i / 32] & (1 << (i % 32)));
911
912 if (set && i >= KVM_VCPU_MAX_FEATURES)
913 return -ENOENT;
914
915 /*
916 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
917 * use the same feature set.
918 */
919 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
920 test_bit(i, vcpu->arch.features) != set)
921 return -EINVAL;
922
923 if (set)
924 set_bit(i, vcpu->arch.features);
925 }
926
927 vcpu->arch.target = phys_target;
928
929 /* Now we know what it is, we can reset it. */
930 return kvm_reset_vcpu(vcpu);
931 }
932
933
934 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
935 struct kvm_vcpu_init *init)
936 {
937 int ret;
938
939 ret = kvm_vcpu_set_target(vcpu, init);
940 if (ret)
941 return ret;
942
943 /*
944 * Ensure a rebooted VM will fault in RAM pages and detect if the
945 * guest MMU is turned off and flush the caches as needed.
946 */
947 if (vcpu->arch.has_run_once)
948 stage2_unmap_vm(vcpu->kvm);
949
950 vcpu_reset_hcr(vcpu);
951
952 /*
953 * Handle the "start in power-off" case.
954 */
955 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
956 vcpu_power_off(vcpu);
957 else
958 vcpu->arch.power_off = false;
959
960 return 0;
961 }
962
963 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
964 struct kvm_device_attr *attr)
965 {
966 int ret = -ENXIO;
967
968 switch (attr->group) {
969 default:
970 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
971 break;
972 }
973
974 return ret;
975 }
976
977 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
978 struct kvm_device_attr *attr)
979 {
980 int ret = -ENXIO;
981
982 switch (attr->group) {
983 default:
984 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
985 break;
986 }
987
988 return ret;
989 }
990
991 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
992 struct kvm_device_attr *attr)
993 {
994 int ret = -ENXIO;
995
996 switch (attr->group) {
997 default:
998 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
999 break;
1000 }
1001
1002 return ret;
1003 }
1004
1005 long kvm_arch_vcpu_ioctl(struct file *filp,
1006 unsigned int ioctl, unsigned long arg)
1007 {
1008 struct kvm_vcpu *vcpu = filp->private_data;
1009 void __user *argp = (void __user *)arg;
1010 struct kvm_device_attr attr;
1011
1012 switch (ioctl) {
1013 case KVM_ARM_VCPU_INIT: {
1014 struct kvm_vcpu_init init;
1015
1016 if (copy_from_user(&init, argp, sizeof(init)))
1017 return -EFAULT;
1018
1019 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1020 }
1021 case KVM_SET_ONE_REG:
1022 case KVM_GET_ONE_REG: {
1023 struct kvm_one_reg reg;
1024
1025 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1026 return -ENOEXEC;
1027
1028 if (copy_from_user(&reg, argp, sizeof(reg)))
1029 return -EFAULT;
1030 if (ioctl == KVM_SET_ONE_REG)
1031 return kvm_arm_set_reg(vcpu, &reg);
1032 else
1033 return kvm_arm_get_reg(vcpu, &reg);
1034 }
1035 case KVM_GET_REG_LIST: {
1036 struct kvm_reg_list __user *user_list = argp;
1037 struct kvm_reg_list reg_list;
1038 unsigned n;
1039
1040 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1041 return -ENOEXEC;
1042
1043 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1044 return -EFAULT;
1045 n = reg_list.n;
1046 reg_list.n = kvm_arm_num_regs(vcpu);
1047 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1048 return -EFAULT;
1049 if (n < reg_list.n)
1050 return -E2BIG;
1051 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1052 }
1053 case KVM_SET_DEVICE_ATTR: {
1054 if (copy_from_user(&attr, argp, sizeof(attr)))
1055 return -EFAULT;
1056 return kvm_arm_vcpu_set_attr(vcpu, &attr);
1057 }
1058 case KVM_GET_DEVICE_ATTR: {
1059 if (copy_from_user(&attr, argp, sizeof(attr)))
1060 return -EFAULT;
1061 return kvm_arm_vcpu_get_attr(vcpu, &attr);
1062 }
1063 case KVM_HAS_DEVICE_ATTR: {
1064 if (copy_from_user(&attr, argp, sizeof(attr)))
1065 return -EFAULT;
1066 return kvm_arm_vcpu_has_attr(vcpu, &attr);
1067 }
1068 default:
1069 return -EINVAL;
1070 }
1071 }
1072
1073 /**
1074 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1075 * @kvm: kvm instance
1076 * @log: slot id and address to which we copy the log
1077 *
1078 * Steps 1-4 below provide general overview of dirty page logging. See
1079 * kvm_get_dirty_log_protect() function description for additional details.
