]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - virt/kvm/arm/arm.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-hirsute-kernel.git] / virt / kvm / arm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/bug.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/list.h>
25 #include <linux/module.h>
26 #include <linux/vmalloc.h>
27 #include <linux/fs.h>
28 #include <linux/mman.h>
29 #include <linux/sched.h>
30 #include <linux/kvm.h>
31 #include <linux/kvm_irqfd.h>
32 #include <linux/irqbypass.h>
33 #include <linux/sched/stat.h>
34 #include <trace/events/kvm.h>
35 #include <kvm/arm_pmu.h>
36 #include <kvm/arm_psci.h>
37
38 #define CREATE_TRACE_POINTS
39 #include "trace.h"
40
41 #include <linux/uaccess.h>
42 #include <asm/ptrace.h>
43 #include <asm/mman.h>
44 #include <asm/tlbflush.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cpufeature.h>
47 #include <asm/virt.h>
48 #include <asm/kvm_arm.h>
49 #include <asm/kvm_asm.h>
50 #include <asm/kvm_mmu.h>
51 #include <asm/kvm_emulate.h>
52 #include <asm/kvm_coproc.h>
53 #include <asm/sections.h>
54
55 #ifdef REQUIRES_VIRT
56 __asm__(".arch_extension virt");
57 #endif
58
59 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
61
62 /* Per-CPU variable containing the currently running vcpu. */
63 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
64
65 /* The VMID used in the VTTBR */
66 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67 static u32 kvm_next_vmid;
68 static unsigned int kvm_vmid_bits __read_mostly;
69 static DEFINE_SPINLOCK(kvm_vmid_lock);
70
71 static bool vgic_present;
72
73 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
74
75 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
76 {
77 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
78 }
79
80 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
81
82 /**
83 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
84 * Must be called from non-preemptible context
85 */
86 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
87 {
88 return __this_cpu_read(kvm_arm_running_vcpu);
89 }
90
91 /**
92 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
93 */
94 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
95 {
96 return &kvm_arm_running_vcpu;
97 }
98
99 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
100 {
101 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
102 }
103
104 int kvm_arch_hardware_setup(void)
105 {
106 return 0;
107 }
108
109 void kvm_arch_check_processor_compat(void *rtn)
110 {
111 *(int *)rtn = 0;
112 }
113
114
115 /**
116 * kvm_arch_init_vm - initializes a VM data structure
117 * @kvm: pointer to the KVM struct
118 */
119 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
120 {
121 int ret, cpu;
122
123 ret = kvm_arm_setup_stage2(kvm, type);
124 if (ret)
125 return ret;
126
127 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
128 if (!kvm->arch.last_vcpu_ran)
129 return -ENOMEM;
130
131 for_each_possible_cpu(cpu)
132 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
133
134 ret = kvm_alloc_stage2_pgd(kvm);
135 if (ret)
136 goto out_fail_alloc;
137
138 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
139 if (ret)
140 goto out_free_stage2_pgd;
141
142 kvm_vgic_early_init(kvm);
143
144 /* Mark the initial VMID generation invalid */
145 kvm->arch.vmid_gen = 0;
146
147 /* The maximum number of VCPUs is limited by the host's GIC model */
148 kvm->arch.max_vcpus = vgic_present ?
149 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
150
151 return ret;
152 out_free_stage2_pgd:
153 kvm_free_stage2_pgd(kvm);
154 out_fail_alloc:
155 free_percpu(kvm->arch.last_vcpu_ran);
156 kvm->arch.last_vcpu_ran = NULL;
157 return ret;
158 }
159
160 bool kvm_arch_has_vcpu_debugfs(void)
161 {
162 return false;
163 }
164
165 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
166 {
167 return 0;
168 }
169
170 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
171 {
172 return VM_FAULT_SIGBUS;
173 }
174
175
176 /**
177 * kvm_arch_destroy_vm - destroy the VM data structure
178 * @kvm: pointer to the KVM struct
179 */
180 void kvm_arch_destroy_vm(struct kvm *kvm)
181 {
182 int i;
183
184 kvm_vgic_destroy(kvm);
185
186 free_percpu(kvm->arch.last_vcpu_ran);
187 kvm->arch.last_vcpu_ran = NULL;
188
189 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
190 if (kvm->vcpus[i]) {
191 kvm_arch_vcpu_free(kvm->vcpus[i]);
192 kvm->vcpus[i] = NULL;
193 }
194 }
195 atomic_set(&kvm->online_vcpus, 0);
196 }
197
198 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
199 {
200 int r;
201 switch (ext) {
202 case KVM_CAP_IRQCHIP:
203 r = vgic_present;
204 break;
205 case KVM_CAP_IOEVENTFD:
206 case KVM_CAP_DEVICE_CTRL:
207 case KVM_CAP_USER_MEMORY:
208 case KVM_CAP_SYNC_MMU:
209 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
210 case KVM_CAP_ONE_REG:
211 case KVM_CAP_ARM_PSCI:
212 case KVM_CAP_ARM_PSCI_0_2:
213 case KVM_CAP_READONLY_MEM:
214 case KVM_CAP_MP_STATE:
215 case KVM_CAP_IMMEDIATE_EXIT:
216 case KVM_CAP_VCPU_EVENTS:
217 r = 1;
218 break;
219 case KVM_CAP_ARM_SET_DEVICE_ADDR:
220 r = 1;
221 break;
222 case KVM_CAP_NR_VCPUS:
