]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - virt/kvm/arm/arm.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / virt / kvm / arm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/bug.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/list.h>
25 #include <linux/module.h>
26 #include <linux/vmalloc.h>
27 #include <linux/fs.h>
28 #include <linux/mman.h>
29 #include <linux/sched.h>
30 #include <linux/kvm.h>
31 #include <linux/kvm_irqfd.h>
32 #include <linux/irqbypass.h>
33 #include <linux/sched/stat.h>
34 #include <trace/events/kvm.h>
35 #include <kvm/arm_pmu.h>
36 #include <kvm/arm_psci.h>
37
38 #define CREATE_TRACE_POINTS
39 #include "trace.h"
40
41 #include <linux/uaccess.h>
42 #include <asm/ptrace.h>
43 #include <asm/mman.h>
44 #include <asm/tlbflush.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cpufeature.h>
47 #include <asm/virt.h>
48 #include <asm/kvm_arm.h>
49 #include <asm/kvm_asm.h>
50 #include <asm/kvm_mmu.h>
51 #include <asm/kvm_emulate.h>
52 #include <asm/kvm_coproc.h>
53 #include <asm/sections.h>
54
55 #ifdef REQUIRES_VIRT
56 __asm__(".arch_extension virt");
57 #endif
58
59 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
61
62 /* Per-CPU variable containing the currently running vcpu. */
63 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
64
65 /* The VMID used in the VTTBR */
66 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67 static u32 kvm_next_vmid;
68 static DEFINE_SPINLOCK(kvm_vmid_lock);
69
70 static bool vgic_present;
71
72 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
73
74 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
75 {
76 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
77 }
78
79 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
80
81 /**
82 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
83 * Must be called from non-preemptible context
84 */
85 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
86 {
87 return __this_cpu_read(kvm_arm_running_vcpu);
88 }
89
90 /**
91 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
92 */
93 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
94 {
95 return &kvm_arm_running_vcpu;
96 }
97
98 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
99 {
100 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
101 }
102
103 int kvm_arch_hardware_setup(void)
104 {
105 return 0;
106 }
107
108 void kvm_arch_check_processor_compat(void *rtn)
109 {
110 *(int *)rtn = 0;
111 }
112
113
114 /**
115 * kvm_arch_init_vm - initializes a VM data structure
116 * @kvm: pointer to the KVM struct
117 */
118 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
119 {
120 int ret, cpu;
121
122 ret = kvm_arm_setup_stage2(kvm, type);
123 if (ret)
124 return ret;
125
126 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
127 if (!kvm->arch.last_vcpu_ran)
128 return -ENOMEM;
129
130 for_each_possible_cpu(cpu)
131 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
132
133 ret = kvm_alloc_stage2_pgd(kvm);
134 if (ret)
135 goto out_fail_alloc;
136
137 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
138 if (ret)
139 goto out_free_stage2_pgd;
140
141 kvm_vgic_early_init(kvm);
142
143 /* Mark the initial VMID generation invalid */
144 kvm->arch.vmid.vmid_gen = 0;
145
146 /* The maximum number of VCPUs is limited by the host's GIC model */
147 kvm->arch.max_vcpus = vgic_present ?
148 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149
150 return ret;
151 out_free_stage2_pgd:
152 kvm_free_stage2_pgd(kvm);
153 out_fail_alloc:
154 free_percpu(kvm->arch.last_vcpu_ran);
155 kvm->arch.last_vcpu_ran = NULL;
156 return ret;
157 }
158
159 bool kvm_arch_has_vcpu_debugfs(void)
160 {
161 return false;
162 }
163
164 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
165 {
166 return 0;
167 }
168
169 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
170 {
171 return VM_FAULT_SIGBUS;
172 }
173
174
175 /**
176 * kvm_arch_destroy_vm - destroy the VM data structure
177 * @kvm: pointer to the KVM struct
178 */
179 void kvm_arch_destroy_vm(struct kvm *kvm)
180 {
181 int i;
182
183 kvm_vgic_destroy(kvm);
184
185 free_percpu(kvm->arch.last_vcpu_ran);
186 kvm->arch.last_vcpu_ran = NULL;
187
188 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
189 if (kvm->vcpus[i]) {
190 kvm_arch_vcpu_free(kvm->vcpus[i]);
191 kvm->vcpus[i] = NULL;
192 }
193 }
194 atomic_set(&kvm->online_vcpus, 0);
195 }
196
197 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 {
199 int r;
200 switch (ext) {
201 case KVM_CAP_IRQCHIP:
202 r = vgic_present;
203 break;
204 case KVM_CAP_IOEVENTFD:
205 case KVM_CAP_DEVICE_CTRL:
206 case KVM_CAP_USER_MEMORY:
207 case KVM_CAP_SYNC_MMU:
208 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
209 case KVM_CAP_ONE_REG:
210 case KVM_CAP_ARM_PSCI:
211 case KVM_CAP_ARM_PSCI_0_2:
212 case KVM_CAP_READONLY_MEM:
213 case KVM_CAP_MP_STATE:
214 case KVM_CAP_IMMEDIATE_EXIT:
215 case KVM_CAP_VCPU_EVENTS:
216 r = 1;
217 break;
218 case KVM_CAP_ARM_SET_DEVICE_ADDR:
219 r = 1;
220 break;
221 case KVM_CAP_NR_VCPUS:
