]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/arm/vgic/vgic-init.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / arm / vgic / vgic-init.c
1 /*
2 * Copyright (C) 2015, 2016 ARM Ltd.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16
17 #include <linux/uaccess.h>
18 #include <linux/interrupt.h>
19 #include <linux/cpu.h>
20 #include <linux/kvm_host.h>
21 #include <kvm/arm_vgic.h>
22 #include <asm/kvm_mmu.h>
23 #include "vgic.h"
24
25 /*
26 * Initialization rules: there are multiple stages to the vgic
27 * initialization, both for the distributor and the CPU interfaces.
28 *
29 * Distributor:
30 *
31 * - kvm_vgic_early_init(): initialization of static data that doesn't
32 * depend on any sizing information or emulation type. No allocation
33 * is allowed there.
34 *
35 * - vgic_init(): allocation and initialization of the generic data
36 * structures that depend on sizing information (number of CPUs,
37 * number of interrupts). Also initializes the vcpu specific data
38 * structures. Can be executed lazily for GICv2.
39 *
40 * CPU Interface:
41 *
42 * - kvm_vgic_cpu_early_init(): initialization of static data that
43 * doesn't depend on any sizing information or emulation type. No
44 * allocation is allowed there.
45 */
46
47 /* EARLY INIT */
48
49 /*
50 * Those 2 functions should not be needed anymore but they
51 * still are called from arm.c
52 */
53 void kvm_vgic_early_init(struct kvm *kvm)
54 {
55 }
56
57 void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
58 {
59 }
60
61 /* CREATION */
62
63 /**
64 * kvm_vgic_create: triggered by the instantiation of the VGIC device by
65 * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only)
66 * or through the generic KVM_CREATE_DEVICE API ioctl.
67 * irqchip_in_kernel() tells you if this function succeeded or not.
68 * @kvm: kvm struct pointer
69 * @type: KVM_DEV_TYPE_ARM_VGIC_V[23]
70 */
71 int kvm_vgic_create(struct kvm *kvm, u32 type)
72 {
73 int i, vcpu_lock_idx = -1, ret;
74 struct kvm_vcpu *vcpu;
75
76 if (irqchip_in_kernel(kvm))
77 return -EEXIST;
78
79 /*
80 * This function is also called by the KVM_CREATE_IRQCHIP handler,
81 * which had no chance yet to check the availability of the GICv2
82 * emulation. So check this here again. KVM_CREATE_DEVICE does
83 * the proper checks already.
84 */
85 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 &&
86 !kvm_vgic_global_state.can_emulate_gicv2)
87 return -ENODEV;
88
89 /*
90 * Any time a vcpu is run, vcpu_load is called which tries to grab the
91 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
92 * that no other VCPUs are run while we create the vgic.
93 */
94 ret = -EBUSY;
95 kvm_for_each_vcpu(i, vcpu, kvm) {
96 if (!mutex_trylock(&vcpu->mutex))
97 goto out_unlock;
98 vcpu_lock_idx = i;
99 }
100
101 kvm_for_each_vcpu(i, vcpu, kvm) {
102 if (vcpu->arch.has_run_once)
103 goto out_unlock;
104 }
105 ret = 0;
106
107 if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
108 kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS;
109 else
110 kvm->arch.max_vcpus = VGIC_V3_MAX_CPUS;
111
112 if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus) {
113 ret = -E2BIG;
114 goto out_unlock;
115 }
116
117 kvm->arch.vgic.in_kernel = true;
118 kvm->arch.vgic.vgic_model = type;
119
120 /*
121 * kvm_vgic_global_state.vctrl_base is set on vgic probe (kvm_arch_init)
122 * it is stored in distributor struct for asm save/restore purpose
123 */
124 kvm->arch.vgic.vctrl_base = kvm_vgic_global_state.vctrl_base;
125
126 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
127 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
128 kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
129
130 out_unlock:
131 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
132 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
133 mutex_unlock(&vcpu->mutex);
134 }
135 return ret;
136 }
137
138 /* INIT/DESTROY */
139
140 /**
141 * kvm_vgic_dist_init: initialize the dist data structures
142 * @kvm: kvm struct pointer
143 * @nr_spis: number of spis, frozen by caller
144 */
145 static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
146 {
147 struct vgic_dist *dist = &kvm->arch.vgic;
148 struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0);
149 int i;
150
151 INIT_LIST_HEAD(&dist->lpi_list_head);
152 spin_lock_init(&dist->lpi_list_lock);
153
154 dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL);
155 if (!dist->spis)
156 return -ENOMEM;
157
158 /*
159 * In the following code we do not take the irq struct lock since
160 * no other action on irq structs can happen while the VGIC is
161 * not initialized yet:
162 * If someone wants to inject an interrupt or does a MMIO access, we
163 * require prior initialization in case of a virtual GICv3 or trigger
164 * initialization when using a virtual GICv2.