223 r = num_online_cpus();
224 break;
225 case KVM_CAP_MAX_VCPUS:
226 r = KVM_MAX_VCPUS;
227 break;
228 case KVM_CAP_NR_MEMSLOTS:
229 r = KVM_USER_MEM_SLOTS;
230 break;
231 case KVM_CAP_MSI_DEVID:
232 if (!kvm)
233 r = -EINVAL;
234 else
235 r = kvm->arch.vgic.msis_require_devid;
236 break;
237 case KVM_CAP_ARM_USER_IRQ:
238 /*
239 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
240 * (bump this number if adding more devices)
241 */
242 r = 1;
243 break;
244 default:
245 r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
246 break;
247 }
248 return r;
249 }
250
251 long kvm_arch_dev_ioctl(struct file *filp,
252 unsigned int ioctl, unsigned long arg)
253 {
254 return -EINVAL;
255 }
256
257 struct kvm *kvm_arch_alloc_vm(void)
258 {
259 if (!has_vhe())
260 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
261
262 return vzalloc(sizeof(struct kvm));
263 }
264
265 void kvm_arch_free_vm(struct kvm *kvm)
266 {
267 if (!has_vhe())
268 kfree(kvm);
269 else
270 vfree(kvm);
271 }
272
273 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
274 {
275 int err;
276 struct kvm_vcpu *vcpu;
277
278 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
279 err = -EBUSY;
280 goto out;
281 }
282
283 if (id >= kvm->arch.max_vcpus) {
284 err = -EINVAL;
285 goto out;
286 }
287
288 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
289 if (!vcpu) {
290 err = -ENOMEM;
291 goto out;
292 }
293
294 err = kvm_vcpu_init(vcpu, kvm, id);
295 if (err)
296 goto free_vcpu;
297
298 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
299 if (err)
300 goto vcpu_uninit;
301
302 return vcpu;
303 vcpu_uninit:
304 kvm_vcpu_uninit(vcpu);
305 free_vcpu:
306 kmem_cache_free(kvm_vcpu_cache, vcpu);
307 out:
308 return ERR_PTR(err);
309 }
310
311 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
312 {
313 }
314
315 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
316 {
317 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
318 static_branch_dec(&userspace_irqchip_in_use);
319
320 kvm_mmu_free_memory_caches(vcpu);
321 kvm_timer_vcpu_terminate(vcpu);
322 kvm_pmu_vcpu_destroy(vcpu);
323 kvm_vcpu_uninit(vcpu);
324 kmem_cache_free(kvm_vcpu_cache, vcpu);
325 }
326
327 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
328 {
329 kvm_arch_vcpu_free(vcpu);
330 }
331
332 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
333 {
334 return kvm_timer_is_pending(vcpu);
335 }
336
337 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
338 {
339 kvm_timer_schedule(vcpu);
340 kvm_vgic_v4_enable_doorbell(vcpu);
341 }
342
343 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
344 {
345 kvm_timer_unschedule(vcpu);
346 kvm_vgic_v4_disable_doorbell(vcpu);
347 }
348
349 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
350 {
351 /* Force users to call KVM_ARM_VCPU_INIT */
352 vcpu->arch.target = -1;
353 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
354
355 /* Set up the timer */
356 kvm_timer_vcpu_init(vcpu);
357
358 kvm_arm_reset_debug_ptr(vcpu);
359
360 return kvm_vgic_vcpu_init(vcpu);
361 }
362
363 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
364 {
365 int *last_ran;
366
367 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
368
369 /*
370 * We might get preempted before the vCPU actually runs, but
371 * over-invalidation doesn't affect correctness.
372 */
373 if (*last_ran != vcpu->vcpu_id) {
374 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
375 *last_ran = vcpu->vcpu_id;
376 }
377
378 vcpu->cpu = cpu;
379 vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
380
381 kvm_arm_set_running_vcpu(vcpu);
382 kvm_vgic_load(vcpu);
383 kvm_timer_vcpu_load(vcpu);
384 kvm_vcpu_load_sysregs(vcpu);
385 kvm_arch_vcpu_load_fp(vcpu);
386
387 if (single_task_running())
388 vcpu_clear_wfe_traps(vcpu);
389 else
390 vcpu_set_wfe_traps(vcpu);
391 }
392
393 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
394 {
395 kvm_arch_vcpu_put_fp(vcpu);
396 kvm_vcpu_put_sysregs(vcpu);
397 kvm_timer_vcpu_put(vcpu);
398 kvm_vgic_put(vcpu);
399
400 vcpu->cpu = -1;
401
402 kvm_arm_set_running_vcpu(NULL);
403 }
404
405 static void vcpu_power_off(struct kvm_vcpu *vcpu)
406 {
407 vcpu->arch.power_off = true;
408 kvm_make_request(KVM_REQ_SLEEP, vcpu);
409 kvm_vcpu_kick(vcpu);
410 }
411
412 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
413 struct kvm_mp_state *mp_state)
414 {
415 if (vcpu->arch.power_off)
416 mp_state->mp_state = KVM_MP_STATE_STOPPED;
417 else
418 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
419
420 return 0;
421 }
422
423 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
424 struct kvm_mp_state *mp_state)
425 {
426 int ret = 0;
427
428 switch (mp_state->mp_state) {
429 case KVM_MP_STATE_RUNNABLE:
430 vcpu->arch.power_off = false;
431 break;
432 case KVM_MP_STATE_STOPPED:
433 vcpu_power_off(vcpu);
434 break;
435 default:
436 ret = -EINVAL;
437 }
438
439 return ret;
440 }
441
442 /**
443 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
444 * @v: The VCPU pointer
445 *
446 * If the guest CPU is not waiting for interrupts or an interrupt line is
447 * asserted, the CPU is by definition runnable.
