]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - virt/kvm/arm/vgic/vgic-its.c
Merge tag 'trace-v4.14-rc1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rosted...
[mirror_ubuntu-focal-kernel.git] / virt / kvm / arm / vgic / vgic-its.c
1 /*
2 * GICv3 ITS emulation
3 *
4 * Copyright (C) 2015,2016 ARM Ltd.
5 * Author: Andre Przywara <andre.przywara@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/cpu.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24 #include <linux/list.h>
25 #include <linux/uaccess.h>
26 #include <linux/list_sort.h>
27
28 #include <linux/irqchip/arm-gic-v3.h>
29
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
33
34 #include "vgic.h"
35 #include "vgic-mmio.h"
36
37 static int vgic_its_save_tables_v0(struct vgic_its *its);
38 static int vgic_its_restore_tables_v0(struct vgic_its *its);
39 static int vgic_its_commit_v0(struct vgic_its *its);
40 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
41 struct kvm_vcpu *filter_vcpu);
42
43 /*
44 * Creates a new (reference to a) struct vgic_irq for a given LPI.
45 * If this LPI is already mapped on another ITS, we increase its refcount
46 * and return a pointer to the existing structure.
47 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
48 * This function returns a pointer to the _unlocked_ structure.
49 */
50 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
51 struct kvm_vcpu *vcpu)
52 {
53 struct vgic_dist *dist = &kvm->arch.vgic;
54 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
55 int ret;
56
57 /* In this case there is no put, since we keep the reference. */
58 if (irq)
59 return irq;
60
61 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
62 if (!irq)
63 return ERR_PTR(-ENOMEM);
64
65 INIT_LIST_HEAD(&irq->lpi_list);
66 INIT_LIST_HEAD(&irq->ap_list);
67 spin_lock_init(&irq->irq_lock);
68
69 irq->config = VGIC_CONFIG_EDGE;
70 kref_init(&irq->refcount);
71 irq->intid = intid;
72 irq->target_vcpu = vcpu;
73
74 spin_lock(&dist->lpi_list_lock);
75
76 /*
77 * There could be a race with another vgic_add_lpi(), so we need to
78 * check that we don't add a second list entry with the same LPI.
79 */
80 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
81 if (oldirq->intid != intid)
82 continue;
83
84 /* Someone was faster with adding this LPI, lets use that. */
85 kfree(irq);
86 irq = oldirq;
87
88 /*
89 * This increases the refcount, the caller is expected to
90 * call vgic_put_irq() on the returned pointer once it's
91 * finished with the IRQ.
92 */
93 vgic_get_irq_kref(irq);
94
95 goto out_unlock;
96 }
97
98 list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
99 dist->lpi_list_count++;
100
101 out_unlock:
102 spin_unlock(&dist->lpi_list_lock);
103
104 /*
105 * We "cache" the configuration table entries in our struct vgic_irq's.
106 * However we only have those structs for mapped IRQs, so we read in
107 * the respective config data from memory here upon mapping the LPI.
108 */
109 ret = update_lpi_config(kvm, irq, NULL);
110 if (ret)
111 return ERR_PTR(ret);
112
113 ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
114 if (ret)
115 return ERR_PTR(ret);
116
117 return irq;
118 }
119
120 struct its_device {
121 struct list_head dev_list;
122
123 /* the head for the list of ITTEs */
124 struct list_head itt_head;
125 u32 num_eventid_bits;
126 gpa_t itt_addr;
127 u32 device_id;
128 };
129
130 #define COLLECTION_NOT_MAPPED ((u32)~0)
131
132 struct its_collection {
133 struct list_head coll_list;
134
135 u32 collection_id;
136 u32 target_addr;
137 };
138
139 #define its_is_collection_mapped(coll) ((coll) && \
140 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
141
142 struct its_ite {
143 struct list_head ite_list;
144
145 struct vgic_irq *irq;
146 struct its_collection *collection;
147 u32 event_id;
148 };
149
150 /**
151 * struct vgic_its_abi - ITS abi ops and settings
152 * @cte_esz: collection table entry size
153 * @dte_esz: device table entry size
154 * @ite_esz: interrupt translation table entry size
155 * @save tables: save the ITS tables into guest RAM
156 * @restore_tables: restore the ITS internal structs from tables
157 * stored in guest RAM
158 * @commit: initialize the registers which expose the ABI settings,
159 * especially the entry sizes
160 */
161 struct vgic_its_abi {
162 int cte_esz;
163 int dte_esz;
164 int ite_esz;
165 int (*save_tables)(struct vgic_its *its);
166 int (*restore_tables)(struct vgic_its *its);
167 int (*commit)(struct vgic_its *its);
168 };
169
170 static const struct vgic_its_abi its_table_abi_versions[] = {
171 [0] = {.cte_esz = 8, .dte_esz = 8, .ite_esz = 8,
172 .save_tables = vgic_its_save_tables_v0,
173 .restore_tables = vgic_its_restore_tables_v0,
174 .commit = vgic_its_commit_v0,
175 },
176 };
177
178 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
179
180 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
181 {
182 return &its_table_abi_versions[its->abi_rev];
183 }
184
185 int vgic_its_set_abi(struct vgic_its *its, int rev)
186 {
187 const struct vgic_its_abi *abi;
188
189 its->abi_rev = rev;
190 abi = vgic_its_get_abi(its);
191 return abi->commit(its);
192 }
193
194 /*
195 * Find and returns a device in the device table for an ITS.
196 * Must be called with the its_lock mutex held.
197 */
198 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
199 {
200 struct its_device *device;
201
202 list_for_each_entry(device, &its->device_list, dev_list)
203 if (device_id == device->device_id)
204 return device;
205
206 return NULL;
207 }
208
209 /*
210 * Find and returns an interrupt translation table entry (ITTE) for a given
211 * Device ID/Event ID pair on an ITS.
212 * Must be called with the its_lock mutex held.
213 */
214 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
215 u32 event_id)
216 {
217 struct its_device *device;
218 struct its_ite *ite;
219
220 device = find_its_device(its, device_id);
221 if (device == NULL)
222 return NULL;
223
224 list_for_each_entry(ite, &device->itt_head, ite_list)
225 if (ite->event_id == event_id)
226 return ite;
227
228 return NULL;
229 }
230
231 /* To be used as an iterator this macro misses the enclosing parentheses */
232 #define for_each_lpi_its(dev, ite, its) \
233 list_for_each_entry(dev, &(its)->device_list, dev_list) \
234 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
235
236 /*
237 * We only implement 48 bits of PA at the moment, although the ITS
238 * supports more. Let's be restrictive here.
239 */
240 #define BASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
241 #define CBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
242
243 #define GIC_LPI_OFFSET 8192
244
245 #define VITS_TYPER_IDBITS 16
246 #define VITS_TYPER_DEVBITS 16
247 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
248 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
249
250 /*
251 * Finds and returns a collection in the ITS collection table.
252 * Must be called with the its_lock mutex held.
253 */
254 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
255 {
256 struct its_collection *collection;
257
258 list_for_each_entry(collection, &its->collection_list, coll_list) {
259 if (coll_id == collection->collection_id)
260 return collection;
261 }
262
263 return NULL;
264 }
265
266 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
267 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
268
269 /*
270 * Reads the configuration data for a given LPI from guest memory and
271 * updates the fields in struct vgic_irq.
272 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
273 * VCPU. Unconditionally applies if filter_vcpu is NULL.
274 */
275 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
276 struct kvm_vcpu *filter_vcpu)
277 {
278 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
279 u8 prop;
280 int ret;
281
282 ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
283 &prop, 1);
284
285 if (ret)
286 return ret;
287
288 spin_lock(&irq->irq_lock);
289
290 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
291 irq->priority = LPI_PROP_PRIORITY(prop);
292 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
293
294 vgic_queue_irq_unlock(kvm, irq);
295 } else {
296 spin_unlock(&irq->irq_lock);
297 }
298
299 return 0;
300 }
301
302 /*
303 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
304 * enumerate those LPIs without holding any lock.
305 * Returns their number and puts the kmalloc'ed array into intid_ptr.
306 */
307 static int vgic_copy_lpi_list(struct kvm_vcpu *vcpu, u32 **intid_ptr)
308 {
309 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
310 struct vgic_irq *irq;
311 u32 *intids;
312 int irq_count = dist->lpi_list_count, i = 0;
313
314 /*
315 * We use the current value of the list length, which may change
316 * after the kmalloc. We don't care, because the guest shouldn't
317 * change anything while the command handling is still running,
318 * and in the worst case we would miss a new IRQ, which one wouldn't
319 * expect to be covered by this command anyway.
