]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/arm/vgic/vgic-mmio-v3.c
Merge tag 'powerpc-4.13-8' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-artful-kernel.git] / virt / kvm / arm / vgic / vgic-mmio-v3.c
1 /*
2 * VGICv3 MMIO handling functions
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14 #include <linux/irqchip/arm-gic-v3.h>
15 #include <linux/kvm.h>
16 #include <linux/kvm_host.h>
17 #include <kvm/iodev.h>
18 #include <kvm/arm_vgic.h>
19
20 #include <asm/kvm_emulate.h>
21 #include <asm/kvm_arm.h>
22 #include <asm/kvm_mmu.h>
23
24 #include "vgic.h"
25 #include "vgic-mmio.h"
26
27 /* extract @num bytes at @offset bytes offset in data */
28 unsigned long extract_bytes(u64 data, unsigned int offset,
29 unsigned int num)
30 {
31 return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
32 }
33
34 /* allows updates of any half of a 64-bit register (or the whole thing) */
35 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
36 unsigned long val)
37 {
38 int lower = (offset & 4) * 8;
39 int upper = lower + 8 * len - 1;
40
41 reg &= ~GENMASK_ULL(upper, lower);
42 val &= GENMASK_ULL(len * 8 - 1, 0);
43
44 return reg | ((u64)val << lower);
45 }
46
47 bool vgic_has_its(struct kvm *kvm)
48 {
49 struct vgic_dist *dist = &kvm->arch.vgic;
50
51 if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
52 return false;
53
54 return dist->has_its;
55 }
56
57 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
58 gpa_t addr, unsigned int len)
59 {
60 u32 value = 0;
61
62 switch (addr & 0x0c) {
63 case GICD_CTLR:
64 if (vcpu->kvm->arch.vgic.enabled)
65 value |= GICD_CTLR_ENABLE_SS_G1;
66 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
67 break;
68 case GICD_TYPER:
69 value = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
70 value = (value >> 5) - 1;
71 if (vgic_has_its(vcpu->kvm)) {
72 value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
73 value |= GICD_TYPER_LPIS;
74 } else {
75 value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
76 }
77 break;
78 case GICD_IIDR:
79 value = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
80 break;
81 default:
82 return 0;
83 }
84
85 return value;
86 }
87
88 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
89 gpa_t addr, unsigned int len,
90 unsigned long val)
91 {
92 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
93 bool was_enabled = dist->enabled;
94
95 switch (addr & 0x0c) {
96 case GICD_CTLR:
97 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
98
99 if (!was_enabled && dist->enabled)
100 vgic_kick_vcpus(vcpu->kvm);
101 break;
102 case GICD_TYPER:
103 case GICD_IIDR:
104 return;
105 }
106 }
107
108 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
109 gpa_t addr, unsigned int len)
110 {
111 int intid = VGIC_ADDR_TO_INTID(addr, 64);
112 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
113 unsigned long ret = 0;
114
115 if (!irq)
116 return 0;
117
118 /* The upper word is RAZ for us. */
119 if (!(addr & 4))
120 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
121
122 vgic_put_irq(vcpu->kvm, irq);
123 return ret;
124 }
125
126 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
127 gpa_t addr, unsigned int len,
128 unsigned long val)
129 {
130 int intid = VGIC_ADDR_TO_INTID(addr, 64);
131 struct vgic_irq *irq;
132
133 /* The upper word is WI for us since we don't implement Aff3. */
134 if (addr & 4)
135 return;
136
137 irq = vgic_get_irq(vcpu->kvm, NULL, intid);
138
139 if (!irq)
140 return;
141
142 spin_lock(&irq->irq_lock);
143
144 /* We only care about and preserve Aff0, Aff1 and Aff2. */
145 irq->mpidr = val & GENMASK(23, 0);
146 irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
147
148 spin_unlock(&irq->irq_lock);
149 vgic_put_irq(vcpu->kvm, irq);
150 }
151
152 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
153 gpa_t addr, unsigned int len)
154 {
155 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
156
157 return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
158 }
159
160
161 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
162 gpa_t addr, unsigned int len,
163 unsigned long val)
164 {
165 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
166 bool was_enabled = vgic_cpu->lpis_enabled;
167
168 if (!vgic_has_its(vcpu->kvm))
169 return;
170
171 vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
172
173 if (!was_enabled && vgic_cpu->lpis_enabled)
174 vgic_enable_lpis(vcpu);
175 }
176
177 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
178 gpa_t addr, unsigned int len)
179 {
180 unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
181 int target_vcpu_id = vcpu->vcpu_id;
182 u64 value;
183
184 value = (u64)(mpidr & GENMASK(23, 0)) << 32;
