]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - virt/kvm/arm/mmu.c
Merge tag 'mac80211-next-for-davem-2018-03-29' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-eoan-kernel.git] / virt / kvm / arm / mmu.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <linux/sched/signal.h>
24 #include <trace/events/kvm.h>
25 #include <asm/pgalloc.h>
26 #include <asm/cacheflush.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_mmio.h>
30 #include <asm/kvm_asm.h>
31 #include <asm/kvm_emulate.h>
32 #include <asm/virt.h>
33 #include <asm/system_misc.h>
34
35 #include "trace.h"
36
37 static pgd_t *boot_hyp_pgd;
38 static pgd_t *hyp_pgd;
39 static pgd_t *merged_hyp_pgd;
40 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
41
42 static unsigned long hyp_idmap_start;
43 static unsigned long hyp_idmap_end;
44 static phys_addr_t hyp_idmap_vector;
45
46 #define S2_PGD_SIZE (PTRS_PER_S2_PGD * sizeof(pgd_t))
47 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
48
49 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
50 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
51
52 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
53 {
54 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
55 }
56
57 /**
58 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
59 * @kvm: pointer to kvm structure.
60 *
61 * Interface to HYP function to flush all VM TLB entries
62 */
63 void kvm_flush_remote_tlbs(struct kvm *kvm)
64 {
65 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
66 }
67
68 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
69 {
70 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
71 }
72
73 /*
74 * D-Cache management functions. They take the page table entries by
75 * value, as they are flushing the cache using the kernel mapping (or
76 * kmap on 32bit).
77 */
78 static void kvm_flush_dcache_pte(pte_t pte)
79 {
80 __kvm_flush_dcache_pte(pte);
81 }
82
83 static void kvm_flush_dcache_pmd(pmd_t pmd)
84 {
85 __kvm_flush_dcache_pmd(pmd);
86 }
87
88 static void kvm_flush_dcache_pud(pud_t pud)
89 {
90 __kvm_flush_dcache_pud(pud);
91 }
92
93 static bool kvm_is_device_pfn(unsigned long pfn)
94 {
95 return !pfn_valid(pfn);
96 }
97
98 /**
99 * stage2_dissolve_pmd() - clear and flush huge PMD entry
100 * @kvm: pointer to kvm structure.
101 * @addr: IPA
102 * @pmd: pmd pointer for IPA
103 *
104 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
105 * pages in the range dirty.
106 */
107 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
108 {
109 if (!pmd_thp_or_huge(*pmd))
110 return;
111
112 pmd_clear(pmd);
113 kvm_tlb_flush_vmid_ipa(kvm, addr);
114 put_page(virt_to_page(pmd));
115 }
116
117 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
118 int min, int max)
119 {
120 void *page;
121
122 BUG_ON(max > KVM_NR_MEM_OBJS);
123 if (cache->nobjs >= min)
124 return 0;
125 while (cache->nobjs < max) {
126 page = (void *)__get_free_page(PGALLOC_GFP);
127 if (!page)
128 return -ENOMEM;
129 cache->objects[cache->nobjs++] = page;
130 }
131 return 0;
132 }
133
134 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
135 {
136 while (mc->nobjs)
137 free_page((unsigned long)mc->objects[--mc->nobjs]);
138 }
139
140 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
141 {
142 void *p;
143
144 BUG_ON(!mc || !mc->nobjs);
145 p = mc->objects[--mc->nobjs];
146 return p;
147 }
148
149 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
150 {
151 pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
152 stage2_pgd_clear(pgd);
153 kvm_tlb_flush_vmid_ipa(kvm, addr);
154 stage2_pud_free(pud_table);
155 put_page(virt_to_page(pgd));
156 }
157
158 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
159 {
160 pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
161 VM_BUG_ON(stage2_pud_huge(*pud));
162 stage2_pud_clear(pud);
163 kvm_tlb_flush_vmid_ipa(kvm, addr);
164 stage2_pmd_free(pmd_table);
165 put_page(virt_to_page(pud));
166 }
167
168 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
169 {
170 pte_t *pte_table = pte_offset_kernel(pmd, 0);
171 VM_BUG_ON(pmd_thp_or_huge(*pmd));
172 pmd_clear(pmd);
173 kvm_tlb_flush_vmid_ipa(kvm, addr);
174 pte_free_kernel(NULL, pte_table);
175 put_page(virt_to_page(pmd));
176 }
177
178 /*
179 * Unmapping vs dcache management:
180 *
181 * If a guest maps certain memory pages as uncached, all writes will
182 * bypass the data cache and go directly to RAM. However, the CPUs
183 * can still speculate reads (not writes) and fill cache lines with
184 * data.
185 *
186 * Those cache lines will be *clean* cache lines though, so a
187 * clean+invalidate operation is equivalent to an invalidate
188 * operation, because no cache lines are marked dirty.
189 *
190 * Those clean cache lines could be filled prior to an uncached write
191 * by the guest, and the cache coherent IO subsystem would therefore
192 * end up writing old data to disk.
193 *
194 * This is why right after unmapping a page/section and invalidating
195 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
196 * the IO subsystem will never hit in the cache.
197 */
198 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
199 phys_addr_t addr, phys_addr_t end)
200 {
201 phys_addr_t start_addr = addr;
202 pte_t *pte, *start_pte;
203
204 start_pte = pte = pte_offset_kernel(pmd, addr);
205 do {
206 if (!pte_none(*pte)) {
207 pte_t old_pte = *pte;
208
209 kvm_set_pte(pte, __pte(0));
210 kvm_tlb_flush_vmid_ipa(kvm, addr);
211
212 /* No need to invalidate the cache for device mappings */
213 if (!kvm_is_device_pfn(pte_pfn(old_pte)))
214 kvm_flush_dcache_pte(old_pte);
215
216 put_page(virt_to_page(pte));
217 }
218 } while (pte++, addr += PAGE_SIZE, addr != end);
219
220 if (stage2_pte_table_empty(start_pte))
221 clear_stage2_pmd_entry(kvm, pmd, start_addr);
222 }
223
224 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
225 phys_addr_t addr, phys_addr_t end)
226 {
227 phys_addr_t next, start_addr = addr;
228 pmd_t *pmd, *start_pmd;
229
230 start_pmd = pmd = stage2_pmd_offset(pud, addr);
231 do {
232 next = stage2_pmd_addr_end(addr, end);
233 if (!pmd_none(*pmd)) {
234 if (pmd_thp_or_huge(*pmd)) {
235 pmd_t old_pmd = *pmd;
236
237 pmd_clear(pmd);
238 kvm_tlb_flush_vmid_ipa(kvm, addr);
239
240 kvm_flush_dcache_pmd(old_pmd);
241
242 put_page(virt_to_page(pmd));
243 } else {
244 unmap_stage2_ptes(kvm, pmd, addr, next);
245 }
246 }
247 } while (pmd++, addr = next, addr != end);
248
249 if (stage2_pmd_table_empty(start_pmd))
250 clear_stage2_pud_entry(kvm, pud, start_addr);
251 }
252
253 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
254 phys_addr_t addr, phys_addr_t end)
255 {
256 phys_addr_t next, start_addr = addr;
257 pud_t *pud, *start_pud;
258
259 start_pud = pud = stage2_pud_offset(pgd, addr);
260 do {
261 next = stage2_pud_addr_end(addr, end);
262 if (!stage2_pud_none(*pud)) {
263 if (stage2_pud_huge(*pud)) {
264 pud_t old_pud = *pud;
265
266 stage2_pud_clear(pud);
267 kvm_tlb_flush_vmid_ipa(kvm, addr);
268 kvm_flush_dcache_pud(old_pud);
269 put_page(virt_to_page(pud));
270 } else {
271 unmap_stage2_pmds(kvm, pud, addr, next);
272 }
273 }
274 } while (pud++, addr = next, addr != end);
275
276 if (stage2_pud_table_empty(start_pud))
277 clear_stage2_pgd_entry(kvm, pgd, start_addr);
278 }
279
280 /**
281 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
282 * @kvm: The VM pointer
283 * @start: The intermediate physical base address of the range to unmap
284 * @size: The size of the area to unmap
285 *
286 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
287 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
288 * destroying the VM), otherwise another faulting VCPU may come in and mess
289 * with things behind our backs.