222 r = num_online_cpus();
223 break;
224 case KVM_CAP_MAX_VCPUS:
225 r = KVM_MAX_VCPUS;
226 break;
227 case KVM_CAP_NR_MEMSLOTS:
228 r = KVM_USER_MEM_SLOTS;
229 break;
230 case KVM_CAP_MSI_DEVID:
231 if (!kvm)
232 r = -EINVAL;
233 else
234 r = kvm->arch.vgic.msis_require_devid;
235 break;
236 case KVM_CAP_ARM_USER_IRQ:
237 /*
238 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
239 * (bump this number if adding more devices)
240 */
241 r = 1;
242 break;
243 default:
244 r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
245 break;
246 }
247 return r;
248 }
249
250 long kvm_arch_dev_ioctl(struct file *filp,
251 unsigned int ioctl, unsigned long arg)
252 {
253 return -EINVAL;
254 }
255
256 struct kvm *kvm_arch_alloc_vm(void)
257 {
258 if (!has_vhe())
259 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
260
261 return vzalloc(sizeof(struct kvm));
262 }
263
264 void kvm_arch_free_vm(struct kvm *kvm)
265 {
266 if (!has_vhe())
267 kfree(kvm);
268 else
269 vfree(kvm);
270 }
271
272 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
273 {
274 int err;
275 struct kvm_vcpu *vcpu;
276
277 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
278 err = -EBUSY;
279 goto out;
280 }
281
282 if (id >= kvm->arch.max_vcpus) {
283 err = -EINVAL;
284 goto out;
285 }
286
287 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
288 if (!vcpu) {
289 err = -ENOMEM;
290 goto out;
291 }
292
293 err = kvm_vcpu_init(vcpu, kvm, id);
294 if (err)
295 goto free_vcpu;
296
297 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
298 if (err)
299 goto vcpu_uninit;
300
301 return vcpu;
302 vcpu_uninit:
303 kvm_vcpu_uninit(vcpu);
304 free_vcpu:
305 kmem_cache_free(kvm_vcpu_cache, vcpu);
306 out:
307 return ERR_PTR(err);
308 }
309
310 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
311 {
312 }
313
314 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
315 {
316 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
317 static_branch_dec(&userspace_irqchip_in_use);
318
319 kvm_mmu_free_memory_caches(vcpu);
320 kvm_timer_vcpu_terminate(vcpu);
321 kvm_pmu_vcpu_destroy(vcpu);
322 kvm_vcpu_uninit(vcpu);
323 kmem_cache_free(kvm_vcpu_cache, vcpu);
324 }
325
326 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
327 {
328 kvm_arch_vcpu_free(vcpu);
329 }
330
331 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
332 {
333 return kvm_timer_is_pending(vcpu);
334 }
335
336 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
337 {
338 kvm_vgic_v4_enable_doorbell(vcpu);
339 }
340
341 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
342 {
343 kvm_vgic_v4_disable_doorbell(vcpu);
344 }
345
346 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
347 {
348 /* Force users to call KVM_ARM_VCPU_INIT */
349 vcpu->arch.target = -1;
350 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
351
352 /* Set up the timer */
353 kvm_timer_vcpu_init(vcpu);
354
355 kvm_arm_reset_debug_ptr(vcpu);
356
357 return kvm_vgic_vcpu_init(vcpu);
358 }
359
360 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
361 {
362 int *last_ran;
363
364 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
365
366 /*
367 * We might get preempted before the vCPU actually runs, but
368 * over-invalidation doesn't affect correctness.
369 */
370 if (*last_ran != vcpu->vcpu_id) {
371 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
372 *last_ran = vcpu->vcpu_id;
373 }
374
375 vcpu->cpu = cpu;
376 vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
377
378 kvm_arm_set_running_vcpu(vcpu);
379 kvm_vgic_load(vcpu);
380 kvm_timer_vcpu_load(vcpu);
381 kvm_vcpu_load_sysregs(vcpu);
382 kvm_arch_vcpu_load_fp(vcpu);
383
384 if (single_task_running())
385 vcpu_clear_wfe_traps(vcpu);
386 else
387 vcpu_set_wfe_traps(vcpu);
388 }
389
390 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
391 {
392 kvm_arch_vcpu_put_fp(vcpu);
393 kvm_vcpu_put_sysregs(vcpu);
394 kvm_timer_vcpu_put(vcpu);
395 kvm_vgic_put(vcpu);
396
397 vcpu->cpu = -1;
398
399 kvm_arm_set_running_vcpu(NULL);
400 }
401
402 static void vcpu_power_off(struct kvm_vcpu *vcpu)
403 {
404 vcpu->arch.power_off = true;
405 kvm_make_request(KVM_REQ_SLEEP, vcpu);
406 kvm_vcpu_kick(vcpu);
407 }
408
409 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
410 struct kvm_mp_state *mp_state)
411 {
412 if (vcpu->arch.power_off)
413 mp_state->mp_state = KVM_MP_STATE_STOPPED;
414 else
415 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
416
417 return 0;
418 }
419
420 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
421 struct kvm_mp_state *mp_state)
422 {
423 int ret = 0;
424
425 switch (mp_state->mp_state) {
426 case KVM_MP_STATE_RUNNABLE:
427 vcpu->arch.power_off = false;
428 break;
429 case KVM_MP_STATE_STOPPED:
430 vcpu_power_off(vcpu);
431 break;
432 default:
433 ret = -EINVAL;
434 }
435
436 return ret;
437 }
438
439 /**
440 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
441 * @v: The VCPU pointer
442 *
443 * If the guest CPU is not waiting for interrupts or an interrupt line is
444 * asserted, the CPU is by definition runnable.