185 value |= ((target_vcpu_id & 0xffff) << 8);
186 if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
187 value |= GICR_TYPER_LAST;
188 if (vgic_has_its(vcpu->kvm))
189 value |= GICR_TYPER_PLPIS;
190
191 return extract_bytes(value, addr & 7, len);
192 }
193
194 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
195 gpa_t addr, unsigned int len)
196 {
197 return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
198 }
199
200 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
201 gpa_t addr, unsigned int len)
202 {
203 switch (addr & 0xffff) {
204 case GICD_PIDR2:
205 /* report a GICv3 compliant implementation */
206 return 0x3b;
207 }
208
209 return 0;
210 }
211
212 static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
213 gpa_t addr, unsigned int len)
214 {
215 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
216 u32 value = 0;
217 int i;
218
219 /*
220 * pending state of interrupt is latched in pending_latch variable.
221 * Userspace will save and restore pending state and line_level
222 * separately.
223 * Refer to Documentation/virtual/kvm/devices/arm-vgic-v3.txt
224 * for handling of ISPENDR and ICPENDR.
225 */
226 for (i = 0; i < len * 8; i++) {
227 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
228
229 if (irq->pending_latch)
230 value |= (1U << i);
231
232 vgic_put_irq(vcpu->kvm, irq);
233 }
234
235 return value;
236 }
237
238 static void vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
239 gpa_t addr, unsigned int len,
240 unsigned long val)
241 {
242 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
243 int i;
244
245 for (i = 0; i < len * 8; i++) {
246 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
247
248 spin_lock(&irq->irq_lock);
249 if (test_bit(i, &val)) {
250 /*
251 * pending_latch is set irrespective of irq type
252 * (level or edge) to avoid dependency that VM should
253 * restore irq config before pending info.
254 */
255 irq->pending_latch = true;
256 vgic_queue_irq_unlock(vcpu->kvm, irq);
257 } else {
258 irq->pending_latch = false;
259 spin_unlock(&irq->irq_lock);
260 }
261
262 vgic_put_irq(vcpu->kvm, irq);
263 }
264 }
265
266 /* We want to avoid outer shareable. */
267 u64 vgic_sanitise_shareability(u64 field)
268 {
269 switch (field) {
270 case GIC_BASER_OuterShareable:
271 return GIC_BASER_InnerShareable;
272 default:
273 return field;
274 }
275 }
276
277 /* Avoid any inner non-cacheable mapping. */
278 u64 vgic_sanitise_inner_cacheability(u64 field)
279 {
280 switch (field) {
281 case GIC_BASER_CACHE_nCnB:
282 case GIC_BASER_CACHE_nC:
283 return GIC_BASER_CACHE_RaWb;
284 default:
285 return field;
286 }
287 }
288
289 /* Non-cacheable or same-as-inner are OK. */
290 u64 vgic_sanitise_outer_cacheability(u64 field)
291 {
292 switch (field) {
293 case GIC_BASER_CACHE_SameAsInner:
294 case GIC_BASER_CACHE_nC:
295 return field;
296 default:
297 return GIC_BASER_CACHE_nC;
298 }
299 }
300
301 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
302 u64 (*sanitise_fn)(u64))
303 {
304 u64 field = (reg & field_mask) >> field_shift;
305
306 field = sanitise_fn(field) << field_shift;
307 return (reg & ~field_mask) | field;
308 }
309
310 #define PROPBASER_RES0_MASK \
311 (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
312 #define PENDBASER_RES0_MASK \
313 (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
314 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
315
316 static u64 vgic_sanitise_pendbaser(u64 reg)
317 {
318 reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
319 GICR_PENDBASER_SHAREABILITY_SHIFT,
320 vgic_sanitise_shareability);
321 reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
322 GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
323 vgic_sanitise_inner_cacheability);
324 reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
325 GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
326 vgic_sanitise_outer_cacheability);
327
328 reg &= ~PENDBASER_RES0_MASK;
329 reg &= ~GENMASK_ULL(51, 48);
330
331 return reg;
332 }
333
334 static u64 vgic_sanitise_propbaser(u64 reg)
335 {
336 reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
337 GICR_PROPBASER_SHAREABILITY_SHIFT,
338 vgic_sanitise_shareability);
339 reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
340 GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
341 vgic_sanitise_inner_cacheability);
342 reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
343 GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
344 vgic_sanitise_outer_cacheability);
345
346 reg &= ~PROPBASER_RES0_MASK;
347 reg &= ~GENMASK_ULL(51, 48);
348 return reg;
349 }
350
351 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
352 gpa_t addr, unsigned int len)