448 */
449 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
450 {
451 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
452 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
453 && !v->arch.power_off && !v->arch.pause);
454 }
455
456 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
457 {
458 return vcpu_mode_priv(vcpu);
459 }
460
461 /* Just ensure a guest exit from a particular CPU */
462 static void exit_vm_noop(void *info)
463 {
464 }
465
466 void force_vm_exit(const cpumask_t *mask)
467 {
468 preempt_disable();
469 smp_call_function_many(mask, exit_vm_noop, NULL, true);
470 preempt_enable();
471 }
472
473 /**
474 * need_new_vmid_gen - check that the VMID is still valid
475 * @kvm: The VM's VMID to check
476 *
477 * return true if there is a new generation of VMIDs being used
478 *
479 * The hardware supports only 256 values with the value zero reserved for the
480 * host, so we check if an assigned value belongs to a previous generation,
481 * which which requires us to assign a new value. If we're the first to use a
482 * VMID for the new generation, we must flush necessary caches and TLBs on all
483 * CPUs.
484 */
485 static bool need_new_vmid_gen(struct kvm *kvm)
486 {
487 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
488 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
489 return unlikely(READ_ONCE(kvm->arch.vmid_gen) != current_vmid_gen);
490 }
491
492 /**
493 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
494 * @kvm The guest that we are about to run
495 *
496 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
497 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
498 * caches and TLBs.
499 */
500 static void update_vttbr(struct kvm *kvm)
501 {
502 phys_addr_t pgd_phys;
503 u64 vmid, cnp = kvm_cpu_has_cnp() ? VTTBR_CNP_BIT : 0;
504
505 if (!need_new_vmid_gen(kvm))
506 return;
507
508 spin_lock(&kvm_vmid_lock);
509
510 /*
511 * We need to re-check the vmid_gen here to ensure that if another vcpu
512 * already allocated a valid vmid for this vm, then this vcpu should
513 * use the same vmid.
514 */
515 if (!need_new_vmid_gen(kvm)) {
516 spin_unlock(&kvm_vmid_lock);
517 return;
518 }
519
520 /* First user of a new VMID generation? */
521 if (unlikely(kvm_next_vmid == 0)) {
522 atomic64_inc(&kvm_vmid_gen);
523 kvm_next_vmid = 1;
524
525 /*
526 * On SMP we know no other CPUs can use this CPU's or each
527 * other's VMID after force_vm_exit returns since the
528 * kvm_vmid_lock blocks them from reentry to the guest.
529 */
530 force_vm_exit(cpu_all_mask);
531 /*
532 * Now broadcast TLB + ICACHE invalidation over the inner
533 * shareable domain to make sure all data structures are
534 * clean.
535 */
536 kvm_call_hyp(__kvm_flush_vm_context);
537 }
538
539 kvm->arch.vmid = kvm_next_vmid;
540 kvm_next_vmid++;
541 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
542
543 /* update vttbr to be used with the new vmid */
544 pgd_phys = virt_to_phys(kvm->arch.pgd);
545 BUG_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm));
546 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
547 kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid | cnp;
548
549 smp_wmb();
550 WRITE_ONCE(kvm->arch.vmid_gen, atomic64_read(&kvm_vmid_gen));
551
552 spin_unlock(&kvm_vmid_lock);
553 }
554
555 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
556 {
557 struct kvm *kvm = vcpu->kvm;
558 int ret = 0;
559
560 if (likely(vcpu->arch.has_run_once))
561 return 0;
562
563 vcpu->arch.has_run_once = true;
564
565 if (likely(irqchip_in_kernel(kvm))) {
566 /*
567 * Map the VGIC hardware resources before running a vcpu the
568 * first time on this VM.
569 */
570 if (unlikely(!vgic_ready(kvm))) {
571 ret = kvm_vgic_map_resources(kvm);
572 if (ret)
573 return ret;
574 }
575 } else {
576 /*
577 * Tell the rest of the code that there are userspace irqchip
578 * VMs in the wild.
579 */
580 static_branch_inc(&userspace_irqchip_in_use);
581 }
582
583 ret = kvm_timer_enable(vcpu);
584 if (ret)
585 return ret;
586
587 ret = kvm_arm_pmu_v3_enable(vcpu);
588
589 return ret;
590 }
591
592 bool kvm_arch_intc_initialized(struct kvm *kvm)
593 {
594 return vgic_initialized(kvm);
595 }
596
597 void kvm_arm_halt_guest(struct kvm *kvm)
598 {
599 int i;
600 struct kvm_vcpu *vcpu;
601
602 kvm_for_each_vcpu(i, vcpu, kvm)
603 vcpu->arch.pause = true;
604 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
605 }
606
607 void kvm_arm_resume_guest(struct kvm *kvm)
608 {
609 int i;
610 struct kvm_vcpu *vcpu;
611
612 kvm_for_each_vcpu(i, vcpu, kvm) {
613 vcpu->arch.pause = false;
614 swake_up_one(kvm_arch_vcpu_wq(vcpu));
615 }
616 }
617
618 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
619 {
620 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
621
622 swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
623 (!vcpu->arch.pause)));
624
625 if (vcpu->arch.power_off || vcpu->arch.pause) {
626 /* Awaken to handle a signal, request we sleep again later. */
627 kvm_make_request(KVM_REQ_SLEEP, vcpu);
628 }
629 }
630
631 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
632 {
633 return vcpu->arch.target >= 0;
634 }
635
636 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
637 {
638 if (kvm_request_pending(vcpu)) {
639 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
640 vcpu_req_sleep(vcpu);
641
642 /*
643 * Clear IRQ_PENDING requests that were made to guarantee
644 * that a VCPU sees new virtual interrupts.
645 */
646 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
647 }
648 }
649
650 /**
651 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
652 * @vcpu: The VCPU pointer
653 * @run: The kvm_run structure pointer used for userspace state exchange
654 *
655 * This function is called through the VCPU_RUN ioctl called from user space. It
656 * will execute VM code in a loop until the time slice for the process is used
657 * or some emulation is needed from user space in which case the function will
658 * return with return value 0 and with the kvm_run structure filled in with the
659 * required data for the requested emulation.
