]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/arm/vgic-v2-emul.c
Merge branch 'linux-4.6' of git://github.com/skeggsb/linux into drm-fixes
[mirror_ubuntu-artful-kernel.git] / virt / kvm / arm / vgic-v2-emul.c
1 /*
2 * Contains GICv2 specific emulation code, was in vgic.c before.
3 *
4 * Copyright (C) 2012 ARM Ltd.
5 * Author: Marc Zyngier <marc.zyngier@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/cpu.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/uaccess.h>
26
27 #include <linux/irqchip/arm-gic.h>
28
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_arm.h>
31 #include <asm/kvm_mmu.h>
32
33 #include "vgic.h"
34
35 #define GICC_ARCH_VERSION_V2 0x2
36
37 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
38 static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi)
39 {
40 return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi;
41 }
42
43 static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
44 struct kvm_exit_mmio *mmio, phys_addr_t offset)
45 {
46 u32 reg;
47 u32 word_offset = offset & 3;
48
49 switch (offset & ~3) {
50 case 0: /* GICD_CTLR */
51 reg = vcpu->kvm->arch.vgic.enabled;
52 vgic_reg_access(mmio, &reg, word_offset,
53 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
54 if (mmio->is_write) {
55 vcpu->kvm->arch.vgic.enabled = reg & 1;
56 vgic_update_state(vcpu->kvm);
57 return true;
58 }
59 break;
60
61 case 4: /* GICD_TYPER */
62 reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
63 reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1;
64 vgic_reg_access(mmio, &reg, word_offset,
65 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
66 break;
67
68 case 8: /* GICD_IIDR */
69 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
70 vgic_reg_access(mmio, &reg, word_offset,
71 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
72 break;
73 }
74
75 return false;
76 }
77
78 static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
79 struct kvm_exit_mmio *mmio,
80 phys_addr_t offset)
81 {
82 return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
83 vcpu->vcpu_id, ACCESS_WRITE_SETBIT);
84 }
85
86 static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
87 struct kvm_exit_mmio *mmio,
88 phys_addr_t offset)
89 {
90 return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
91 vcpu->vcpu_id, ACCESS_WRITE_CLEARBIT);
92 }
93
94 static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
95 struct kvm_exit_mmio *mmio,
96 phys_addr_t offset)
97 {
98 return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
99 vcpu->vcpu_id);
100 }
101
102 static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
103 struct kvm_exit_mmio *mmio,
104 phys_addr_t offset)
105 {
106 return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
107 vcpu->vcpu_id);
108 }
109
110 static bool handle_mmio_set_active_reg(struct kvm_vcpu *vcpu,
111 struct kvm_exit_mmio *mmio,
112 phys_addr_t offset)
113 {
114 return vgic_handle_set_active_reg(vcpu->kvm, mmio, offset,
115 vcpu->vcpu_id);
116 }
117
118 static bool handle_mmio_clear_active_reg(struct kvm_vcpu *vcpu,
119 struct kvm_exit_mmio *mmio,
120 phys_addr_t offset)
121 {
122 return vgic_handle_clear_active_reg(vcpu->kvm, mmio, offset,
123 vcpu->vcpu_id);
124 }
125
126 static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
127 struct kvm_exit_mmio *mmio,
128 phys_addr_t offset)
129 {
130 u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
131 vcpu->vcpu_id, offset);
132 vgic_reg_access(mmio, reg, offset,
133 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
134 return false;
135 }
136
137 #define GICD_ITARGETSR_SIZE 32
138 #define GICD_CPUTARGETS_BITS 8
139 #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
140 static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
141 {
142 struct vgic_dist *dist = &kvm->arch.vgic;
143 int i;
144 u32 val = 0;
145
146 irq -= VGIC_NR_PRIVATE_IRQS;
147
148 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
149 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
150
151 return val;
152 }
153
154 static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
155 {
156 struct vgic_dist *dist = &kvm->arch.vgic;
157 struct kvm_vcpu *vcpu;
158 int i, c;
159 unsigned long *bmap;
160 u32 target;
161
162 irq -= VGIC_NR_PRIVATE_IRQS;
163
164 /*
165 * Pick the LSB in each byte. This ensures we target exactly
166 * one vcpu per IRQ. If the byte is null, assume we target
167 * CPU0.