320 */
321 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
322 if (!intids)
323 return -ENOMEM;
324
325 spin_lock(&dist->lpi_list_lock);
326 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
327 /* We don't need to "get" the IRQ, as we hold the list lock. */
328 if (irq->target_vcpu != vcpu)
329 continue;
330 intids[i++] = irq->intid;
331 }
332 spin_unlock(&dist->lpi_list_lock);
333
334 *intid_ptr = intids;
335 return i;
336 }
337
338 /*
339 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
340 * is targeting) to the VGIC's view, which deals with target VCPUs.
341 * Needs to be called whenever either the collection for a LPIs has
342 * changed or the collection itself got retargeted.
343 */
344 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
345 {
346 struct kvm_vcpu *vcpu;
347
348 if (!its_is_collection_mapped(ite->collection))
349 return;
350
351 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
352
353 spin_lock(&ite->irq->irq_lock);
354 ite->irq->target_vcpu = vcpu;
355 spin_unlock(&ite->irq->irq_lock);
356 }
357
358 /*
359 * Updates the target VCPU for every LPI targeting this collection.
360 * Must be called with the its_lock mutex held.
361 */
362 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
363 struct its_collection *coll)
364 {
365 struct its_device *device;
366 struct its_ite *ite;
367
368 for_each_lpi_its(device, ite, its) {
369 if (!ite->collection || coll != ite->collection)
370 continue;
371
372 update_affinity_ite(kvm, ite);
373 }
374 }
375
376 static u32 max_lpis_propbaser(u64 propbaser)
377 {
378 int nr_idbits = (propbaser & 0x1f) + 1;
379
380 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
381 }
382
383 /*
384 * Sync the pending table pending bit of LPIs targeting @vcpu
385 * with our own data structures. This relies on the LPI being
386 * mapped before.
387 */
388 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
389 {
390 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
391 struct vgic_irq *irq;
392 int last_byte_offset = -1;
393 int ret = 0;
394 u32 *intids;
395 int nr_irqs, i;
396
397 nr_irqs = vgic_copy_lpi_list(vcpu, &intids);
398 if (nr_irqs < 0)
399 return nr_irqs;
400
401 for (i = 0; i < nr_irqs; i++) {
402 int byte_offset, bit_nr;
403 u8 pendmask;
404
405 byte_offset = intids[i] / BITS_PER_BYTE;
406 bit_nr = intids[i] % BITS_PER_BYTE;
407
408 /*
409 * For contiguously allocated LPIs chances are we just read
410 * this very same byte in the last iteration. Reuse that.
411 */
412 if (byte_offset != last_byte_offset) {
413 ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
414 &pendmask, 1);
415 if (ret) {
416 kfree(intids);
417 return ret;
418 }
419 last_byte_offset = byte_offset;
420 }
421
422 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
423 spin_lock(&irq->irq_lock);
424 irq->pending_latch = pendmask & (1U << bit_nr);
425 vgic_queue_irq_unlock(vcpu->kvm, irq);
426 vgic_put_irq(vcpu->kvm, irq);
427 }
428
429 kfree(intids);
430
431 return ret;
432 }
433
434 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
435 struct vgic_its *its,
436 gpa_t addr, unsigned int len)
437 {
438 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
439 u64 reg = GITS_TYPER_PLPIS;
440
441 /*
442 * We use linear CPU numbers for redistributor addressing,
443 * so GITS_TYPER.PTA is 0.
444 * Also we force all PROPBASER registers to be the same, so
445 * CommonLPIAff is 0 as well.
446 * To avoid memory waste in the guest, we keep the number of IDBits and
447 * DevBits low - as least for the time being.
448 */
449 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
450 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
451 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
452
453 return extract_bytes(reg, addr & 7, len);
454 }
455
456 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
457 struct vgic_its *its,
458 gpa_t addr, unsigned int len)
459 {
460 u32 val;
461
462 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
463 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
464 return val;
465 }
466
467 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
468 struct vgic_its *its,
469 gpa_t addr, unsigned int len,
470 unsigned long val)
471 {
472 u32 rev = GITS_IIDR_REV(val);
473
474 if (rev >= NR_ITS_ABIS)
475 return -EINVAL;
476 return vgic_its_set_abi(its, rev);
477 }
478
479 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
480 struct vgic_its *its,
481 gpa_t addr, unsigned int len)
482 {
483 switch (addr & 0xffff) {
484 case GITS_PIDR0:
485 return 0x92; /* part number, bits[7:0] */
486 case GITS_PIDR1:
487 return 0xb4; /* part number, bits[11:8] */
488 case GITS_PIDR2:
489 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
490 case GITS_PIDR4:
491 return 0x40; /* This is a 64K software visible page */
492 /* The following are the ID registers for (any) GIC. */
493 case GITS_CIDR0:
494 return 0x0d;
495 case GITS_CIDR1:
496 return 0xf0;
497 case GITS_CIDR2:
498 return 0x05;
499 case GITS_CIDR3:
500 return 0xb1;
501 }
502
503 return 0;
504 }
505
506 /*
507 * Find the target VCPU and the LPI number for a given devid/eventid pair
508 * and make this IRQ pending, possibly injecting it.
509 * Must be called with the its_lock mutex held.
510 * Returns 0 on success, a positive error value for any ITS mapping
511 * related errors and negative error values for generic errors.
512 */
513 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
514 u32 devid, u32 eventid)
515 {
516 struct kvm_vcpu *vcpu;
517 struct its_ite *ite;
518
519 if (!its->enabled)
520 return -EBUSY;
521
522 ite = find_ite(its, devid, eventid);
523 if (!ite || !its_is_collection_mapped(ite->collection))
524 return E_ITS_INT_UNMAPPED_INTERRUPT;
525
526 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
527 if (!vcpu)
528 return E_ITS_INT_UNMAPPED_INTERRUPT;
529
530 if (!vcpu->arch.vgic_cpu.lpis_enabled)
531 return -EBUSY;
532
533 spin_lock(&ite->irq->irq_lock);
534 ite->irq->pending_latch = true;
535 vgic_queue_irq_unlock(kvm, ite->irq);
536
537 return 0;
538 }
539
540 static struct vgic_io_device *vgic_get_its_iodev(struct kvm_io_device *dev)
541 {
542 struct vgic_io_device *iodev;
543
544 if (dev->ops != &kvm_io_gic_ops)
545 return NULL;
546
547 iodev = container_of(dev, struct vgic_io_device, dev);
548
549 if (iodev->iodev_type != IODEV_ITS)
550 return NULL;
551
552 return iodev;
553 }
554
555 /*
556 * Queries the KVM IO bus framework to get the ITS pointer from the given
557 * doorbell address.
558 * We then call vgic_its_trigger_msi() with the decoded data.
559 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
560 */
561 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
562 {
563 u64 address;
564 struct kvm_io_device *kvm_io_dev;
565 struct vgic_io_device *iodev;
566 int ret;
567
568 if (!vgic_has_its(kvm))
569 return -ENODEV;
570
571 if (!(msi->flags & KVM_MSI_VALID_DEVID))
572 return -EINVAL;
573
574 address = (u64)msi->address_hi << 32 | msi->address_lo;
575
576 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
577 if (!kvm_io_dev)
578 return -EINVAL;
579
580 iodev = vgic_get_its_iodev(kvm_io_dev);
581 if (!iodev)
582 return -EINVAL;
583
584 mutex_lock(&iodev->its->its_lock);
585 ret = vgic_its_trigger_msi(kvm, iodev->its, msi->devid, msi->data);
586 mutex_unlock(&iodev->its->its_lock);
587
588 if (ret < 0)
589 return ret;
590
591 /*
592 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
593 * if the guest has blocked the MSI. So we map any LPI mapping
594 * related error to that.
595 */
596 if (ret)
597 return 0;
598 else
599 return 1;
600 }
601
602 /* Requires the its_lock to be held. */
603 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
604 {
605 list_del(&ite->ite_list);
606
607 /* This put matches the get in vgic_add_lpi. */
608 if (ite->irq)
609 vgic_put_irq(kvm, ite->irq);
610
611 kfree(ite);
612 }
613
614 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
615 {
616 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
617 }
618
619 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
620 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
621 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
622 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
623 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
624 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
625 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
626 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
627 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
628
629 /*
630 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
631 * Must be called with the its_lock mutex held.
632 */
633 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
634 u64 *its_cmd)
635 {
636 u32 device_id = its_cmd_get_deviceid(its_cmd);
637 u32 event_id = its_cmd_get_id(its_cmd);
638 struct its_ite *ite;
639
640
641 ite = find_ite(its, device_id, event_id);
642 if (ite && ite->collection) {
643 /*
644 * Though the spec talks about removing the pending state, we
645 * don't bother here since we clear the ITTE anyway and the
646 * pending state is a property of the ITTE struct.