445 */
446 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
447 {
448 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
449 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
450 && !v->arch.power_off && !v->arch.pause);
451 }
452
453 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
454 {
455 return vcpu_mode_priv(vcpu);
456 }
457
458 /* Just ensure a guest exit from a particular CPU */
459 static void exit_vm_noop(void *info)
460 {
461 }
462
463 void force_vm_exit(const cpumask_t *mask)
464 {
465 preempt_disable();
466 smp_call_function_many(mask, exit_vm_noop, NULL, true);
467 preempt_enable();
468 }
469
470 /**
471 * need_new_vmid_gen - check that the VMID is still valid
472 * @vmid: The VMID to check
473 *
474 * return true if there is a new generation of VMIDs being used
475 *
476 * The hardware supports a limited set of values with the value zero reserved
477 * for the host, so we check if an assigned value belongs to a previous
478 * generation, which which requires us to assign a new value. If we're the
479 * first to use a VMID for the new generation, we must flush necessary caches
480 * and TLBs on all CPUs.
481 */
482 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
483 {
484 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
485 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
486 return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
487 }
488
489 /**
490 * update_vmid - Update the vmid with a valid VMID for the current generation
491 * @kvm: The guest that struct vmid belongs to
492 * @vmid: The stage-2 VMID information struct
493 */
494 static void update_vmid(struct kvm_vmid *vmid)
495 {
496 if (!need_new_vmid_gen(vmid))
497 return;
498
499 spin_lock(&kvm_vmid_lock);
500
501 /*
502 * We need to re-check the vmid_gen here to ensure that if another vcpu
503 * already allocated a valid vmid for this vm, then this vcpu should
504 * use the same vmid.
505 */
506 if (!need_new_vmid_gen(vmid)) {
507 spin_unlock(&kvm_vmid_lock);
508 return;
509 }
510
511 /* First user of a new VMID generation? */
512 if (unlikely(kvm_next_vmid == 0)) {
513 atomic64_inc(&kvm_vmid_gen);
514 kvm_next_vmid = 1;
515
516 /*
517 * On SMP we know no other CPUs can use this CPU's or each
518 * other's VMID after force_vm_exit returns since the
519 * kvm_vmid_lock blocks them from reentry to the guest.
520 */
521 force_vm_exit(cpu_all_mask);
522 /*
523 * Now broadcast TLB + ICACHE invalidation over the inner
524 * shareable domain to make sure all data structures are
525 * clean.
526 */
527 kvm_call_hyp(__kvm_flush_vm_context);
528 }
529
530 vmid->vmid = kvm_next_vmid;
531 kvm_next_vmid++;
532 kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
533
534 smp_wmb();
535 WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
536
537 spin_unlock(&kvm_vmid_lock);
538 }
539
540 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
541 {
542 struct kvm *kvm = vcpu->kvm;
543 int ret = 0;
544
545 if (likely(vcpu->arch.has_run_once))
546 return 0;
547
548 vcpu->arch.has_run_once = true;
549
550 if (likely(irqchip_in_kernel(kvm))) {
551 /*
552 * Map the VGIC hardware resources before running a vcpu the
553 * first time on this VM.
554 */
555 if (unlikely(!vgic_ready(kvm))) {
556 ret = kvm_vgic_map_resources(kvm);
557 if (ret)
558 return ret;
559 }
560 } else {
561 /*
562 * Tell the rest of the code that there are userspace irqchip
563 * VMs in the wild.
564 */
565 static_branch_inc(&userspace_irqchip_in_use);
566 }
567
568 ret = kvm_timer_enable(vcpu);
569 if (ret)
570 return ret;
571
572 ret = kvm_arm_pmu_v3_enable(vcpu);
573
574 return ret;
575 }
576
577 bool kvm_arch_intc_initialized(struct kvm *kvm)
578 {
579 return vgic_initialized(kvm);
580 }
581
582 void kvm_arm_halt_guest(struct kvm *kvm)
583 {
584 int i;
585 struct kvm_vcpu *vcpu;
586
587 kvm_for_each_vcpu(i, vcpu, kvm)
588 vcpu->arch.pause = true;
589 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
590 }
591
592 void kvm_arm_resume_guest(struct kvm *kvm)
593 {
594 int i;
595 struct kvm_vcpu *vcpu;
596
597 kvm_for_each_vcpu(i, vcpu, kvm) {
598 vcpu->arch.pause = false;
599 swake_up_one(kvm_arch_vcpu_wq(vcpu));
600 }
601 }
602
603 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
604 {
605 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
606
607 swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
608 (!vcpu->arch.pause)));
609
610 if (vcpu->arch.power_off || vcpu->arch.pause) {
611 /* Awaken to handle a signal, request we sleep again later. */
612 kvm_make_request(KVM_REQ_SLEEP, vcpu);
613 }
614
615 /*
616 * Make sure we will observe a potential reset request if we've
617 * observed a change to the power state. Pairs with the smp_wmb() in
618 * kvm_psci_vcpu_on().
619 */
620 smp_rmb();
621 }
622
623 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
624 {
625 return vcpu->arch.target >= 0;
626 }
627
628 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
629 {
630 if (kvm_request_pending(vcpu)) {
631 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
632 vcpu_req_sleep(vcpu);
633
634 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
635 kvm_reset_vcpu(vcpu);
636
637 /*
638 * Clear IRQ_PENDING requests that were made to guarantee
639 * that a VCPU sees new virtual interrupts.
640 */
641 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
642 }
643 }
644
645 /**
646 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
647 * @vcpu: The VCPU pointer
648 * @run: The kvm_run structure pointer used for userspace state exchange
649 *
650 * This function is called through the VCPU_RUN ioctl called from user space. It
651 * will execute VM code in a loop until the time slice for the process is used
652 * or some emulation is needed from user space in which case the function will
653 * return with return value 0 and with the kvm_run structure filled in with the
654 * required data for the requested emulation.