290 */
291 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
292 {
293 pgd_t *pgd;
294 phys_addr_t addr = start, end = start + size;
295 phys_addr_t next;
296
297 assert_spin_locked(&kvm->mmu_lock);
298 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
299 do {
300 /*
301 * Make sure the page table is still active, as another thread
302 * could have possibly freed the page table, while we released
303 * the lock.
304 */
305 if (!READ_ONCE(kvm->arch.pgd))
306 break;
307 next = stage2_pgd_addr_end(addr, end);
308 if (!stage2_pgd_none(*pgd))
309 unmap_stage2_puds(kvm, pgd, addr, next);
310 /*
311 * If the range is too large, release the kvm->mmu_lock
312 * to prevent starvation and lockup detector warnings.
313 */
314 if (next != end)
315 cond_resched_lock(&kvm->mmu_lock);
316 } while (pgd++, addr = next, addr != end);
317 }
318
319 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
320 phys_addr_t addr, phys_addr_t end)
321 {
322 pte_t *pte;
323
324 pte = pte_offset_kernel(pmd, addr);
325 do {
326 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
327 kvm_flush_dcache_pte(*pte);
328 } while (pte++, addr += PAGE_SIZE, addr != end);
329 }
330
331 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
332 phys_addr_t addr, phys_addr_t end)
333 {
334 pmd_t *pmd;
335 phys_addr_t next;
336
337 pmd = stage2_pmd_offset(pud, addr);
338 do {
339 next = stage2_pmd_addr_end(addr, end);
340 if (!pmd_none(*pmd)) {
341 if (pmd_thp_or_huge(*pmd))
342 kvm_flush_dcache_pmd(*pmd);
343 else
344 stage2_flush_ptes(kvm, pmd, addr, next);
345 }
346 } while (pmd++, addr = next, addr != end);
347 }
348
349 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
350 phys_addr_t addr, phys_addr_t end)
351 {
352 pud_t *pud;
353 phys_addr_t next;
354
355 pud = stage2_pud_offset(pgd, addr);
356 do {
357 next = stage2_pud_addr_end(addr, end);
358 if (!stage2_pud_none(*pud)) {
359 if (stage2_pud_huge(*pud))
360 kvm_flush_dcache_pud(*pud);
361 else
362 stage2_flush_pmds(kvm, pud, addr, next);
363 }
364 } while (pud++, addr = next, addr != end);
365 }
366
367 static void stage2_flush_memslot(struct kvm *kvm,
368 struct kvm_memory_slot *memslot)
369 {
370 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
371 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
372 phys_addr_t next;
373 pgd_t *pgd;
374
375 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
376 do {
377 next = stage2_pgd_addr_end(addr, end);
378 stage2_flush_puds(kvm, pgd, addr, next);
379 } while (pgd++, addr = next, addr != end);
380 }
381
382 /**
383 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
384 * @kvm: The struct kvm pointer
385 *
386 * Go through the stage 2 page tables and invalidate any cache lines
387 * backing memory already mapped to the VM.
388 */
389 static void stage2_flush_vm(struct kvm *kvm)
390 {
391 struct kvm_memslots *slots;
392 struct kvm_memory_slot *memslot;
393 int idx;
394
395 idx = srcu_read_lock(&kvm->srcu);
396 spin_lock(&kvm->mmu_lock);
397
398 slots = kvm_memslots(kvm);
399 kvm_for_each_memslot(memslot, slots)
400 stage2_flush_memslot(kvm, memslot);
401
402 spin_unlock(&kvm->mmu_lock);
403 srcu_read_unlock(&kvm->srcu, idx);
404 }
405
406 static void clear_hyp_pgd_entry(pgd_t *pgd)
407 {
408 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
409 pgd_clear(pgd);
410 pud_free(NULL, pud_table);
411 put_page(virt_to_page(pgd));
412 }
413
414 static void clear_hyp_pud_entry(pud_t *pud)
415 {
416 pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
417 VM_BUG_ON(pud_huge(*pud));
418 pud_clear(pud);
419 pmd_free(NULL, pmd_table);
420 put_page(virt_to_page(pud));
421 }
422
423 static void clear_hyp_pmd_entry(pmd_t *pmd)
424 {
425 pte_t *pte_table = pte_offset_kernel(pmd, 0);
426 VM_BUG_ON(pmd_thp_or_huge(*pmd));
427 pmd_clear(pmd);
428 pte_free_kernel(NULL, pte_table);
429 put_page(virt_to_page(pmd));
430 }
431
432 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
433 {
434 pte_t *pte, *start_pte;
435
436 start_pte = pte = pte_offset_kernel(pmd, addr);
437 do {
438 if (!pte_none(*pte)) {
439 kvm_set_pte(pte, __pte(0));
440 put_page(virt_to_page(pte));
441 }
442 } while (pte++, addr += PAGE_SIZE, addr != end);
443
444 if (hyp_pte_table_empty(start_pte))
445 clear_hyp_pmd_entry(pmd);
446 }
447
448 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
449 {
450 phys_addr_t next;
451 pmd_t *pmd, *start_pmd;
452
453 start_pmd = pmd = pmd_offset(pud, addr);
454 do {
455 next = pmd_addr_end(addr, end);
456 /* Hyp doesn't use huge pmds */
457 if (!pmd_none(*pmd))
458 unmap_hyp_ptes(pmd, addr, next);
459 } while (pmd++, addr = next, addr != end);
460
461 if (hyp_pmd_table_empty(start_pmd))
462 clear_hyp_pud_entry(pud);
463 }
464
465 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
466 {
467 phys_addr_t next;
468 pud_t *pud, *start_pud;
469
470 start_pud = pud = pud_offset(pgd, addr);
471 do {
472 next = pud_addr_end(addr, end);
473 /* Hyp doesn't use huge puds */
474 if (!pud_none(*pud))
475 unmap_hyp_pmds(pud, addr, next);
476 } while (pud++, addr = next, addr != end);
477
478 if (hyp_pud_table_empty(start_pud))
479 clear_hyp_pgd_entry(pgd);
480 }
481
482 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
483 {
484 pgd_t *pgd;
485 phys_addr_t addr = start, end = start + size;
486 phys_addr_t next;
487
488 /*
489 * We don't unmap anything from HYP, except at the hyp tear down.
490 * Hence, we don't have to invalidate the TLBs here.
491 */
492 pgd = pgdp + pgd_index(addr);
493 do {
494 next = pgd_addr_end(addr, end);
495 if (!pgd_none(*pgd))
496 unmap_hyp_puds(pgd, addr, next);
497 } while (pgd++, addr = next, addr != end);
498 }
499
500 /**
501 * free_hyp_pgds - free Hyp-mode page tables
502 *
503 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
504 * therefore contains either mappings in the kernel memory area (above
505 * PAGE_OFFSET), or device mappings in the vmalloc range (from
506 * VMALLOC_START to VMALLOC_END).
507 *
508 * boot_hyp_pgd should only map two pages for the init code.
