]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/arm/vgic/vgic-mmio.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / virt / kvm / arm / vgic / vgic-mmio.c
1 /*
2 * VGIC MMIO handling functions
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14 #include <linux/bitops.h>
15 #include <linux/bsearch.h>
16 #include <linux/kvm.h>
17 #include <linux/kvm_host.h>
18 #include <kvm/iodev.h>
19 #include <kvm/arm_vgic.h>
20
21 #include "vgic.h"
22 #include "vgic-mmio.h"
23
24 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
25 gpa_t addr, unsigned int len)
26 {
27 return 0;
28 }
29
30 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
31 gpa_t addr, unsigned int len)
32 {
33 return -1UL;
34 }
35
36 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
37 unsigned int len, unsigned long val)
38 {
39 /* Ignore */
40 }
41
42 /*
43 * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
44 * of the enabled bit, so there is only one function for both here.
45 */
46 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
47 gpa_t addr, unsigned int len)
48 {
49 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
50 u32 value = 0;
51 int i;
52
53 /* Loop over all IRQs affected by this read */
54 for (i = 0; i < len * 8; i++) {
55 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
56
57 if (irq->enabled)
58 value |= (1U << i);
59
60 vgic_put_irq(vcpu->kvm, irq);
61 }
62
63 return value;
64 }
65
66 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
67 gpa_t addr, unsigned int len,
68 unsigned long val)
69 {
70 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
71 int i;
72
73 for_each_set_bit(i, &val, len * 8) {
74 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
75
76 spin_lock(&irq->irq_lock);
77 irq->enabled = true;
78 vgic_queue_irq_unlock(vcpu->kvm, irq);
79
80 vgic_put_irq(vcpu->kvm, irq);
81 }
82 }
83
84 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
85 gpa_t addr, unsigned int len,
86 unsigned long val)
87 {
88 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
89 int i;
90
91 for_each_set_bit(i, &val, len * 8) {
92 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
93
94 spin_lock(&irq->irq_lock);
95
96 irq->enabled = false;
97
98 spin_unlock(&irq->irq_lock);
99 vgic_put_irq(vcpu->kvm, irq);
100 }
101 }
102
103 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
104 gpa_t addr, unsigned int len)
105 {
106 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
107 u32 value = 0;
108 int i;
109
110 /* Loop over all IRQs affected by this read */
111 for (i = 0; i < len * 8; i++) {
112 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
113
114 if (irq_is_pending(irq))
115 value |= (1U << i);
116
117 vgic_put_irq(vcpu->kvm, irq);
118 }
119
120 return value;
121 }
122
123 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
124 gpa_t addr, unsigned int len,
125 unsigned long val)
126 {
127 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
128 int i;
129
130 for_each_set_bit(i, &val, len * 8) {
131 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
132
133 spin_lock(&irq->irq_lock);
134 irq->pending_latch = true;
135
136 vgic_queue_irq_unlock(vcpu->kvm, irq);
137 vgic_put_irq(vcpu->kvm, irq);
138 }
139 }
140
141 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
142 gpa_t addr, unsigned int len,
143 unsigned long val)
144 {
145 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
146 int i;
147
148 for_each_set_bit(i, &val, len * 8) {
149 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
150
151 spin_lock(&irq->irq_lock);
152
153 irq->pending_latch = false;
154
155 spin_unlock(&irq->irq_lock);
156 vgic_put_irq(vcpu->kvm, irq);
157 }
158 }
159
160 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
161 gpa_t addr, unsigned int len)
162 {
163 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
164 u32 value = 0;
165 int i;
166
167 /* Loop over all IRQs affected by this read */
168 for (i = 0; i < len * 8; i++) {
169 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
170
171 if (irq->active)
172 value |= (1U << i);
173
174 vgic_put_irq(vcpu->kvm, irq);
175 }
176
177 return value;
178 }
179
180 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
181 bool new_active_state)
182 {
183 struct kvm_vcpu *requester_vcpu;
184 spin_lock(&irq->irq_lock);
185
186 /*
187 * The vcpu parameter here can mean multiple things depending on how
188 * this function is called; when handling a trap from the kernel it
189 * depends on the GIC version, and these functions are also called as
190 * part of save/restore from userspace.
191 *
192 * Therefore, we have to figure out the requester in a reliable way.
193 *
194 * When accessing VGIC state from user space, the requester_vcpu is
195 * NULL, which is fine, because we guarantee that no VCPUs are running
196 * when accessing VGIC state from user space so irq->vcpu->cpu is
197 * always -1.
198 */
199 requester_vcpu = kvm_arm_get_running_vcpu();
200
201 /*
202 * If this virtual IRQ was written into a list register, we
203 * have to make sure the CPU that runs the VCPU thread has
204 * synced back the LR state to the struct vgic_irq.
