]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/arm/vgic/vgic.c
KVM: arm/arm64: vgic: Don't populate multiple LRs with the same vintid
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / arm / vgic / vgic.c
1 /*
2 * Copyright (C) 2015, 2016 ARM Ltd.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16
17 #include <linux/kvm.h>
18 #include <linux/kvm_host.h>
19 #include <linux/list_sort.h>
20 #include <linux/interrupt.h>
21 #include <linux/irq.h>
22
23 #include "vgic.h"
24
25 #define CREATE_TRACE_POINTS
26 #include "trace.h"
27
28 #ifdef CONFIG_DEBUG_SPINLOCK
29 #define DEBUG_SPINLOCK_BUG_ON(p) BUG_ON(p)
30 #else
31 #define DEBUG_SPINLOCK_BUG_ON(p)
32 #endif
33
34 struct vgic_global kvm_vgic_global_state __ro_after_init = {
35 .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
36 };
37
38 /*
39 * Locking order is always:
40 * kvm->lock (mutex)
41 * its->cmd_lock (mutex)
42 * its->its_lock (mutex)
43 * vgic_cpu->ap_list_lock
44 * kvm->lpi_list_lock
45 * vgic_irq->irq_lock
46 *
47 * If you need to take multiple locks, always take the upper lock first,
48 * then the lower ones, e.g. first take the its_lock, then the irq_lock.
49 * If you are already holding a lock and need to take a higher one, you
50 * have to drop the lower ranking lock first and re-aquire it after having
51 * taken the upper one.
52 *
53 * When taking more than one ap_list_lock at the same time, always take the
54 * lowest numbered VCPU's ap_list_lock first, so:
55 * vcpuX->vcpu_id < vcpuY->vcpu_id:
56 * spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
57 * spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
58 *
59 * Since the VGIC must support injecting virtual interrupts from ISRs, we have
60 * to use the spin_lock_irqsave/spin_unlock_irqrestore versions of outer
61 * spinlocks for any lock that may be taken while injecting an interrupt.
62 */
63
64 /*
65 * Iterate over the VM's list of mapped LPIs to find the one with a
66 * matching interrupt ID and return a reference to the IRQ structure.
67 */
68 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
69 {
70 struct vgic_dist *dist = &kvm->arch.vgic;
71 struct vgic_irq *irq = NULL;
72
73 spin_lock(&dist->lpi_list_lock);
74
75 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
76 if (irq->intid != intid)
77 continue;
78
79 /*
80 * This increases the refcount, the caller is expected to
81 * call vgic_put_irq() later once it's finished with the IRQ.
82 */
83 vgic_get_irq_kref(irq);
84 goto out_unlock;
85 }
86 irq = NULL;
87
88 out_unlock:
89 spin_unlock(&dist->lpi_list_lock);
90
91 return irq;
92 }
93
94 /*
95 * This looks up the virtual interrupt ID to get the corresponding
96 * struct vgic_irq. It also increases the refcount, so any caller is expected
97 * to call vgic_put_irq() once it's finished with this IRQ.
98 */
99 struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
100 u32 intid)
101 {
102 /* SGIs and PPIs */
103 if (intid <= VGIC_MAX_PRIVATE)
104 return &vcpu->arch.vgic_cpu.private_irqs[intid];
105
106 /* SPIs */
107 if (intid <= VGIC_MAX_SPI)
108 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
109
110 /* LPIs */
111 if (intid >= VGIC_MIN_LPI)
112 return vgic_get_lpi(kvm, intid);
113
114 WARN(1, "Looking up struct vgic_irq for reserved INTID");
115 return NULL;
116 }
117
118 /*
119 * We can't do anything in here, because we lack the kvm pointer to
120 * lock and remove the item from the lpi_list. So we keep this function
121 * empty and use the return value of kref_put() to trigger the freeing.
122 */
123 static void vgic_irq_release(struct kref *ref)
124 {
125 }
126
127 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
128 {
129 struct vgic_dist *dist = &kvm->arch.vgic;
130
131 if (irq->intid < VGIC_MIN_LPI)
132 return;
133
134 spin_lock(&dist->lpi_list_lock);
135 if (!kref_put(&irq->refcount, vgic_irq_release)) {
136 spin_unlock(&dist->lpi_list_lock);
137 return;
138 };
139
140 list_del(&irq->lpi_list);
141 dist->lpi_list_count--;
142 spin_unlock(&dist->lpi_list_lock);
143
144 kfree(irq);
145 }
146
147 /**
148 * kvm_vgic_target_oracle - compute the target vcpu for an irq
149 *
150 * @irq: The irq to route. Must be already locked.