353 {
354 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
355
356 return extract_bytes(dist->propbaser, addr & 7, len);
357 }
358
359 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
360 gpa_t addr, unsigned int len,
361 unsigned long val)
362 {
363 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
364 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
365 u64 old_propbaser, propbaser;
366
367 /* Storing a value with LPIs already enabled is undefined */
368 if (vgic_cpu->lpis_enabled)
369 return;
370
371 do {
372 old_propbaser = READ_ONCE(dist->propbaser);
373 propbaser = old_propbaser;
374 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
375 propbaser = vgic_sanitise_propbaser(propbaser);
376 } while (cmpxchg64(&dist->propbaser, old_propbaser,
377 propbaser) != old_propbaser);
378 }
379
380 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
381 gpa_t addr, unsigned int len)
382 {
383 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
384
385 return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
386 }
387
388 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
389 gpa_t addr, unsigned int len,
390 unsigned long val)
391 {
392 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
393 u64 old_pendbaser, pendbaser;
394
395 /* Storing a value with LPIs already enabled is undefined */
396 if (vgic_cpu->lpis_enabled)
397 return;
398
399 do {
400 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
401 pendbaser = old_pendbaser;
402 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
403 pendbaser = vgic_sanitise_pendbaser(pendbaser);
404 } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
405 pendbaser) != old_pendbaser);
406 }
407
408 /*
409 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
410 * redistributors, while SPIs are covered by registers in the distributor
411 * block. Trying to set private IRQs in this block gets ignored.
412 * We take some special care here to fix the calculation of the register
413 * offset.
414 */
415 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
416 { \
417 .reg_offset = off, \
418 .bits_per_irq = bpi, \
419 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
420 .access_flags = acc, \
421 .read = vgic_mmio_read_raz, \
422 .write = vgic_mmio_write_wi, \
423 }, { \
424 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
425 .bits_per_irq = bpi, \
426 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
427 .access_flags = acc, \
428 .read = rd, \
429 .write = wr, \
430 .uaccess_read = ur, \
431 .uaccess_write = uw, \
432 }
433
434 static const struct vgic_register_region vgic_v3_dist_registers[] = {
435 REGISTER_DESC_WITH_LENGTH(GICD_CTLR,
436 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, 16,
437 VGIC_ACCESS_32bit),
438 REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
439 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
440 VGIC_ACCESS_32bit),
441 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
442 vgic_mmio_read_rao, vgic_mmio_write_wi, NULL, NULL, 1,
443 VGIC_ACCESS_32bit),
444 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
445 vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
446 VGIC_ACCESS_32bit),
447 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
448 vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
449 VGIC_ACCESS_32bit),
450 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
451 vgic_mmio_read_pending, vgic_mmio_write_spending,
452 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
453 VGIC_ACCESS_32bit),
454 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
455 vgic_mmio_read_pending, vgic_mmio_write_cpending,
456 vgic_mmio_read_raz, vgic_mmio_write_wi, 1,
457 VGIC_ACCESS_32bit),
458 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
459 vgic_mmio_read_active, vgic_mmio_write_sactive,
460 NULL, vgic_mmio_uaccess_write_sactive, 1,
461 VGIC_ACCESS_32bit),
462 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
463 vgic_mmio_read_active, vgic_mmio_write_cactive,
464 NULL, vgic_mmio_uaccess_write_cactive,
465 1, VGIC_ACCESS_32bit),
466 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
467 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
468 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
469 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
470 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
471 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
472 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
473 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
474 VGIC_ACCESS_32bit),
475 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
476 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
