]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/arm/vgic/vgic-mmio.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / virt / kvm / arm / vgic / vgic-mmio.c
1 /*
2 * VGIC MMIO handling functions
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14 #include <linux/bitops.h>
15 #include <linux/bsearch.h>
16 #include <linux/kvm.h>
17 #include <linux/kvm_host.h>
18 #include <kvm/iodev.h>
19 #include <kvm/arm_vgic.h>
20
21 #include "vgic.h"
22 #include "vgic-mmio.h"
23
24 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
25 gpa_t addr, unsigned int len)
26 {
27 return 0;
28 }
29
30 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
31 gpa_t addr, unsigned int len)
32 {
33 return -1UL;
34 }
35
36 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
37 unsigned int len, unsigned long val)
38 {
39 /* Ignore */
40 }
41
42 /*
43 * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
44 * of the enabled bit, so there is only one function for both here.
45 */
46 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
47 gpa_t addr, unsigned int len)
48 {
49 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
50 u32 value = 0;
51 int i;
52
53 /* Loop over all IRQs affected by this read */
54 for (i = 0; i < len * 8; i++) {
55 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
56
57 if (irq->enabled)
58 value |= (1U << i);
59
60 vgic_put_irq(vcpu->kvm, irq);
61 }
62
63 return value;
64 }
65
66 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
67 gpa_t addr, unsigned int len,
68 unsigned long val)
69 {
70 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
71 int i;
72
73 for_each_set_bit(i, &val, len * 8) {
74 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
75
76 spin_lock(&irq->irq_lock);
77 irq->enabled = true;
78 vgic_queue_irq_unlock(vcpu->kvm, irq);
79
80 vgic_put_irq(vcpu->kvm, irq);
81 }
82 }
83
84 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
85 gpa_t addr, unsigned int len,
86 unsigned long val)
87 {
88 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
89 int i;
90
91 for_each_set_bit(i, &val, len * 8) {
92 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
93
94 spin_lock(&irq->irq_lock);
95
96 irq->enabled = false;
97
98 spin_unlock(&irq->irq_lock);
99 vgic_put_irq(vcpu->kvm, irq);
100 }
101 }
102
103 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
104 gpa_t addr, unsigned int len)
105 {
106 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
107 u32 value = 0;
108 int i;
109
110 /* Loop over all IRQs affected by this read */
111 for (i = 0; i < len * 8; i++) {
112 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
113
114 if (irq_is_pending(irq))
115 value |= (1U << i);
116
117 vgic_put_irq(vcpu->kvm, irq);
118 }
119
120 return value;
121 }
122
123 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
124 gpa_t addr, unsigned int len,
125 unsigned long val)
126 {
127 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
128 int i;
129
130 for_each_set_bit(i, &val, len * 8) {
131 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
132
133 spin_lock(&irq->irq_lock);
134 irq->pending_latch = true;
135
136 vgic_queue_irq_unlock(vcpu->kvm, irq);
137 vgic_put_irq(vcpu->kvm, irq);
138 }
139 }
140
141 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
142 gpa_t addr, unsigned int len,
143 unsigned long val)
144 {
145 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
146 int i;
147
148 for_each_set_bit(i, &val, len * 8) {
149 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
150
151 spin_lock(&irq->irq_lock);
152
153 irq->pending_latch = false;
154
155 spin_unlock(&irq->irq_lock);
156 vgic_put_irq(vcpu->kvm, irq);
157 }
158 }
159
160 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
161 gpa_t addr, unsigned int len)
162 {
163 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
164 u32 value = 0;
165 int i;
166
167 /* Loop over all IRQs affected by this read */
168 for (i = 0; i < len * 8; i++) {
169 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
170
171 if (irq->active)
172 value |= (1U << i);
173
174 vgic_put_irq(vcpu->kvm, irq);
175 }
176
177 return value;
178 }
179
180 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
181 bool new_active_state)
182 {
183 struct kvm_vcpu *requester_vcpu;
184 spin_lock(&irq->irq_lock);
185
186 /*
187 * The vcpu parameter here can mean multiple things depending on how
188 * this function is called; when handling a trap from the kernel it
189 * depends on the GIC version, and these functions are also called as
190 * part of save/restore from userspace.
