]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/arm/vgic/vgic-init.c
Merge tag 'powerpc-4.13-8' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-artful-kernel.git] / virt / kvm / arm / vgic / vgic-init.c
1 /*
2 * Copyright (C) 2015, 2016 ARM Ltd.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16
17 #include <linux/uaccess.h>
18 #include <linux/interrupt.h>
19 #include <linux/cpu.h>
20 #include <linux/kvm_host.h>
21 #include <kvm/arm_vgic.h>
22 #include <asm/kvm_mmu.h>
23 #include "vgic.h"
24
25 /*
26 * Initialization rules: there are multiple stages to the vgic
27 * initialization, both for the distributor and the CPU interfaces. The basic
28 * idea is that even though the VGIC is not functional or not requested from
29 * user space, the critical path of the run loop can still call VGIC functions
30 * that just won't do anything, without them having to check additional
31 * initialization flags to ensure they don't look at uninitialized data
32 * structures.
33 *
34 * Distributor:
35 *
36 * - kvm_vgic_early_init(): initialization of static data that doesn't
37 * depend on any sizing information or emulation type. No allocation
38 * is allowed there.
39 *
40 * - vgic_init(): allocation and initialization of the generic data
41 * structures that depend on sizing information (number of CPUs,
42 * number of interrupts). Also initializes the vcpu specific data
43 * structures. Can be executed lazily for GICv2.
44 *
45 * CPU Interface:
46 *
47 * - kvm_vgic_vcpu_early_init(): initialization of static data that
48 * doesn't depend on any sizing information or emulation type. No
49 * allocation is allowed there.
50 */
51
52 /* EARLY INIT */
53
54 /**
55 * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures
56 * @kvm: The VM whose VGIC districutor should be initialized
57 *
58 * Only do initialization of static structures that don't require any
59 * allocation or sizing information from userspace. vgic_init() called
60 * kvm_vgic_dist_init() which takes care of the rest.
61 */
62 void kvm_vgic_early_init(struct kvm *kvm)
63 {
64 struct vgic_dist *dist = &kvm->arch.vgic;
65
66 INIT_LIST_HEAD(&dist->lpi_list_head);
67 spin_lock_init(&dist->lpi_list_lock);
68 }
69
70 /**
71 * kvm_vgic_vcpu_early_init() - Initialize static VGIC VCPU data structures
72 * @vcpu: The VCPU whose VGIC data structures whould be initialized
73 *
74 * Only do initialization, but do not actually enable the VGIC CPU interface
75 * yet.
76 */
77 void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
78 {
79 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
80 int i;
81
82 INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
83 spin_lock_init(&vgic_cpu->ap_list_lock);
84
85 /*
86 * Enable and configure all SGIs to be edge-triggered and
87 * configure all PPIs as level-triggered.
88 */
89 for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
90 struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
91
92 INIT_LIST_HEAD(&irq->ap_list);
93 spin_lock_init(&irq->irq_lock);
94 irq->intid = i;
95 irq->vcpu = NULL;
96 irq->target_vcpu = vcpu;
97 irq->targets = 1U << vcpu->vcpu_id;
98 kref_init(&irq->refcount);
99 if (vgic_irq_is_sgi(i)) {
100 /* SGIs */
101 irq->enabled = 1;
102 irq->config = VGIC_CONFIG_EDGE;
103 } else {
104 /* PPIs */
105 irq->config = VGIC_CONFIG_LEVEL;
106 }
107 }
108 }
109
110 /* CREATION */
111
112 /**
113 * kvm_vgic_create: triggered by the instantiation of the VGIC device by
114 * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only)
115 * or through the generic KVM_CREATE_DEVICE API ioctl.
116 * irqchip_in_kernel() tells you if this function succeeded or not.