477 VGIC_ACCESS_32bit),
478 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
479 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
480 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
481 REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
482 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
483 VGIC_ACCESS_32bit),
484 };
485
486 static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
487 REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
488 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
489 VGIC_ACCESS_32bit),
490 REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
491 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
492 VGIC_ACCESS_32bit),
493 REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
494 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
495 VGIC_ACCESS_32bit),
496 REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
497 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
498 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
499 REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
500 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
501 VGIC_ACCESS_32bit),
502 REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
503 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
504 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
505 REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
506 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
507 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
508 REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
509 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
510 VGIC_ACCESS_32bit),
511 };
512
513 static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
514 REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
515 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
516 VGIC_ACCESS_32bit),
517 REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
518 vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
519 VGIC_ACCESS_32bit),
520 REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
521 vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
522 VGIC_ACCESS_32bit),
523 REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISPENDR0,
524 vgic_mmio_read_pending, vgic_mmio_write_spending,
525 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
526 VGIC_ACCESS_32bit),
527 REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICPENDR0,
528 vgic_mmio_read_pending, vgic_mmio_write_cpending,
529 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
530 VGIC_ACCESS_32bit),
531 REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISACTIVER0,
532 vgic_mmio_read_active, vgic_mmio_write_sactive,
533 NULL, vgic_mmio_uaccess_write_sactive,
534 4, VGIC_ACCESS_32bit),
535 REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICACTIVER0,
536 vgic_mmio_read_active, vgic_mmio_write_cactive,
537 NULL, vgic_mmio_uaccess_write_cactive,
538 4, VGIC_ACCESS_32bit),
539 REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
540 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
541 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
542 REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
543 vgic_mmio_read_config, vgic_mmio_write_config, 8,
544 VGIC_ACCESS_32bit),
545 REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
546 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
547 VGIC_ACCESS_32bit),
548 REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
549 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
550 VGIC_ACCESS_32bit),
551 };
552
553 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
554 {
555 dev->regions = vgic_v3_dist_registers;
556 dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
557
558 kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
559
560 return SZ_64K;
561 }
562
563 /**
564 * vgic_register_redist_iodev - register a single redist iodev
565 * @vcpu: The VCPU to which the redistributor belongs
566 *
567 * Register a KVM iodev for this VCPU's redistributor using the address
568 * provided.
569 *
570 * Return 0 on success, -ERRNO otherwise.
571 */
572 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
573 {
574 struct kvm *kvm = vcpu->kvm;
575 struct vgic_dist *vgic = &kvm->arch.vgic;
576 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
577 struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
578 gpa_t rd_base, sgi_base;
579 int ret;
580
581 /*
582 * We may be creating VCPUs before having set the base address for the
583 * redistributor region, in which case we will come back to this
584 * function for all VCPUs when the base address is set. Just return
585 * without doing any work for now.