191 *
192 * Therefore, we have to figure out the requester in a reliable way.
193 *
194 * When accessing VGIC state from user space, the requester_vcpu is
195 * NULL, which is fine, because we guarantee that no VCPUs are running
196 * when accessing VGIC state from user space so irq->vcpu->cpu is
197 * always -1.
198 */
199 requester_vcpu = kvm_arm_get_running_vcpu();
200
201 /*
202 * If this virtual IRQ was written into a list register, we
203 * have to make sure the CPU that runs the VCPU thread has
204 * synced back the LR state to the struct vgic_irq.
205 *
206 * As long as the conditions below are true, we know the VCPU thread
207 * may be on its way back from the guest (we kicked the VCPU thread in
208 * vgic_change_active_prepare) and still has to sync back this IRQ,
209 * so we release and re-acquire the spin_lock to let the other thread
210 * sync back the IRQ.
211 */
212 while (irq->vcpu && /* IRQ may have state in an LR somewhere */
213 irq->vcpu != requester_vcpu && /* Current thread is not the VCPU thread */
214 irq->vcpu->cpu != -1) /* VCPU thread is running */
215 cond_resched_lock(&irq->irq_lock);
216
217 irq->active = new_active_state;
218 if (new_active_state)
219 vgic_queue_irq_unlock(vcpu->kvm, irq);
220 else
221 spin_unlock(&irq->irq_lock);
222 }
223
224 /*
225 * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
226 * is not queued on some running VCPU's LRs, because then the change to the
227 * active state can be overwritten when the VCPU's state is synced coming back
228 * from the guest.
229 *
230 * For shared interrupts, we have to stop all the VCPUs because interrupts can
231 * be migrated while we don't hold the IRQ locks and we don't want to be
232 * chasing moving targets.
233 *
234 * For private interrupts we don't have to do anything because userspace
235 * accesses to the VGIC state already require all VCPUs to be stopped, and
236 * only the VCPU itself can modify its private interrupts active state, which
237 * guarantees that the VCPU is not running.
238 */
239 static void vgic_change_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
240 {
241 if (intid > VGIC_NR_PRIVATE_IRQS)
242 kvm_arm_halt_guest(vcpu->kvm);
243 }
244
245 /* See vgic_change_active_prepare */
246 static void vgic_change_active_finish(struct kvm_vcpu *vcpu, u32 intid)
247 {
248 if (intid > VGIC_NR_PRIVATE_IRQS)
249 kvm_arm_resume_guest(vcpu->kvm);
250 }
251
252 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
253 gpa_t addr, unsigned int len,
254 unsigned long val)
255 {
256 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
257 int i;
258
259 for_each_set_bit(i, &val, len * 8) {
260 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
261 vgic_mmio_change_active(vcpu, irq, false);
262 vgic_put_irq(vcpu->kvm, irq);
263 }
264 }
265
266 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
267 gpa_t addr, unsigned int len,
268 unsigned long val)
269 {
270 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
271
272 mutex_lock(&vcpu->kvm->lock);
273 vgic_change_active_prepare(vcpu, intid);
274
275 __vgic_mmio_write_cactive(vcpu, addr, len, val);
276
277 vgic_change_active_finish(vcpu, intid);
278 mutex_unlock(&vcpu->kvm->lock);
279 }
280
281 void vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
282 gpa_t addr, unsigned int len,
283 unsigned long val)
284 {
285 __vgic_mmio_write_cactive(vcpu, addr, len, val);
286 }
287
288 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
289 gpa_t addr, unsigned int len,
290 unsigned long val)
291 {
292 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
293 int i;
294
295 for_each_set_bit(i, &val, len * 8) {
296 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
297 vgic_mmio_change_active(vcpu, irq, true);
298 vgic_put_irq(vcpu->kvm, irq);
299 }
300 }
301
302 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
303 gpa_t addr, unsigned int len,
304 unsigned long val)
305 {
306 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
307
308 mutex_lock(&vcpu->kvm->lock);