1080 *
1081 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1082 * always flush the TLB (step 4) even if previous step failed and the dirty
1083 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1084 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1085 * writes will be marked dirty for next log read.
1086 *
1087 * 1. Take a snapshot of the bit and clear it if needed.
1088 * 2. Write protect the corresponding page.
1089 * 3. Copy the snapshot to the userspace.
1090 * 4. Flush TLB's if needed.
1091 */
1092 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1093 {
1094 bool is_dirty = false;
1095 int r;
1096
1097 mutex_lock(&kvm->slots_lock);
1098
1099 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1100
1101 if (is_dirty)
1102 kvm_flush_remote_tlbs(kvm);
1103
1104 mutex_unlock(&kvm->slots_lock);
1105 return r;
1106 }
1107
1108 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1109 struct kvm_arm_device_addr *dev_addr)
1110 {
1111 unsigned long dev_id, type;
1112
1113 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1114 KVM_ARM_DEVICE_ID_SHIFT;
1115 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1116 KVM_ARM_DEVICE_TYPE_SHIFT;
1117
1118 switch (dev_id) {
1119 case KVM_ARM_DEVICE_VGIC_V2:
1120 if (!vgic_present)
1121 return -ENXIO;
1122 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1123 default:
1124 return -ENODEV;
1125 }
1126 }
1127
1128 long kvm_arch_vm_ioctl(struct file *filp,
1129 unsigned int ioctl, unsigned long arg)
1130 {
1131 struct kvm *kvm = filp->private_data;
1132 void __user *argp = (void __user *)arg;
1133
1134 switch (ioctl) {
1135 case KVM_CREATE_IRQCHIP: {
1136 int ret;
1137 if (!vgic_present)
1138 return -ENXIO;
1139 mutex_lock(&kvm->lock);
1140 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1141 mutex_unlock(&kvm->lock);
1142 return ret;
1143 }
1144 case KVM_ARM_SET_DEVICE_ADDR: {
1145 struct kvm_arm_device_addr dev_addr;
1146
1147 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1148 return -EFAULT;
1149 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1150 }
1151 case KVM_ARM_PREFERRED_TARGET: {
1152 int err;
1153 struct kvm_vcpu_init init;
1154
1155 err = kvm_vcpu_preferred_target(&init);
1156 if (err)
1157 return err;
1158
1159 if (copy_to_user(argp, &init, sizeof(init)))
1160 return -EFAULT;
1161
1162 return 0;
1163 }
1164 default:
1165 return -EINVAL;
1166 }
1167 }
1168
1169 static void cpu_init_hyp_mode(void *dummy)
1170 {
1171 phys_addr_t pgd_ptr;
1172 unsigned long hyp_stack_ptr;
1173 unsigned long stack_page;
1174 unsigned long vector_ptr;
1175
1176 /* Switch from the HYP stub to our own HYP init vector */
1177 __hyp_set_vectors(kvm_get_idmap_vector());
1178
1179 pgd_ptr = kvm_mmu_get_httbr();
1180 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1181 hyp_stack_ptr = stack_page + PAGE_SIZE;
1182 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1183
1184 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1185 __cpu_init_stage2();
1186 }
1187
1188 static void cpu_hyp_reset(void)
1189 {
1190 if (!is_kernel_in_hyp_mode())
1191 __hyp_reset_vectors();
1192 }
1193
1194 static void cpu_hyp_reinit(void)
1195 {
1196 cpu_hyp_reset();
1197
1198 if (is_kernel_in_hyp_mode()) {
1199 /*
1200 * __cpu_init_stage2() is safe to call even if the PM
1201 * event was cancelled before the CPU was reset.
1202 */
1203 __cpu_init_stage2();
1204 kvm_timer_init_vhe();
1205 } else {
1206 cpu_init_hyp_mode(NULL);
1207 }
1208
1209 kvm_arm_init_debug();
1210
1211 if (vgic_present)
1212 kvm_vgic_init_cpu_hardware();
1213 }
1214
1215 static void _kvm_arch_hardware_enable(void *discard)
1216 {
1217 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1218 cpu_hyp_reinit();
1219 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1220 }
1221 }
1222
1223 int kvm_arch_hardware_enable(void)
1224 {
1225 _kvm_arch_hardware_enable(NULL);
1226 return 0;
1227 }
1228
1229 static void _kvm_arch_hardware_disable(void *discard)
1230 {
1231 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1232 cpu_hyp_reset();
1233 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1234 }
1235 }
1236
1237 void kvm_arch_hardware_disable(void)
1238 {
1239 _kvm_arch_hardware_disable(NULL);
1240 }
1241
1242 #ifdef CONFIG_CPU_PM
1243 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1244 unsigned long cmd,
1245 void *v)
1246 {
1247 /*
1248 * kvm_arm_hardware_enabled is left with its old value over
1249 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1250 * re-enable hyp.