509 */
510 void free_hyp_pgds(void)
511 {
512 mutex_lock(&kvm_hyp_pgd_mutex);
513
514 if (boot_hyp_pgd) {
515 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
516 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
517 boot_hyp_pgd = NULL;
518 }
519
520 if (hyp_pgd) {
521 unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
522 unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
523 (uintptr_t)high_memory - PAGE_OFFSET);
524 unmap_hyp_range(hyp_pgd, kern_hyp_va(VMALLOC_START),
525 VMALLOC_END - VMALLOC_START);
526
527 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
528 hyp_pgd = NULL;
529 }
530 if (merged_hyp_pgd) {
531 clear_page(merged_hyp_pgd);
532 free_page((unsigned long)merged_hyp_pgd);
533 merged_hyp_pgd = NULL;
534 }
535
536 mutex_unlock(&kvm_hyp_pgd_mutex);
537 }
538
539 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
540 unsigned long end, unsigned long pfn,
541 pgprot_t prot)
542 {
543 pte_t *pte;
544 unsigned long addr;
545
546 addr = start;
547 do {
548 pte = pte_offset_kernel(pmd, addr);
549 kvm_set_pte(pte, pfn_pte(pfn, prot));
550 get_page(virt_to_page(pte));
551 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
552 pfn++;
553 } while (addr += PAGE_SIZE, addr != end);
554 }
555
556 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
557 unsigned long end, unsigned long pfn,
558 pgprot_t prot)
559 {
560 pmd_t *pmd;
561 pte_t *pte;
562 unsigned long addr, next;
563
564 addr = start;
565 do {
566 pmd = pmd_offset(pud, addr);
567
568 BUG_ON(pmd_sect(*pmd));
569
570 if (pmd_none(*pmd)) {
571 pte = pte_alloc_one_kernel(NULL, addr);
572 if (!pte) {
573 kvm_err("Cannot allocate Hyp pte\n");
574 return -ENOMEM;
575 }
576 pmd_populate_kernel(NULL, pmd, pte);
577 get_page(virt_to_page(pmd));
578 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
579 }
580
581 next = pmd_addr_end(addr, end);
582
583 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
584 pfn += (next - addr) >> PAGE_SHIFT;
585 } while (addr = next, addr != end);
586
587 return 0;
588 }
589
590 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
591 unsigned long end, unsigned long pfn,
592 pgprot_t prot)
593 {
594 pud_t *pud;
595 pmd_t *pmd;
596 unsigned long addr, next;
597 int ret;
598
599 addr = start;
600 do {
601 pud = pud_offset(pgd, addr);
602
603 if (pud_none_or_clear_bad(pud)) {
604 pmd = pmd_alloc_one(NULL, addr);
605 if (!pmd) {
606 kvm_err("Cannot allocate Hyp pmd\n");
607 return -ENOMEM;
608 }
609 pud_populate(NULL, pud, pmd);
610 get_page(virt_to_page(pud));
611 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
612 }
613
614 next = pud_addr_end(addr, end);
615 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
616 if (ret)
617 return ret;
618 pfn += (next - addr) >> PAGE_SHIFT;
619 } while (addr = next, addr != end);
620
621 return 0;
622 }
623
624 static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
625 unsigned long start, unsigned long end,
626 unsigned long pfn, pgprot_t prot)
627 {
628 pgd_t *pgd;
629 pud_t *pud;
630 unsigned long addr, next;
631 int err = 0;
632
633 mutex_lock(&kvm_hyp_pgd_mutex);
634 addr = start & PAGE_MASK;
635 end = PAGE_ALIGN(end);
636 do {
637 pgd = pgdp + ((addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1));
638
639 if (pgd_none(*pgd)) {
640 pud = pud_alloc_one(NULL, addr);
641 if (!pud) {
642 kvm_err("Cannot allocate Hyp pud\n");
643 err = -ENOMEM;
644 goto out;
645 }
646 pgd_populate(NULL, pgd, pud);
647 get_page(virt_to_page(pgd));
648 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
649 }
650
651 next = pgd_addr_end(addr, end);
652 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
653 if (err)
654 goto out;
655 pfn += (next - addr) >> PAGE_SHIFT;
656 } while (addr = next, addr != end);
657 out:
658 mutex_unlock(&kvm_hyp_pgd_mutex);
659 return err;
660 }
661
662 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
663 {
664 if (!is_vmalloc_addr(kaddr)) {
665 BUG_ON(!virt_addr_valid(kaddr));
666 return __pa(kaddr);
667 } else {
668 return page_to_phys(vmalloc_to_page(kaddr)) +
669 offset_in_page(kaddr);
670 }
671 }
672
673 /**
674 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
675 * @from: The virtual kernel start address of the range
676 * @to: The virtual kernel end address of the range (exclusive)
677 * @prot: The protection to be applied to this range
678 *
679 * The same virtual address as the kernel virtual address is also used
680 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
681 * physical pages.
682 */
683 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
684 {
685 phys_addr_t phys_addr;
686 unsigned long virt_addr;
687 unsigned long start = kern_hyp_va((unsigned long)from);
688 unsigned long end = kern_hyp_va((unsigned long)to);
689
690 if (is_kernel_in_hyp_mode())
691 return 0;
692
693 start = start & PAGE_MASK;
694 end = PAGE_ALIGN(end);
695
696 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
697 int err;
698
699 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
700 err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
701 virt_addr, virt_addr + PAGE_SIZE,
702 __phys_to_pfn(phys_addr),
703 prot);
704 if (err)
705 return err;
706 }
707
708 return 0;
709 }
710
711 /**
712 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
713 * @from: The kernel start VA of the range
714 * @to: The kernel end VA of the range (exclusive)
715 * @phys_addr: The physical start address which gets mapped
716 *
717 * The resulting HYP VA is the same as the kernel VA, modulo
718 * HYP_PAGE_OFFSET.
719 */
720 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
721 {
722 unsigned long start = kern_hyp_va((unsigned long)from);
723 unsigned long end = kern_hyp_va((unsigned long)to);
724
725 if (is_kernel_in_hyp_mode())
726 return 0;
727
728 /* Check for a valid kernel IO mapping */
729 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
730 return -EINVAL;
731
732 return __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD, start, end,
733 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
734 }
735
736 /**
737 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
738 * @kvm: The KVM struct pointer for the VM.
739 *
740 * Allocates only the stage-2 HW PGD level table(s) (can support either full
741 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
742 * allocated pages.
743 *
744 * Note we don't need locking here as this is only called when the VM is
745 * created, which can only be done once.
746 */
747 int kvm_alloc_stage2_pgd(struct kvm *kvm)
748 {
749 pgd_t *pgd;
750
751 if (kvm->arch.pgd != NULL) {
752 kvm_err("kvm_arch already initialized?\n");
753 return -EINVAL;
754 }
755
756 /* Allocate the HW PGD, making sure that each page gets its own refcount */
757 pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
758 if (!pgd)
759 return -ENOMEM;
760
761 kvm->arch.pgd = pgd;
762 return 0;
763 }
764
765 static void stage2_unmap_memslot(struct kvm *kvm,
766 struct kvm_memory_slot *memslot)
767 {
768 hva_t hva = memslot->userspace_addr;
769 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
770 phys_addr_t size = PAGE_SIZE * memslot->npages;
771 hva_t reg_end = hva + size;
772
773 /*
774 * A memory region could potentially cover multiple VMAs, and any holes
775 * between them, so iterate over all of them to find out if we should
776 * unmap any of them.