309 vgic_change_active_prepare(vcpu, intid);
310
311 __vgic_mmio_write_sactive(vcpu, addr, len, val);
312
313 vgic_change_active_finish(vcpu, intid);
314 mutex_unlock(&vcpu->kvm->lock);
315 }
316
317 void vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
318 gpa_t addr, unsigned int len,
319 unsigned long val)
320 {
321 __vgic_mmio_write_sactive(vcpu, addr, len, val);
322 }
323
324 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
325 gpa_t addr, unsigned int len)
326 {
327 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
328 int i;
329 u64 val = 0;
330
331 for (i = 0; i < len; i++) {
332 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
333
334 val |= (u64)irq->priority << (i * 8);
335
336 vgic_put_irq(vcpu->kvm, irq);
337 }
338
339 return val;
340 }
341
342 /*
343 * We currently don't handle changing the priority of an interrupt that
344 * is already pending on a VCPU. If there is a need for this, we would
345 * need to make this VCPU exit and re-evaluate the priorities, potentially
346 * leading to this interrupt getting presented now to the guest (if it has
347 * been masked by the priority mask before).
348 */
349 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
350 gpa_t addr, unsigned int len,
351 unsigned long val)
352 {
353 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
354 int i;
355
356 for (i = 0; i < len; i++) {
357 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
358
359 spin_lock(&irq->irq_lock);
360 /* Narrow the priority range to what we actually support */
361 irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
362 spin_unlock(&irq->irq_lock);
363
364 vgic_put_irq(vcpu->kvm, irq);
365 }
366 }
367
368 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
369 gpa_t addr, unsigned int len)
370 {
371 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
372 u32 value = 0;
373 int i;
374
375 for (i = 0; i < len * 4; i++) {
376 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
377
378 if (irq->config == VGIC_CONFIG_EDGE)
379 value |= (2U << (i * 2));
380
381 vgic_put_irq(vcpu->kvm, irq);
382 }
383
384 return value;
385 }
386
387 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
388 gpa_t addr, unsigned int len,
389 unsigned long val)
390 {
391 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
392 int i;
393
394 for (i = 0; i < len * 4; i++) {
395 struct vgic_irq *irq;
396
397 /*
398 * The configuration cannot be changed for SGIs in general,
399 * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
400 * code relies on PPIs being level triggered, so we also
401 * make them read-only here.
402 */
403 if (intid + i < VGIC_NR_PRIVATE_IRQS)
404 continue;
405
406 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
407 spin_lock(&irq->irq_lock);
408
409 if (test_bit(i * 2 + 1, &val))
410 irq->config = VGIC_CONFIG_EDGE;
411 else
412 irq->config = VGIC_CONFIG_LEVEL;
413
414 spin_unlock(&irq->irq_lock);
415 vgic_put_irq(vcpu->kvm, irq);
416 }
417 }
418
419 u64 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
420 {
421 int i;
422 u64 val = 0;
423 int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
424
425 for (i = 0; i < 32; i++) {
426 struct vgic_irq *irq;
427
428 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
429 continue;
430
431 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
432 if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
433 val |= (1U << i);
434
435 vgic_put_irq(vcpu->kvm, irq);
436 }
437
438 return val;
439 }
440
441 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
442 const u64 val)
443 {
444 int i;
445 int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
446
447 for (i = 0; i < 32; i++) {
448 struct vgic_irq *irq;
449 bool new_level;
450
451 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
452 continue;
453
454 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
455
456 /*
457 * Line level is set irrespective of irq type
458 * (level or edge) to avoid dependency that VM should
459 * restore irq config before line level.