647 */
648 its_free_ite(kvm, ite);
649 return 0;
650 }
651
652 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
653 }
654
655 /*
656 * The MOVI command moves an ITTE to a different collection.
657 * Must be called with the its_lock mutex held.
658 */
659 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
660 u64 *its_cmd)
661 {
662 u32 device_id = its_cmd_get_deviceid(its_cmd);
663 u32 event_id = its_cmd_get_id(its_cmd);
664 u32 coll_id = its_cmd_get_collection(its_cmd);
665 struct kvm_vcpu *vcpu;
666 struct its_ite *ite;
667 struct its_collection *collection;
668
669 ite = find_ite(its, device_id, event_id);
670 if (!ite)
671 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
672
673 if (!its_is_collection_mapped(ite->collection))
674 return E_ITS_MOVI_UNMAPPED_COLLECTION;
675
676 collection = find_collection(its, coll_id);
677 if (!its_is_collection_mapped(collection))
678 return E_ITS_MOVI_UNMAPPED_COLLECTION;
679
680 ite->collection = collection;
681 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
682
683 spin_lock(&ite->irq->irq_lock);
684 ite->irq->target_vcpu = vcpu;
685 spin_unlock(&ite->irq->irq_lock);
686
687 return 0;
688 }
689
690 /*
691 * Check whether an ID can be stored into the corresponding guest table.
692 * For a direct table this is pretty easy, but gets a bit nasty for
693 * indirect tables. We check whether the resulting guest physical address
694 * is actually valid (covered by a memslot and guest accessible).
695 * For this we have to read the respective first level entry.
696 */
697 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
698 gpa_t *eaddr)
699 {
700 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
701 u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
702 int esz = GITS_BASER_ENTRY_SIZE(baser);
703 int index;
704 gfn_t gfn;
705
706 switch (type) {
707 case GITS_BASER_TYPE_DEVICE:
708 if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
709 return false;
710 break;
711 case GITS_BASER_TYPE_COLLECTION:
712 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
713 if (id >= BIT_ULL(16))
714 return false;
715 break;
716 default:
717 return false;
718 }
719
720 if (!(baser & GITS_BASER_INDIRECT)) {
721 phys_addr_t addr;
722
723 if (id >= (l1_tbl_size / esz))
724 return false;
725
726 addr = BASER_ADDRESS(baser) + id * esz;
727 gfn = addr >> PAGE_SHIFT;
728
729 if (eaddr)
730 *eaddr = addr;
731 return kvm_is_visible_gfn(its->dev->kvm, gfn);
732 }
733
734 /* calculate and check the index into the 1st level */
735 index = id / (SZ_64K / esz);
736 if (index >= (l1_tbl_size / sizeof(u64)))
737 return false;
738
739 /* Each 1st level entry is represented by a 64-bit value. */
740 if (kvm_read_guest(its->dev->kvm,
741 BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
742 &indirect_ptr, sizeof(indirect_ptr)))
743 return false;
744
745 indirect_ptr = le64_to_cpu(indirect_ptr);
746
747 /* check the valid bit of the first level entry */
748 if (!(indirect_ptr & BIT_ULL(63)))
749 return false;
750
751 /*
752 * Mask the guest physical address and calculate the frame number.
753 * Any address beyond our supported 48 bits of PA will be caught
754 * by the actual check in the final step.
755 */
756 indirect_ptr &= GENMASK_ULL(51, 16);
757
758 /* Find the address of the actual entry */
759 index = id % (SZ_64K / esz);
760 indirect_ptr += index * esz;
761 gfn = indirect_ptr >> PAGE_SHIFT;
762
763 if (eaddr)
764 *eaddr = indirect_ptr;
765 return kvm_is_visible_gfn(its->dev->kvm, gfn);
766 }
767
768 static int vgic_its_alloc_collection(struct vgic_its *its,
769 struct its_collection **colp,
770 u32 coll_id)
771 {
772 struct its_collection *collection;
773
774 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
775 return E_ITS_MAPC_COLLECTION_OOR;
776
777 collection = kzalloc(sizeof(*collection), GFP_KERNEL);
778
779 collection->collection_id = coll_id;
780 collection->target_addr = COLLECTION_NOT_MAPPED;
781
782 list_add_tail(&collection->coll_list, &its->collection_list);
783 *colp = collection;
784
785 return 0;
786 }
787
788 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
789 {
790 struct its_collection *collection;
791 struct its_device *device;
792 struct its_ite *ite;
793
794 /*
795 * Clearing the mapping for that collection ID removes the
796 * entry from the list. If there wasn't any before, we can
797 * go home early.
798 */
799 collection = find_collection(its, coll_id);
800 if (!collection)
801 return;
802
803 for_each_lpi_its(device, ite, its)
804 if (ite->collection &&
805 ite->collection->collection_id == coll_id)
806 ite->collection = NULL;
807
808 list_del(&collection->coll_list);
809 kfree(collection);
810 }
811
812 /* Must be called with its_lock mutex held */
813 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
814 struct its_collection *collection,
815 u32 event_id)
816 {
817 struct its_ite *ite;
818
819 ite = kzalloc(sizeof(*ite), GFP_KERNEL);
820 if (!ite)
821 return ERR_PTR(-ENOMEM);
822
823 ite->event_id = event_id;
824 ite->collection = collection;
825
826 list_add_tail(&ite->ite_list, &device->itt_head);
827 return ite;
828 }
829
830 /*
831 * The MAPTI and MAPI commands map LPIs to ITTEs.
832 * Must be called with its_lock mutex held.
833 */
834 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
835 u64 *its_cmd)
836 {
837 u32 device_id = its_cmd_get_deviceid(its_cmd);
838 u32 event_id = its_cmd_get_id(its_cmd);
839 u32 coll_id = its_cmd_get_collection(its_cmd);
840 struct its_ite *ite;
841 struct kvm_vcpu *vcpu = NULL;
842 struct its_device *device;
843 struct its_collection *collection, *new_coll = NULL;
844 struct vgic_irq *irq;
845 int lpi_nr;
846
847 device = find_its_device(its, device_id);
848 if (!device)
849 return E_ITS_MAPTI_UNMAPPED_DEVICE;
850
851 if (event_id >= BIT_ULL(device->num_eventid_bits))
852 return E_ITS_MAPTI_ID_OOR;
853
854 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
855 lpi_nr = its_cmd_get_physical_id(its_cmd);
856 else
857 lpi_nr = event_id;
858 if (lpi_nr < GIC_LPI_OFFSET ||
859 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
860 return E_ITS_MAPTI_PHYSICALID_OOR;
861
862 /* If there is an existing mapping, behavior is UNPREDICTABLE. */
863 if (find_ite(its, device_id, event_id))
864 return 0;
865
866 collection = find_collection(its, coll_id);
867 if (!collection) {
868 int ret = vgic_its_alloc_collection(its, &collection, coll_id);
869 if (ret)
870 return ret;
871 new_coll = collection;
872 }
873
874 ite = vgic_its_alloc_ite(device, collection, event_id);
875 if (IS_ERR(ite)) {
876 if (new_coll)
877 vgic_its_free_collection(its, coll_id);
878 return PTR_ERR(ite);
879 }
880
881 if (its_is_collection_mapped(collection))
882 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
883
884 irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
885 if (IS_ERR(irq)) {
886 if (new_coll)
887 vgic_its_free_collection(its, coll_id);
888 its_free_ite(kvm, ite);
889 return PTR_ERR(irq);
890 }
891 ite->irq = irq;
892
893 return 0;
894 }
895
896 /* Requires the its_lock to be held. */
897 static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
898 {
899 struct its_ite *ite, *temp;
900
901 /*
902 * The spec says that unmapping a device with still valid
903 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
904 * since we cannot leave the memory unreferenced.
905 */
906 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
907 its_free_ite(kvm, ite);
908
909 list_del(&device->dev_list);
910 kfree(device);
911 }
912
913 /* Must be called with its_lock mutex held */
914 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
915 u32 device_id, gpa_t itt_addr,
916 u8 num_eventid_bits)
917 {
918 struct its_device *device;
919
920 device = kzalloc(sizeof(*device), GFP_KERNEL);
921 if (!device)
922 return ERR_PTR(-ENOMEM);
923
924 device->device_id = device_id;
925 device->itt_addr = itt_addr;
926 device->num_eventid_bits = num_eventid_bits;
927 INIT_LIST_HEAD(&device->itt_head);
928
929 list_add_tail(&device->dev_list, &its->device_list);
930 return device;
931 }
932
933 /*
934 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
935 * Must be called with the its_lock mutex held.