117 * @kvm: kvm struct pointer
118 * @type: KVM_DEV_TYPE_ARM_VGIC_V[23]
119 */
120 int kvm_vgic_create(struct kvm *kvm, u32 type)
121 {
122 int i, vcpu_lock_idx = -1, ret;
123 struct kvm_vcpu *vcpu;
124
125 if (irqchip_in_kernel(kvm))
126 return -EEXIST;
127
128 /*
129 * This function is also called by the KVM_CREATE_IRQCHIP handler,
130 * which had no chance yet to check the availability of the GICv2
131 * emulation. So check this here again. KVM_CREATE_DEVICE does
132 * the proper checks already.
133 */
134 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 &&
135 !kvm_vgic_global_state.can_emulate_gicv2)
136 return -ENODEV;
137
138 /*
139 * Any time a vcpu is run, vcpu_load is called which tries to grab the
140 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
141 * that no other VCPUs are run while we create the vgic.
142 */
143 ret = -EBUSY;
144 kvm_for_each_vcpu(i, vcpu, kvm) {
145 if (!mutex_trylock(&vcpu->mutex))
146 goto out_unlock;
147 vcpu_lock_idx = i;
148 }
149
150 kvm_for_each_vcpu(i, vcpu, kvm) {
151 if (vcpu->arch.has_run_once)
152 goto out_unlock;
153 }
154 ret = 0;
155
156 if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
157 kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS;
158 else
159 kvm->arch.max_vcpus = VGIC_V3_MAX_CPUS;
160
161 if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus) {
162 ret = -E2BIG;
163 goto out_unlock;
164 }
165
166 kvm->arch.vgic.in_kernel = true;
167 kvm->arch.vgic.vgic_model = type;
168
169 /*
170 * kvm_vgic_global_state.vctrl_base is set on vgic probe (kvm_arch_init)
171 * it is stored in distributor struct for asm save/restore purpose
172 */
173 kvm->arch.vgic.vctrl_base = kvm_vgic_global_state.vctrl_base;
174
175 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
176 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
177 kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
178
179 out_unlock:
180 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
181 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
182 mutex_unlock(&vcpu->mutex);
183 }
184 return ret;
185 }
186
187 /* INIT/DESTROY */
188
189 /**
190 * kvm_vgic_dist_init: initialize the dist data structures
191 * @kvm: kvm struct pointer
192 * @nr_spis: number of spis, frozen by caller
193 */
194 static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
195 {
196 struct vgic_dist *dist = &kvm->arch.vgic;
197 struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0);
198 int i;
199
200 dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL);
201 if (!dist->spis)
202 return -ENOMEM;
203
204 /*
205 * In the following code we do not take the irq struct lock since
206 * no other action on irq structs can happen while the VGIC is
207 * not initialized yet:
208 * If someone wants to inject an interrupt or does a MMIO access, we
209 * require prior initialization in case of a virtual GICv3 or trigger
210 * initialization when using a virtual GICv2.
211 */
212 for (i = 0; i < nr_spis; i++) {
213 struct vgic_irq *irq = &dist->spis[i];
214
215 irq->intid = i + VGIC_NR_PRIVATE_IRQS;
216 INIT_LIST_HEAD(&irq->ap_list);
217 spin_lock_init(&irq->irq_lock);
218 irq->vcpu = NULL;
219 irq->target_vcpu = vcpu0;
220 kref_init(&irq->refcount);
221 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
222 irq->targets = 0;
223 else
224 irq->mpidr = 0;
225 }
226 return 0;
227 }
228
229 /**
230 * kvm_vgic_vcpu_init() - Register VCPU-specific KVM iodevs
231 * @vcpu: pointer to the VCPU being created and initialized
232 */
233 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
234 {
235 int ret = 0;
236 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
237
238 if (!irqchip_in_kernel(vcpu->kvm))
239 return 0;
240
241 /*
242 * If we are creating a VCPU with a GICv3 we must also register the
243 * KVM io device for the redistributor that belongs to this VCPU.