655 */
656 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
657 {
658 int ret;
659
660 if (unlikely(!kvm_vcpu_initialized(vcpu)))
661 return -ENOEXEC;
662
663 ret = kvm_vcpu_first_run_init(vcpu);
664 if (ret)
665 return ret;
666
667 if (run->exit_reason == KVM_EXIT_MMIO) {
668 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
669 if (ret)
670 return ret;
671 }
672
673 if (run->immediate_exit)
674 return -EINTR;
675
676 vcpu_load(vcpu);
677
678 kvm_sigset_activate(vcpu);
679
680 ret = 1;
681 run->exit_reason = KVM_EXIT_UNKNOWN;
682 while (ret > 0) {
683 /*
684 * Check conditions before entering the guest
685 */
686 cond_resched();
687
688 update_vmid(&vcpu->kvm->arch.vmid);
689
690 check_vcpu_requests(vcpu);
691
692 /*
693 * Preparing the interrupts to be injected also
694 * involves poking the GIC, which must be done in a
695 * non-preemptible context.
696 */
697 preempt_disable();
698
699 kvm_pmu_flush_hwstate(vcpu);
700
701 local_irq_disable();
702
703 kvm_vgic_flush_hwstate(vcpu);
704
705 /*
706 * Exit if we have a signal pending so that we can deliver the
707 * signal to user space.
708 */
709 if (signal_pending(current)) {
710 ret = -EINTR;
711 run->exit_reason = KVM_EXIT_INTR;
712 }
713
714 /*
715 * If we're using a userspace irqchip, then check if we need
716 * to tell a userspace irqchip about timer or PMU level
717 * changes and if so, exit to userspace (the actual level
718 * state gets updated in kvm_timer_update_run and
719 * kvm_pmu_update_run below).
720 */
721 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
722 if (kvm_timer_should_notify_user(vcpu) ||
723 kvm_pmu_should_notify_user(vcpu)) {
724 ret = -EINTR;
725 run->exit_reason = KVM_EXIT_INTR;
726 }
727 }
728
729 /*
730 * Ensure we set mode to IN_GUEST_MODE after we disable
731 * interrupts and before the final VCPU requests check.
732 * See the comment in kvm_vcpu_exiting_guest_mode() and
733 * Documentation/virtual/kvm/vcpu-requests.rst
734 */
735 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
736
737 if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
738 kvm_request_pending(vcpu)) {
739 vcpu->mode = OUTSIDE_GUEST_MODE;
740 isb(); /* Ensure work in x_flush_hwstate is committed */
741 kvm_pmu_sync_hwstate(vcpu);
742 if (static_branch_unlikely(&userspace_irqchip_in_use))
743 kvm_timer_sync_hwstate(vcpu);
744 kvm_vgic_sync_hwstate(vcpu);
745 local_irq_enable();
746 preempt_enable();
747 continue;
748 }
749
750 kvm_arm_setup_debug(vcpu);
751
752 /**************************************************************
753 * Enter the guest
754 */
755 trace_kvm_entry(*vcpu_pc(vcpu));
756 guest_enter_irqoff();
757
758 if (has_vhe()) {
759 kvm_arm_vhe_guest_enter();
760 ret = kvm_vcpu_run_vhe(vcpu);
761 kvm_arm_vhe_guest_exit();
762 } else {
763 ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
764 }
765
766 vcpu->mode = OUTSIDE_GUEST_MODE;
767 vcpu->stat.exits++;
768 /*
769 * Back from guest
770 *************************************************************/
771
772 kvm_arm_clear_debug(vcpu);
773
774 /*
775 * We must sync the PMU state before the vgic state so
776 * that the vgic can properly sample the updated state of the
777 * interrupt line.
778 */
779 kvm_pmu_sync_hwstate(vcpu);
780
781 /*
782 * Sync the vgic state before syncing the timer state because
783 * the timer code needs to know if the virtual timer
784 * interrupts are active.
785 */
786 kvm_vgic_sync_hwstate(vcpu);
787
788 /*
789 * Sync the timer hardware state before enabling interrupts as
790 * we don't want vtimer interrupts to race with syncing the
791 * timer virtual interrupt state.
792 */
793 if (static_branch_unlikely(&userspace_irqchip_in_use))
794 kvm_timer_sync_hwstate(vcpu);
795
796 kvm_arch_vcpu_ctxsync_fp(vcpu);
797
798 /*
799 * We may have taken a host interrupt in HYP mode (ie
800 * while executing the guest). This interrupt is still
801 * pending, as we haven't serviced it yet!
802 *
803 * We're now back in SVC mode, with interrupts
804 * disabled. Enabling the interrupts now will have
805 * the effect of taking the interrupt again, in SVC
806 * mode this time.
807 */
808 local_irq_enable();
809
810 /*
811 * We do local_irq_enable() before calling guest_exit() so
812 * that if a timer interrupt hits while running the guest we
813 * account that tick as being spent in the guest. We enable
814 * preemption after calling guest_exit() so that if we get
815 * preempted we make sure ticks after that is not counted as
816 * guest time.