151 *
152 * Based on the current state of the interrupt (enabled, pending,
153 * active, vcpu and target_vcpu), compute the next vcpu this should be
154 * given to. Return NULL if this shouldn't be injected at all.
155 *
156 * Requires the IRQ lock to be held.
157 */
158 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
159 {
160 DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));
161
162 /* If the interrupt is active, it must stay on the current vcpu */
163 if (irq->active)
164 return irq->vcpu ? : irq->target_vcpu;
165
166 /*
167 * If the IRQ is not active but enabled and pending, we should direct
168 * it to its configured target VCPU.
169 * If the distributor is disabled, pending interrupts shouldn't be
170 * forwarded.
171 */
172 if (irq->enabled && irq_is_pending(irq)) {
173 if (unlikely(irq->target_vcpu &&
174 !irq->target_vcpu->kvm->arch.vgic.enabled))
175 return NULL;
176
177 return irq->target_vcpu;
178 }
179
180 /* If neither active nor pending and enabled, then this IRQ should not
181 * be queued to any VCPU.
182 */
183 return NULL;
184 }
185
186 /*
187 * The order of items in the ap_lists defines how we'll pack things in LRs as
188 * well, the first items in the list being the first things populated in the
189 * LRs.
190 *
191 * A hard rule is that active interrupts can never be pushed out of the LRs
192 * (and therefore take priority) since we cannot reliably trap on deactivation
193 * of IRQs and therefore they have to be present in the LRs.
194 *
195 * Otherwise things should be sorted by the priority field and the GIC
196 * hardware support will take care of preemption of priority groups etc.
197 *
198 * Return negative if "a" sorts before "b", 0 to preserve order, and positive
199 * to sort "b" before "a".
200 */
201 static int vgic_irq_cmp(void *priv, struct list_head *a, struct list_head *b)
202 {
203 struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
204 struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
205 bool penda, pendb;
206 int ret;
207
208 spin_lock(&irqa->irq_lock);
209 spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
210
211 if (irqa->active || irqb->active) {
212 ret = (int)irqb->active - (int)irqa->active;
213 goto out;
214 }
215
216 penda = irqa->enabled && irq_is_pending(irqa);
217 pendb = irqb->enabled && irq_is_pending(irqb);
218
219 if (!penda || !pendb) {
220 ret = (int)pendb - (int)penda;
221 goto out;
222 }
223
224 /* Both pending and enabled, sort by priority */
225 ret = irqa->priority - irqb->priority;
226 out:
227 spin_unlock(&irqb->irq_lock);
228 spin_unlock(&irqa->irq_lock);
229 return ret;
230 }
231
232 /* Must be called with the ap_list_lock held */
233 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
234 {
235 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
236
237 DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));
238
239 list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
240 }
241
242 /*
243 * Only valid injection if changing level for level-triggered IRQs or for a
244 * rising edge, and in-kernel connected IRQ lines can only be controlled by
245 * their owner.
246 */
247 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
248 {
249 if (irq->owner != owner)
250 return false;
251
252 switch (irq->config) {
253 case VGIC_CONFIG_LEVEL:
254 return irq->line_level != level;
255 case VGIC_CONFIG_EDGE:
256 return level;
257 }
258
259 return false;
260 }
261
262 /*
263 * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
264 * Do the queuing if necessary, taking the right locks in the right order.
265 * Returns true when the IRQ was queued, false otherwise.
266 *
267 * Needs to be entered with the IRQ lock already held, but will return
268 * with all locks dropped.
269 */
270 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
271 unsigned long flags)
272 {
273 struct kvm_vcpu *vcpu;
274
275 DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));
276
277 retry:
278 vcpu = vgic_target_oracle(irq);
279 if (irq->vcpu || !vcpu) {
280 /*
281 * If this IRQ is already on a VCPU's ap_list, then it
282 * cannot be moved or modified and there is no more work for
283 * us to do.
284 *
285 * Otherwise, if the irq is not pending and enabled, it does
286 * not need to be inserted into an ap_list and there is also
287 * no more work for us to do.