660 */
661 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
662 {
663 int ret;
664
665 if (unlikely(!kvm_vcpu_initialized(vcpu)))
666 return -ENOEXEC;
667
668 ret = kvm_vcpu_first_run_init(vcpu);
669 if (ret)
670 return ret;
671
672 if (run->exit_reason == KVM_EXIT_MMIO) {
673 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
674 if (ret)
675 return ret;
676 }
677
678 if (run->immediate_exit)
679 return -EINTR;
680
681 vcpu_load(vcpu);
682
683 kvm_sigset_activate(vcpu);
684
685 ret = 1;
686 run->exit_reason = KVM_EXIT_UNKNOWN;
687 while (ret > 0) {
688 /*
689 * Check conditions before entering the guest
690 */
691 cond_resched();
692
693 update_vttbr(vcpu->kvm);
694
695 check_vcpu_requests(vcpu);
696
697 /*
698 * Preparing the interrupts to be injected also
699 * involves poking the GIC, which must be done in a
700 * non-preemptible context.
701 */
702 preempt_disable();
703
704 kvm_pmu_flush_hwstate(vcpu);
705
706 local_irq_disable();
707
708 kvm_vgic_flush_hwstate(vcpu);
709
710 /*
711 * Exit if we have a signal pending so that we can deliver the
712 * signal to user space.
713 */
714 if (signal_pending(current)) {
715 ret = -EINTR;
716 run->exit_reason = KVM_EXIT_INTR;
717 }
718
719 /*
720 * If we're using a userspace irqchip, then check if we need
721 * to tell a userspace irqchip about timer or PMU level
722 * changes and if so, exit to userspace (the actual level
723 * state gets updated in kvm_timer_update_run and
724 * kvm_pmu_update_run below).
725 */
726 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
727 if (kvm_timer_should_notify_user(vcpu) ||
728 kvm_pmu_should_notify_user(vcpu)) {
729 ret = -EINTR;
730 run->exit_reason = KVM_EXIT_INTR;
731 }
732 }
733
734 /*
735 * Ensure we set mode to IN_GUEST_MODE after we disable
736 * interrupts and before the final VCPU requests check.
737 * See the comment in kvm_vcpu_exiting_guest_mode() and
738 * Documentation/virtual/kvm/vcpu-requests.rst
739 */
740 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
741
742 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
743 kvm_request_pending(vcpu)) {
744 vcpu->mode = OUTSIDE_GUEST_MODE;
745 isb(); /* Ensure work in x_flush_hwstate is committed */
746 kvm_pmu_sync_hwstate(vcpu);
747 if (static_branch_unlikely(&userspace_irqchip_in_use))
748 kvm_timer_sync_hwstate(vcpu);
749 kvm_vgic_sync_hwstate(vcpu);
750 local_irq_enable();
751 preempt_enable();
752 continue;
753 }
754
755 kvm_arm_setup_debug(vcpu);
756
757 /**************************************************************
758 * Enter the guest
759 */
760 trace_kvm_entry(*vcpu_pc(vcpu));
761 guest_enter_irqoff();
762
763 if (has_vhe()) {
764 kvm_arm_vhe_guest_enter();
765 ret = kvm_vcpu_run_vhe(vcpu);
766 kvm_arm_vhe_guest_exit();
767 } else {
768 ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
769 }
770
771 vcpu->mode = OUTSIDE_GUEST_MODE;
772 vcpu->stat.exits++;
773 /*
774 * Back from guest
775 *************************************************************/
776
777 kvm_arm_clear_debug(vcpu);
778
779 /*
780 * We must sync the PMU state before the vgic state so
781 * that the vgic can properly sample the updated state of the
782 * interrupt line.
783 */
784 kvm_pmu_sync_hwstate(vcpu);
785
786 /*
787 * Sync the vgic state before syncing the timer state because
788 * the timer code needs to know if the virtual timer
789 * interrupts are active.
790 */
791 kvm_vgic_sync_hwstate(vcpu);
792
793 /*
794 * Sync the timer hardware state before enabling interrupts as
795 * we don't want vtimer interrupts to race with syncing the
796 * timer virtual interrupt state.
797 */
798 if (static_branch_unlikely(&userspace_irqchip_in_use))
799 kvm_timer_sync_hwstate(vcpu);
800
801 kvm_arch_vcpu_ctxsync_fp(vcpu);
802
803 /*
804 * We may have taken a host interrupt in HYP mode (ie
805 * while executing the guest). This interrupt is still
806 * pending, as we haven't serviced it yet!
807 *
808 * We're now back in SVC mode, with interrupts
809 * disabled. Enabling the interrupts now will have
810 * the effect of taking the interrupt again, in SVC
811 * mode this time.
812 */
813 local_irq_enable();
814
815 /*
816 * We do local_irq_enable() before calling guest_exit() so
817 * that if a timer interrupt hits while running the guest we
818 * account that tick as being spent in the guest. We enable
819 * preemption after calling guest_exit() so that if we get
820 * preempted we make sure ticks after that is not counted as
821 * guest time.