244 */
245 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
246 mutex_lock(&vcpu->kvm->lock);
247 ret = vgic_register_redist_iodev(vcpu);
248 mutex_unlock(&vcpu->kvm->lock);
249 }
250 return ret;
251 }
252
253 static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu)
254 {
255 if (kvm_vgic_global_state.type == VGIC_V2)
256 vgic_v2_enable(vcpu);
257 else
258 vgic_v3_enable(vcpu);
259 }
260
261 /*
262 * vgic_init: allocates and initializes dist and vcpu data structures
263 * depending on two dimensioning parameters:
264 * - the number of spis
265 * - the number of vcpus
266 * The function is generally called when nr_spis has been explicitly set
267 * by the guest through the KVM DEVICE API. If not nr_spis is set to 256.
268 * vgic_initialized() returns true when this function has succeeded.
269 * Must be called with kvm->lock held!
270 */
271 int vgic_init(struct kvm *kvm)
272 {
273 struct vgic_dist *dist = &kvm->arch.vgic;
274 struct kvm_vcpu *vcpu;
275 int ret = 0, i;
276
277 if (vgic_initialized(kvm))
278 return 0;
279
280 /* freeze the number of spis */
281 if (!dist->nr_spis)
282 dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS;
283
284 ret = kvm_vgic_dist_init(kvm, dist->nr_spis);
285 if (ret)
286 goto out;
287
288 kvm_for_each_vcpu(i, vcpu, kvm)
289 kvm_vgic_vcpu_enable(vcpu);
290
291 ret = kvm_vgic_setup_default_irq_routing(kvm);
292 if (ret)
293 goto out;
294
295 vgic_debug_init(kvm);
296
297 dist->initialized = true;
298
299 /*
300 * If we're initializing GICv2 on-demand when first running the VCPU
301 * then we need to load the VGIC state onto the CPU. We can detect
302 * this easily by checking if we are in between vcpu_load and vcpu_put
303 * when we just initialized the VGIC.
304 */
305 preempt_disable();
306 vcpu = kvm_arm_get_running_vcpu();
307 if (vcpu)
308 kvm_vgic_load(vcpu);
309 preempt_enable();
310 out:
311 return ret;
312 }
313
314 static void kvm_vgic_dist_destroy(struct kvm *kvm)
315 {
316 struct vgic_dist *dist = &kvm->arch.vgic;
317
318 dist->ready = false;
319 dist->initialized = false;
320
321 kfree(dist->spis);
322 dist->nr_spis = 0;
323 }
324
325 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
326 {
327 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
328
329 INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
330 }
331
332 /* To be called with kvm->lock held */
333 static void __kvm_vgic_destroy(struct kvm *kvm)
334 {
335 struct kvm_vcpu *vcpu;
336 int i;
337
338 vgic_debug_destroy(kvm);
339
340 kvm_vgic_dist_destroy(kvm);
341
342 kvm_for_each_vcpu(i, vcpu, kvm)
343 kvm_vgic_vcpu_destroy(vcpu);
344 }
345
346 void kvm_vgic_destroy(struct kvm *kvm)
347 {
348 mutex_lock(&kvm->lock);
349 __kvm_vgic_destroy(kvm);
350 mutex_unlock(&kvm->lock);
351 }
352
353 /**
354 * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest
355 * is a GICv2. A GICv3 must be explicitly initialized by the guest using the
356 * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group.
357 * @kvm: kvm struct pointer
358 */
359 int vgic_lazy_init(struct kvm *kvm)
360 {
361 int ret = 0;
362
363 if (unlikely(!vgic_initialized(kvm))) {
364 /*
365 * We only provide the automatic initialization of the VGIC
366 * for the legacy case of a GICv2. Any other type must
367 * be explicitly initialized once setup with the respective
368 * KVM device call.
369 */
370 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
371 return -EBUSY;
372
373 mutex_lock(&kvm->lock);
374 ret = vgic_init(kvm);
375 mutex_unlock(&kvm->lock);
376 }
377
378 return ret;
379 }
380
381 /* RESOURCE MAPPING */
382
383 /**
384 * Map the MMIO regions depending on the VGIC model exposed to the guest
385 * called on the first VCPU run.
386 * Also map the virtual CPU interface into the VM.
387 * v2/v3 derivatives call vgic_init if not already done.