777 *
778 * +--------------------------------------------+
779 * +---------------+----------------+ +----------------+
780 * | : VMA 1 | VMA 2 | | VMA 3 : |
781 * +---------------+----------------+ +----------------+
782 * | memory region |
783 * +--------------------------------------------+
784 */
785 do {
786 struct vm_area_struct *vma = find_vma(current->mm, hva);
787 hva_t vm_start, vm_end;
788
789 if (!vma || vma->vm_start >= reg_end)
790 break;
791
792 /*
793 * Take the intersection of this VMA with the memory region
794 */
795 vm_start = max(hva, vma->vm_start);
796 vm_end = min(reg_end, vma->vm_end);
797
798 if (!(vma->vm_flags & VM_PFNMAP)) {
799 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
800 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
801 }
802 hva = vm_end;
803 } while (hva < reg_end);
804 }
805
806 /**
807 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
808 * @kvm: The struct kvm pointer
809 *
810 * Go through the memregions and unmap any reguler RAM
811 * backing memory already mapped to the VM.
812 */
813 void stage2_unmap_vm(struct kvm *kvm)
814 {
815 struct kvm_memslots *slots;
816 struct kvm_memory_slot *memslot;
817 int idx;
818
819 idx = srcu_read_lock(&kvm->srcu);
820 down_read(&current->mm->mmap_sem);
821 spin_lock(&kvm->mmu_lock);
822
823 slots = kvm_memslots(kvm);
824 kvm_for_each_memslot(memslot, slots)
825 stage2_unmap_memslot(kvm, memslot);
826
827 spin_unlock(&kvm->mmu_lock);
828 up_read(&current->mm->mmap_sem);
829 srcu_read_unlock(&kvm->srcu, idx);
830 }
831
832 /**
833 * kvm_free_stage2_pgd - free all stage-2 tables
834 * @kvm: The KVM struct pointer for the VM.
835 *
836 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
837 * underlying level-2 and level-3 tables before freeing the actual level-1 table
838 * and setting the struct pointer to NULL.
839 */
840 void kvm_free_stage2_pgd(struct kvm *kvm)
841 {
842 void *pgd = NULL;
843
844 spin_lock(&kvm->mmu_lock);
845 if (kvm->arch.pgd) {
846 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
847 pgd = READ_ONCE(kvm->arch.pgd);
848 kvm->arch.pgd = NULL;
849 }
850 spin_unlock(&kvm->mmu_lock);
851
852 /* Free the HW pgd, one page at a time */
853 if (pgd)
854 free_pages_exact(pgd, S2_PGD_SIZE);
855 }
856
857 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
858 phys_addr_t addr)
859 {
860 pgd_t *pgd;
861 pud_t *pud;
862
863 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
864 if (WARN_ON(stage2_pgd_none(*pgd))) {
865 if (!cache)
866 return NULL;
867 pud = mmu_memory_cache_alloc(cache);
868 stage2_pgd_populate(pgd, pud);
869 get_page(virt_to_page(pgd));
870 }
871
872 return stage2_pud_offset(pgd, addr);
873 }
874
875 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
876 phys_addr_t addr)
877 {
878 pud_t *pud;
879 pmd_t *pmd;
880
881 pud = stage2_get_pud(kvm, cache, addr);
882 if (!pud)
883 return NULL;
884
885 if (stage2_pud_none(*pud)) {
886 if (!cache)
887 return NULL;
888 pmd = mmu_memory_cache_alloc(cache);
889 stage2_pud_populate(pud, pmd);
890 get_page(virt_to_page(pud));
891 }
892
893 return stage2_pmd_offset(pud, addr);
894 }
895
896 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
897 *cache, phys_addr_t addr, const pmd_t *new_pmd)
898 {
899 pmd_t *pmd, old_pmd;
900
901 pmd = stage2_get_pmd(kvm, cache, addr);
902 VM_BUG_ON(!pmd);
903
904 /*
905 * Mapping in huge pages should only happen through a fault. If a
906 * page is merged into a transparent huge page, the individual
907 * subpages of that huge page should be unmapped through MMU
908 * notifiers before we get here.
909 *
910 * Merging of CompoundPages is not supported; they should become
911 * splitting first, unmapped, merged, and mapped back in on-demand.
912 */
913 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
914
915 old_pmd = *pmd;
916 if (pmd_present(old_pmd)) {
917 pmd_clear(pmd);
918 kvm_tlb_flush_vmid_ipa(kvm, addr);
919 } else {
920 get_page(virt_to_page(pmd));
921 }
922
923 kvm_set_pmd(pmd, *new_pmd);
924 return 0;
925 }
926
927 static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
928 {
929 pmd_t *pmdp;
930 pte_t *ptep;
931
932 pmdp = stage2_get_pmd(kvm, NULL, addr);
933 if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
934 return false;
935
936 if (pmd_thp_or_huge(*pmdp))
937 return kvm_s2pmd_exec(pmdp);
938
939 ptep = pte_offset_kernel(pmdp, addr);
940 if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
941 return false;
942
943 return kvm_s2pte_exec(ptep);
944 }
945
946 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
947 phys_addr_t addr, const pte_t *new_pte,
948 unsigned long flags)
949 {
950 pmd_t *pmd;
951 pte_t *pte, old_pte;
952 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
953 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
954
955 VM_BUG_ON(logging_active && !cache);
956
957 /* Create stage-2 page table mapping - Levels 0 and 1 */
958 pmd = stage2_get_pmd(kvm, cache, addr);
959 if (!pmd) {
960 /*
961 * Ignore calls from kvm_set_spte_hva for unallocated
962 * address ranges.
963 */
964 return 0;
965 }
966
967 /*
968 * While dirty page logging - dissolve huge PMD, then continue on to
969 * allocate page.
970 */
971 if (logging_active)
972 stage2_dissolve_pmd(kvm, addr, pmd);
973
974 /* Create stage-2 page mappings - Level 2 */
975 if (pmd_none(*pmd)) {
976 if (!cache)
977 return 0; /* ignore calls from kvm_set_spte_hva */
978 pte = mmu_memory_cache_alloc(cache);
979 pmd_populate_kernel(NULL, pmd, pte);
980 get_page(virt_to_page(pmd));
981 }
982
983 pte = pte_offset_kernel(pmd, addr);
984
985 if (iomap && pte_present(*pte))
986 return -EFAULT;
987
988 /* Create 2nd stage page table mapping - Level 3 */
989 old_pte = *pte;
990 if (pte_present(old_pte)) {
991 kvm_set_pte(pte, __pte(0));
992 kvm_tlb_flush_vmid_ipa(kvm, addr);
993 } else {
994 get_page(virt_to_page(pte));
995 }
996
997 kvm_set_pte(pte, *new_pte);
998 return 0;
999 }
1000
1001 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1002 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1003 {
1004 if (pte_young(*pte)) {
1005 *pte = pte_mkold(*pte);
1006 return 1;
1007 }
1008 return 0;
1009 }
1010 #else
1011 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1012 {
1013 return __ptep_test_and_clear_young(pte);
1014 }
1015 #endif
1016
1017 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1018 {
1019 return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1020 }
1021
1022 /**
1023 * kvm_phys_addr_ioremap - map a device range to guest IPA
1024 *
1025 * @kvm: The KVM pointer
1026 * @guest_ipa: The IPA at which to insert the mapping
1027 * @pa: The physical address of the device
1028 * @size: The size of the mapping
1029 */
1030 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1031 phys_addr_t pa, unsigned long size, bool writable)
1032 {
1033 phys_addr_t addr, end;
1034 int ret = 0;
1035 unsigned long pfn;
1036 struct kvm_mmu_memory_cache cache = { 0, };
1037
1038 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1039 pfn = __phys_to_pfn(pa);
1040
1041 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1042 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1043
1044 if (writable)
1045 pte = kvm_s2pte_mkwrite(pte);
1046
1047 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1048 KVM_NR_MEM_OBJS);
1049 if (ret)
1050 goto out;
1051 spin_lock(&kvm->mmu_lock);
1052 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1053 KVM_S2PTE_FLAG_IS_IOMAP);
1054 spin_unlock(&kvm->mmu_lock);
1055 if (ret)
1056 goto out;
1057
1058 pfn++;
1059 }
1060
1061 out:
1062 mmu_free_memory_cache(&cache);
1063 return ret;
1064 }
1065
1066 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1067 {
1068 kvm_pfn_t pfn = *pfnp;
1069 gfn_t gfn = *ipap >> PAGE_SHIFT;
1070
1071 if (PageTransCompoundMap(pfn_to_page(pfn))) {
1072 unsigned long mask;
1073 /*
1074 * The address we faulted on is backed by a transparent huge
1075 * page. However, because we map the compound huge page and
1076 * not the individual tail page, we need to transfer the
1077 * refcount to the head page. We have to be careful that the
1078 * THP doesn't start to split while we are adjusting the
1079 * refcounts.