822 */
823 guest_exit();
824 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
825
826 /* Exit types that need handling before we can be preempted */
827 handle_exit_early(vcpu, run, ret);
828
829 preempt_enable();
830
831 ret = handle_exit(vcpu, run, ret);
832 }
833
834 /* Tell userspace about in-kernel device output levels */
835 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
836 kvm_timer_update_run(vcpu);
837 kvm_pmu_update_run(vcpu);
838 }
839
840 kvm_sigset_deactivate(vcpu);
841
842 vcpu_put(vcpu);
843 return ret;
844 }
845
846 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
847 {
848 int bit_index;
849 bool set;
850 unsigned long *hcr;
851
852 if (number == KVM_ARM_IRQ_CPU_IRQ)
853 bit_index = __ffs(HCR_VI);
854 else /* KVM_ARM_IRQ_CPU_FIQ */
855 bit_index = __ffs(HCR_VF);
856
857 hcr = vcpu_hcr(vcpu);
858 if (level)
859 set = test_and_set_bit(bit_index, hcr);
860 else
861 set = test_and_clear_bit(bit_index, hcr);
862
863 /*
864 * If we didn't change anything, no need to wake up or kick other CPUs
865 */
866 if (set == level)
867 return 0;
868
869 /*
870 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
871 * trigger a world-switch round on the running physical CPU to set the
872 * virtual IRQ/FIQ fields in the HCR appropriately.
873 */
874 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
875 kvm_vcpu_kick(vcpu);
876
877 return 0;
878 }
879
880 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
881 bool line_status)
882 {
883 u32 irq = irq_level->irq;
884 unsigned int irq_type, vcpu_idx, irq_num;
885 int nrcpus = atomic_read(&kvm->online_vcpus);
886 struct kvm_vcpu *vcpu = NULL;
887 bool level = irq_level->level;
888
889 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
890 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
891 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
892
893 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
894
895 switch (irq_type) {
896 case KVM_ARM_IRQ_TYPE_CPU:
897 if (irqchip_in_kernel(kvm))
898 return -ENXIO;
899
900 if (vcpu_idx >= nrcpus)
901 return -EINVAL;
902
903 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
904 if (!vcpu)
905 return -EINVAL;
906
907 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
908 return -EINVAL;
909
910 return vcpu_interrupt_line(vcpu, irq_num, level);
911 case KVM_ARM_IRQ_TYPE_PPI:
912 if (!irqchip_in_kernel(kvm))
913 return -ENXIO;
914
915 if (vcpu_idx >= nrcpus)
916 return -EINVAL;
917
918 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
919 if (!vcpu)
920 return -EINVAL;
921
922 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
923 return -EINVAL;
924
925 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
926 case KVM_ARM_IRQ_TYPE_SPI:
927 if (!irqchip_in_kernel(kvm))
928 return -ENXIO;
929
930 if (irq_num < VGIC_NR_PRIVATE_IRQS)
931 return -EINVAL;
932
933 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
934 }
935
936 return -EINVAL;
937 }
938
939 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
940 const struct kvm_vcpu_init *init)
941 {
942 unsigned int i;
943 int phys_target = kvm_target_cpu();
944
945 if (init->target != phys_target)
946 return -EINVAL;
947
948 /*
949 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
950 * use the same target.
951 */
952 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
953 return -EINVAL;
954
955 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
956 for (i = 0; i < sizeof(init->features) * 8; i++) {
957 bool set = (init->features[i / 32] & (1 << (i % 32)));
958
959 if (set && i >= KVM_VCPU_MAX_FEATURES)
960 return -ENOENT;
961
962 /*
963 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
964 * use the same feature set.
965 */
966 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
967 test_bit(i, vcpu->arch.features) != set)
968 return -EINVAL;
969
970 if (set)
971 set_bit(i, vcpu->arch.features);
972 }
973
974 vcpu->arch.target = phys_target;
975
976 /* Now we know what it is, we can reset it. */
977 return kvm_reset_vcpu(vcpu);
978 }
979
980
981 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
982 struct kvm_vcpu_init *init)
983 {
984 int ret;
985
986 ret = kvm_vcpu_set_target(vcpu, init);
987 if (ret)
988 return ret;
989
990 /*
991 * Ensure a rebooted VM will fault in RAM pages and detect if the
992 * guest MMU is turned off and flush the caches as needed.
993 */
994 if (vcpu->arch.has_run_once)
995 stage2_unmap_vm(vcpu->kvm);
996
997 vcpu_reset_hcr(vcpu);
998
999 /*
1000 * Handle the "start in power-off" case.