936 */
937 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
938 u64 *its_cmd)
939 {
940 u32 device_id = its_cmd_get_deviceid(its_cmd);
941 bool valid = its_cmd_get_validbit(its_cmd);
942 u8 num_eventid_bits = its_cmd_get_size(its_cmd);
943 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
944 struct its_device *device;
945
946 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
947 return E_ITS_MAPD_DEVICE_OOR;
948
949 if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
950 return E_ITS_MAPD_ITTSIZE_OOR;
951
952 device = find_its_device(its, device_id);
953
954 /*
955 * The spec says that calling MAPD on an already mapped device
956 * invalidates all cached data for this device. We implement this
957 * by removing the mapping and re-establishing it.
958 */
959 if (device)
960 vgic_its_unmap_device(kvm, device);
961
962 /*
963 * The spec does not say whether unmapping a not-mapped device
964 * is an error, so we are done in any case.
965 */
966 if (!valid)
967 return 0;
968
969 device = vgic_its_alloc_device(its, device_id, itt_addr,
970 num_eventid_bits);
971 if (IS_ERR(device))
972 return PTR_ERR(device);
973
974 return 0;
975 }
976
977 /*
978 * The MAPC command maps collection IDs to redistributors.
979 * Must be called with the its_lock mutex held.
980 */
981 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
982 u64 *its_cmd)
983 {
984 u16 coll_id;
985 u32 target_addr;
986 struct its_collection *collection;
987 bool valid;
988
989 valid = its_cmd_get_validbit(its_cmd);
990 coll_id = its_cmd_get_collection(its_cmd);
991 target_addr = its_cmd_get_target_addr(its_cmd);
992
993 if (target_addr >= atomic_read(&kvm->online_vcpus))
994 return E_ITS_MAPC_PROCNUM_OOR;
995
996 if (!valid) {
997 vgic_its_free_collection(its, coll_id);
998 } else {
999 collection = find_collection(its, coll_id);
1000
1001 if (!collection) {
1002 int ret;
1003
1004 ret = vgic_its_alloc_collection(its, &collection,
1005 coll_id);
1006 if (ret)
1007 return ret;
1008 collection->target_addr = target_addr;
1009 } else {
1010 collection->target_addr = target_addr;
1011 update_affinity_collection(kvm, its, collection);
1012 }
1013 }
1014
1015 return 0;
1016 }
1017
1018 /*
1019 * The CLEAR command removes the pending state for a particular LPI.
1020 * Must be called with the its_lock mutex held.
1021 */
1022 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1023 u64 *its_cmd)
1024 {
1025 u32 device_id = its_cmd_get_deviceid(its_cmd);
1026 u32 event_id = its_cmd_get_id(its_cmd);
1027 struct its_ite *ite;
1028
1029
1030 ite = find_ite(its, device_id, event_id);
1031 if (!ite)
1032 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1033
1034 ite->irq->pending_latch = false;
1035
1036 return 0;
1037 }
1038
1039 /*
1040 * The INV command syncs the configuration bits from the memory table.
1041 * Must be called with the its_lock mutex held.
1042 */
1043 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1044 u64 *its_cmd)
1045 {
1046 u32 device_id = its_cmd_get_deviceid(its_cmd);
1047 u32 event_id = its_cmd_get_id(its_cmd);
1048 struct its_ite *ite;
1049
1050
1051 ite = find_ite(its, device_id, event_id);
1052 if (!ite)
1053 return E_ITS_INV_UNMAPPED_INTERRUPT;
1054
1055 return update_lpi_config(kvm, ite->irq, NULL);
1056 }
1057
1058 /*
1059 * The INVALL command requests flushing of all IRQ data in this collection.
1060 * Find the VCPU mapped to that collection, then iterate over the VM's list
1061 * of mapped LPIs and update the configuration for each IRQ which targets
1062 * the specified vcpu. The configuration will be read from the in-memory
1063 * configuration table.
1064 * Must be called with the its_lock mutex held.
1065 */
1066 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1067 u64 *its_cmd)
1068 {
1069 u32 coll_id = its_cmd_get_collection(its_cmd);
1070 struct its_collection *collection;
1071 struct kvm_vcpu *vcpu;
1072 struct vgic_irq *irq;
1073 u32 *intids;
1074 int irq_count, i;
1075
1076 collection = find_collection(its, coll_id);
1077 if (!its_is_collection_mapped(collection))
1078 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1079
1080 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1081
1082 irq_count = vgic_copy_lpi_list(vcpu, &intids);
1083 if (irq_count < 0)
1084 return irq_count;
1085
1086 for (i = 0; i < irq_count; i++) {
1087 irq = vgic_get_irq(kvm, NULL, intids[i]);
1088 if (!irq)
1089 continue;
1090 update_lpi_config(kvm, irq, vcpu);
1091 vgic_put_irq(kvm, irq);
1092 }
1093
1094 kfree(intids);
1095
1096 return 0;
1097 }
1098
1099 /*
1100 * The MOVALL command moves the pending state of all IRQs targeting one
1101 * redistributor to another. We don't hold the pending state in the VCPUs,
1102 * but in the IRQs instead, so there is really not much to do for us here.
1103 * However the spec says that no IRQ must target the old redistributor
1104 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1105 * This command affects all LPIs in the system that target that redistributor.
1106 */
1107 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1108 u64 *its_cmd)
1109 {
1110 struct vgic_dist *dist = &kvm->arch.vgic;
1111 u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1112 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1113 struct kvm_vcpu *vcpu1, *vcpu2;
1114 struct vgic_irq *irq;
1115
1116 if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1117 target2_addr >= atomic_read(&kvm->online_vcpus))
1118 return E_ITS_MOVALL_PROCNUM_OOR;
1119
1120 if (target1_addr == target2_addr)
1121 return 0;
1122
1123 vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1124 vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1125
1126 spin_lock(&dist->lpi_list_lock);
1127
1128 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
1129 spin_lock(&irq->irq_lock);
1130
1131 if (irq->target_vcpu == vcpu1)
1132 irq->target_vcpu = vcpu2;
1133
1134 spin_unlock(&irq->irq_lock);
1135 }
1136
1137 spin_unlock(&dist->lpi_list_lock);
1138
1139 return 0;
1140 }
1141
1142 /*
1143 * The INT command injects the LPI associated with that DevID/EvID pair.
1144 * Must be called with the its_lock mutex held.
1145 */
1146 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1147 u64 *its_cmd)
1148 {
1149 u32 msi_data = its_cmd_get_id(its_cmd);
1150 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1151
1152 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1153 }
1154
1155 /*
1156 * This function is called with the its_cmd lock held, but the ITS data
1157 * structure lock dropped.
1158 */
1159 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1160 u64 *its_cmd)
1161 {
1162 int ret = -ENODEV;
1163
1164 mutex_lock(&its->its_lock);
1165 switch (its_cmd_get_command(its_cmd)) {
1166 case GITS_CMD_MAPD:
1167 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1168 break;
1169 case GITS_CMD_MAPC:
1170 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1171 break;
1172 case GITS_CMD_MAPI:
1173 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1174 break;
1175 case GITS_CMD_MAPTI:
1176 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1177 break;
1178 case GITS_CMD_MOVI:
1179 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1180 break;
1181 case GITS_CMD_DISCARD:
1182 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1183 break;
1184 case GITS_CMD_CLEAR:
1185 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1186 break;
1187 case GITS_CMD_MOVALL:
1188 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1189 break;
1190 case GITS_CMD_INT:
1191 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1192 break;
1193 case GITS_CMD_INV:
1194 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1195 break;
1196 case GITS_CMD_INVALL:
1197 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1198 break;
1199 case GITS_CMD_SYNC:
1200 /* we ignore this command: we are in sync all of the time */
1201 ret = 0;
1202 break;
1203 }
1204 mutex_unlock(&its->its_lock);
1205
1206 return ret;
1207 }
1208
1209 static u64 vgic_sanitise_its_baser(u64 reg)
1210 {
1211 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1212 GITS_BASER_SHAREABILITY_SHIFT,
1213 vgic_sanitise_shareability);
1214 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1215 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1216 vgic_sanitise_inner_cacheability);
1217 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1218 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1219 vgic_sanitise_outer_cacheability);
1220
1221 /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1222 reg &= ~GENMASK_ULL(15, 12);
1223
1224 /* We support only one (ITS) page size: 64K */
1225 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1226
1227 return reg;
1228 }
1229
1230 static u64 vgic_sanitise_its_cbaser(u64 reg)
1231 {
1232 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1233 GITS_CBASER_SHAREABILITY_SHIFT,
1234 vgic_sanitise_shareability);
1235 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1236 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1237 vgic_sanitise_inner_cacheability);
1238 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1239 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1240 vgic_sanitise_outer_cacheability);
1241
1242 /*
1243 * Sanitise the physical address to be 64k aligned.