460 */
461 new_level = !!(val & (1U << i));
462 spin_lock(&irq->irq_lock);
463 irq->line_level = new_level;
464 if (new_level)
465 vgic_queue_irq_unlock(vcpu->kvm, irq);
466 else
467 spin_unlock(&irq->irq_lock);
468
469 vgic_put_irq(vcpu->kvm, irq);
470 }
471 }
472
473 static int match_region(const void *key, const void *elt)
474 {
475 const unsigned int offset = (unsigned long)key;
476 const struct vgic_register_region *region = elt;
477
478 if (offset < region->reg_offset)
479 return -1;
480
481 if (offset >= region->reg_offset + region->len)
482 return 1;
483
484 return 0;
485 }
486
487 const struct vgic_register_region *
488 vgic_find_mmio_region(const struct vgic_register_region *regions,
489 int nr_regions, unsigned int offset)
490 {
491 return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
492 sizeof(regions[0]), match_region);
493 }
494
495 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
496 {
497 if (kvm_vgic_global_state.type == VGIC_V2)
498 vgic_v2_set_vmcr(vcpu, vmcr);
499 else
500 vgic_v3_set_vmcr(vcpu, vmcr);
501 }
502
503 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
504 {
505 if (kvm_vgic_global_state.type == VGIC_V2)
506 vgic_v2_get_vmcr(vcpu, vmcr);
507 else
508 vgic_v3_get_vmcr(vcpu, vmcr);
509 }
510
511 /*
512 * kvm_mmio_read_buf() returns a value in a format where it can be converted
513 * to a byte array and be directly observed as the guest wanted it to appear
514 * in memory if it had done the store itself, which is LE for the GIC, as the
515 * guest knows the GIC is always LE.
516 *
517 * We convert this value to the CPUs native format to deal with it as a data
518 * value.
519 */
520 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
521 {
522 unsigned long data = kvm_mmio_read_buf(val, len);
523
524 switch (len) {
525 case 1:
526 return data;
527 case 2:
528 return le16_to_cpu(data);
529 case 4:
530 return le32_to_cpu(data);
531 default:
532 return le64_to_cpu(data);
533 }
534 }
535
536 /*
537 * kvm_mmio_write_buf() expects a value in a format such that if converted to
538 * a byte array it is observed as the guest would see it if it could perform
539 * the load directly. Since the GIC is LE, and the guest knows this, the
540 * guest expects a value in little endian format.
541 *
542 * We convert the data value from the CPUs native format to LE so that the
543 * value is returned in the proper format.
544 */
545 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
546 unsigned long data)
547 {
548 switch (len) {
549 case 1:
550 break;
551 case 2:
552 data = cpu_to_le16(data);
553 break;
554 case 4:
555 data = cpu_to_le32(data);
556 break;
557 default:
558 data = cpu_to_le64(data);
559 }
560
561 kvm_mmio_write_buf(buf, len, data);
562 }
563
564 static
565 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
566 {
567 return container_of(dev, struct vgic_io_device, dev);
568 }
569
570 static bool check_region(const struct kvm *kvm,
571 const struct vgic_register_region *region,
572 gpa_t addr, int len)
573 {
574 int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
575
576 switch (len) {
577 case sizeof(u8):
578 flags = VGIC_ACCESS_8bit;
579 break;
580 case sizeof(u32):
581 flags = VGIC_ACCESS_32bit;
582 break;
583 case sizeof(u64):
584 flags = VGIC_ACCESS_64bit;
585 break;
586 default:
587 return false;
588 }
589
590 if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
591 if (!region->bits_per_irq)
592 return true;
593
594 /* Do we access a non-allocated IRQ? */
595 return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
596 }
597
598 return false;
599 }
600
601 const struct vgic_register_region *
602 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
603 gpa_t addr, int len)
604 {
605 const struct vgic_register_region *region;
606
607 region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
608 addr - iodev->base_addr);
609 if (!region || !check_region(vcpu->kvm, region, addr, len))
610 return NULL;
611
612 return region;
613 }
614
615 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
616 gpa_t addr, u32 *val)
617 {
618 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
619 const struct vgic_register_region *region;
620 struct kvm_vcpu *r_vcpu;
621
622 region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
623 if (!region) {
624 *val = 0;
625 return 0;
626 }
627
628 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
629 if (region->uaccess_read)
630 *val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
631 else
632 *val = region->read(r_vcpu, addr, sizeof(u32));
633
634 return 0;
635 }
636
637 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
638 gpa_t addr, const u32 *val)
639 {
640 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
641 const struct vgic_register_region *region;
642 struct kvm_vcpu *r_vcpu;
643
644 region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
645 if (!region)
646 return 0;
647
648 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
649 if (region->uaccess_write)
650 region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
651 else
652 region->write(r_vcpu, addr, sizeof(u32), *val);
653
654 return 0;
655 }
656
657 /*
658 * Userland access to VGIC registers.