288 */
289 spin_unlock_irqrestore(&irq->irq_lock, flags);
290
291 /*
292 * We have to kick the VCPU here, because we could be
293 * queueing an edge-triggered interrupt for which we
294 * get no EOI maintenance interrupt. In that case,
295 * while the IRQ is already on the VCPU's AP list, the
296 * VCPU could have EOI'ed the original interrupt and
297 * won't see this one until it exits for some other
298 * reason.
299 */
300 if (vcpu) {
301 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
302 kvm_vcpu_kick(vcpu);
303 }
304 return false;
305 }
306
307 /*
308 * We must unlock the irq lock to take the ap_list_lock where
309 * we are going to insert this new pending interrupt.
310 */
311 spin_unlock_irqrestore(&irq->irq_lock, flags);
312
313 /* someone can do stuff here, which we re-check below */
314
315 spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
316 spin_lock(&irq->irq_lock);
317
318 /*
319 * Did something change behind our backs?
320 *
321 * There are two cases:
322 * 1) The irq lost its pending state or was disabled behind our
323 * backs and/or it was queued to another VCPU's ap_list.
324 * 2) Someone changed the affinity on this irq behind our
325 * backs and we are now holding the wrong ap_list_lock.
326 *
327 * In both cases, drop the locks and retry.
328 */
329
330 if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
331 spin_unlock(&irq->irq_lock);
332 spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
333
334 spin_lock_irqsave(&irq->irq_lock, flags);
335 goto retry;
336 }
337
338 /*
339 * Grab a reference to the irq to reflect the fact that it is
340 * now in the ap_list.
341 */
342 vgic_get_irq_kref(irq);
343 list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
344 irq->vcpu = vcpu;
345
346 spin_unlock(&irq->irq_lock);
347 spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
348
349 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
350 kvm_vcpu_kick(vcpu);
351
352 return true;
353 }
354
355 /**
356 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
357 * @kvm: The VM structure pointer
358 * @cpuid: The CPU for PPIs
359 * @intid: The INTID to inject a new state to.
360 * @level: Edge-triggered: true: to trigger the interrupt
361 * false: to ignore the call
362 * Level-sensitive true: raise the input signal
363 * false: lower the input signal
364 * @owner: The opaque pointer to the owner of the IRQ being raised to verify
365 * that the caller is allowed to inject this IRQ. Userspace
366 * injections will have owner == NULL.
367 *
368 * The VGIC is not concerned with devices being active-LOW or active-HIGH for
369 * level-sensitive interrupts. You can think of the level parameter as 1
370 * being HIGH and 0 being LOW and all devices being active-HIGH.
371 */
372 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
373 bool level, void *owner)
374 {
375 struct kvm_vcpu *vcpu;
376 struct vgic_irq *irq;
377 unsigned long flags;
378 int ret;
379
380 trace_vgic_update_irq_pending(cpuid, intid, level);
381
382 ret = vgic_lazy_init(kvm);
383 if (ret)
384 return ret;
385
386 vcpu = kvm_get_vcpu(kvm, cpuid);
387 if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
388 return -EINVAL;
389
390 irq = vgic_get_irq(kvm, vcpu, intid);
391 if (!irq)
392 return -EINVAL;
393
394 spin_lock_irqsave(&irq->irq_lock, flags);
395
396 if (!vgic_validate_injection(irq, level, owner)) {
397 /* Nothing to see here, move along... */
398 spin_unlock_irqrestore(&irq->irq_lock, flags);
399 vgic_put_irq(kvm, irq);
400 return 0;
401 }
402
403 if (irq->config == VGIC_CONFIG_LEVEL)
404 irq->line_level = level;
405 else
406 irq->pending_latch = true;
407
408 vgic_queue_irq_unlock(kvm, irq, flags);
409 vgic_put_irq(kvm, irq);
410
411 return 0;
412 }
413
414 /* @irq->irq_lock must be held */
415 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
416 unsigned int host_irq)
417 {
418 struct irq_desc *desc;
419 struct irq_data *data;
420
421 /*
422 * Find the physical IRQ number corresponding to @host_irq
423 */
424 desc = irq_to_desc(host_irq);
425 if (!desc) {
426 kvm_err("%s: no interrupt descriptor\n", __func__);
427 return -EINVAL;
428 }
429 data = irq_desc_get_irq_data(desc);
430 while (data->parent_data)
431 data = data->parent_data;
432
433 irq->hw = true;
434 irq->host_irq = host_irq;
435 irq->hwintid = data->hwirq;
436 return 0;
437 }
438
439 /* @irq->irq_lock must be held */
440 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
441 {
442 irq->hw = false;
443 irq->hwintid = 0;
444 }
445
446 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
447 u32 vintid)
448 {
449 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
450 unsigned long flags;
451 int ret;
452
453 BUG_ON(!irq);
454
455 spin_lock_irqsave(&irq->irq_lock, flags);
456 ret = kvm_vgic_map_irq(vcpu, irq, host_irq);
457 spin_unlock_irqrestore(&irq->irq_lock, flags);
458 vgic_put_irq(vcpu->kvm, irq);
459
460 return ret;
461 }
462
463 /**
464 * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
465 * @vcpu: The VCPU pointer
466 * @vintid: The INTID of the interrupt
467 *
468 * Reset the active and pending states of a mapped interrupt. Kernel
469 * subsystems injecting mapped interrupts should reset their interrupt lines
470 * when we are doing a reset of the VM.