817 */
818 guest_exit();
819 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
820
821 /* Exit types that need handling before we can be preempted */
822 handle_exit_early(vcpu, run, ret);
823
824 preempt_enable();
825
826 ret = handle_exit(vcpu, run, ret);
827 }
828
829 /* Tell userspace about in-kernel device output levels */
830 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
831 kvm_timer_update_run(vcpu);
832 kvm_pmu_update_run(vcpu);
833 }
834
835 kvm_sigset_deactivate(vcpu);
836
837 vcpu_put(vcpu);
838 return ret;
839 }
840
841 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
842 {
843 int bit_index;
844 bool set;
845 unsigned long *hcr;
846
847 if (number == KVM_ARM_IRQ_CPU_IRQ)
848 bit_index = __ffs(HCR_VI);
849 else /* KVM_ARM_IRQ_CPU_FIQ */
850 bit_index = __ffs(HCR_VF);
851
852 hcr = vcpu_hcr(vcpu);
853 if (level)
854 set = test_and_set_bit(bit_index, hcr);
855 else
856 set = test_and_clear_bit(bit_index, hcr);
857
858 /*
859 * If we didn't change anything, no need to wake up or kick other CPUs
860 */
861 if (set == level)
862 return 0;
863
864 /*
865 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
866 * trigger a world-switch round on the running physical CPU to set the
867 * virtual IRQ/FIQ fields in the HCR appropriately.
868 */
869 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
870 kvm_vcpu_kick(vcpu);
871
872 return 0;
873 }
874
875 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
876 bool line_status)
877 {
878 u32 irq = irq_level->irq;
879 unsigned int irq_type, vcpu_idx, irq_num;
880 int nrcpus = atomic_read(&kvm->online_vcpus);
881 struct kvm_vcpu *vcpu = NULL;
882 bool level = irq_level->level;
883
884 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
885 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
886 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
887
888 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
889
890 switch (irq_type) {
891 case KVM_ARM_IRQ_TYPE_CPU:
892 if (irqchip_in_kernel(kvm))
893 return -ENXIO;
894
895 if (vcpu_idx >= nrcpus)
896 return -EINVAL;
897
898 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
899 if (!vcpu)
900 return -EINVAL;
901
902 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
903 return -EINVAL;
904
905 return vcpu_interrupt_line(vcpu, irq_num, level);
906 case KVM_ARM_IRQ_TYPE_PPI:
907 if (!irqchip_in_kernel(kvm))
908 return -ENXIO;
909
910 if (vcpu_idx >= nrcpus)
911 return -EINVAL;
912
913 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
914 if (!vcpu)
915 return -EINVAL;
916
917 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
918 return -EINVAL;
919
920 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
921 case KVM_ARM_IRQ_TYPE_SPI:
922 if (!irqchip_in_kernel(kvm))
923 return -ENXIO;
924
925 if (irq_num < VGIC_NR_PRIVATE_IRQS)
926 return -EINVAL;
927
928 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
929 }
930
931 return -EINVAL;
932 }
933
934 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
935 const struct kvm_vcpu_init *init)
936 {
937 unsigned int i;
938 int phys_target = kvm_target_cpu();
939
940 if (init->target != phys_target)
941 return -EINVAL;
942
943 /*
944 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
945 * use the same target.
946 */
947 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
948 return -EINVAL;
949
950 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
951 for (i = 0; i < sizeof(init->features) * 8; i++) {
952 bool set = (init->features[i / 32] & (1 << (i % 32)));
953
954 if (set && i >= KVM_VCPU_MAX_FEATURES)
955 return -ENOENT;
956
957 /*
958 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
959 * use the same feature set.
960 */
961 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
962 test_bit(i, vcpu->arch.features) != set)
963 return -EINVAL;
964
965 if (set)
966 set_bit(i, vcpu->arch.features);
967 }
968
969 vcpu->arch.target = phys_target;
970
971 /* Now we know what it is, we can reset it. */
972 return kvm_reset_vcpu(vcpu);
973 }
974
975
976 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
977 struct kvm_vcpu_init *init)
978 {
979 int ret;
980
981 ret = kvm_vcpu_set_target(vcpu, init);
982 if (ret)
983 return ret;
984
985 /*
986 * Ensure a rebooted VM will fault in RAM pages and detect if the
987 * guest MMU is turned off and flush the caches as needed.
988 */
989 if (vcpu->arch.has_run_once)
990 stage2_unmap_vm(vcpu->kvm);
991
992 vcpu_reset_hcr(vcpu);
993
994 /*
995 * Handle the "start in power-off" case.
996 */
997 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
998 vcpu_power_off(vcpu);
999 else
1000 vcpu->arch.power_off = false;
1001
1002 return 0;
1003 }
1004
1005 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1006 struct kvm_device_attr *attr)
1007 {
1008 int ret = -ENXIO;
1009
1010 switch (attr->group) {
1011 default:
1012 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1013 break;
1014 }
1015
1016 return ret;
1017 }
1018
1019 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1020 struct kvm_device_attr *attr)