1251 */
1252 switch (cmd) {
1253 case CPU_PM_ENTER:
1254 if (__this_cpu_read(kvm_arm_hardware_enabled))
1255 /*
1256 * don't update kvm_arm_hardware_enabled here
1257 * so that the hardware will be re-enabled
1258 * when we resume. See below.
1259 */
1260 cpu_hyp_reset();
1261
1262 return NOTIFY_OK;
1263 case CPU_PM_ENTER_FAILED:
1264 case CPU_PM_EXIT:
1265 if (__this_cpu_read(kvm_arm_hardware_enabled))
1266 /* The hardware was enabled before suspend. */
1267 cpu_hyp_reinit();
1268
1269 return NOTIFY_OK;
1270
1271 default:
1272 return NOTIFY_DONE;
1273 }
1274 }
1275
1276 static struct notifier_block hyp_init_cpu_pm_nb = {
1277 .notifier_call = hyp_init_cpu_pm_notifier,
1278 };
1279
1280 static void __init hyp_cpu_pm_init(void)
1281 {
1282 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1283 }
1284 static void __init hyp_cpu_pm_exit(void)
1285 {
1286 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1287 }
1288 #else
1289 static inline void hyp_cpu_pm_init(void)
1290 {
1291 }
1292 static inline void hyp_cpu_pm_exit(void)
1293 {
1294 }
1295 #endif
1296
1297 static int init_common_resources(void)
1298 {
1299 /* set size of VMID supported by CPU */
1300 kvm_vmid_bits = kvm_get_vmid_bits();
1301 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1302
1303 return 0;
1304 }
1305
1306 static int init_subsystems(void)
1307 {
1308 int err = 0;
1309
1310 /*
1311 * Enable hardware so that subsystem initialisation can access EL2.
1312 */
1313 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1314
1315 /*
1316 * Register CPU lower-power notifier
1317 */
1318 hyp_cpu_pm_init();
1319
1320 /*
1321 * Init HYP view of VGIC
1322 */
1323 err = kvm_vgic_hyp_init();
1324 switch (err) {
1325 case 0:
1326 vgic_present = true;
1327 break;
1328 case -ENODEV:
1329 case -ENXIO:
1330 vgic_present = false;
1331 err = 0;
1332 break;
1333 default:
1334 goto out;
1335 }
1336
1337 /*
1338 * Init HYP architected timer support
1339 */
1340 err = kvm_timer_hyp_init(vgic_present);
1341 if (err)
1342 goto out;
1343
1344 kvm_perf_init();
1345 kvm_coproc_table_init();
1346
1347 out:
1348 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1349
1350 return err;
1351 }
1352
1353 static void teardown_hyp_mode(void)
1354 {
1355 int cpu;
1356
1357 free_hyp_pgds();
1358 for_each_possible_cpu(cpu)
1359 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1360 hyp_cpu_pm_exit();
1361 }
1362
1363 /**
1364 * Inits Hyp-mode on all online CPUs
1365 */
1366 static int init_hyp_mode(void)
1367 {
1368 int cpu;
1369 int err = 0;
1370
1371 /*
1372 * Allocate Hyp PGD and setup Hyp identity mapping
1373 */
1374 err = kvm_mmu_init();
1375 if (err)
1376 goto out_err;
1377
1378 /*
1379 * Allocate stack pages for Hypervisor-mode
1380 */
1381 for_each_possible_cpu(cpu) {
1382 unsigned long stack_page;
1383
1384 stack_page = __get_free_page(GFP_KERNEL);
1385 if (!stack_page) {
1386 err = -ENOMEM;
1387 goto out_err;
1388 }
1389
1390 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1391 }
1392
1393 /*
1394 * Map the Hyp-code called directly from the host
1395 */
1396 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1397 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1398 if (err) {
1399 kvm_err("Cannot map world-switch code\n");
1400 goto out_err;
1401 }
1402
1403 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1404 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1405 if (err) {
1406 kvm_err("Cannot map rodata section\n");
1407 goto out_err;
1408 }
1409
1410 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1411 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1412 if (err) {
1413 kvm_err("Cannot map bss section\n");
1414 goto out_err;
1415 }
1416
1417 err = kvm_map_vectors();
1418 if (err) {
1419 kvm_err("Cannot map vectors\n");