471 */
472 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
473 {
474 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
475 unsigned long flags;
476
477 if (!irq->hw)
478 goto out;
479
480 spin_lock_irqsave(&irq->irq_lock, flags);
481 irq->active = false;
482 irq->pending_latch = false;
483 irq->line_level = false;
484 spin_unlock_irqrestore(&irq->irq_lock, flags);
485 out:
486 vgic_put_irq(vcpu->kvm, irq);
487 }
488
489 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
490 {
491 struct vgic_irq *irq;
492 unsigned long flags;
493
494 if (!vgic_initialized(vcpu->kvm))
495 return -EAGAIN;
496
497 irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
498 BUG_ON(!irq);
499
500 spin_lock_irqsave(&irq->irq_lock, flags);
501 kvm_vgic_unmap_irq(irq);
502 spin_unlock_irqrestore(&irq->irq_lock, flags);
503 vgic_put_irq(vcpu->kvm, irq);
504
505 return 0;
506 }
507
508 /**
509 * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
510 *
511 * @vcpu: Pointer to the VCPU (used for PPIs)
512 * @intid: The virtual INTID identifying the interrupt (PPI or SPI)
513 * @owner: Opaque pointer to the owner
514 *
515 * Returns 0 if intid is not already used by another in-kernel device and the
516 * owner is set, otherwise returns an error code.
517 */
518 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
519 {
520 struct vgic_irq *irq;
521 unsigned long flags;
522 int ret = 0;
523
524 if (!vgic_initialized(vcpu->kvm))
525 return -EAGAIN;
526
527 /* SGIs and LPIs cannot be wired up to any device */
528 if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
529 return -EINVAL;
530
531 irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
532 spin_lock_irqsave(&irq->irq_lock, flags);
533 if (irq->owner && irq->owner != owner)
534 ret = -EEXIST;
535 else
536 irq->owner = owner;
537 spin_unlock_irqrestore(&irq->irq_lock, flags);
538
539 return ret;
540 }
541
542 /**
543 * vgic_prune_ap_list - Remove non-relevant interrupts from the list
544 *
545 * @vcpu: The VCPU pointer
546 *
547 * Go over the list of "interesting" interrupts, and prune those that we
548 * won't have to consider in the near future.
549 */
550 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
551 {
552 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
553 struct vgic_irq *irq, *tmp;
554 unsigned long flags;
555
556 retry:
557 spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
558
559 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
560 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
561
562 spin_lock(&irq->irq_lock);
563
564 BUG_ON(vcpu != irq->vcpu);
565
566 target_vcpu = vgic_target_oracle(irq);
567
568 if (!target_vcpu) {
569 /*
570 * We don't need to process this interrupt any
571 * further, move it off the list.
572 */
573 list_del(&irq->ap_list);
574 irq->vcpu = NULL;
575 spin_unlock(&irq->irq_lock);
576
577 /*
578 * This vgic_put_irq call matches the
579 * vgic_get_irq_kref in vgic_queue_irq_unlock,
580 * where we added the LPI to the ap_list. As
581 * we remove the irq from the list, we drop
582 * also drop the refcount.