1080 *
1081 * We are sure this doesn't happen, because mmu_notifier_retry
1082 * was successful and we are holding the mmu_lock, so if this
1083 * THP is trying to split, it will be blocked in the mmu
1084 * notifier before touching any of the pages, specifically
1085 * before being able to call __split_huge_page_refcount().
1086 *
1087 * We can therefore safely transfer the refcount from PG_tail
1088 * to PG_head and switch the pfn from a tail page to the head
1089 * page accordingly.
1090 */
1091 mask = PTRS_PER_PMD - 1;
1092 VM_BUG_ON((gfn & mask) != (pfn & mask));
1093 if (pfn & mask) {
1094 *ipap &= PMD_MASK;
1095 kvm_release_pfn_clean(pfn);
1096 pfn &= ~mask;
1097 kvm_get_pfn(pfn);
1098 *pfnp = pfn;
1099 }
1100
1101 return true;
1102 }
1103
1104 return false;
1105 }
1106
1107 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1108 {
1109 if (kvm_vcpu_trap_is_iabt(vcpu))
1110 return false;
1111
1112 return kvm_vcpu_dabt_iswrite(vcpu);
1113 }
1114
1115 /**
1116 * stage2_wp_ptes - write protect PMD range
1117 * @pmd: pointer to pmd entry
1118 * @addr: range start address
1119 * @end: range end address
1120 */
1121 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1122 {
1123 pte_t *pte;
1124
1125 pte = pte_offset_kernel(pmd, addr);
1126 do {
1127 if (!pte_none(*pte)) {
1128 if (!kvm_s2pte_readonly(pte))
1129 kvm_set_s2pte_readonly(pte);
1130 }
1131 } while (pte++, addr += PAGE_SIZE, addr != end);
1132 }
1133
1134 /**
1135 * stage2_wp_pmds - write protect PUD range
1136 * @pud: pointer to pud entry
1137 * @addr: range start address
1138 * @end: range end address
1139 */
1140 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1141 {
1142 pmd_t *pmd;
1143 phys_addr_t next;
1144
1145 pmd = stage2_pmd_offset(pud, addr);
1146
1147 do {
1148 next = stage2_pmd_addr_end(addr, end);
1149 if (!pmd_none(*pmd)) {
1150 if (pmd_thp_or_huge(*pmd)) {
1151 if (!kvm_s2pmd_readonly(pmd))
1152 kvm_set_s2pmd_readonly(pmd);
1153 } else {
1154 stage2_wp_ptes(pmd, addr, next);
1155 }
1156 }
1157 } while (pmd++, addr = next, addr != end);
1158 }
1159
1160 /**
1161 * stage2_wp_puds - write protect PGD range
1162 * @pgd: pointer to pgd entry
1163 * @addr: range start address
1164 * @end: range end address
1165 *
1166 * Process PUD entries, for a huge PUD we cause a panic.
1167 */
1168 static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1169 {
1170 pud_t *pud;
1171 phys_addr_t next;
1172
1173 pud = stage2_pud_offset(pgd, addr);
1174 do {
1175 next = stage2_pud_addr_end(addr, end);
1176 if (!stage2_pud_none(*pud)) {
1177 /* TODO:PUD not supported, revisit later if supported */
1178 BUG_ON(stage2_pud_huge(*pud));
1179 stage2_wp_pmds(pud, addr, next);
1180 }
1181 } while (pud++, addr = next, addr != end);
1182 }
1183
1184 /**
1185 * stage2_wp_range() - write protect stage2 memory region range
1186 * @kvm: The KVM pointer
1187 * @addr: Start address of range
1188 * @end: End address of range
1189 */
1190 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1191 {
1192 pgd_t *pgd;
1193 phys_addr_t next;
1194
1195 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1196 do {
1197 /*
1198 * Release kvm_mmu_lock periodically if the memory region is
1199 * large. Otherwise, we may see kernel panics with
1200 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1201 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1202 * will also starve other vCPUs. We have to also make sure
1203 * that the page tables are not freed while we released
1204 * the lock.
1205 */
1206 cond_resched_lock(&kvm->mmu_lock);
1207 if (!READ_ONCE(kvm->arch.pgd))
1208 break;
1209 next = stage2_pgd_addr_end(addr, end);
1210 if (stage2_pgd_present(*pgd))
1211 stage2_wp_puds(pgd, addr, next);
1212 } while (pgd++, addr = next, addr != end);
1213 }
1214
1215 /**
1216 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1217 * @kvm: The KVM pointer
1218 * @slot: The memory slot to write protect
1219 *
1220 * Called to start logging dirty pages after memory region
1221 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1222 * all present PMD and PTEs are write protected in the memory region.
1223 * Afterwards read of dirty page log can be called.
1224 *
1225 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1226 * serializing operations for VM memory regions.
1227 */
1228 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1229 {
1230 struct kvm_memslots *slots = kvm_memslots(kvm);
1231 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1232 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1233 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1234
1235 spin_lock(&kvm->mmu_lock);
1236 stage2_wp_range(kvm, start, end);
1237 spin_unlock(&kvm->mmu_lock);
1238 kvm_flush_remote_tlbs(kvm);
1239 }
1240
1241 /**
1242 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1243 * @kvm: The KVM pointer
1244 * @slot: The memory slot associated with mask
1245 * @gfn_offset: The gfn offset in memory slot
1246 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1247 * slot to be write protected
1248 *
1249 * Walks bits set in mask write protects the associated pte's. Caller must
1250 * acquire kvm_mmu_lock.
1251 */
1252 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1253 struct kvm_memory_slot *slot,
1254 gfn_t gfn_offset, unsigned long mask)
1255 {
1256 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1257 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1258 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1259
1260 stage2_wp_range(kvm, start, end);
1261 }
1262
1263 /*
1264 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1265 * dirty pages.
1266 *
1267 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1268 * enable dirty logging for them.