1420 goto out_err;
1421 }
1422
1423 /*
1424 * Map the Hyp stack pages
1425 */
1426 for_each_possible_cpu(cpu) {
1427 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1428 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1429 PAGE_HYP);
1430
1431 if (err) {
1432 kvm_err("Cannot map hyp stack\n");
1433 goto out_err;
1434 }
1435 }
1436
1437 for_each_possible_cpu(cpu) {
1438 kvm_cpu_context_t *cpu_ctxt;
1439
1440 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1441 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1442
1443 if (err) {
1444 kvm_err("Cannot map host CPU state: %d\n", err);
1445 goto out_err;
1446 }
1447 }
1448
1449 err = hyp_map_aux_data();
1450 if (err)
1451 kvm_err("Cannot map host auxilary data: %d\n", err);
1452
1453 return 0;
1454
1455 out_err:
1456 teardown_hyp_mode();
1457 kvm_err("error initializing Hyp mode: %d\n", err);
1458 return err;
1459 }
1460
1461 static void check_kvm_target_cpu(void *ret)
1462 {
1463 *(int *)ret = kvm_target_cpu();
1464 }
1465
1466 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1467 {
1468 struct kvm_vcpu *vcpu;
1469 int i;
1470
1471 mpidr &= MPIDR_HWID_BITMASK;
1472 kvm_for_each_vcpu(i, vcpu, kvm) {
1473 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1474 return vcpu;
1475 }
1476 return NULL;
1477 }
1478
1479 bool kvm_arch_has_irq_bypass(void)
1480 {
1481 return true;
1482 }
1483
1484 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1485 struct irq_bypass_producer *prod)
1486 {
1487 struct kvm_kernel_irqfd *irqfd =
1488 container_of(cons, struct kvm_kernel_irqfd, consumer);
1489
1490 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1491 &irqfd->irq_entry);
1492 }
1493 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1494 struct irq_bypass_producer *prod)
1495 {
1496 struct kvm_kernel_irqfd *irqfd =
1497 container_of(cons, struct kvm_kernel_irqfd, consumer);
1498
1499 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1500 &irqfd->irq_entry);
1501 }
1502
1503 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1504 {
1505 struct kvm_kernel_irqfd *irqfd =
1506 container_of(cons, struct kvm_kernel_irqfd, consumer);
1507
1508 kvm_arm_halt_guest(irqfd->kvm);
1509 }
1510
1511 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1512 {
1513 struct kvm_kernel_irqfd *irqfd =
1514 container_of(cons, struct kvm_kernel_irqfd, consumer);
1515
1516 kvm_arm_resume_guest(irqfd->kvm);
1517 }
1518
1519 /**
1520 * Initialize Hyp-mode and memory mappings on all CPUs.
1521 */
1522 int kvm_arch_init(void *opaque)
1523 {
1524 int err;
1525 int ret, cpu;
1526 bool in_hyp_mode;
1527
1528 if (!is_hyp_mode_available()) {
1529 kvm_info("HYP mode not available\n");
1530 return -ENODEV;
1531 }
1532
1533 for_each_online_cpu(cpu) {
1534 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1535 if (ret < 0) {
1536 kvm_err("Error, CPU %d not supported!\n", cpu);
1537 return -ENODEV;
1538 }
1539 }
1540
1541 err = init_common_resources();
1542 if (err)
1543 return err;
1544
1545 in_hyp_mode = is_kernel_in_hyp_mode();
1546
1547 if (!in_hyp_mode) {
1548 err = init_hyp_mode();
1549 if (err)
1550 goto out_err;
1551 }
1552
1553 err = init_subsystems();
1554 if (err)
1555 goto out_hyp;
1556
1557 if (in_hyp_mode)
1558 kvm_info("VHE mode initialized successfully\n");
1559 else
1560 kvm_info("Hyp mode initialized successfully\n");
1561
1562 return 0;
1563
1564 out_hyp:
1565 if (!in_hyp_mode)
1566 teardown_hyp_mode();
1567 out_err:
1568 return err;
1569 }
1570
1571 /* NOP: Compiling as a module not supported */
1572 void kvm_arch_exit(void)
1573 {
1574 kvm_perf_teardown();
1575 }
1576
1577 static int arm_init(void)
1578 {
1579 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1580 return rc;
1581 }
1582
1583 module_init(arm_init);