1244 * Also limit the physical addresses to 48 bits.
1245 */
1246 reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1247
1248 return reg;
1249 }
1250
1251 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1252 struct vgic_its *its,
1253 gpa_t addr, unsigned int len)
1254 {
1255 return extract_bytes(its->cbaser, addr & 7, len);
1256 }
1257
1258 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1259 gpa_t addr, unsigned int len,
1260 unsigned long val)
1261 {
1262 /* When GITS_CTLR.Enable is 1, this register is RO. */
1263 if (its->enabled)
1264 return;
1265
1266 mutex_lock(&its->cmd_lock);
1267 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1268 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1269 its->creadr = 0;
1270 /*
1271 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1272 * it to CREADR to make sure we start with an empty command buffer.
1273 */
1274 its->cwriter = its->creadr;
1275 mutex_unlock(&its->cmd_lock);
1276 }
1277
1278 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1279 #define ITS_CMD_SIZE 32
1280 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1281
1282 /* Must be called with the cmd_lock held. */
1283 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1284 {
1285 gpa_t cbaser;
1286 u64 cmd_buf[4];
1287
1288 /* Commands are only processed when the ITS is enabled. */
1289 if (!its->enabled)
1290 return;
1291
1292 cbaser = CBASER_ADDRESS(its->cbaser);
1293
1294 while (its->cwriter != its->creadr) {
1295 int ret = kvm_read_guest(kvm, cbaser + its->creadr,
1296 cmd_buf, ITS_CMD_SIZE);
1297 /*
1298 * If kvm_read_guest() fails, this could be due to the guest
1299 * programming a bogus value in CBASER or something else going
1300 * wrong from which we cannot easily recover.
1301 * According to section 6.3.2 in the GICv3 spec we can just
1302 * ignore that command then.
1303 */
1304 if (!ret)
1305 vgic_its_handle_command(kvm, its, cmd_buf);
1306
1307 its->creadr += ITS_CMD_SIZE;
1308 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1309 its->creadr = 0;
1310 }
1311 }
1312
1313 /*
1314 * By writing to CWRITER the guest announces new commands to be processed.
1315 * To avoid any races in the first place, we take the its_cmd lock, which
1316 * protects our ring buffer variables, so that there is only one user
1317 * per ITS handling commands at a given time.
1318 */
1319 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1320 gpa_t addr, unsigned int len,
1321 unsigned long val)
1322 {
1323 u64 reg;
1324
1325 if (!its)
1326 return;
1327
1328 mutex_lock(&its->cmd_lock);
1329
1330 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1331 reg = ITS_CMD_OFFSET(reg);
1332 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1333 mutex_unlock(&its->cmd_lock);
1334 return;
1335 }
1336 its->cwriter = reg;
1337
1338 vgic_its_process_commands(kvm, its);
1339
1340 mutex_unlock(&its->cmd_lock);
1341 }
1342
1343 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1344 struct vgic_its *its,
1345 gpa_t addr, unsigned int len)
1346 {
1347 return extract_bytes(its->cwriter, addr & 0x7, len);
1348 }
1349
1350 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1351 struct vgic_its *its,
1352 gpa_t addr, unsigned int len)
1353 {
1354 return extract_bytes(its->creadr, addr & 0x7, len);
1355 }
1356
1357 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1358 struct vgic_its *its,
1359 gpa_t addr, unsigned int len,
1360 unsigned long val)
1361 {
1362 u32 cmd_offset;
1363 int ret = 0;
1364
1365 mutex_lock(&its->cmd_lock);
1366
1367 if (its->enabled) {
1368 ret = -EBUSY;
1369 goto out;
1370 }
1371
1372 cmd_offset = ITS_CMD_OFFSET(val);
1373 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1374 ret = -EINVAL;
1375 goto out;
1376 }
1377
1378 its->creadr = cmd_offset;
1379 out:
1380 mutex_unlock(&its->cmd_lock);
1381 return ret;
1382 }
1383
1384 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1385 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1386 struct vgic_its *its,
1387 gpa_t addr, unsigned int len)
1388 {
1389 u64 reg;
1390
1391 switch (BASER_INDEX(addr)) {
1392 case 0:
1393 reg = its->baser_device_table;
1394 break;
1395 case 1:
1396 reg = its->baser_coll_table;
1397 break;
1398 default:
1399 reg = 0;
1400 break;
1401 }
1402
1403 return extract_bytes(reg, addr & 7, len);
1404 }
1405
1406 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1407 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1408 struct vgic_its *its,
1409 gpa_t addr, unsigned int len,
1410 unsigned long val)
1411 {
1412 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1413 u64 entry_size, device_type;
1414 u64 reg, *regptr, clearbits = 0;
1415
1416 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1417 if (its->enabled)
1418 return;
1419
1420 switch (BASER_INDEX(addr)) {
1421 case 0:
1422 regptr = &its->baser_device_table;
1423 entry_size = abi->dte_esz;
1424 device_type = GITS_BASER_TYPE_DEVICE;
1425 break;
1426 case 1:
1427 regptr = &its->baser_coll_table;
1428 entry_size = abi->cte_esz;
1429 device_type = GITS_BASER_TYPE_COLLECTION;
1430 clearbits = GITS_BASER_INDIRECT;
1431 break;
1432 default:
1433 return;
1434 }
1435
1436 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1437 reg &= ~GITS_BASER_RO_MASK;
1438 reg &= ~clearbits;
1439
1440 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1441 reg |= device_type << GITS_BASER_TYPE_SHIFT;
1442 reg = vgic_sanitise_its_baser(reg);
1443
1444 *regptr = reg;
1445 }
1446
1447 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1448 struct vgic_its *its,
1449 gpa_t addr, unsigned int len)
1450 {
1451 u32 reg = 0;
1452
1453 mutex_lock(&its->cmd_lock);
1454 if (its->creadr == its->cwriter)
1455 reg |= GITS_CTLR_QUIESCENT;
1456 if (its->enabled)
1457 reg |= GITS_CTLR_ENABLE;
1458 mutex_unlock(&its->cmd_lock);
1459
1460 return reg;
1461 }
1462
1463 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1464 gpa_t addr, unsigned int len,
1465 unsigned long val)
1466 {
1467 mutex_lock(&its->cmd_lock);
1468
1469 its->enabled = !!(val & GITS_CTLR_ENABLE);
1470
1471 /*
1472 * Try to process any pending commands. This function bails out early
1473 * if the ITS is disabled or no commands have been queued.