1001 */
1002 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1003 vcpu_power_off(vcpu);
1004 else
1005 vcpu->arch.power_off = false;
1006
1007 return 0;
1008 }
1009
1010 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1011 struct kvm_device_attr *attr)
1012 {
1013 int ret = -ENXIO;
1014
1015 switch (attr->group) {
1016 default:
1017 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1018 break;
1019 }
1020
1021 return ret;
1022 }
1023
1024 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1025 struct kvm_device_attr *attr)
1026 {
1027 int ret = -ENXIO;
1028
1029 switch (attr->group) {
1030 default:
1031 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1032 break;
1033 }
1034
1035 return ret;
1036 }
1037
1038 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1039 struct kvm_device_attr *attr)
1040 {
1041 int ret = -ENXIO;
1042
1043 switch (attr->group) {
1044 default:
1045 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1046 break;
1047 }
1048
1049 return ret;
1050 }
1051
1052 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1053 struct kvm_vcpu_events *events)
1054 {
1055 memset(events, 0, sizeof(*events));
1056
1057 return __kvm_arm_vcpu_get_events(vcpu, events);
1058 }
1059
1060 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1061 struct kvm_vcpu_events *events)
1062 {
1063 int i;
1064
1065 /* check whether the reserved field is zero */
1066 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1067 if (events->reserved[i])
1068 return -EINVAL;
1069
1070 /* check whether the pad field is zero */
1071 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1072 if (events->exception.pad[i])
1073 return -EINVAL;
1074
1075 return __kvm_arm_vcpu_set_events(vcpu, events);
1076 }
1077
1078 long kvm_arch_vcpu_ioctl(struct file *filp,
1079 unsigned int ioctl, unsigned long arg)
1080 {
1081 struct kvm_vcpu *vcpu = filp->private_data;
1082 void __user *argp = (void __user *)arg;
1083 struct kvm_device_attr attr;
1084 long r;
1085
1086 switch (ioctl) {
1087 case KVM_ARM_VCPU_INIT: {
1088 struct kvm_vcpu_init init;
1089
1090 r = -EFAULT;
1091 if (copy_from_user(&init, argp, sizeof(init)))
1092 break;
1093
1094 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1095 break;
1096 }
1097 case KVM_SET_ONE_REG:
1098 case KVM_GET_ONE_REG: {
1099 struct kvm_one_reg reg;
1100
1101 r = -ENOEXEC;
1102 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1103 break;
1104
1105 r = -EFAULT;
1106 if (copy_from_user(&reg, argp, sizeof(reg)))
1107 break;
1108
1109 if (ioctl == KVM_SET_ONE_REG)
1110 r = kvm_arm_set_reg(vcpu, &reg);
1111 else
1112 r = kvm_arm_get_reg(vcpu, &reg);
1113 break;
1114 }
1115 case KVM_GET_REG_LIST: {
1116 struct kvm_reg_list __user *user_list = argp;
1117 struct kvm_reg_list reg_list;
1118 unsigned n;
1119
1120 r = -ENOEXEC;
1121 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1122 break;
1123
1124 r = -EFAULT;
1125 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1126 break;
1127 n = reg_list.n;
1128 reg_list.n = kvm_arm_num_regs(vcpu);
1129 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1130 break;
1131 r = -E2BIG;
1132 if (n < reg_list.n)
1133 break;
1134 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1135 break;
1136 }
1137 case KVM_SET_DEVICE_ATTR: {
1138 r = -EFAULT;
1139 if (copy_from_user(&attr, argp, sizeof(attr)))
1140 break;
1141 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1142 break;
1143 }
1144 case KVM_GET_DEVICE_ATTR: {
1145 r = -EFAULT;
1146 if (copy_from_user(&attr, argp, sizeof(attr)))
1147 break;
1148 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1149 break;
1150 }
1151 case KVM_HAS_DEVICE_ATTR: {
1152 r = -EFAULT;
1153 if (copy_from_user(&attr, argp, sizeof(attr)))
1154 break;
1155 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1156 break;
1157 }
1158 case KVM_GET_VCPU_EVENTS: {
1159 struct kvm_vcpu_events events;
1160
1161 if (kvm_arm_vcpu_get_events(vcpu, &events))
1162 return -EINVAL;
1163
1164 if (copy_to_user(argp, &events, sizeof(events)))
1165 return -EFAULT;
1166
1167 return 0;
1168 }
1169 case KVM_SET_VCPU_EVENTS: {
1170 struct kvm_vcpu_events events;
1171
1172 if (copy_from_user(&events, argp, sizeof(events)))
1173 return -EFAULT;
1174
1175 return kvm_arm_vcpu_set_events(vcpu, &events);
1176 }
1177 default:
1178 r = -EINVAL;
1179 }
1180
1181 return r;
1182 }
1183
1184 /**
1185 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1186 * @kvm: kvm instance
1187 * @log: slot id and address to which we copy the log
1188 *
1189 * Steps 1-4 below provide general overview of dirty page logging. See
1190 * kvm_get_dirty_log_protect() function description for additional details.
1191 *
1192 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1193 * always flush the TLB (step 4) even if previous step failed and the dirty
1194 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1195 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1196 * writes will be marked dirty for next log read.
1197 *
1198 * 1. Take a snapshot of the bit and clear it if needed.
1199 * 2. Write protect the corresponding page.
1200 * 3. Copy the snapshot to the userspace.
1201 * 4. Flush TLB's if needed.
1202 */
1203 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1204 {
1205 bool flush = false;
1206 int r;
1207
1208 mutex_lock(&kvm->slots_lock);
1209
1210 r = kvm_get_dirty_log_protect(kvm, log, &flush);
1211