205 *
206 * As long as the conditions below are true, we know the VCPU thread
207 * may be on its way back from the guest (we kicked the VCPU thread in
208 * vgic_change_active_prepare) and still has to sync back this IRQ,
209 * so we release and re-acquire the spin_lock to let the other thread
210 * sync back the IRQ.
211 */
212 while (irq->vcpu && /* IRQ may have state in an LR somewhere */
213 irq->vcpu != requester_vcpu && /* Current thread is not the VCPU thread */
214 irq->vcpu->cpu != -1) /* VCPU thread is running */
215 cond_resched_lock(&irq->irq_lock);
216
217 irq->active = new_active_state;
218 if (new_active_state)
219 vgic_queue_irq_unlock(vcpu->kvm, irq);
220 else
221 spin_unlock(&irq->irq_lock);
222 }
223
224 /*
225 * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
226 * is not queued on some running VCPU's LRs, because then the change to the
227 * active state can be overwritten when the VCPU's state is synced coming back
228 * from the guest.
229 *
230 * For shared interrupts, we have to stop all the VCPUs because interrupts can
231 * be migrated while we don't hold the IRQ locks and we don't want to be
232 * chasing moving targets.
233 *
234 * For private interrupts, we only have to make sure the single and only VCPU
235 * that can potentially queue the IRQ is stopped.
236 */
237 static void vgic_change_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
238 {
239 if (intid < VGIC_NR_PRIVATE_IRQS)
240 kvm_arm_halt_vcpu(vcpu);
241 else
242 kvm_arm_halt_guest(vcpu->kvm);
243 }
244
245 /* See vgic_change_active_prepare */
246 static void vgic_change_active_finish(struct kvm_vcpu *vcpu, u32 intid)
247 {
248 if (intid < VGIC_NR_PRIVATE_IRQS)
249 kvm_arm_resume_vcpu(vcpu);
250 else
251 kvm_arm_resume_guest(vcpu->kvm);
252 }
253
254 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
255 gpa_t addr, unsigned int len,
256 unsigned long val)
257 {
258 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
259 int i;
260
261 vgic_change_active_prepare(vcpu, intid);
262 for_each_set_bit(i, &val, len * 8) {
263 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
264 vgic_mmio_change_active(vcpu, irq, false);
265 vgic_put_irq(vcpu->kvm, irq);
266 }
267 vgic_change_active_finish(vcpu, intid);
268 }
269
270 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
271 gpa_t addr, unsigned int len,
272 unsigned long val)
273 {
274 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
275 int i;
276
277 vgic_change_active_prepare(vcpu, intid);
278 for_each_set_bit(i, &val, len * 8) {
279 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
280 vgic_mmio_change_active(vcpu, irq, true);
281 vgic_put_irq(vcpu->kvm, irq);
282 }
283 vgic_change_active_finish(vcpu, intid);
284 }
285
286 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
287 gpa_t addr, unsigned int len)
288 {
289 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
290 int i;
291 u64 val = 0;
292
293 for (i = 0; i < len; i++) {
294 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
295
296 val |= (u64)irq->priority << (i * 8);
297
298 vgic_put_irq(vcpu->kvm, irq);
299 }
300
301 return val;
302 }
303
304 /*
305 * We currently don't handle changing the priority of an interrupt that
306 * is already pending on a VCPU. If there is a need for this, we would
307 * need to make this VCPU exit and re-evaluate the priorities, potentially
308 * leading to this interrupt getting presented now to the guest (if it has
309 * been masked by the priority mask before).
310 */
311 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
312 gpa_t addr, unsigned int len,
313 unsigned long val)
314 {
315 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
316 int i;
317
318 for (i = 0; i < len; i++) {
319 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
320
321 spin_lock(&irq->irq_lock);
322 /* Narrow the priority range to what we actually support */
323 irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
324 spin_unlock(&irq->irq_lock);
325
326 vgic_put_irq(vcpu->kvm, irq);
327 }
328 }
329
330 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
331 gpa_t addr, unsigned int len)
332 {
333 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
334 u32 value = 0;
335 int i;
336
337 for (i = 0; i < len * 4; i++) {
338 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
339
340 if (irq->config == VGIC_CONFIG_EDGE)
341 value |= (2U << (i * 2));
342
343 vgic_put_irq(vcpu->kvm, irq);
344 }
345
346 return value;
347 }
348
349 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
350 gpa_t addr, unsigned int len,
351 unsigned long val)
352 {
353 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
354 int i;
355
356 for (i = 0; i < len * 4; i++) {
357 struct vgic_irq *irq;
358
359 /*
360 * The configuration cannot be changed for SGIs in general,
361 * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
362 * code relies on PPIs being level triggered, so we also
363 * make them read-only here.