1474 */
1475 vgic_its_process_commands(kvm, its);
1476
1477 mutex_unlock(&its->cmd_lock);
1478 }
1479
1480 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1481 { \
1482 .reg_offset = off, \
1483 .len = length, \
1484 .access_flags = acc, \
1485 .its_read = rd, \
1486 .its_write = wr, \
1487 }
1488
1489 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1490 { \
1491 .reg_offset = off, \
1492 .len = length, \
1493 .access_flags = acc, \
1494 .its_read = rd, \
1495 .its_write = wr, \
1496 .uaccess_its_write = uwr, \
1497 }
1498
1499 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1500 gpa_t addr, unsigned int len, unsigned long val)
1501 {
1502 /* Ignore */
1503 }
1504
1505 static struct vgic_register_region its_registers[] = {
1506 REGISTER_ITS_DESC(GITS_CTLR,
1507 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1508 VGIC_ACCESS_32bit),
1509 REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1510 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1511 vgic_mmio_uaccess_write_its_iidr, 4,
1512 VGIC_ACCESS_32bit),
1513 REGISTER_ITS_DESC(GITS_TYPER,
1514 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1515 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1516 REGISTER_ITS_DESC(GITS_CBASER,
1517 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1518 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1519 REGISTER_ITS_DESC(GITS_CWRITER,
1520 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1521 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1522 REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1523 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1524 vgic_mmio_uaccess_write_its_creadr, 8,
1525 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1526 REGISTER_ITS_DESC(GITS_BASER,
1527 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1528 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1529 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1530 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1531 VGIC_ACCESS_32bit),
1532 };
1533
1534 /* This is called on setting the LPI enable bit in the redistributor. */
1535 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1536 {
1537 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1538 its_sync_lpi_pending_table(vcpu);
1539 }
1540
1541 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1542 u64 addr)
1543 {
1544 struct vgic_io_device *iodev = &its->iodev;
1545 int ret;
1546
1547 mutex_lock(&kvm->slots_lock);
1548 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1549 ret = -EBUSY;
1550 goto out;
1551 }
1552
1553 its->vgic_its_base = addr;
1554 iodev->regions = its_registers;
1555 iodev->nr_regions = ARRAY_SIZE(its_registers);
1556 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1557
1558 iodev->base_addr = its->vgic_its_base;
1559 iodev->iodev_type = IODEV_ITS;
1560 iodev->its = its;
1561 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1562 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1563 out:
1564 mutex_unlock(&kvm->slots_lock);
1565
1566 return ret;
1567 }
1568
1569 #define INITIAL_BASER_VALUE \
1570 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1571 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1572 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1573 GITS_BASER_PAGE_SIZE_64K)
1574
1575 #define INITIAL_PROPBASER_VALUE \
1576 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1577 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1578 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1579
1580 static int vgic_its_create(struct kvm_device *dev, u32 type)
1581 {
1582 struct vgic_its *its;
1583
1584 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1585 return -ENODEV;
1586
1587 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1588 if (!its)
1589 return -ENOMEM;
1590
1591 mutex_init(&its->its_lock);
1592 mutex_init(&its->cmd_lock);
1593
1594 its->vgic_its_base = VGIC_ADDR_UNDEF;
1595
1596 INIT_LIST_HEAD(&its->device_list);
1597 INIT_LIST_HEAD(&its->collection_list);
1598
1599 dev->kvm->arch.vgic.msis_require_devid = true;
1600 dev->kvm->arch.vgic.has_its = true;
1601 its->enabled = false;
1602 its->dev = dev;
1603
1604 its->baser_device_table = INITIAL_BASER_VALUE |
1605 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1606 its->baser_coll_table = INITIAL_BASER_VALUE |
1607 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1608 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1609
1610 dev->private = its;
1611
1612 return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1613 }
1614
1615 static void vgic_its_free_device(struct kvm *kvm, struct its_device *dev)
1616 {
1617 struct its_ite *ite, *tmp;
1618
1619 list_for_each_entry_safe(ite, tmp, &dev->itt_head, ite_list)
1620 its_free_ite(kvm, ite);
1621 list_del(&dev->dev_list);
1622 kfree(dev);
1623 }
1624
1625 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1626 {
1627 struct kvm *kvm = kvm_dev->kvm;
1628 struct vgic_its *its = kvm_dev->private;
1629 struct list_head *cur, *temp;
1630
1631 /*
1632 * We may end up here without the lists ever having been initialized.
1633 * Check this and bail out early to avoid dereferencing a NULL pointer.
1634 */
1635 if (!its->device_list.next)
1636 return;
1637
1638 mutex_lock(&its->its_lock);
1639 list_for_each_safe(cur, temp, &its->device_list) {
1640 struct its_device *dev;
1641
1642 dev = list_entry(cur, struct its_device, dev_list);
1643 vgic_its_free_device(kvm, dev);
1644 }
1645
1646 list_for_each_safe(cur, temp, &its->collection_list) {
1647 struct its_collection *coll;
1648
1649 coll = list_entry(cur, struct its_collection, coll_list);
1650 list_del(cur);
1651 kfree(coll);
1652 }
1653 mutex_unlock(&its->its_lock);
1654
1655 kfree(its);
1656 }
1657
1658 int vgic_its_has_attr_regs(struct kvm_device *dev,
1659 struct kvm_device_attr *attr)
1660 {
1661 const struct vgic_register_region *region;
1662 gpa_t offset = attr->attr;
1663 int align;
1664
1665 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1666
1667 if (offset & align)
1668 return -EINVAL;
1669
1670 region = vgic_find_mmio_region(its_registers,
1671 ARRAY_SIZE(its_registers),
1672 offset);
1673 if (!region)
1674 return -ENXIO;
1675
1676 return 0;
1677 }
1678
1679 int vgic_its_attr_regs_access(struct kvm_device *dev,
1680 struct kvm_device_attr *attr,
1681 u64 *reg, bool is_write)
1682 {
1683 const struct vgic_register_region *region;
1684 struct vgic_its *its;
1685 gpa_t addr, offset;
1686 unsigned int len;
1687 int align, ret = 0;
1688
1689 its = dev->private;
1690 offset = attr->attr;
1691
1692 /*
1693 * Although the spec supports upper/lower 32-bit accesses to
1694 * 64-bit ITS registers, the userspace ABI requires 64-bit
1695 * accesses to all 64-bit wide registers. We therefore only
1696 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1697 * registers
1698 */
1699 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1700 align = 0x3;
1701 else
1702 align = 0x7;
1703
1704 if (offset & align)
1705 return -EINVAL;
1706
1707 mutex_lock(&dev->kvm->lock);
1708
1709 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1710 ret = -ENXIO;
1711 goto out;
1712 }
1713
1714 region = vgic_find_mmio_region(its_registers,
1715 ARRAY_SIZE(its_registers),
1716 offset);
1717 if (!region) {
1718 ret = -ENXIO;
1719 goto out;
1720 }
1721
1722 if (!lock_all_vcpus(dev->kvm)) {
1723 ret = -EBUSY;
1724 goto out;
1725 }
1726
1727 addr = its->vgic_its_base + offset;
1728
1729 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1730
1731 if (is_write) {
1732 if (region->uaccess_its_write)
1733 ret = region->uaccess_its_write(dev->kvm, its, addr,
1734 len, *reg);
1735 else
1736 region->its_write(dev->kvm, its, addr, len, *reg);
1737 } else {
1738 *reg = region->its_read(dev->kvm, its, addr, len);
1739 }
1740 unlock_all_vcpus(dev->kvm);
1741 out:
1742 mutex_unlock(&dev->kvm->lock);
1743 return ret;
1744 }
1745
1746 static u32 compute_next_devid_offset(struct list_head *h,
1747 struct its_device *dev)
1748 {
1749 struct its_device *next;
1750 u32 next_offset;
1751
1752 if (list_is_last(&dev->dev_list, h))
1753 return 0;
1754 next = list_next_entry(dev, dev_list);
1755 next_offset = next->device_id - dev->device_id;
1756
1757 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
1758 }
1759
1760 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
1761 {
1762 struct its_ite *next;
1763 u32 next_offset;
1764
1765 if (list_is_last(&ite->ite_list, h))
1766 return 0;
1767 next = list_next_entry(ite, ite_list);
1768 next_offset = next->event_id - ite->event_id;
1769
1770 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
1771 }
1772
1773 /**
1774 * entry_fn_t - Callback called on a table entry restore path
1775 * @its: its handle
1776 * @id: id of the entry
1777 * @entry: pointer to the entry
1778 * @opaque: pointer to an opaque data
1779 *
1780 * Return: < 0 on error, 0 if last element was identified, id offset to next
1781 * element otherwise
1782 */
1783 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
1784 void *opaque);
1785
1786 /**
1787 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
1788 * to each entry
1789 *
1790 * @its: its handle
1791 * @base: base gpa of the table