583 */
584 vgic_put_irq(vcpu->kvm, irq);
585 continue;
586 }
587
588 if (target_vcpu == vcpu) {
589 /* We're on the right CPU */
590 spin_unlock(&irq->irq_lock);
591 continue;
592 }
593
594 /* This interrupt looks like it has to be migrated. */
595
596 spin_unlock(&irq->irq_lock);
597 spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
598
599 /*
600 * Ensure locking order by always locking the smallest
601 * ID first.
602 */
603 if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
604 vcpuA = vcpu;
605 vcpuB = target_vcpu;
606 } else {
607 vcpuA = target_vcpu;
608 vcpuB = vcpu;
609 }
610
611 spin_lock_irqsave(&vcpuA->arch.vgic_cpu.ap_list_lock, flags);
612 spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
613 SINGLE_DEPTH_NESTING);
614 spin_lock(&irq->irq_lock);
615
616 /*
617 * If the affinity has been preserved, move the
618 * interrupt around. Otherwise, it means things have
619 * changed while the interrupt was unlocked, and we
620 * need to replay this.
621 *
622 * In all cases, we cannot trust the list not to have
623 * changed, so we restart from the beginning.
624 */
625 if (target_vcpu == vgic_target_oracle(irq)) {
626 struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
627
628 list_del(&irq->ap_list);
629 irq->vcpu = target_vcpu;
630 list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
631 }
632
633 spin_unlock(&irq->irq_lock);
634 spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
635 spin_unlock_irqrestore(&vcpuA->arch.vgic_cpu.ap_list_lock, flags);
636 goto retry;
637 }
638
639 spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
640 }
641
642 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
643 {
644 if (kvm_vgic_global_state.type == VGIC_V2)
645 vgic_v2_fold_lr_state(vcpu);
646 else
647 vgic_v3_fold_lr_state(vcpu);
648 }
649
650 /* Requires the irq_lock to be held. */
651 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
652 struct vgic_irq *irq, int lr)
653 {
654 DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));
655
656 if (kvm_vgic_global_state.type == VGIC_V2)
657 vgic_v2_populate_lr(vcpu, irq, lr);
658 else
659 vgic_v3_populate_lr(vcpu, irq, lr);
660 }
661
662 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
663 {
664 if (kvm_vgic_global_state.type == VGIC_V2)
665 vgic_v2_clear_lr(vcpu, lr);
666 else
667 vgic_v3_clear_lr(vcpu, lr);
668 }
669
670 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
671 {
672 if (kvm_vgic_global_state.type == VGIC_V2)
673 vgic_v2_set_underflow(vcpu);
674 else
675 vgic_v3_set_underflow(vcpu);
676 }
677
678 static inline void vgic_set_npie(struct kvm_vcpu *vcpu)
679 {
680 if (kvm_vgic_global_state.type == VGIC_V2)
681 vgic_v2_set_npie(vcpu);
682 else
683 vgic_v3_set_npie(vcpu);
684 }
685
686 /* Requires the ap_list_lock to be held. */
687 static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
688 bool *multi_sgi)
689 {
690 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
691 struct vgic_irq *irq;
692 int count = 0;
693
694 *multi_sgi = false;
695
696 DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));
697
698 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
699 spin_lock(&irq->irq_lock);
700 /* GICv2 SGIs can count for more than one... */
701 if (vgic_irq_is_sgi(irq->intid) && irq->source) {
702 int w = hweight8(irq->source);
703
704 count += w;
705 *multi_sgi |= (w > 1);
706 } else {
707 count++;
708 }
709 spin_unlock(&irq->irq_lock);
710 }
711 return count;
712 }
713
714 /* Requires the VCPU's ap_list_lock to be held. */
715 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
716 {
717 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
718 struct vgic_irq *irq;
719 int count;
720 bool npie = false;
721 bool multi_sgi;
722 u8 prio = 0xff;
723
724 DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));
725
726 count = compute_ap_list_depth(vcpu, &multi_sgi);
727 if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
728 vgic_sort_ap_list(vcpu);
729
730 count = 0;
731
732 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
733 spin_lock(&irq->irq_lock);
734
735 /*
736 * If we have multi-SGIs in the pipeline, we need to
737 * guarantee that they are all seen before any IRQ of
738 * lower priority. In that case, we need to filter out
739 * these interrupts by exiting early. This is easy as
740 * the AP list has been sorted already.