168 */
169 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
170 int shift = i * GICD_CPUTARGETS_BITS;
171
172 target = ffs((val >> shift) & 0xffU);
173 target = target ? (target - 1) : 0;
174 dist->irq_spi_cpu[irq + i] = target;
175 kvm_for_each_vcpu(c, vcpu, kvm) {
176 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
177 if (c == target)
178 set_bit(irq + i, bmap);
179 else
180 clear_bit(irq + i, bmap);
181 }
182 }
183 }
184
185 static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
186 struct kvm_exit_mmio *mmio,
187 phys_addr_t offset)
188 {
189 u32 reg;
190
191 /* We treat the banked interrupts targets as read-only */
192 if (offset < 32) {
193 u32 roreg;
194
195 roreg = 1 << vcpu->vcpu_id;
196 roreg |= roreg << 8;
197 roreg |= roreg << 16;
198
199 vgic_reg_access(mmio, &roreg, offset,
200 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
201 return false;
202 }
203
204 reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
205 vgic_reg_access(mmio, &reg, offset,
206 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
207 if (mmio->is_write) {
208 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
209 vgic_update_state(vcpu->kvm);
210 return true;
211 }
212
213 return false;
214 }
215
216 static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
217 struct kvm_exit_mmio *mmio, phys_addr_t offset)
218 {
219 u32 *reg;
220
221 reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
222 vcpu->vcpu_id, offset >> 1);
223
224 return vgic_handle_cfg_reg(reg, mmio, offset);
225 }
226
227 static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
228 struct kvm_exit_mmio *mmio, phys_addr_t offset)
229 {
230 u32 reg;
231
232 vgic_reg_access(mmio, &reg, offset,
233 ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
234 if (mmio->is_write) {
235 vgic_dispatch_sgi(vcpu, reg);
236 vgic_update_state(vcpu->kvm);
237 return true;
238 }
239
240 return false;
241 }
242
243 /* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
244 static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
245 struct kvm_exit_mmio *mmio,
246 phys_addr_t offset)
247 {
248 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
249 int sgi;
250 int min_sgi = (offset & ~0x3);
251 int max_sgi = min_sgi + 3;
252 int vcpu_id = vcpu->vcpu_id;
253 u32 reg = 0;
254
255 /* Copy source SGIs from distributor side */
256 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
257 u8 sources = *vgic_get_sgi_sources(dist, vcpu_id, sgi);
258
259 reg |= ((u32)sources) << (8 * (sgi - min_sgi));
260 }
261
262 mmio_data_write(mmio, ~0, reg);
263 return false;
264 }
265
266 static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
267 struct kvm_exit_mmio *mmio,
268 phys_addr_t offset, bool set)
269 {
270 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
271 int sgi;
272 int min_sgi = (offset & ~0x3);
273 int max_sgi = min_sgi + 3;
274 int vcpu_id = vcpu->vcpu_id;
275 u32 reg;
276 bool updated = false;
277
278 reg = mmio_data_read(mmio, ~0);
279
280 /* Clear pending SGIs on the distributor */
281 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
282 u8 mask = reg >> (8 * (sgi - min_sgi));
283 u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi);
284
285 if (set) {
286 if ((*src & mask) != mask)
287 updated = true;
288 *src |= mask;
289 } else {
290 if (*src & mask)
291 updated = true;
292 *src &= ~mask;
293 }
294 }
295
296 if (updated)
297 vgic_update_state(vcpu->kvm);
298
299 return updated;
300 }
301
302 static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
303 struct kvm_exit_mmio *mmio,
304 phys_addr_t offset)
305 {
306 if (!mmio->is_write)
307 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
308 else
309 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
310 }
311
312 static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
313 struct kvm_exit_mmio *mmio,
314 phys_addr_t offset)
315 {
316 if (!mmio->is_write)
317 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
318 else
319 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
320 }
321
322 static const struct vgic_io_range vgic_dist_ranges[] = {
323 {
324 .base = GIC_DIST_SOFTINT,
325 .len = 4,