1021 {
1022 int ret = -ENXIO;
1023
1024 switch (attr->group) {
1025 default:
1026 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1027 break;
1028 }
1029
1030 return ret;
1031 }
1032
1033 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1034 struct kvm_device_attr *attr)
1035 {
1036 int ret = -ENXIO;
1037
1038 switch (attr->group) {
1039 default:
1040 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1041 break;
1042 }
1043
1044 return ret;
1045 }
1046
1047 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1048 struct kvm_vcpu_events *events)
1049 {
1050 memset(events, 0, sizeof(*events));
1051
1052 return __kvm_arm_vcpu_get_events(vcpu, events);
1053 }
1054
1055 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1056 struct kvm_vcpu_events *events)
1057 {
1058 int i;
1059
1060 /* check whether the reserved field is zero */
1061 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1062 if (events->reserved[i])
1063 return -EINVAL;
1064
1065 /* check whether the pad field is zero */
1066 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1067 if (events->exception.pad[i])
1068 return -EINVAL;
1069
1070 return __kvm_arm_vcpu_set_events(vcpu, events);
1071 }
1072
1073 long kvm_arch_vcpu_ioctl(struct file *filp,
1074 unsigned int ioctl, unsigned long arg)
1075 {
1076 struct kvm_vcpu *vcpu = filp->private_data;
1077 void __user *argp = (void __user *)arg;
1078 struct kvm_device_attr attr;
1079 long r;
1080
1081 switch (ioctl) {
1082 case KVM_ARM_VCPU_INIT: {
1083 struct kvm_vcpu_init init;
1084
1085 r = -EFAULT;
1086 if (copy_from_user(&init, argp, sizeof(init)))
1087 break;
1088
1089 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1090 break;
1091 }
1092 case KVM_SET_ONE_REG:
1093 case KVM_GET_ONE_REG: {
1094 struct kvm_one_reg reg;
1095
1096 r = -ENOEXEC;
1097 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1098 break;
1099
1100 r = -EFAULT;
1101 if (copy_from_user(&reg, argp, sizeof(reg)))
1102 break;
1103
1104 if (ioctl == KVM_SET_ONE_REG)
1105 r = kvm_arm_set_reg(vcpu, &reg);
1106 else
1107 r = kvm_arm_get_reg(vcpu, &reg);
1108 break;
1109 }
1110 case KVM_GET_REG_LIST: {
1111 struct kvm_reg_list __user *user_list = argp;
1112 struct kvm_reg_list reg_list;
1113 unsigned n;
1114
1115 r = -ENOEXEC;
1116 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1117 break;
1118
1119 r = -EFAULT;
1120 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1121 break;
1122 n = reg_list.n;
1123 reg_list.n = kvm_arm_num_regs(vcpu);
1124 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1125 break;
1126 r = -E2BIG;
1127 if (n < reg_list.n)
1128 break;
1129 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1130 break;
1131 }
1132 case KVM_SET_DEVICE_ATTR: {
1133 r = -EFAULT;
1134 if (copy_from_user(&attr, argp, sizeof(attr)))
1135 break;
1136 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1137 break;
1138 }
1139 case KVM_GET_DEVICE_ATTR: {
1140 r = -EFAULT;
1141 if (copy_from_user(&attr, argp, sizeof(attr)))
1142 break;
1143 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1144 break;
1145 }
1146 case KVM_HAS_DEVICE_ATTR: {
1147 r = -EFAULT;
1148 if (copy_from_user(&attr, argp, sizeof(attr)))
1149 break;
1150 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1151 break;
1152 }
1153 case KVM_GET_VCPU_EVENTS: {
1154 struct kvm_vcpu_events events;
1155
1156 if (kvm_arm_vcpu_get_events(vcpu, &events))
1157 return -EINVAL;
1158
1159 if (copy_to_user(argp, &events, sizeof(events)))
1160 return -EFAULT;
1161
1162 return 0;
1163 }
1164 case KVM_SET_VCPU_EVENTS: {
1165 struct kvm_vcpu_events events;
1166
1167 if (copy_from_user(&events, argp, sizeof(events)))
1168 return -EFAULT;
1169
1170 return kvm_arm_vcpu_set_events(vcpu, &events);
1171 }
1172 default:
1173 r = -EINVAL;
1174 }
1175
1176 return r;
1177 }
1178
1179 /**
1180 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1181 * @kvm: kvm instance
1182 * @log: slot id and address to which we copy the log
1183 *
1184 * Steps 1-4 below provide general overview of dirty page logging. See
1185 * kvm_get_dirty_log_protect() function description for additional details.
1186 *
1187 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1188 * always flush the TLB (step 4) even if previous step failed and the dirty
1189 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1190 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1191 * writes will be marked dirty for next log read.
1192 *
1193 * 1. Take a snapshot of the bit and clear it if needed.
1194 * 2. Write protect the corresponding page.
1195 * 3. Copy the snapshot to the userspace.
1196 * 4. Flush TLB's if needed.
1197 */
1198 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1199 {
1200 bool flush = false;
1201 int r;
1202
1203 mutex_lock(&kvm->slots_lock);
1204
1205 r = kvm_get_dirty_log_protect(kvm, log, &flush);
1206
1207 if (flush)
1208 kvm_flush_remote_tlbs(kvm);
1209
1210 mutex_unlock(&kvm->slots_lock);
1211 return r;
1212 }
1213
1214 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1215 {
1216 bool flush = false;