1269 */
1270 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1271 struct kvm_memory_slot *slot,
1272 gfn_t gfn_offset, unsigned long mask)
1273 {
1274 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1275 }
1276
1277 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1278 {
1279 __clean_dcache_guest_page(pfn, size);
1280 }
1281
1282 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1283 {
1284 __invalidate_icache_guest_page(pfn, size);
1285 }
1286
1287 static void kvm_send_hwpoison_signal(unsigned long address,
1288 struct vm_area_struct *vma)
1289 {
1290 siginfo_t info;
1291
1292 info.si_signo = SIGBUS;
1293 info.si_errno = 0;
1294 info.si_code = BUS_MCEERR_AR;
1295 info.si_addr = (void __user *)address;
1296
1297 if (is_vm_hugetlb_page(vma))
1298 info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
1299 else
1300 info.si_addr_lsb = PAGE_SHIFT;
1301
1302 send_sig_info(SIGBUS, &info, current);
1303 }
1304
1305 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1306 struct kvm_memory_slot *memslot, unsigned long hva,
1307 unsigned long fault_status)
1308 {
1309 int ret;
1310 bool write_fault, exec_fault, writable, hugetlb = false, force_pte = false;
1311 unsigned long mmu_seq;
1312 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1313 struct kvm *kvm = vcpu->kvm;
1314 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1315 struct vm_area_struct *vma;
1316 kvm_pfn_t pfn;
1317 pgprot_t mem_type = PAGE_S2;
1318 bool logging_active = memslot_is_logging(memslot);
1319 unsigned long flags = 0;
1320
1321 write_fault = kvm_is_write_fault(vcpu);
1322 exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
1323 VM_BUG_ON(write_fault && exec_fault);
1324
1325 if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1326 kvm_err("Unexpected L2 read permission error\n");
1327 return -EFAULT;
1328 }
1329
1330 /* Let's check if we will get back a huge page backed by hugetlbfs */
1331 down_read(&current->mm->mmap_sem);
1332 vma = find_vma_intersection(current->mm, hva, hva + 1);
1333 if (unlikely(!vma)) {
1334 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1335 up_read(&current->mm->mmap_sem);
1336 return -EFAULT;
1337 }
1338
1339 if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1340 hugetlb = true;
1341 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1342 } else {
1343 /*
1344 * Pages belonging to memslots that don't have the same
1345 * alignment for userspace and IPA cannot be mapped using
1346 * block descriptors even if the pages belong to a THP for
1347 * the process, because the stage-2 block descriptor will
1348 * cover more than a single THP and we loose atomicity for
1349 * unmapping, updates, and splits of the THP or other pages
1350 * in the stage-2 block range.
1351 */
1352 if ((memslot->userspace_addr & ~PMD_MASK) !=
1353 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1354 force_pte = true;
1355 }
1356 up_read(&current->mm->mmap_sem);
1357
1358 /* We need minimum second+third level pages */
1359 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1360 KVM_NR_MEM_OBJS);
1361 if (ret)
1362 return ret;
1363
1364 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1365 /*
1366 * Ensure the read of mmu_notifier_seq happens before we call
1367 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1368 * the page we just got a reference to gets unmapped before we have a
1369 * chance to grab the mmu_lock, which ensure that if the page gets
1370 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1371 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1372 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1373 */
1374 smp_rmb();
1375
1376 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1377 if (pfn == KVM_PFN_ERR_HWPOISON) {
1378 kvm_send_hwpoison_signal(hva, vma);
1379 return 0;
1380 }
1381 if (is_error_noslot_pfn(pfn))
1382 return -EFAULT;
1383
1384 if (kvm_is_device_pfn(pfn)) {
1385 mem_type = PAGE_S2_DEVICE;
1386 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1387 } else if (logging_active) {
1388 /*
1389 * Faults on pages in a memslot with logging enabled
1390 * should not be mapped with huge pages (it introduces churn
1391 * and performance degradation), so force a pte mapping.
1392 */
1393 force_pte = true;
1394 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1395
1396 /*
1397 * Only actually map the page as writable if this was a write
1398 * fault.
1399 */
1400 if (!write_fault)
1401 writable = false;
1402 }
1403
1404 spin_lock(&kvm->mmu_lock);
1405 if (mmu_notifier_retry(kvm, mmu_seq))
1406 goto out_unlock;
1407
1408 if (!hugetlb && !force_pte)
1409 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1410
1411 if (hugetlb) {
1412 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1413 new_pmd = pmd_mkhuge(new_pmd);
1414 if (writable) {
1415 new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1416 kvm_set_pfn_dirty(pfn);
1417 }
1418
1419 if (fault_status != FSC_PERM)
1420 clean_dcache_guest_page(pfn, PMD_SIZE);
1421
1422 if (exec_fault) {
1423 new_pmd = kvm_s2pmd_mkexec(new_pmd);
1424 invalidate_icache_guest_page(pfn, PMD_SIZE);
1425 } else if (fault_status == FSC_PERM) {
1426 /* Preserve execute if XN was already cleared */
1427 if (stage2_is_exec(kvm, fault_ipa))
1428 new_pmd = kvm_s2pmd_mkexec(new_pmd);
1429 }
1430
1431 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1432 } else {
1433 pte_t new_pte = pfn_pte(pfn, mem_type);
1434
1435 if (writable) {
1436 new_pte = kvm_s2pte_mkwrite(new_pte);
1437 kvm_set_pfn_dirty(pfn);
1438 mark_page_dirty(kvm, gfn);
1439 }
1440
1441 if (fault_status != FSC_PERM)
1442 clean_dcache_guest_page(pfn, PAGE_SIZE);
1443
1444 if (exec_fault) {
1445 new_pte = kvm_s2pte_mkexec(new_pte);
1446 invalidate_icache_guest_page(pfn, PAGE_SIZE);
1447 } else if (fault_status == FSC_PERM) {
1448 /* Preserve execute if XN was already cleared */
1449 if (stage2_is_exec(kvm, fault_ipa))
1450 new_pte = kvm_s2pte_mkexec(new_pte);
1451 }
1452
1453 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1454 }
1455
1456 out_unlock:
1457 spin_unlock(&kvm->mmu_lock);
1458 kvm_set_pfn_accessed(pfn);
1459 kvm_release_pfn_clean(pfn);
1460 return ret;
1461 }
1462
1463 /*
1464 * Resolve the access fault by making the page young again.
1465 * Note that because the faulting entry is guaranteed not to be
1466 * cached in the TLB, we don't need to invalidate anything.
1467 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1468 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1469 */
1470 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1471 {
1472 pmd_t *pmd;
1473 pte_t *pte;
1474 kvm_pfn_t pfn;
1475 bool pfn_valid = false;
1476
1477 trace_kvm_access_fault(fault_ipa);
1478
1479 spin_lock(&vcpu->kvm->mmu_lock);
1480
1481 pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1482 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1483 goto out;
1484
1485 if (pmd_thp_or_huge(*pmd)) { /* THP, HugeTLB */
1486 *pmd = pmd_mkyoung(*pmd);
1487 pfn = pmd_pfn(*pmd);
1488 pfn_valid = true;
1489 goto out;
1490 }
1491
1492 pte = pte_offset_kernel(pmd, fault_ipa);
1493 if (pte_none(*pte)) /* Nothing there either */
1494 goto out;
1495
1496 *pte = pte_mkyoung(*pte); /* Just a page... */
1497 pfn = pte_pfn(*pte);
1498 pfn_valid = true;
1499 out:
1500 spin_unlock(&vcpu->kvm->mmu_lock);
1501 if (pfn_valid)
1502 kvm_set_pfn_accessed(pfn);
1503 }
1504
1505 /**
1506 * kvm_handle_guest_abort - handles all 2nd stage aborts
1507 * @vcpu: the VCPU pointer
1508 * @run: the kvm_run structure
1509 *
1510 * Any abort that gets to the host is almost guaranteed to be caused by a
1511 * missing second stage translation table entry, which can mean that either the
1512 * guest simply needs more memory and we must allocate an appropriate page or it
1513 * can mean that the guest tried to access I/O memory, which is emulated by user
1514 * space. The distinction is based on the IPA causing the fault and whether this
1515 * memory region has been registered as standard RAM by user space.
1516 */
1517 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1518 {
1519 unsigned long fault_status;
1520 phys_addr_t fault_ipa;
1521 struct kvm_memory_slot *memslot;
1522 unsigned long hva;
1523 bool is_iabt, write_fault, writable;
1524 gfn_t gfn;
1525 int ret, idx;
1526
1527 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1528
1529 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1530 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1531
1532 /* Synchronous External Abort? */
1533 if (kvm_vcpu_dabt_isextabt(vcpu)) {
1534 /*
1535 * For RAS the host kernel may handle this abort.