364 */
365 if (intid + i < VGIC_NR_PRIVATE_IRQS)
366 continue;
367
368 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
369 spin_lock(&irq->irq_lock);
370
371 if (test_bit(i * 2 + 1, &val))
372 irq->config = VGIC_CONFIG_EDGE;
373 else
374 irq->config = VGIC_CONFIG_LEVEL;
375
376 spin_unlock(&irq->irq_lock);
377 vgic_put_irq(vcpu->kvm, irq);
378 }
379 }
380
381 u64 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
382 {
383 int i;
384 u64 val = 0;
385 int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
386
387 for (i = 0; i < 32; i++) {
388 struct vgic_irq *irq;
389
390 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
391 continue;
392
393 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
394 if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
395 val |= (1U << i);
396
397 vgic_put_irq(vcpu->kvm, irq);
398 }
399
400 return val;
401 }
402
403 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
404 const u64 val)
405 {
406 int i;
407 int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
408
409 for (i = 0; i < 32; i++) {
410 struct vgic_irq *irq;
411 bool new_level;
412
413 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
414 continue;
415
416 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
417
418 /*
419 * Line level is set irrespective of irq type
420 * (level or edge) to avoid dependency that VM should
421 * restore irq config before line level.
422 */
423 new_level = !!(val & (1U << i));
424 spin_lock(&irq->irq_lock);
425 irq->line_level = new_level;
426 if (new_level)
427 vgic_queue_irq_unlock(vcpu->kvm, irq);
428 else
429 spin_unlock(&irq->irq_lock);
430
431 vgic_put_irq(vcpu->kvm, irq);
432 }
433 }
434
435 static int match_region(const void *key, const void *elt)
436 {
437 const unsigned int offset = (unsigned long)key;
438 const struct vgic_register_region *region = elt;
439
440 if (offset < region->reg_offset)
441 return -1;
442
443 if (offset >= region->reg_offset + region->len)
444 return 1;
445
446 return 0;
447 }
448
449 /* Find the proper register handler entry given a certain address offset. */
450 static const struct vgic_register_region *
451 vgic_find_mmio_region(const struct vgic_register_region *region, int nr_regions,
452 unsigned int offset)
453 {
454 return bsearch((void *)(uintptr_t)offset, region, nr_regions,
455 sizeof(region[0]), match_region);
456 }
457
458 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
459 {
460 if (kvm_vgic_global_state.type == VGIC_V2)
461 vgic_v2_set_vmcr(vcpu, vmcr);
462 else
463 vgic_v3_set_vmcr(vcpu, vmcr);
464 }
465
466 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
467 {
468 if (kvm_vgic_global_state.type == VGIC_V2)
469 vgic_v2_get_vmcr(vcpu, vmcr);
470 else
471 vgic_v3_get_vmcr(vcpu, vmcr);
472 }
473
474 /*
475 * kvm_mmio_read_buf() returns a value in a format where it can be converted
476 * to a byte array and be directly observed as the guest wanted it to appear
477 * in memory if it had done the store itself, which is LE for the GIC, as the
478 * guest knows the GIC is always LE.
479 *
480 * We convert this value to the CPUs native format to deal with it as a data
481 * value.
482 */
483 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
484 {
485 unsigned long data = kvm_mmio_read_buf(val, len);
486
487 switch (len) {
488 case 1:
489 return data;
490 case 2:
491 return le16_to_cpu(data);
492 case 4:
493 return le32_to_cpu(data);
494 default:
495 return le64_to_cpu(data);
496 }
497 }
498
499 /*
500 * kvm_mmio_write_buf() expects a value in a format such that if converted to
501 * a byte array it is observed as the guest would see it if it could perform
502 * the load directly. Since the GIC is LE, and the guest knows this, the
503 * guest expects a value in little endian format.
504 *
505 * We convert the data value from the CPUs native format to LE so that the
506 * value is returned in the proper format.