165 */
166 for (i = 0; i < nr_spis; i++) {
167 struct vgic_irq *irq = &dist->spis[i];
168
169 irq->intid = i + VGIC_NR_PRIVATE_IRQS;
170 INIT_LIST_HEAD(&irq->ap_list);
171 spin_lock_init(&irq->irq_lock);
172 irq->vcpu = NULL;
173 irq->target_vcpu = vcpu0;
174 kref_init(&irq->refcount);
175 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
176 irq->targets = 0;
177 else
178 irq->mpidr = 0;
179 }
180 return 0;
181 }
182
183 /**
184 * kvm_vgic_vcpu_init: initialize the vcpu data structures and
185 * enable the VCPU interface
186 * @vcpu: the VCPU which's VGIC should be initialized
187 */
188 static void kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
189 {
190 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
191 int i;
192
193 INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
194 spin_lock_init(&vgic_cpu->ap_list_lock);
195
196 /*
197 * Enable and configure all SGIs to be edge-triggered and
198 * configure all PPIs as level-triggered.
199 */
200 for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
201 struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
202
203 INIT_LIST_HEAD(&irq->ap_list);
204 spin_lock_init(&irq->irq_lock);
205 irq->intid = i;
206 irq->vcpu = NULL;
207 irq->target_vcpu = vcpu;
208 irq->targets = 1U << vcpu->vcpu_id;
209 kref_init(&irq->refcount);
210 if (vgic_irq_is_sgi(i)) {
211 /* SGIs */
212 irq->enabled = 1;
213 irq->config = VGIC_CONFIG_EDGE;
214 } else {
215 /* PPIs */
216 irq->config = VGIC_CONFIG_LEVEL;
217 }
218 }
219 if (kvm_vgic_global_state.type == VGIC_V2)
220 vgic_v2_enable(vcpu);
221 else
222 vgic_v3_enable(vcpu);
223 }
224
225 /*
226 * vgic_init: allocates and initializes dist and vcpu data structures
227 * depending on two dimensioning parameters:
228 * - the number of spis
229 * - the number of vcpus
230 * The function is generally called when nr_spis has been explicitly set
231 * by the guest through the KVM DEVICE API. If not nr_spis is set to 256.
232 * vgic_initialized() returns true when this function has succeeded.
233 * Must be called with kvm->lock held!
234 */
235 int vgic_init(struct kvm *kvm)
236 {
237 struct vgic_dist *dist = &kvm->arch.vgic;
238 struct kvm_vcpu *vcpu;
239 int ret = 0, i;
240
241 if (vgic_initialized(kvm))
242 return 0;
243
244 /* freeze the number of spis */
245 if (!dist->nr_spis)
246 dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS;
247
248 ret = kvm_vgic_dist_init(kvm, dist->nr_spis);
249 if (ret)
250 goto out;
251
252 if (vgic_has_its(kvm))
253 dist->msis_require_devid = true;
254
255 kvm_for_each_vcpu(i, vcpu, kvm)
256 kvm_vgic_vcpu_init(vcpu);
257
258 ret = kvm_vgic_setup_default_irq_routing(kvm);
259 if (ret)
260 goto out;
261
262 vgic_debug_init(kvm);
263
264 dist->initialized = true;
265 out:
266 return ret;
267 }
268
269 static void kvm_vgic_dist_destroy(struct kvm *kvm)
270 {
271 struct vgic_dist *dist = &kvm->arch.vgic;
272
273 dist->ready = false;
274 dist->initialized = false;
275
276 kfree(dist->spis);
277 dist->nr_spis = 0;
278 }
279
280 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
281 {
282 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
283
284 INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
285 }
286
287 /* To be called with kvm->lock held */
288 static void __kvm_vgic_destroy(struct kvm *kvm)
289 {
290 struct kvm_vcpu *vcpu;
291 int i;
292
293 vgic_debug_destroy(kvm);
294
295 kvm_vgic_dist_destroy(kvm);
296
297 kvm_for_each_vcpu(i, vcpu, kvm)
298 kvm_vgic_vcpu_destroy(vcpu);
299 }
300
301 void kvm_vgic_destroy(struct kvm *kvm)
302 {
303 mutex_lock(&kvm->lock);
304 __kvm_vgic_destroy(kvm);
305 mutex_unlock(&kvm->lock);
306 }
307
308 /**
309 * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest
310 * is a GICv2. A GICv3 must be explicitly initialized by the guest using the
311 * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group.