586 */
587 if (IS_VGIC_ADDR_UNDEF(vgic->vgic_redist_base))
588 return 0;
589
590 if (!vgic_v3_check_base(kvm))
591 return -EINVAL;
592
593 rd_base = vgic->vgic_redist_base + vgic->vgic_redist_free_offset;
594 sgi_base = rd_base + SZ_64K;
595
596 kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
597 rd_dev->base_addr = rd_base;
598 rd_dev->iodev_type = IODEV_REDIST;
599 rd_dev->regions = vgic_v3_rdbase_registers;
600 rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
601 rd_dev->redist_vcpu = vcpu;
602
603 mutex_lock(&kvm->slots_lock);
604 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
605 SZ_64K, &rd_dev->dev);
606 mutex_unlock(&kvm->slots_lock);
607
608 if (ret)
609 return ret;
610
611 kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
612 sgi_dev->base_addr = sgi_base;
613 sgi_dev->iodev_type = IODEV_REDIST;
614 sgi_dev->regions = vgic_v3_sgibase_registers;
615 sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
616 sgi_dev->redist_vcpu = vcpu;
617
618 mutex_lock(&kvm->slots_lock);
619 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
620 SZ_64K, &sgi_dev->dev);
621 if (ret) {
622 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
623 &rd_dev->dev);
624 goto out;
625 }
626
627 vgic->vgic_redist_free_offset += 2 * SZ_64K;
628 out:
629 mutex_unlock(&kvm->slots_lock);
630 return ret;
631 }
632
633 static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
634 {
635 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
636 struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
637
638 kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
639 kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev);
640 }
641
642 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
643 {
644 struct kvm_vcpu *vcpu;
645 int c, ret = 0;
646
647 kvm_for_each_vcpu(c, vcpu, kvm) {
648 ret = vgic_register_redist_iodev(vcpu);
649 if (ret)
650 break;
651 }
652
653 if (ret) {
654 /* The current c failed, so we start with the previous one. */
655 mutex_lock(&kvm->slots_lock);
656 for (c--; c >= 0; c--) {
657 vcpu = kvm_get_vcpu(kvm, c);
658 vgic_unregister_redist_iodev(vcpu);
659 }
660 mutex_unlock(&kvm->slots_lock);
661 }
662
663 return ret;
664 }
665
666 int vgic_v3_set_redist_base(struct kvm *kvm, u64 addr)
667 {
668 struct vgic_dist *vgic = &kvm->arch.vgic;
669 int ret;
670
671 /* vgic_check_ioaddr makes sure we don't do this twice */
672 ret = vgic_check_ioaddr(kvm, &vgic->vgic_redist_base, addr, SZ_64K);
673 if (ret)
674 return ret;
675
676 vgic->vgic_redist_base = addr;
677 if (!vgic_v3_check_base(kvm)) {
678 vgic->vgic_redist_base = VGIC_ADDR_UNDEF;
679 return -EINVAL;
680 }
681
682 /*
683 * Register iodevs for each existing VCPU. Adding more VCPUs
684 * afterwards will register the iodevs when needed.
685 */
686 ret = vgic_register_all_redist_iodevs(kvm);
687 if (ret)
688 return ret;
689
690 return 0;
691 }
692
693 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
694 {
695 const struct vgic_register_region *region;
696 struct vgic_io_device iodev;
697 struct vgic_reg_attr reg_attr;
698 struct kvm_vcpu *vcpu;
699 gpa_t addr;
700 int ret;
701
702 ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
703 if (ret)
704 return ret;
705
706 vcpu = reg_attr.vcpu;
707 addr = reg_attr.addr;
708
709 switch (attr->group) {
710 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
711 iodev.regions = vgic_v3_dist_registers;
712 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
713 iodev.base_addr = 0;
714 break;
715 case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
716 iodev.regions = vgic_v3_rdbase_registers;
717 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
718 iodev.base_addr = 0;
719 break;
720 }
721 case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
722 u64 reg, id;
723
724 id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
725 return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
726 }
727 default:
728 return -ENXIO;
729 }
730
731 /* We only support aligned 32-bit accesses. */
732 if (addr & 3)
733 return -ENXIO;
734
735 region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
736 if (!region)
737 return -ENXIO;
738
739 return 0;
740 }
741 /*
742 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
743 * generation register ICC_SGI1R_EL1) with a given VCPU.