1217 int r;
1218
1219 mutex_lock(&kvm->slots_lock);
1220
1221 r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1222
1223 if (flush)
1224 kvm_flush_remote_tlbs(kvm);
1225
1226 mutex_unlock(&kvm->slots_lock);
1227 return r;
1228 }
1229
1230 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1231 struct kvm_arm_device_addr *dev_addr)
1232 {
1233 unsigned long dev_id, type;
1234
1235 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1236 KVM_ARM_DEVICE_ID_SHIFT;
1237 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1238 KVM_ARM_DEVICE_TYPE_SHIFT;
1239
1240 switch (dev_id) {
1241 case KVM_ARM_DEVICE_VGIC_V2:
1242 if (!vgic_present)
1243 return -ENXIO;
1244 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1245 default:
1246 return -ENODEV;
1247 }
1248 }
1249
1250 long kvm_arch_vm_ioctl(struct file *filp,
1251 unsigned int ioctl, unsigned long arg)
1252 {
1253 struct kvm *kvm = filp->private_data;
1254 void __user *argp = (void __user *)arg;
1255
1256 switch (ioctl) {
1257 case KVM_CREATE_IRQCHIP: {
1258 int ret;
1259 if (!vgic_present)
1260 return -ENXIO;
1261 mutex_lock(&kvm->lock);
1262 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1263 mutex_unlock(&kvm->lock);
1264 return ret;
1265 }
1266 case KVM_ARM_SET_DEVICE_ADDR: {
1267 struct kvm_arm_device_addr dev_addr;
1268
1269 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1270 return -EFAULT;
1271 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1272 }
1273 case KVM_ARM_PREFERRED_TARGET: {
1274 int err;
1275 struct kvm_vcpu_init init;
1276
1277 err = kvm_vcpu_preferred_target(&init);
1278 if (err)
1279 return err;
1280
1281 if (copy_to_user(argp, &init, sizeof(init)))
1282 return -EFAULT;
1283
1284 return 0;
1285 }
1286 default:
1287 return -EINVAL;
1288 }
1289 }
1290
1291 static void cpu_init_hyp_mode(void *dummy)
1292 {
1293 phys_addr_t pgd_ptr;
1294 unsigned long hyp_stack_ptr;
1295 unsigned long stack_page;
1296 unsigned long vector_ptr;
1297
1298 /* Switch from the HYP stub to our own HYP init vector */
1299 __hyp_set_vectors(kvm_get_idmap_vector());
1300
1301 pgd_ptr = kvm_mmu_get_httbr();
1302 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1303 hyp_stack_ptr = stack_page + PAGE_SIZE;
1304 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1305
1306 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1307 __cpu_init_stage2();
1308 }
1309
1310 static void cpu_hyp_reset(void)
1311 {
1312 if (!is_kernel_in_hyp_mode())
1313 __hyp_reset_vectors();
1314 }
1315
1316 static void cpu_hyp_reinit(void)
1317 {
1318 cpu_hyp_reset();
1319
1320 if (is_kernel_in_hyp_mode())
1321 kvm_timer_init_vhe();
1322 else
1323 cpu_init_hyp_mode(NULL);
1324
1325 kvm_arm_init_debug();
1326
1327 if (vgic_present)
1328 kvm_vgic_init_cpu_hardware();
1329 }
1330
1331 static void _kvm_arch_hardware_enable(void *discard)
1332 {
1333 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1334 cpu_hyp_reinit();
1335 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1336 }
1337 }
1338
1339 int kvm_arch_hardware_enable(void)
1340 {
1341 _kvm_arch_hardware_enable(NULL);
1342 return 0;
1343 }
1344
1345 static void _kvm_arch_hardware_disable(void *discard)
1346 {
1347 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1348 cpu_hyp_reset();
1349 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1350 }
1351 }
1352
1353 void kvm_arch_hardware_disable(void)
1354 {
1355 _kvm_arch_hardware_disable(NULL);
1356 }
1357
1358 #ifdef CONFIG_CPU_PM
1359 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1360 unsigned long cmd,
1361 void *v)
1362 {
1363 /*
1364 * kvm_arm_hardware_enabled is left with its old value over
1365 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1366 * re-enable hyp.
1367 */
1368 switch (cmd) {
1369 case CPU_PM_ENTER:
1370 if (__this_cpu_read(kvm_arm_hardware_enabled))
1371 /*
1372 * don't update kvm_arm_hardware_enabled here
1373 * so that the hardware will be re-enabled
1374 * when we resume. See below.
1375 */
1376 cpu_hyp_reset();
1377
1378 return NOTIFY_OK;
1379 case CPU_PM_ENTER_FAILED:
1380 case CPU_PM_EXIT:
1381 if (__this_cpu_read(kvm_arm_hardware_enabled))
1382 /* The hardware was enabled before suspend. */
1383 cpu_hyp_reinit();
1384
1385 return NOTIFY_OK;
1386
1387 default:
1388 return NOTIFY_DONE;
1389 }
1390 }
1391
1392 static struct notifier_block hyp_init_cpu_pm_nb = {
1393 .notifier_call = hyp_init_cpu_pm_notifier,
1394 };
1395
1396 static void __init hyp_cpu_pm_init(void)
1397 {
1398 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1399 }
1400 static void __init hyp_cpu_pm_exit(void)
1401 {
1402 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1403 }
1404 #else
1405 static inline void hyp_cpu_pm_init(void)
1406 {
1407 }
1408 static inline void hyp_cpu_pm_exit(void)
1409 {
1410 }
1411 #endif
1412
1413 static int init_common_resources(void)
1414 {
1415 kvm_set_ipa_limit();
1416
1417 return 0;
1418 }
1419
1420 static int init_subsystems(void)
1421 {
1422 int err = 0;
1423
1424 /*
1425 * Enable hardware so that subsystem initialisation can access EL2.