312 * @kvm: kvm struct pointer
313 */
314 int vgic_lazy_init(struct kvm *kvm)
315 {
316 int ret = 0;
317
318 if (unlikely(!vgic_initialized(kvm))) {
319 /*
320 * We only provide the automatic initialization of the VGIC
321 * for the legacy case of a GICv2. Any other type must
322 * be explicitly initialized once setup with the respective
323 * KVM device call.
324 */
325 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
326 return -EBUSY;
327
328 mutex_lock(&kvm->lock);
329 ret = vgic_init(kvm);
330 mutex_unlock(&kvm->lock);
331 }
332
333 return ret;
334 }
335
336 /* RESOURCE MAPPING */
337
338 /**
339 * Map the MMIO regions depending on the VGIC model exposed to the guest
340 * called on the first VCPU run.
341 * Also map the virtual CPU interface into the VM.
342 * v2/v3 derivatives call vgic_init if not already done.
343 * vgic_ready() returns true if this function has succeeded.
344 * @kvm: kvm struct pointer
345 */
346 int kvm_vgic_map_resources(struct kvm *kvm)
347 {
348 struct vgic_dist *dist = &kvm->arch.vgic;
349 int ret = 0;
350
351 mutex_lock(&kvm->lock);
352 if (!irqchip_in_kernel(kvm))
353 goto out;
354
355 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
356 ret = vgic_v2_map_resources(kvm);
357 else
358 ret = vgic_v3_map_resources(kvm);
359
360 if (ret)
361 __kvm_vgic_destroy(kvm);
362
363 out:
364 mutex_unlock(&kvm->lock);
365 return ret;
366 }
367
368 /* GENERIC PROBE */
369
370 static int vgic_init_cpu_starting(unsigned int cpu)
371 {
372 enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0);
373 return 0;
374 }
375
376
377 static int vgic_init_cpu_dying(unsigned int cpu)
378 {
379 disable_percpu_irq(kvm_vgic_global_state.maint_irq);
380 return 0;
381 }
382
383 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
384 {
385 /*
386 * We cannot rely on the vgic maintenance interrupt to be
387 * delivered synchronously. This means we can only use it to
388 * exit the VM, and we perform the handling of EOIed
389 * interrupts on the exit path (see vgic_process_maintenance).
390 */
391 return IRQ_HANDLED;
392 }
393
394 /**
395 * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable
396 * according to the host GIC model. Accordingly calls either
397 * vgic_v2/v3_probe which registers the KVM_DEVICE that can be
398 * instantiated by a guest later on .
399 */
400 int kvm_vgic_hyp_init(void)
401 {
402 const struct gic_kvm_info *gic_kvm_info;
403 int ret;
404
405 gic_kvm_info = gic_get_kvm_info();
406 if (!gic_kvm_info)
407 return -ENODEV;
408
409 if (!gic_kvm_info->maint_irq) {
410 kvm_err("No vgic maintenance irq\n");
411 return -ENXIO;
412 }
413
414 switch (gic_kvm_info->type) {
415 case GIC_V2:
416 ret = vgic_v2_probe(gic_kvm_info);
417 break;
418 case GIC_V3:
419 ret = vgic_v3_probe(gic_kvm_info);
420 if (!ret) {
421 static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif);
422 kvm_info("GIC system register CPU interface enabled\n");
423 }
424 break;
425 default:
426 ret = -ENODEV;
427 };
428
429 if (ret)
430 return ret;
431
432 kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq;
433 ret = request_percpu_irq(kvm_vgic_global_state.maint_irq,
434 vgic_maintenance_handler,
435 "vgic", kvm_get_running_vcpus());
436 if (ret) {
437 kvm_err("Cannot register interrupt %d\n",
438 kvm_vgic_global_state.maint_irq);
439 return ret;
440 }
441
442 ret = cpuhp_setup_state(CPUHP_AP_KVM_ARM_VGIC_INIT_STARTING,
443 "kvm/arm/vgic:starting",
444 vgic_init_cpu_starting, vgic_init_cpu_dying);
445 if (ret) {
446 kvm_err("Cannot register vgic CPU notifier\n");
447 goto out_free_irq;
448 }
449
450 kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq);
451 return 0;
452
453 out_free_irq:
454 free_percpu_irq(kvm_vgic_global_state.maint_irq,
455 kvm_get_running_vcpus());
456 return ret;
457 }