744 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
745 * return -1.
746 */
747 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
748 {
749 unsigned long affinity;
750 int level0;
751
752 /*
753 * Split the current VCPU's MPIDR into affinity level 0 and the
754 * rest as this is what we have to compare against.
755 */
756 affinity = kvm_vcpu_get_mpidr_aff(vcpu);
757 level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
758 affinity &= ~MPIDR_LEVEL_MASK;
759
760 /* bail out if the upper three levels don't match */
761 if (sgi_aff != affinity)
762 return -1;
763
764 /* Is this VCPU's bit set in the mask ? */
765 if (!(sgi_cpu_mask & BIT(level0)))
766 return -1;
767
768 return level0;
769 }
770
771 /*
772 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
773 * so provide a wrapper to use the existing defines to isolate a certain
774 * affinity level.
775 */
776 #define SGI_AFFINITY_LEVEL(reg, level) \
777 ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
778 >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
779
780 /**
781 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
782 * @vcpu: The VCPU requesting a SGI
783 * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
784 *
785 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
786 * This will trap in sys_regs.c and call this function.
787 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
788 * target processors as well as a bitmask of 16 Aff0 CPUs.
789 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
790 * check for matching ones. If this bit is set, we signal all, but not the
791 * calling VCPU.
792 */
793 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
794 {
795 struct kvm *kvm = vcpu->kvm;
796 struct kvm_vcpu *c_vcpu;
797 u16 target_cpus;
798 u64 mpidr;
799 int sgi, c;
800 int vcpu_id = vcpu->vcpu_id;
801 bool broadcast;
802
803 sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
804 broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
805 target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
806 mpidr = SGI_AFFINITY_LEVEL(reg, 3);
807 mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
808 mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
809
810 /*
811 * We iterate over all VCPUs to find the MPIDRs matching the request.
812 * If we have handled one CPU, we clear its bit to detect early
813 * if we are already finished. This avoids iterating through all
814 * VCPUs when most of the times we just signal a single VCPU.
815 */
816 kvm_for_each_vcpu(c, c_vcpu, kvm) {
817 struct vgic_irq *irq;
818
819 /* Exit early if we have dealt with all requested CPUs */
820 if (!broadcast && target_cpus == 0)
821 break;
822
823 /* Don't signal the calling VCPU */
824 if (broadcast && c == vcpu_id)
825 continue;
826
827 if (!broadcast) {
828 int level0;
829
830 level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
831 if (level0 == -1)
832 continue;
833
834 /* remove this matching VCPU from the mask */
835 target_cpus &= ~BIT(level0);
836 }
837
838 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
839
840 spin_lock(&irq->irq_lock);
841 irq->pending_latch = true;
842
843 vgic_queue_irq_unlock(vcpu->kvm, irq);
844 vgic_put_irq(vcpu->kvm, irq);
845 }
846 }
847
848 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
849 int offset, u32 *val)
850 {
851 struct vgic_io_device dev = {
852 .regions = vgic_v3_dist_registers,
853 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
854 };
855
856 return vgic_uaccess(vcpu, &dev, is_write, offset, val);
857 }
858
859 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
860 int offset, u32 *val)
861 {
862 struct vgic_io_device rd_dev = {
863 .regions = vgic_v3_rdbase_registers,
864 .nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers),
865 };
866
867 struct vgic_io_device sgi_dev = {
868 .regions = vgic_v3_sgibase_registers,
869 .nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers),
870 };
871
872 /* SGI_base is the next 64K frame after RD_base */
873 if (offset >= SZ_64K)
874 return vgic_uaccess(vcpu, &sgi_dev, is_write, offset - SZ_64K,
875 val);
876 else
877 return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
878 }
879
880 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
881 u32 intid, u64 *val)
882 {
883 if (intid % 32)
884 return -EINVAL;
885
886 if (is_write)
887 vgic_write_irq_line_level_info(vcpu, intid, *val);
888 else
889 *val = vgic_read_irq_line_level_info(vcpu, intid);
890
891 return 0;
892 }