1792 * @size: size of the table in bytes
1793 * @esz: entry size in bytes
1794 * @start_id: the ID of the first entry in the table
1795 * (non zero for 2d level tables)
1796 * @fn: function to apply on each entry
1797 *
1798 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
1799 * (the last element may not be found on second level tables)
1800 */
1801 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, int esz,
1802 int start_id, entry_fn_t fn, void *opaque)
1803 {
1804 void *entry = kzalloc(esz, GFP_KERNEL);
1805 struct kvm *kvm = its->dev->kvm;
1806 unsigned long len = size;
1807 int id = start_id;
1808 gpa_t gpa = base;
1809 int ret;
1810
1811 while (len > 0) {
1812 int next_offset;
1813 size_t byte_offset;
1814
1815 ret = kvm_read_guest(kvm, gpa, entry, esz);
1816 if (ret)
1817 goto out;
1818
1819 next_offset = fn(its, id, entry, opaque);
1820 if (next_offset <= 0) {
1821 ret = next_offset;
1822 goto out;
1823 }
1824
1825 byte_offset = next_offset * esz;
1826 id += next_offset;
1827 gpa += byte_offset;
1828 len -= byte_offset;
1829 }
1830 ret = 1;
1831
1832 out:
1833 kfree(entry);
1834 return ret;
1835 }
1836
1837 /**
1838 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
1839 */
1840 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
1841 struct its_ite *ite, gpa_t gpa, int ite_esz)
1842 {
1843 struct kvm *kvm = its->dev->kvm;
1844 u32 next_offset;
1845 u64 val;
1846
1847 next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
1848 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
1849 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
1850 ite->collection->collection_id;
1851 val = cpu_to_le64(val);
1852 return kvm_write_guest(kvm, gpa, &val, ite_esz);
1853 }
1854
1855 /**
1856 * vgic_its_restore_ite - restore an interrupt translation entry
1857 * @event_id: id used for indexing
1858 * @ptr: pointer to the ITE entry
1859 * @opaque: pointer to the its_device
1860 */
1861 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
1862 void *ptr, void *opaque)
1863 {
1864 struct its_device *dev = (struct its_device *)opaque;
1865 struct its_collection *collection;
1866 struct kvm *kvm = its->dev->kvm;
1867 struct kvm_vcpu *vcpu = NULL;
1868 u64 val;
1869 u64 *p = (u64 *)ptr;
1870 struct vgic_irq *irq;
1871 u32 coll_id, lpi_id;
1872 struct its_ite *ite;
1873 u32 offset;
1874
1875 val = *p;
1876
1877 val = le64_to_cpu(val);
1878
1879 coll_id = val & KVM_ITS_ITE_ICID_MASK;
1880 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
1881
1882 if (!lpi_id)
1883 return 1; /* invalid entry, no choice but to scan next entry */
1884
1885 if (lpi_id < VGIC_MIN_LPI)
1886 return -EINVAL;
1887
1888 offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
1889 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
1890 return -EINVAL;
1891
1892 collection = find_collection(its, coll_id);
1893 if (!collection)
1894 return -EINVAL;
1895
1896 ite = vgic_its_alloc_ite(dev, collection, event_id);
1897 if (IS_ERR(ite))
1898 return PTR_ERR(ite);
1899
1900 if (its_is_collection_mapped(collection))
1901 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1902
1903 irq = vgic_add_lpi(kvm, lpi_id, vcpu);
1904 if (IS_ERR(irq))
1905 return PTR_ERR(irq);
1906 ite->irq = irq;
1907
1908 return offset;
1909 }
1910
1911 static int vgic_its_ite_cmp(void *priv, struct list_head *a,
1912 struct list_head *b)
1913 {
1914 struct its_ite *itea = container_of(a, struct its_ite, ite_list);
1915 struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
1916
1917 if (itea->event_id < iteb->event_id)
1918 return -1;
1919 else
1920 return 1;
1921 }
1922
1923 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
1924 {
1925 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1926 gpa_t base = device->itt_addr;
1927 struct its_ite *ite;
1928 int ret;
1929 int ite_esz = abi->ite_esz;
1930
1931 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
1932
1933 list_for_each_entry(ite, &device->itt_head, ite_list) {
1934 gpa_t gpa = base + ite->event_id * ite_esz;
1935
1936 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
1937 if (ret)
1938 return ret;
1939 }
1940 return 0;
1941 }
1942
1943 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
1944 {
1945 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1946 gpa_t base = dev->itt_addr;
1947 int ret;
1948 int ite_esz = abi->ite_esz;
1949 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
1950
1951 ret = scan_its_table(its, base, max_size, ite_esz, 0,
1952 vgic_its_restore_ite, dev);
1953
1954 return ret;
1955 }
1956
1957 /**
1958 * vgic_its_save_dte - Save a device table entry at a given GPA
1959 *
1960 * @its: ITS handle
1961 * @dev: ITS device
1962 * @ptr: GPA
1963 */
1964 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
1965 gpa_t ptr, int dte_esz)
1966 {
1967 struct kvm *kvm = its->dev->kvm;
1968 u64 val, itt_addr_field;
1969 u32 next_offset;
1970
1971 itt_addr_field = dev->itt_addr >> 8;
1972 next_offset = compute_next_devid_offset(&its->device_list, dev);
1973 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
1974 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
1975 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
1976 (dev->num_eventid_bits - 1));
1977 val = cpu_to_le64(val);
1978 return kvm_write_guest(kvm, ptr, &val, dte_esz);
1979 }
1980
1981 /**
1982 * vgic_its_restore_dte - restore a device table entry
1983 *
1984 * @its: its handle
1985 * @id: device id the DTE corresponds to
1986 * @ptr: kernel VA where the 8 byte DTE is located
1987 * @opaque: unused
1988 *
1989 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
1990 * next dte otherwise
1991 */
1992 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
1993 void *ptr, void *opaque)
1994 {
1995 struct its_device *dev;
1996 gpa_t itt_addr;
1997 u8 num_eventid_bits;
1998 u64 entry = *(u64 *)ptr;
1999 bool valid;
2000 u32 offset;
2001 int ret;
2002
2003 entry = le64_to_cpu(entry);
2004
2005 valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2006 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2007 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2008 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2009
2010 if (!valid)
2011 return 1;
2012
2013 /* dte entry is valid */
2014 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2015
2016 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2017 if (IS_ERR(dev))
2018 return PTR_ERR(dev);
2019
2020 ret = vgic_its_restore_itt(its, dev);
2021 if (ret) {
2022 vgic_its_free_device(its->dev->kvm, dev);
2023 return ret;
2024 }
2025
2026 return offset;
2027 }
2028
2029 static int vgic_its_device_cmp(void *priv, struct list_head *a,
2030 struct list_head *b)
2031 {
2032 struct its_device *deva = container_of(a, struct its_device, dev_list);
2033 struct its_device *devb = container_of(b, struct its_device, dev_list);
2034
2035 if (deva->device_id < devb->device_id)
2036 return -1;
2037 else
2038 return 1;
2039 }
2040
2041 /**
2042 * vgic_its_save_device_tables - Save the device table and all ITT
2043 * into guest RAM
2044 *
2045 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2046 * returns the GPA of the device entry
2047 */
2048 static int vgic_its_save_device_tables(struct vgic_its *its)
2049 {
2050 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2051 struct its_device *dev;
2052 int dte_esz = abi->dte_esz;
2053 u64 baser;
2054
2055 baser = its->baser_device_table;
2056
2057 list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2058
2059 list_for_each_entry(dev, &its->device_list, dev_list) {
2060 int ret;
2061 gpa_t eaddr;
2062
2063 if (!vgic_its_check_id(its, baser,
2064 dev->device_id, &eaddr))
2065 return -EINVAL;
2066
2067 ret = vgic_its_save_itt(its, dev);
2068 if (ret)
2069 return ret;
2070
2071 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2072 if (ret)
2073 return ret;
2074 }
2075 return 0;
2076 }
2077
2078 /**
2079 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2080 *
2081 * @its: its handle
2082 * @id: index of the entry in the L1 table
2083 * @addr: kernel VA
2084 * @opaque: unused
2085 *
2086 * L1 table entries are scanned by steps of 1 entry
2087 * Return < 0 if error, 0 if last dte was found when scanning the L2
2088 * table, +1 otherwise (meaning next L1 entry must be scanned)
2089 */
2090 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2091 void *opaque)
2092 {
2093 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2094 int l2_start_id = id * (SZ_64K / abi->dte_esz);
2095 u64 entry = *(u64 *)addr;
2096 int dte_esz = abi->dte_esz;
2097 gpa_t gpa;
2098 int ret;
2099
2100 entry = le64_to_cpu(entry);
2101
2102 if (!(entry & KVM_ITS_L1E_VALID_MASK))
2103 return 1;
2104
2105 gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2106
2107 ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2108 l2_start_id, vgic_its_restore_dte, NULL);
2109
2110 if (ret <= 0)
2111 return ret;
2112
2113 return 1;
2114 }
2115
2116 /**
2117 * vgic_its_restore_device_tables - Restore the device table and all ITT
2118 * from guest RAM to internal data structs
2119 */
2120 static int vgic_its_restore_device_tables(struct vgic_its *its)
2121 {
2122 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2123 u64 baser = its->baser_device_table;