1536 * There is no need to pass the error into the guest.
1537 */
1538 if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1539 return 1;
1540
1541 if (unlikely(!is_iabt)) {
1542 kvm_inject_vabt(vcpu);
1543 return 1;
1544 }
1545 }
1546
1547 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1548 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1549
1550 /* Check the stage-2 fault is trans. fault or write fault */
1551 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1552 fault_status != FSC_ACCESS) {
1553 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1554 kvm_vcpu_trap_get_class(vcpu),
1555 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1556 (unsigned long)kvm_vcpu_get_hsr(vcpu));
1557 return -EFAULT;
1558 }
1559
1560 idx = srcu_read_lock(&vcpu->kvm->srcu);
1561
1562 gfn = fault_ipa >> PAGE_SHIFT;
1563 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1564 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1565 write_fault = kvm_is_write_fault(vcpu);
1566 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1567 if (is_iabt) {
1568 /* Prefetch Abort on I/O address */
1569 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1570 ret = 1;
1571 goto out_unlock;
1572 }
1573
1574 /*
1575 * Check for a cache maintenance operation. Since we
1576 * ended-up here, we know it is outside of any memory
1577 * slot. But we can't find out if that is for a device,
1578 * or if the guest is just being stupid. The only thing
1579 * we know for sure is that this range cannot be cached.
1580 *
1581 * So let's assume that the guest is just being
1582 * cautious, and skip the instruction.
1583 */
1584 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1585 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1586 ret = 1;
1587 goto out_unlock;
1588 }
1589
1590 /*
1591 * The IPA is reported as [MAX:12], so we need to
1592 * complement it with the bottom 12 bits from the
1593 * faulting VA. This is always 12 bits, irrespective
1594 * of the page size.
1595 */
1596 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1597 ret = io_mem_abort(vcpu, run, fault_ipa);
1598 goto out_unlock;
1599 }
1600
1601 /* Userspace should not be able to register out-of-bounds IPAs */
1602 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1603
1604 if (fault_status == FSC_ACCESS) {
1605 handle_access_fault(vcpu, fault_ipa);
1606 ret = 1;
1607 goto out_unlock;
1608 }
1609
1610 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1611 if (ret == 0)
1612 ret = 1;
1613 out_unlock:
1614 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1615 return ret;
1616 }
1617
1618 static int handle_hva_to_gpa(struct kvm *kvm,
1619 unsigned long start,
1620 unsigned long end,
1621 int (*handler)(struct kvm *kvm,
1622 gpa_t gpa, u64 size,
1623 void *data),
1624 void *data)
1625 {
1626 struct kvm_memslots *slots;
1627 struct kvm_memory_slot *memslot;
1628 int ret = 0;
1629
1630 slots = kvm_memslots(kvm);
1631
1632 /* we only care about the pages that the guest sees */
1633 kvm_for_each_memslot(memslot, slots) {
1634 unsigned long hva_start, hva_end;
1635 gfn_t gpa;
1636
1637 hva_start = max(start, memslot->userspace_addr);
1638 hva_end = min(end, memslot->userspace_addr +
1639 (memslot->npages << PAGE_SHIFT));
1640 if (hva_start >= hva_end)
1641 continue;
1642
1643 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1644 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1645 }
1646
1647 return ret;
1648 }
1649
1650 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1651 {
1652 unmap_stage2_range(kvm, gpa, size);
1653 return 0;
1654 }
1655
1656 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1657 {
1658 unsigned long end = hva + PAGE_SIZE;
1659
1660 if (!kvm->arch.pgd)
1661 return 0;
1662
1663 trace_kvm_unmap_hva(hva);
1664 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1665 return 0;
1666 }
1667
1668 int kvm_unmap_hva_range(struct kvm *kvm,
1669 unsigned long start, unsigned long end)
1670 {
1671 if (!kvm->arch.pgd)
1672 return 0;
1673
1674 trace_kvm_unmap_hva_range(start, end);
1675 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1676 return 0;
1677 }
1678
1679 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1680 {
1681 pte_t *pte = (pte_t *)data;
1682
1683 WARN_ON(size != PAGE_SIZE);
1684 /*
1685 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1686 * flag clear because MMU notifiers will have unmapped a huge PMD before
1687 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1688 * therefore stage2_set_pte() never needs to clear out a huge PMD
1689 * through this calling path.
1690 */
1691 stage2_set_pte(kvm, NULL, gpa, pte, 0);
1692 return 0;
1693 }
1694
1695
1696 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1697 {
1698 unsigned long end = hva + PAGE_SIZE;
1699 pte_t stage2_pte;
1700
1701 if (!kvm->arch.pgd)
1702 return;
1703
1704 trace_kvm_set_spte_hva(hva);
1705 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1706 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1707 }
1708
1709 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1710 {
1711 pmd_t *pmd;
1712 pte_t *pte;
1713
1714 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1715 pmd = stage2_get_pmd(kvm, NULL, gpa);
1716 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1717 return 0;
1718
1719 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
1720 return stage2_pmdp_test_and_clear_young(pmd);
1721
1722 pte = pte_offset_kernel(pmd, gpa);
1723 if (pte_none(*pte))
1724 return 0;
1725
1726 return stage2_ptep_test_and_clear_young(pte);
1727 }
1728
1729 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1730 {
1731 pmd_t *pmd;
1732 pte_t *pte;
1733
1734 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1735 pmd = stage2_get_pmd(kvm, NULL, gpa);
1736 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1737 return 0;
1738
1739 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
1740 return pmd_young(*pmd);
1741
1742 pte = pte_offset_kernel(pmd, gpa);
1743 if (!pte_none(*pte)) /* Just a page... */
1744 return pte_young(*pte);
1745
1746 return 0;
1747 }
1748
1749 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1750 {
1751 if (!kvm->arch.pgd)
1752 return 0;
1753 trace_kvm_age_hva(start, end);
1754 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1755 }
1756
1757 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1758 {
1759 if (!kvm->arch.pgd)
1760 return 0;
1761 trace_kvm_test_age_hva(hva);
1762 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1763 }
1764
1765 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1766 {
1767 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1768 }
1769
1770 phys_addr_t kvm_mmu_get_httbr(void)
1771 {
1772 if (__kvm_cpu_uses_extended_idmap())
1773 return virt_to_phys(merged_hyp_pgd);
1774 else
1775 return virt_to_phys(hyp_pgd);
1776 }
1777
1778 phys_addr_t kvm_get_idmap_vector(void)
1779 {
1780 return hyp_idmap_vector;
1781 }
1782
1783 static int kvm_map_idmap_text(pgd_t *pgd)
1784 {
1785 int err;
1786
1787 /* Create the idmap in the boot page tables */
1788 err = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
1789 hyp_idmap_start, hyp_idmap_end,
1790 __phys_to_pfn(hyp_idmap_start),
1791 PAGE_HYP_EXEC);
1792 if (err)
1793 kvm_err("Failed to idmap %lx-%lx\n",
1794 hyp_idmap_start, hyp_idmap_end);
1795
1796 return err;
1797 }
1798
1799 int kvm_mmu_init(void)
1800 {
1801 int err;
1802
1803 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1804 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1805 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1806
1807 /*
1808 * We rely on the linker script to ensure at build time that the HYP
1809 * init code does not cross a page boundary.