659 */
660 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
661 bool is_write, int offset, u32 *val)
662 {
663 if (is_write)
664 return vgic_uaccess_write(vcpu, &dev->dev, offset, val);
665 else
666 return vgic_uaccess_read(vcpu, &dev->dev, offset, val);
667 }
668
669 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
670 gpa_t addr, int len, void *val)
671 {
672 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
673 const struct vgic_register_region *region;
674 unsigned long data = 0;
675
676 region = vgic_get_mmio_region(vcpu, iodev, addr, len);
677 if (!region) {
678 memset(val, 0, len);
679 return 0;
680 }
681
682 switch (iodev->iodev_type) {
683 case IODEV_CPUIF:
684 data = region->read(vcpu, addr, len);
685 break;
686 case IODEV_DIST:
687 data = region->read(vcpu, addr, len);
688 break;
689 case IODEV_REDIST:
690 data = region->read(iodev->redist_vcpu, addr, len);
691 break;
692 case IODEV_ITS:
693 data = region->its_read(vcpu->kvm, iodev->its, addr, len);
694 break;
695 }
696
697 vgic_data_host_to_mmio_bus(val, len, data);
698 return 0;
699 }
700
701 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
702 gpa_t addr, int len, const void *val)
703 {
704 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
705 const struct vgic_register_region *region;
706 unsigned long data = vgic_data_mmio_bus_to_host(val, len);
707
708 region = vgic_get_mmio_region(vcpu, iodev, addr, len);
709 if (!region)
710 return 0;
711
712 switch (iodev->iodev_type) {
713 case IODEV_CPUIF:
714 region->write(vcpu, addr, len, data);
715 break;
716 case IODEV_DIST:
717 region->write(vcpu, addr, len, data);
718 break;
719 case IODEV_REDIST:
720 region->write(iodev->redist_vcpu, addr, len, data);
721 break;
722 case IODEV_ITS:
723 region->its_write(vcpu->kvm, iodev->its, addr, len, data);
724 break;
725 }
726
727 return 0;
728 }
729
730 struct kvm_io_device_ops kvm_io_gic_ops = {
731 .read = dispatch_mmio_read,
732 .write = dispatch_mmio_write,
733 };
734
735 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
736 enum vgic_type type)
737 {
738 struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
739 int ret = 0;
740 unsigned int len;
741
742 switch (type) {
743 case VGIC_V2:
744 len = vgic_v2_init_dist_iodev(io_device);
745 break;
746 case VGIC_V3:
747 len = vgic_v3_init_dist_iodev(io_device);
748 break;
749 default:
750 BUG_ON(1);
751 }
752
753 io_device->base_addr = dist_base_address;
754 io_device->iodev_type = IODEV_DIST;
755 io_device->redist_vcpu = NULL;
756
757 mutex_lock(&kvm->slots_lock);
758 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
759 len, &io_device->dev);
760 mutex_unlock(&kvm->slots_lock);
761
762 return ret;
763 }