741 */
742 if (multi_sgi && irq->priority > prio) {
743 spin_unlock(&irq->irq_lock);
744 break;
745 }
746
747 if (likely(vgic_target_oracle(irq) == vcpu)) {
748 vgic_populate_lr(vcpu, irq, count++);
749
750 if (irq->source) {
751 npie = true;
752 prio = irq->priority;
753 }
754 }
755
756 spin_unlock(&irq->irq_lock);
757
758 if (count == kvm_vgic_global_state.nr_lr) {
759 if (!list_is_last(&irq->ap_list,
760 &vgic_cpu->ap_list_head))
761 vgic_set_underflow(vcpu);
762 break;
763 }
764 }
765
766 if (npie)
767 vgic_set_npie(vcpu);
768
769 vcpu->arch.vgic_cpu.used_lrs = count;
770
771 /* Nuke remaining LRs */
772 for ( ; count < kvm_vgic_global_state.nr_lr; count++)
773 vgic_clear_lr(vcpu, count);
774 }
775
776 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
777 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
778 {
779 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
780
781 WARN_ON(vgic_v4_sync_hwstate(vcpu));
782
783 /* An empty ap_list_head implies used_lrs == 0 */
784 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
785 return;
786
787 if (vgic_cpu->used_lrs)
788 vgic_fold_lr_state(vcpu);
789 vgic_prune_ap_list(vcpu);
790 }
791
792 /* Flush our emulation state into the GIC hardware before entering the guest. */
793 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
794 {
795 WARN_ON(vgic_v4_flush_hwstate(vcpu));
796
797 /*
798 * If there are no virtual interrupts active or pending for this
799 * VCPU, then there is no work to do and we can bail out without
800 * taking any lock. There is a potential race with someone injecting
801 * interrupts to the VCPU, but it is a benign race as the VCPU will
802 * either observe the new interrupt before or after doing this check,
803 * and introducing additional synchronization mechanism doesn't change
804 * this.
805 */
806 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
807 return;
808
809 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
810
811 spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
812 vgic_flush_lr_state(vcpu);
813 spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
814 }
815
816 void kvm_vgic_load(struct kvm_vcpu *vcpu)
817 {
818 if (unlikely(!vgic_initialized(vcpu->kvm)))
819 return;
820
821 if (kvm_vgic_global_state.type == VGIC_V2)
822 vgic_v2_load(vcpu);
823 else
824 vgic_v3_load(vcpu);
825 }
826
827 void kvm_vgic_put(struct kvm_vcpu *vcpu)
828 {
829 if (unlikely(!vgic_initialized(vcpu->kvm)))
830 return;
831
832 if (kvm_vgic_global_state.type == VGIC_V2)
833 vgic_v2_put(vcpu);
834 else
835 vgic_v3_put(vcpu);
836 }
837
838 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
839 {
840 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
841 struct vgic_irq *irq;
842 bool pending = false;
843 unsigned long flags;
844
845 if (!vcpu->kvm->arch.vgic.enabled)
846 return false;
847
848 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
849 return true;
850
851 spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
852
853 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
854 spin_lock(&irq->irq_lock);
855 pending = irq_is_pending(irq) && irq->enabled;
856 spin_unlock(&irq->irq_lock);
857
858 if (pending)
859 break;
860 }
861
862 spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
863
864 return pending;
865 }
866
867 void vgic_kick_vcpus(struct kvm *kvm)
868 {
869 struct kvm_vcpu *vcpu;
870 int c;
871
872 /*
873 * We've injected an interrupt, time to find out who deserves
874 * a good kick...
875 */
876 kvm_for_each_vcpu(c, vcpu, kvm) {
877 if (kvm_vgic_vcpu_pending_irq(vcpu)) {
878 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
879 kvm_vcpu_kick(vcpu);
880 }
881 }
882 }
883
884 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
885 {
886 struct vgic_irq *irq;
887 bool map_is_active;
888 unsigned long flags;
889
890 if (!vgic_initialized(vcpu->kvm))
891 return false;
892
893 irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
894 spin_lock_irqsave(&irq->irq_lock, flags);
895 map_is_active = irq->hw && irq->active;
896 spin_unlock_irqrestore(&irq->irq_lock, flags);
897 vgic_put_irq(vcpu->kvm, irq);
898
899 return map_is_active;
900 }
901