1810 */
1811 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1812
1813 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1814 kvm_debug("HYP VA range: %lx:%lx\n",
1815 kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1816
1817 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1818 hyp_idmap_start < kern_hyp_va(~0UL) &&
1819 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1820 /*
1821 * The idmap page is intersecting with the VA space,
1822 * it is not safe to continue further.
1823 */
1824 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1825 err = -EINVAL;
1826 goto out;
1827 }
1828
1829 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1830 if (!hyp_pgd) {
1831 kvm_err("Hyp mode PGD not allocated\n");
1832 err = -ENOMEM;
1833 goto out;
1834 }
1835
1836 if (__kvm_cpu_uses_extended_idmap()) {
1837 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1838 hyp_pgd_order);
1839 if (!boot_hyp_pgd) {
1840 kvm_err("Hyp boot PGD not allocated\n");
1841 err = -ENOMEM;
1842 goto out;
1843 }
1844
1845 err = kvm_map_idmap_text(boot_hyp_pgd);
1846 if (err)
1847 goto out;
1848
1849 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1850 if (!merged_hyp_pgd) {
1851 kvm_err("Failed to allocate extra HYP pgd\n");
1852 goto out;
1853 }
1854 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1855 hyp_idmap_start);
1856 } else {
1857 err = kvm_map_idmap_text(hyp_pgd);
1858 if (err)
1859 goto out;
1860 }
1861
1862 return 0;
1863 out:
1864 free_hyp_pgds();
1865 return err;
1866 }
1867
1868 void kvm_arch_commit_memory_region(struct kvm *kvm,
1869 const struct kvm_userspace_memory_region *mem,
1870 const struct kvm_memory_slot *old,
1871 const struct kvm_memory_slot *new,
1872 enum kvm_mr_change change)
1873 {
1874 /*
1875 * At this point memslot has been committed and there is an
1876 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1877 * memory slot is write protected.
1878 */
1879 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1880 kvm_mmu_wp_memory_region(kvm, mem->slot);
1881 }
1882
1883 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1884 struct kvm_memory_slot *memslot,
1885 const struct kvm_userspace_memory_region *mem,
1886 enum kvm_mr_change change)
1887 {
1888 hva_t hva = mem->userspace_addr;
1889 hva_t reg_end = hva + mem->memory_size;
1890 bool writable = !(mem->flags & KVM_MEM_READONLY);
1891 int ret = 0;
1892
1893 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1894 change != KVM_MR_FLAGS_ONLY)
1895 return 0;
1896
1897 /*
1898 * Prevent userspace from creating a memory region outside of the IPA
1899 * space addressable by the KVM guest IPA space.
1900 */
1901 if (memslot->base_gfn + memslot->npages >=
1902 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1903 return -EFAULT;
1904
1905 down_read(&current->mm->mmap_sem);
1906 /*
1907 * A memory region could potentially cover multiple VMAs, and any holes
1908 * between them, so iterate over all of them to find out if we can map
1909 * any of them right now.
1910 *
1911 * +--------------------------------------------+
1912 * +---------------+----------------+ +----------------+
1913 * | : VMA 1 | VMA 2 | | VMA 3 : |
1914 * +---------------+----------------+ +----------------+
1915 * | memory region |
1916 * +--------------------------------------------+
1917 */
1918 do {
1919 struct vm_area_struct *vma = find_vma(current->mm, hva);
1920 hva_t vm_start, vm_end;
1921
1922 if (!vma || vma->vm_start >= reg_end)
1923 break;
1924
1925 /*
1926 * Mapping a read-only VMA is only allowed if the
1927 * memory region is configured as read-only.
1928 */
1929 if (writable && !(vma->vm_flags & VM_WRITE)) {
1930 ret = -EPERM;
1931 break;
1932 }
1933
1934 /*
1935 * Take the intersection of this VMA with the memory region
1936 */
1937 vm_start = max(hva, vma->vm_start);
1938 vm_end = min(reg_end, vma->vm_end);
1939
1940 if (vma->vm_flags & VM_PFNMAP) {
1941 gpa_t gpa = mem->guest_phys_addr +
1942 (vm_start - mem->userspace_addr);
1943 phys_addr_t pa;
1944
1945 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1946 pa += vm_start - vma->vm_start;
1947
1948 /* IO region dirty page logging not allowed */
1949 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1950 ret = -EINVAL;
1951 goto out;
1952 }
1953
1954 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1955 vm_end - vm_start,
1956 writable);
1957 if (ret)
1958 break;
1959 }
1960 hva = vm_end;
1961 } while (hva < reg_end);
1962
1963 if (change == KVM_MR_FLAGS_ONLY)
1964 goto out;
1965
1966 spin_lock(&kvm->mmu_lock);
1967 if (ret)
1968 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1969 else
1970 stage2_flush_memslot(kvm, memslot);
1971 spin_unlock(&kvm->mmu_lock);
1972 out:
1973 up_read(&current->mm->mmap_sem);
1974 return ret;
1975 }
1976
1977 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1978 struct kvm_memory_slot *dont)
1979 {
1980 }
1981
1982 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1983 unsigned long npages)
1984 {
1985 return 0;
1986 }
1987
1988 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1989 {
1990 }
1991
1992 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1993 {
1994 kvm_free_stage2_pgd(kvm);
1995 }
1996
1997 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1998 struct kvm_memory_slot *slot)
1999 {
2000 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2001 phys_addr_t size = slot->npages << PAGE_SHIFT;
2002
2003 spin_lock(&kvm->mmu_lock);
2004 unmap_stage2_range(kvm, gpa, size);
2005 spin_unlock(&kvm->mmu_lock);
2006 }
2007
2008 /*
2009 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2010 *
2011 * Main problems:
2012 * - S/W ops are local to a CPU (not broadcast)
2013 * - We have line migration behind our back (speculation)
2014 * - System caches don't support S/W at all (damn!)
2015 *
2016 * In the face of the above, the best we can do is to try and convert
2017 * S/W ops to VA ops. Because the guest is not allowed to infer the
2018 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2019 * which is a rather good thing for us.
2020 *
2021 * Also, it is only used when turning caches on/off ("The expected
2022 * usage of the cache maintenance instructions that operate by set/way
2023 * is associated with the cache maintenance instructions associated
2024 * with the powerdown and powerup of caches, if this is required by
2025 * the implementation.").
2026 *
2027 * We use the following policy:
2028 *
2029 * - If we trap a S/W operation, we enable VM trapping to detect
2030 * caches being turned on/off, and do a full clean.
2031 *
2032 * - We flush the caches on both caches being turned on and off.
2033 *
2034 * - Once the caches are enabled, we stop trapping VM ops.
2035 */
2036 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2037 {
2038 unsigned long hcr = vcpu_get_hcr(vcpu);
2039
2040 /*
2041 * If this is the first time we do a S/W operation
2042 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2043 * VM trapping.
2044 *
2045 * Otherwise, rely on the VM trapping to wait for the MMU +
2046 * Caches to be turned off. At that point, we'll be able to
2047 * clean the caches again.
2048 */
2049 if (!(hcr & HCR_TVM)) {
2050 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2051 vcpu_has_cache_enabled(vcpu));
2052 stage2_flush_vm(vcpu->kvm);
2053 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
2054 }
2055 }
2056
2057 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2058 {
2059 bool now_enabled = vcpu_has_cache_enabled(vcpu);
2060
2061 /*
2062 * If switching the MMU+caches on, need to invalidate the caches.
2063 * If switching it off, need to clean the caches.
2064 * Clean + invalidate does the trick always.
2065 */
2066 if (now_enabled != was_enabled)
2067 stage2_flush_vm(vcpu->kvm);
2068
2069 /* Caches are now on, stop trapping VM ops (until a S/W op) */
2070 if (now_enabled)
2071 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
2072
2073 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2074 }