2124 int l1_esz, ret;
2125 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2126 gpa_t l1_gpa;
2127
2128 if (!(baser & GITS_BASER_VALID))
2129 return 0;
2130
2131 l1_gpa = BASER_ADDRESS(baser);
2132
2133 if (baser & GITS_BASER_INDIRECT) {
2134 l1_esz = GITS_LVL1_ENTRY_SIZE;
2135 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2136 handle_l1_dte, NULL);
2137 } else {
2138 l1_esz = abi->dte_esz;
2139 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2140 vgic_its_restore_dte, NULL);
2141 }
2142
2143 if (ret > 0)
2144 ret = -EINVAL;
2145
2146 return ret;
2147 }
2148
2149 static int vgic_its_save_cte(struct vgic_its *its,
2150 struct its_collection *collection,
2151 gpa_t gpa, int esz)
2152 {
2153 u64 val;
2154
2155 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2156 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2157 collection->collection_id);
2158 val = cpu_to_le64(val);
2159 return kvm_write_guest(its->dev->kvm, gpa, &val, esz);
2160 }
2161
2162 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2163 {
2164 struct its_collection *collection;
2165 struct kvm *kvm = its->dev->kvm;
2166 u32 target_addr, coll_id;
2167 u64 val;
2168 int ret;
2169
2170 BUG_ON(esz > sizeof(val));
2171 ret = kvm_read_guest(kvm, gpa, &val, esz);
2172 if (ret)
2173 return ret;
2174 val = le64_to_cpu(val);
2175 if (!(val & KVM_ITS_CTE_VALID_MASK))
2176 return 0;
2177
2178 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2179 coll_id = val & KVM_ITS_CTE_ICID_MASK;
2180
2181 if (target_addr >= atomic_read(&kvm->online_vcpus))
2182 return -EINVAL;
2183
2184 collection = find_collection(its, coll_id);
2185 if (collection)
2186 return -EEXIST;
2187 ret = vgic_its_alloc_collection(its, &collection, coll_id);
2188 if (ret)
2189 return ret;
2190 collection->target_addr = target_addr;
2191 return 1;
2192 }
2193
2194 /**
2195 * vgic_its_save_collection_table - Save the collection table into
2196 * guest RAM
2197 */
2198 static int vgic_its_save_collection_table(struct vgic_its *its)
2199 {
2200 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2201 struct its_collection *collection;
2202 u64 val;
2203 gpa_t gpa;
2204 size_t max_size, filled = 0;
2205 int ret, cte_esz = abi->cte_esz;
2206
2207 gpa = BASER_ADDRESS(its->baser_coll_table);
2208 if (!gpa)
2209 return 0;
2210
2211 max_size = GITS_BASER_NR_PAGES(its->baser_coll_table) * SZ_64K;
2212
2213 list_for_each_entry(collection, &its->collection_list, coll_list) {
2214 ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2215 if (ret)
2216 return ret;
2217 gpa += cte_esz;
2218 filled += cte_esz;
2219 }
2220
2221 if (filled == max_size)
2222 return 0;
2223
2224 /*
2225 * table is not fully filled, add a last dummy element
2226 * with valid bit unset
2227 */
2228 val = 0;
2229 BUG_ON(cte_esz > sizeof(val));
2230 ret = kvm_write_guest(its->dev->kvm, gpa, &val, cte_esz);
2231 return ret;
2232 }
2233
2234 /**
2235 * vgic_its_restore_collection_table - reads the collection table
2236 * in guest memory and restores the ITS internal state. Requires the
2237 * BASER registers to be restored before.
2238 */
2239 static int vgic_its_restore_collection_table(struct vgic_its *its)
2240 {
2241 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2242 int cte_esz = abi->cte_esz;
2243 size_t max_size, read = 0;
2244 gpa_t gpa;
2245 int ret;
2246
2247 if (!(its->baser_coll_table & GITS_BASER_VALID))
2248 return 0;
2249
2250 gpa = BASER_ADDRESS(its->baser_coll_table);
2251
2252 max_size = GITS_BASER_NR_PAGES(its->baser_coll_table) * SZ_64K;
2253
2254 while (read < max_size) {
2255 ret = vgic_its_restore_cte(its, gpa, cte_esz);
2256 if (ret <= 0)
2257 break;
2258 gpa += cte_esz;
2259 read += cte_esz;
2260 }
2261 return ret;
2262 }
2263
2264 /**
2265 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2266 * according to v0 ABI
2267 */
2268 static int vgic_its_save_tables_v0(struct vgic_its *its)
2269 {
2270 struct kvm *kvm = its->dev->kvm;
2271 int ret;
2272
2273 mutex_lock(&kvm->lock);
2274 mutex_lock(&its->its_lock);
2275
2276 if (!lock_all_vcpus(kvm)) {
2277 mutex_unlock(&its->its_lock);
2278 mutex_unlock(&kvm->lock);
2279 return -EBUSY;
2280 }
2281
2282 ret = vgic_its_save_device_tables(its);
2283 if (ret)
2284 goto out;
2285
2286 ret = vgic_its_save_collection_table(its);
2287
2288 out:
2289 unlock_all_vcpus(kvm);
2290 mutex_unlock(&its->its_lock);
2291 mutex_unlock(&kvm->lock);
2292 return ret;
2293 }
2294
2295 /**
2296 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2297 * to internal data structs according to V0 ABI
2298 *
2299 */
2300 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2301 {
2302 struct kvm *kvm = its->dev->kvm;
2303 int ret;
2304
2305 mutex_lock(&kvm->lock);
2306 mutex_lock(&its->its_lock);
2307
2308 if (!lock_all_vcpus(kvm)) {
2309 mutex_unlock(&its->its_lock);
2310 mutex_unlock(&kvm->lock);
2311 return -EBUSY;
2312 }
2313
2314 ret = vgic_its_restore_collection_table(its);
2315 if (ret)
2316 goto out;
2317
2318 ret = vgic_its_restore_device_tables(its);
2319 out:
2320 unlock_all_vcpus(kvm);
2321 mutex_unlock(&its->its_lock);
2322 mutex_unlock(&kvm->lock);
2323
2324 return ret;
2325 }
2326
2327 static int vgic_its_commit_v0(struct vgic_its *its)
2328 {
2329 const struct vgic_its_abi *abi;
2330
2331 abi = vgic_its_get_abi(its);
2332 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2333 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2334
2335 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2336 << GITS_BASER_ENTRY_SIZE_SHIFT);
2337
2338 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2339 << GITS_BASER_ENTRY_SIZE_SHIFT);
2340 return 0;
2341 }
2342
2343 static int vgic_its_has_attr(struct kvm_device *dev,
2344 struct kvm_device_attr *attr)
2345 {
2346 switch (attr->group) {
2347 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2348 switch (attr->attr) {
2349 case KVM_VGIC_ITS_ADDR_TYPE:
2350 return 0;
2351 }
2352 break;
2353 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2354 switch (attr->attr) {
2355 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2356 return 0;
2357 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2358 return 0;
2359 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2360 return 0;
2361 }
2362 break;
2363 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2364 return vgic_its_has_attr_regs(dev, attr);
2365 }
2366 return -ENXIO;
2367 }
2368
2369 static int vgic_its_set_attr(struct kvm_device *dev,
2370 struct kvm_device_attr *attr)
2371 {
2372 struct vgic_its *its = dev->private;
2373 int ret;
2374
2375 switch (attr->group) {
2376 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2377 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2378 unsigned long type = (unsigned long)attr->attr;
2379 u64 addr;
2380
2381 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2382 return -ENODEV;
2383
2384 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2385 return -EFAULT;
2386
2387 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2388 addr, SZ_64K);
2389 if (ret)
2390 return ret;
2391
2392 return vgic_register_its_iodev(dev->kvm, its, addr);
2393 }
2394 case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2395 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2396
2397 switch (attr->attr) {
2398 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2399 /* Nothing to do */
2400 return 0;
2401 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2402 return abi->save_tables(its);
2403 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2404 return abi->restore_tables(its);
2405 }
2406 }
2407 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2408 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2409 u64 reg;
2410
2411 if (get_user(reg, uaddr))
2412 return -EFAULT;
2413
2414 return vgic_its_attr_regs_access(dev, attr, &reg, true);
2415 }
2416 }
2417 return -ENXIO;
2418 }
2419
2420 static int vgic_its_get_attr(struct kvm_device *dev,
2421 struct kvm_device_attr *attr)
2422 {
2423 switch (attr->group) {
2424 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2425 struct vgic_its *its = dev->private;
2426 u64 addr = its->vgic_its_base;
2427 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2428 unsigned long type = (unsigned long)attr->attr;
2429
2430 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2431 return -ENODEV;
2432
2433 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2434 return -EFAULT;
2435 break;
2436 }
2437 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2438 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2439 u64 reg;
2440 int ret;
2441
2442 ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2443 if (ret)
2444 return ret;
2445 return put_user(reg, uaddr);
2446 }
2447 default:
2448 return -ENXIO;
2449 }
2450
2451 return 0;
2452 }
2453
2454 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2455 .name = "kvm-arm-vgic-its",
2456 .create = vgic_its_create,
2457 .destroy = vgic_its_destroy,
2458 .set_attr = vgic_its_set_attr,
2459 .get_attr = vgic_its_get_attr,
2460 .has_attr = vgic_its_has_attr,
2461 };
2462
2463 int kvm_vgic_register_its_device(void)
2464 {
2465 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2466 KVM_DEV_TYPE_ARM_VGIC_ITS);
2467 }