507 */
508 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
509 unsigned long data)
510 {
511 switch (len) {
512 case 1:
513 break;
514 case 2:
515 data = cpu_to_le16(data);
516 break;
517 case 4:
518 data = cpu_to_le32(data);
519 break;
520 default:
521 data = cpu_to_le64(data);
522 }
523
524 kvm_mmio_write_buf(buf, len, data);
525 }
526
527 static
528 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
529 {
530 return container_of(dev, struct vgic_io_device, dev);
531 }
532
533 static bool check_region(const struct kvm *kvm,
534 const struct vgic_register_region *region,
535 gpa_t addr, int len)
536 {
537 int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
538
539 switch (len) {
540 case sizeof(u8):
541 flags = VGIC_ACCESS_8bit;
542 break;
543 case sizeof(u32):
544 flags = VGIC_ACCESS_32bit;
545 break;
546 case sizeof(u64):
547 flags = VGIC_ACCESS_64bit;
548 break;
549 default:
550 return false;
551 }
552
553 if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
554 if (!region->bits_per_irq)
555 return true;
556
557 /* Do we access a non-allocated IRQ? */
558 return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
559 }
560
561 return false;
562 }
563
564 const struct vgic_register_region *
565 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
566 gpa_t addr, int len)
567 {
568 const struct vgic_register_region *region;
569
570 region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
571 addr - iodev->base_addr);
572 if (!region || !check_region(vcpu->kvm, region, addr, len))
573 return NULL;
574
575 return region;
576 }
577
578 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
579 gpa_t addr, u32 *val)
580 {
581 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
582 const struct vgic_register_region *region;
583 struct kvm_vcpu *r_vcpu;
584
585 region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
586 if (!region) {
587 *val = 0;
588 return 0;
589 }
590
591 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
592 if (region->uaccess_read)
593 *val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
594 else
595 *val = region->read(r_vcpu, addr, sizeof(u32));
596
597 return 0;
598 }
599
600 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
601 gpa_t addr, const u32 *val)
602 {
603 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
604 const struct vgic_register_region *region;
605 struct kvm_vcpu *r_vcpu;
606
607 region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
608 if (!region)
609 return 0;
610
611 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
612 if (region->uaccess_write)
613 region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
614 else
615 region->write(r_vcpu, addr, sizeof(u32), *val);
616
617 return 0;
618 }
619
620 /*
621 * Userland access to VGIC registers.
622 */
623 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
624 bool is_write, int offset, u32 *val)
625 {
626 if (is_write)
627 return vgic_uaccess_write(vcpu, &dev->dev, offset, val);
628 else
629 return vgic_uaccess_read(vcpu, &dev->dev, offset, val);
630 }
631
632 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
633 gpa_t addr, int len, void *val)
634 {
635 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
636 const struct vgic_register_region *region;
637 unsigned long data = 0;
638
639 region = vgic_get_mmio_region(vcpu, iodev, addr, len);
640 if (!region) {
641 memset(val, 0, len);
642 return 0;
643 }
644
645 switch (iodev->iodev_type) {
646 case IODEV_CPUIF:
647 data = region->read(vcpu, addr, len);
648 break;
649 case IODEV_DIST:
650 data = region->read(vcpu, addr, len);
651 break;
652 case IODEV_REDIST:
653 data = region->read(iodev->redist_vcpu, addr, len);
654 break;
655 case IODEV_ITS:
656 data = region->its_read(vcpu->kvm, iodev->its, addr, len);
657 break;
658 }
659
660 vgic_data_host_to_mmio_bus(val, len, data);
661 return 0;
662 }
663
664 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
665 gpa_t addr, int len, const void *val)
666 {
667 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
668 const struct vgic_register_region *region;
669 unsigned long data = vgic_data_mmio_bus_to_host(val, len);
670
671 region = vgic_get_mmio_region(vcpu, iodev, addr, len);
672 if (!region)
673 return 0;
674
675 switch (iodev->iodev_type) {
676 case IODEV_CPUIF:
677 region->write(vcpu, addr, len, data);
678 break;
679 case IODEV_DIST:
680 region->write(vcpu, addr, len, data);
681 break;
682 case IODEV_REDIST:
683 region->write(iodev->redist_vcpu, addr, len, data);
684 break;
685 case IODEV_ITS:
686 region->its_write(vcpu->kvm, iodev->its, addr, len, data);
687 break;
688 }
689
690 return 0;
691 }
692
693 struct kvm_io_device_ops kvm_io_gic_ops = {
694 .read = dispatch_mmio_read,
695 .write = dispatch_mmio_write,
696 };
697
698 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
699 enum vgic_type type)
700 {
701 struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
702 int ret = 0;
703 unsigned int len;
704
705 switch (type) {
706 case VGIC_V2:
707 len = vgic_v2_init_dist_iodev(io_device);
708 break;
709 case VGIC_V3:
710 len = vgic_v3_init_dist_iodev(io_device);
711 break;
712 default:
713 BUG_ON(1);
714 }
715
716 io_device->base_addr = dist_base_address;
717 io_device->iodev_type = IODEV_DIST;
718 io_device->redist_vcpu = NULL;
719
720 mutex_lock(&kvm->slots_lock);
721 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
722 len, &io_device->dev);
723 mutex_unlock(&kvm->slots_lock);
724
725 return ret;
726 }