1212 if (flush)
1213 kvm_flush_remote_tlbs(kvm);
1214
1215 mutex_unlock(&kvm->slots_lock);
1216 return r;
1217 }
1218
1219 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1220 {
1221 bool flush = false;
1222 int r;
1223
1224 mutex_lock(&kvm->slots_lock);
1225
1226 r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1227
1228 if (flush)
1229 kvm_flush_remote_tlbs(kvm);
1230
1231 mutex_unlock(&kvm->slots_lock);
1232 return r;
1233 }
1234
1235 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1236 struct kvm_arm_device_addr *dev_addr)
1237 {
1238 unsigned long dev_id, type;
1239
1240 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1241 KVM_ARM_DEVICE_ID_SHIFT;
1242 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1243 KVM_ARM_DEVICE_TYPE_SHIFT;
1244
1245 switch (dev_id) {
1246 case KVM_ARM_DEVICE_VGIC_V2:
1247 if (!vgic_present)
1248 return -ENXIO;
1249 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1250 default:
1251 return -ENODEV;
1252 }
1253 }
1254
1255 long kvm_arch_vm_ioctl(struct file *filp,
1256 unsigned int ioctl, unsigned long arg)
1257 {
1258 struct kvm *kvm = filp->private_data;
1259 void __user *argp = (void __user *)arg;
1260
1261 switch (ioctl) {
1262 case KVM_CREATE_IRQCHIP: {
1263 int ret;
1264 if (!vgic_present)
1265 return -ENXIO;
1266 mutex_lock(&kvm->lock);
1267 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1268 mutex_unlock(&kvm->lock);
1269 return ret;
1270 }
1271 case KVM_ARM_SET_DEVICE_ADDR: {
1272 struct kvm_arm_device_addr dev_addr;
1273
1274 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1275 return -EFAULT;
1276 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1277 }
1278 case KVM_ARM_PREFERRED_TARGET: {
1279 int err;
1280 struct kvm_vcpu_init init;
1281
1282 err = kvm_vcpu_preferred_target(&init);
1283 if (err)
1284 return err;
1285
1286 if (copy_to_user(argp, &init, sizeof(init)))
1287 return -EFAULT;
1288
1289 return 0;
1290 }
1291 default:
1292 return -EINVAL;
1293 }
1294 }
1295
1296 static void cpu_init_hyp_mode(void *dummy)
1297 {
1298 phys_addr_t pgd_ptr;
1299 unsigned long hyp_stack_ptr;
1300 unsigned long stack_page;
1301 unsigned long vector_ptr;
1302
1303 /* Switch from the HYP stub to our own HYP init vector */
1304 __hyp_set_vectors(kvm_get_idmap_vector());
1305
1306 pgd_ptr = kvm_mmu_get_httbr();
1307 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1308 hyp_stack_ptr = stack_page + PAGE_SIZE;
1309 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1310
1311 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1312 __cpu_init_stage2();
1313 }
1314
1315 static void cpu_hyp_reset(void)
1316 {
1317 if (!is_kernel_in_hyp_mode())
1318 __hyp_reset_vectors();
1319 }
1320
1321 static void cpu_hyp_reinit(void)
1322 {
1323 cpu_hyp_reset();
1324
1325 if (is_kernel_in_hyp_mode())
1326 kvm_timer_init_vhe();
1327 else
1328 cpu_init_hyp_mode(NULL);
1329
1330 kvm_arm_init_debug();
1331
1332 if (vgic_present)
1333 kvm_vgic_init_cpu_hardware();
1334 }
1335
1336 static void _kvm_arch_hardware_enable(void *discard)
1337 {
1338 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1339 cpu_hyp_reinit();
1340 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1341 }
1342 }
1343
1344 int kvm_arch_hardware_enable(void)
1345 {
1346 _kvm_arch_hardware_enable(NULL);
1347 return 0;
1348 }
1349
1350 static void _kvm_arch_hardware_disable(void *discard)
1351 {
1352 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1353 cpu_hyp_reset();
1354 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1355 }
1356 }
1357
1358 void kvm_arch_hardware_disable(void)
1359 {
1360 _kvm_arch_hardware_disable(NULL);
1361 }
1362
1363 #ifdef CONFIG_CPU_PM
1364 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1365 unsigned long cmd,
1366 void *v)
1367 {
1368 /*
1369 * kvm_arm_hardware_enabled is left with its old value over
1370 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1371 * re-enable hyp.
1372 */
1373 switch (cmd) {
1374 case CPU_PM_ENTER:
1375 if (__this_cpu_read(kvm_arm_hardware_enabled))
1376 /*
1377 * don't update kvm_arm_hardware_enabled here
1378 * so that the hardware will be re-enabled
1379 * when we resume. See below.
1380 */
1381 cpu_hyp_reset();
1382
1383 return NOTIFY_OK;
1384 case CPU_PM_ENTER_FAILED:
1385 case CPU_PM_EXIT:
1386 if (__this_cpu_read(kvm_arm_hardware_enabled))
1387 /* The hardware was enabled before suspend. */
1388 cpu_hyp_reinit();
1389
1390 return NOTIFY_OK;
1391
1392 default:
1393 return NOTIFY_DONE;
1394 }
1395 }
1396
1397 static struct notifier_block hyp_init_cpu_pm_nb = {
1398 .notifier_call = hyp_init_cpu_pm_notifier,
1399 };
1400
1401 static void __init hyp_cpu_pm_init(void)
1402 {
1403 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1404 }
1405 static void __init hyp_cpu_pm_exit(void)
1406 {
1407 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1408 }
1409 #else
1410 static inline void hyp_cpu_pm_init(void)
1411 {
1412 }
1413 static inline void hyp_cpu_pm_exit(void)
1414 {
1415 }
1416 #endif
1417
1418 static int init_common_resources(void)
1419 {
1420 /* set size of VMID supported by CPU */
1421 kvm_vmid_bits = kvm_get_vmid_bits();
1422 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1423
1424 kvm_set_ipa_limit();
1425
1426 return 0;
1427 }
1428
1429 static int init_subsystems(void)
1430 {
1431 int err = 0;
1432
1433 /*
1434 * Enable hardware so that subsystem initialisation can access EL2.