388 * vgic_ready() returns true if this function has succeeded.
389 * @kvm: kvm struct pointer
390 */
391 int kvm_vgic_map_resources(struct kvm *kvm)
392 {
393 struct vgic_dist *dist = &kvm->arch.vgic;
394 int ret = 0;
395
396 mutex_lock(&kvm->lock);
397 if (!irqchip_in_kernel(kvm))
398 goto out;
399
400 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
401 ret = vgic_v2_map_resources(kvm);
402 else
403 ret = vgic_v3_map_resources(kvm);
404
405 if (ret)
406 __kvm_vgic_destroy(kvm);
407
408 out:
409 mutex_unlock(&kvm->lock);
410 return ret;
411 }
412
413 /* GENERIC PROBE */
414
415 static int vgic_init_cpu_starting(unsigned int cpu)
416 {
417 enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0);
418 return 0;
419 }
420
421
422 static int vgic_init_cpu_dying(unsigned int cpu)
423 {
424 disable_percpu_irq(kvm_vgic_global_state.maint_irq);
425 return 0;
426 }
427
428 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
429 {
430 /*
431 * We cannot rely on the vgic maintenance interrupt to be
432 * delivered synchronously. This means we can only use it to
433 * exit the VM, and we perform the handling of EOIed
434 * interrupts on the exit path (see vgic_process_maintenance).
435 */
436 return IRQ_HANDLED;
437 }
438
439 /**
440 * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware
441 *
442 * For a specific CPU, initialize the GIC VE hardware.
443 */
444 void kvm_vgic_init_cpu_hardware(void)
445 {
446 BUG_ON(preemptible());
447
448 /*
449 * We want to make sure the list registers start out clear so that we
450 * only have the program the used registers.
451 */
452 if (kvm_vgic_global_state.type == VGIC_V2)
453 vgic_v2_init_lrs();
454 else
455 kvm_call_hyp(__vgic_v3_init_lrs);
456 }
457
458 /**
459 * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable
460 * according to the host GIC model. Accordingly calls either
461 * vgic_v2/v3_probe which registers the KVM_DEVICE that can be
462 * instantiated by a guest later on .
463 */
464 int kvm_vgic_hyp_init(void)
465 {
466 const struct gic_kvm_info *gic_kvm_info;
467 int ret;
468
469 gic_kvm_info = gic_get_kvm_info();
470 if (!gic_kvm_info)
471 return -ENODEV;
472
473 if (!gic_kvm_info->maint_irq) {
474 kvm_err("No vgic maintenance irq\n");
475 return -ENXIO;
476 }
477
478 switch (gic_kvm_info->type) {
479 case GIC_V2:
480 ret = vgic_v2_probe(gic_kvm_info);
481 break;
482 case GIC_V3:
483 ret = vgic_v3_probe(gic_kvm_info);
484 if (!ret) {
485 static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif);
486 kvm_info("GIC system register CPU interface enabled\n");
487 }
488 break;
489 default:
490 ret = -ENODEV;
491 };
492
493 if (ret)
494 return ret;
495
496 kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq;
497 ret = request_percpu_irq(kvm_vgic_global_state.maint_irq,
498 vgic_maintenance_handler,
499 "vgic", kvm_get_running_vcpus());
500 if (ret) {
501 kvm_err("Cannot register interrupt %d\n",
502 kvm_vgic_global_state.maint_irq);
503 return ret;
504 }
505
506 ret = cpuhp_setup_state(CPUHP_AP_KVM_ARM_VGIC_INIT_STARTING,
507 "kvm/arm/vgic:starting",
508 vgic_init_cpu_starting, vgic_init_cpu_dying);
509 if (ret) {
510 kvm_err("Cannot register vgic CPU notifier\n");
511 goto out_free_irq;
512 }
513
514 kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq);
515 return 0;
516
517 out_free_irq:
518 free_percpu_irq(kvm_vgic_global_state.maint_irq,
519 kvm_get_running_vcpus());
520 return ret;
521 }