1426 */
1427 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1428
1429 /*
1430 * Register CPU lower-power notifier
1431 */
1432 hyp_cpu_pm_init();
1433
1434 /*
1435 * Init HYP view of VGIC
1436 */
1437 err = kvm_vgic_hyp_init();
1438 switch (err) {
1439 case 0:
1440 vgic_present = true;
1441 break;
1442 case -ENODEV:
1443 case -ENXIO:
1444 vgic_present = false;
1445 err = 0;
1446 break;
1447 default:
1448 goto out;
1449 }
1450
1451 /*
1452 * Init HYP architected timer support
1453 */
1454 err = kvm_timer_hyp_init(vgic_present);
1455 if (err)
1456 goto out;
1457
1458 kvm_perf_init();
1459 kvm_coproc_table_init();
1460
1461 out:
1462 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1463
1464 return err;
1465 }
1466
1467 static void teardown_hyp_mode(void)
1468 {
1469 int cpu;
1470
1471 free_hyp_pgds();
1472 for_each_possible_cpu(cpu)
1473 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1474 hyp_cpu_pm_exit();
1475 }
1476
1477 /**
1478 * Inits Hyp-mode on all online CPUs
1479 */
1480 static int init_hyp_mode(void)
1481 {
1482 int cpu;
1483 int err = 0;
1484
1485 /*
1486 * Allocate Hyp PGD and setup Hyp identity mapping
1487 */
1488 err = kvm_mmu_init();
1489 if (err)
1490 goto out_err;
1491
1492 /*
1493 * Allocate stack pages for Hypervisor-mode
1494 */
1495 for_each_possible_cpu(cpu) {
1496 unsigned long stack_page;
1497
1498 stack_page = __get_free_page(GFP_KERNEL);
1499 if (!stack_page) {
1500 err = -ENOMEM;
1501 goto out_err;
1502 }
1503
1504 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1505 }
1506
1507 /*
1508 * Map the Hyp-code called directly from the host
1509 */
1510 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1511 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1512 if (err) {
1513 kvm_err("Cannot map world-switch code\n");
1514 goto out_err;
1515 }
1516
1517 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1518 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1519 if (err) {
1520 kvm_err("Cannot map rodata section\n");
1521 goto out_err;
1522 }
1523
1524 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1525 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1526 if (err) {
1527 kvm_err("Cannot map bss section\n");
1528 goto out_err;
1529 }
1530
1531 err = kvm_map_vectors();
1532 if (err) {
1533 kvm_err("Cannot map vectors\n");
1534 goto out_err;
1535 }
1536
1537 /*
1538 * Map the Hyp stack pages
1539 */
1540 for_each_possible_cpu(cpu) {
1541 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1542 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1543 PAGE_HYP);
1544
1545 if (err) {
1546 kvm_err("Cannot map hyp stack\n");
1547 goto out_err;
1548 }
1549 }
1550
1551 for_each_possible_cpu(cpu) {
1552 kvm_cpu_context_t *cpu_ctxt;
1553
1554 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1555 kvm_init_host_cpu_context(cpu_ctxt, cpu);
1556 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1557
1558 if (err) {
1559 kvm_err("Cannot map host CPU state: %d\n", err);
1560 goto out_err;
1561 }
1562 }
1563
1564 err = hyp_map_aux_data();
1565 if (err)
1566 kvm_err("Cannot map host auxiliary data: %d\n", err);
1567
1568 return 0;
1569
1570 out_err:
1571 teardown_hyp_mode();
1572 kvm_err("error initializing Hyp mode: %d\n", err);
1573 return err;
1574 }
1575
1576 static void check_kvm_target_cpu(void *ret)
1577 {
1578 *(int *)ret = kvm_target_cpu();
1579 }
1580
1581 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1582 {
1583 struct kvm_vcpu *vcpu;
1584 int i;
1585
1586 mpidr &= MPIDR_HWID_BITMASK;
1587 kvm_for_each_vcpu(i, vcpu, kvm) {
1588 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1589 return vcpu;
1590 }
1591 return NULL;
1592 }
1593
1594 bool kvm_arch_has_irq_bypass(void)
1595 {
1596 return true;
1597 }
1598
1599 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1600 struct irq_bypass_producer *prod)
1601 {
1602 struct kvm_kernel_irqfd *irqfd =
1603 container_of(cons, struct kvm_kernel_irqfd, consumer);
1604
1605 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1606 &irqfd->irq_entry);
1607 }
1608 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1609 struct irq_bypass_producer *prod)
1610 {
1611 struct kvm_kernel_irqfd *irqfd =
1612 container_of(cons, struct kvm_kernel_irqfd, consumer);
1613
1614 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1615 &irqfd->irq_entry);
1616 }
1617
1618 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1619 {
1620 struct kvm_kernel_irqfd *irqfd =
1621 container_of(cons, struct kvm_kernel_irqfd, consumer);
1622
1623 kvm_arm_halt_guest(irqfd->kvm);
1624 }
1625
1626 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1627 {
1628 struct kvm_kernel_irqfd *irqfd =
1629 container_of(cons, struct kvm_kernel_irqfd, consumer);
1630
1631 kvm_arm_resume_guest(irqfd->kvm);
1632 }
1633
1634 /**
1635 * Initialize Hyp-mode and memory mappings on all CPUs.
1636 */
1637 int kvm_arch_init(void *opaque)
1638 {
1639 int err;
1640 int ret, cpu;
1641 bool in_hyp_mode;
1642
1643 if (!is_hyp_mode_available()) {
1644 kvm_info("HYP mode not available\n");
1645 return -ENODEV;
1646 }
1647
1648 in_hyp_mode = is_kernel_in_hyp_mode();
1649
1650 if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1651 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1652 return -ENODEV;
1653 }
1654
1655 for_each_online_cpu(cpu) {
1656 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1657 if (ret < 0) {
1658 kvm_err("Error, CPU %d not supported!\n", cpu);
1659 return -ENODEV;
1660 }
1661 }
1662
1663 err = init_common_resources();
1664 if (err)
1665 return err;
1666
1667 if (!in_hyp_mode) {
1668 err = init_hyp_mode();
1669 if (err)
1670 goto out_err;
1671 }
1672
1673 err = init_subsystems();
1674 if (err)
1675 goto out_hyp;
1676
1677 if (in_hyp_mode)
1678 kvm_info("VHE mode initialized successfully\n");
1679 else
1680 kvm_info("Hyp mode initialized successfully\n");
1681
1682 return 0;
1683
1684 out_hyp:
1685 if (!in_hyp_mode)
1686 teardown_hyp_mode();
1687 out_err:
1688 return err;
1689 }
1690
1691 /* NOP: Compiling as a module not supported */
1692 void kvm_arch_exit(void)
1693 {
1694 kvm_perf_teardown();
1695 }
1696
1697 static int arm_init(void)
1698 {
1699 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1700 return rc;
1701 }
1702
1703 module_init(arm_init);