1435 */
1436 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1437
1438 /*
1439 * Register CPU lower-power notifier
1440 */
1441 hyp_cpu_pm_init();
1442
1443 /*
1444 * Init HYP view of VGIC
1445 */
1446 err = kvm_vgic_hyp_init();
1447 switch (err) {
1448 case 0:
1449 vgic_present = true;
1450 break;
1451 case -ENODEV:
1452 case -ENXIO:
1453 vgic_present = false;
1454 err = 0;
1455 break;
1456 default:
1457 goto out;
1458 }
1459
1460 /*
1461 * Init HYP architected timer support
1462 */
1463 err = kvm_timer_hyp_init(vgic_present);
1464 if (err)
1465 goto out;
1466
1467 kvm_perf_init();
1468 kvm_coproc_table_init();
1469
1470 out:
1471 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1472
1473 return err;
1474 }
1475
1476 static void teardown_hyp_mode(void)
1477 {
1478 int cpu;
1479
1480 free_hyp_pgds();
1481 for_each_possible_cpu(cpu)
1482 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1483 hyp_cpu_pm_exit();
1484 }
1485
1486 /**
1487 * Inits Hyp-mode on all online CPUs
1488 */
1489 static int init_hyp_mode(void)
1490 {
1491 int cpu;
1492 int err = 0;
1493
1494 /*
1495 * Allocate Hyp PGD and setup Hyp identity mapping
1496 */
1497 err = kvm_mmu_init();
1498 if (err)
1499 goto out_err;
1500
1501 /*
1502 * Allocate stack pages for Hypervisor-mode
1503 */
1504 for_each_possible_cpu(cpu) {
1505 unsigned long stack_page;
1506
1507 stack_page = __get_free_page(GFP_KERNEL);
1508 if (!stack_page) {
1509 err = -ENOMEM;
1510 goto out_err;
1511 }
1512
1513 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1514 }
1515
1516 /*
1517 * Map the Hyp-code called directly from the host
1518 */
1519 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1520 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1521 if (err) {
1522 kvm_err("Cannot map world-switch code\n");
1523 goto out_err;
1524 }
1525
1526 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1527 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1528 if (err) {
1529 kvm_err("Cannot map rodata section\n");
1530 goto out_err;
1531 }
1532
1533 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1534 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1535 if (err) {
1536 kvm_err("Cannot map bss section\n");
1537 goto out_err;
1538 }
1539
1540 err = kvm_map_vectors();
1541 if (err) {
1542 kvm_err("Cannot map vectors\n");
1543 goto out_err;
1544 }
1545
1546 /*
1547 * Map the Hyp stack pages
1548 */
1549 for_each_possible_cpu(cpu) {
1550 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1551 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1552 PAGE_HYP);
1553
1554 if (err) {
1555 kvm_err("Cannot map hyp stack\n");
1556 goto out_err;
1557 }
1558 }
1559
1560 for_each_possible_cpu(cpu) {
1561 kvm_cpu_context_t *cpu_ctxt;
1562
1563 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1564 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1565
1566 if (err) {
1567 kvm_err("Cannot map host CPU state: %d\n", err);
1568 goto out_err;
1569 }
1570 }
1571
1572 err = hyp_map_aux_data();
1573 if (err)
1574 kvm_err("Cannot map host auxilary data: %d\n", err);
1575
1576 return 0;
1577
1578 out_err:
1579 teardown_hyp_mode();
1580 kvm_err("error initializing Hyp mode: %d\n", err);
1581 return err;
1582 }
1583
1584 static void check_kvm_target_cpu(void *ret)
1585 {
1586 *(int *)ret = kvm_target_cpu();
1587 }
1588
1589 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1590 {
1591 struct kvm_vcpu *vcpu;
1592 int i;
1593
1594 mpidr &= MPIDR_HWID_BITMASK;
1595 kvm_for_each_vcpu(i, vcpu, kvm) {
1596 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1597 return vcpu;
1598 }
1599 return NULL;
1600 }
1601
1602 bool kvm_arch_has_irq_bypass(void)
1603 {
1604 return true;
1605 }
1606
1607 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1608 struct irq_bypass_producer *prod)
1609 {
1610 struct kvm_kernel_irqfd *irqfd =
1611 container_of(cons, struct kvm_kernel_irqfd, consumer);
1612
1613 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1614 &irqfd->irq_entry);
1615 }
1616 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1617 struct irq_bypass_producer *prod)
1618 {
1619 struct kvm_kernel_irqfd *irqfd =
1620 container_of(cons, struct kvm_kernel_irqfd, consumer);
1621
1622 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1623 &irqfd->irq_entry);
1624 }
1625
1626 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1627 {
1628 struct kvm_kernel_irqfd *irqfd =
1629 container_of(cons, struct kvm_kernel_irqfd, consumer);
1630
1631 kvm_arm_halt_guest(irqfd->kvm);
1632 }
1633
1634 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1635 {
1636 struct kvm_kernel_irqfd *irqfd =
1637 container_of(cons, struct kvm_kernel_irqfd, consumer);
1638
1639 kvm_arm_resume_guest(irqfd->kvm);
1640 }
1641
1642 /**
1643 * Initialize Hyp-mode and memory mappings on all CPUs.
1644 */
1645 int kvm_arch_init(void *opaque)
1646 {
1647 int err;
1648 int ret, cpu;
1649 bool in_hyp_mode;
1650
1651 if (!is_hyp_mode_available()) {
1652 kvm_info("HYP mode not available\n");
1653 return -ENODEV;
1654 }
1655
1656 in_hyp_mode = is_kernel_in_hyp_mode();
1657
1658 if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1659 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1660 return -ENODEV;
1661 }
1662
1663 for_each_online_cpu(cpu) {
1664 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1665 if (ret < 0) {
1666 kvm_err("Error, CPU %d not supported!\n", cpu);
1667 return -ENODEV;
1668 }
1669 }
1670
1671 err = init_common_resources();
1672 if (err)
1673 return err;
1674
1675 if (!in_hyp_mode) {
1676 err = init_hyp_mode();
1677 if (err)
1678 goto out_err;
1679 }
1680
1681 err = init_subsystems();
1682 if (err)
1683 goto out_hyp;
1684
1685 if (in_hyp_mode)
1686 kvm_info("VHE mode initialized successfully\n");
1687 else
1688 kvm_info("Hyp mode initialized successfully\n");
1689
1690 return 0;
1691
1692 out_hyp:
1693 if (!in_hyp_mode)
1694 teardown_hyp_mode();
1695 out_err:
1696 return err;
1697 }
1698
1699 /* NOP: Compiling as a module not supported */
1700 void kvm_arch_exit(void)
1701 {
1702 kvm_perf_teardown();
1703 }
1704
1705 static int arm_init(void)
1706 {
1707 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1708 return rc;
1709 }
1710
1711 module_init(arm_init);