326 .handle_mmio = handle_mmio_sgi_reg,
327 },
328 {
329 .base = GIC_DIST_CTRL,
330 .len = 12,
331 .bits_per_irq = 0,
332 .handle_mmio = handle_mmio_misc,
333 },
334 {
335 .base = GIC_DIST_IGROUP,
336 .len = VGIC_MAX_IRQS / 8,
337 .bits_per_irq = 1,
338 .handle_mmio = handle_mmio_raz_wi,
339 },
340 {
341 .base = GIC_DIST_ENABLE_SET,
342 .len = VGIC_MAX_IRQS / 8,
343 .bits_per_irq = 1,
344 .handle_mmio = handle_mmio_set_enable_reg,
345 },
346 {
347 .base = GIC_DIST_ENABLE_CLEAR,
348 .len = VGIC_MAX_IRQS / 8,
349 .bits_per_irq = 1,
350 .handle_mmio = handle_mmio_clear_enable_reg,
351 },
352 {
353 .base = GIC_DIST_PENDING_SET,
354 .len = VGIC_MAX_IRQS / 8,
355 .bits_per_irq = 1,
356 .handle_mmio = handle_mmio_set_pending_reg,
357 },
358 {
359 .base = GIC_DIST_PENDING_CLEAR,
360 .len = VGIC_MAX_IRQS / 8,
361 .bits_per_irq = 1,
362 .handle_mmio = handle_mmio_clear_pending_reg,
363 },
364 {
365 .base = GIC_DIST_ACTIVE_SET,
366 .len = VGIC_MAX_IRQS / 8,
367 .bits_per_irq = 1,
368 .handle_mmio = handle_mmio_set_active_reg,
369 },
370 {
371 .base = GIC_DIST_ACTIVE_CLEAR,
372 .len = VGIC_MAX_IRQS / 8,
373 .bits_per_irq = 1,
374 .handle_mmio = handle_mmio_clear_active_reg,
375 },
376 {
377 .base = GIC_DIST_PRI,
378 .len = VGIC_MAX_IRQS,
379 .bits_per_irq = 8,
380 .handle_mmio = handle_mmio_priority_reg,
381 },
382 {
383 .base = GIC_DIST_TARGET,
384 .len = VGIC_MAX_IRQS,
385 .bits_per_irq = 8,
386 .handle_mmio = handle_mmio_target_reg,
387 },
388 {
389 .base = GIC_DIST_CONFIG,
390 .len = VGIC_MAX_IRQS / 4,
391 .bits_per_irq = 2,
392 .handle_mmio = handle_mmio_cfg_reg,
393 },
394 {
395 .base = GIC_DIST_SGI_PENDING_CLEAR,
396 .len = VGIC_NR_SGIS,
397 .handle_mmio = handle_mmio_sgi_clear,
398 },
399 {
400 .base = GIC_DIST_SGI_PENDING_SET,
401 .len = VGIC_NR_SGIS,
402 .handle_mmio = handle_mmio_sgi_set,
403 },
404 {}
405 };
406
407 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
408 {
409 struct kvm *kvm = vcpu->kvm;
410 struct vgic_dist *dist = &kvm->arch.vgic;
411 int nrcpus = atomic_read(&kvm->online_vcpus);
412 u8 target_cpus;
413 int sgi, mode, c, vcpu_id;
414
415 vcpu_id = vcpu->vcpu_id;
416
417 sgi = reg & 0xf;
418 target_cpus = (reg >> 16) & 0xff;
419 mode = (reg >> 24) & 3;
420
421 switch (mode) {
422 case 0:
423 if (!target_cpus)
424 return;
425 break;
426
427 case 1:
428 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
429 break;
430
431 case 2:
432 target_cpus = 1 << vcpu_id;
433 break;
434 }
435
436 kvm_for_each_vcpu(c, vcpu, kvm) {
437 if (target_cpus & 1) {
438 /* Flag the SGI as pending */
439 vgic_dist_irq_set_pending(vcpu, sgi);
440 *vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id;
441 kvm_debug("SGI%d from CPU%d to CPU%d\n",
442 sgi, vcpu_id, c);
443 }
444
445 target_cpus >>= 1;
446 }
447 }
448
449 static bool vgic_v2_queue_sgi(struct kvm_vcpu *vcpu, int irq)
450 {
451 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
452 unsigned long sources;
453 int vcpu_id = vcpu->vcpu_id;
454 int c;
455
456 sources = *vgic_get_sgi_sources(dist, vcpu_id, irq);
457
458 for_each_set_bit(c, &sources, dist->nr_cpus) {
459 if (vgic_queue_irq(vcpu, c, irq))
460 clear_bit(c, &sources);
461 }
462
463 *vgic_get_sgi_sources(dist, vcpu_id, irq) = sources;
464
465 /*
466 * If the sources bitmap has been cleared it means that we
467 * could queue all the SGIs onto link registers (see the
468 * clear_bit above), and therefore we are done with them in
469 * our emulated gic and can get rid of them.
470 */
471 if (!sources) {
472 vgic_dist_irq_clear_pending(vcpu, irq);
473 vgic_cpu_irq_clear(vcpu, irq);
474 return true;
475 }
476
477 return false;
478 }
479
480 /**
481 * kvm_vgic_map_resources - Configure global VGIC state before running any VCPUs
482 * @kvm: pointer to the kvm struct
483 *
484 * Map the virtual CPU interface into the VM before running any VCPUs. We
485 * can't do this at creation time, because user space must first set the
486 * virtual CPU interface address in the guest physical address space.
487 */
488 static int vgic_v2_map_resources(struct kvm *kvm,
489 const struct vgic_params *params)
490 {
491 struct vgic_dist *dist = &kvm->arch.vgic;
492 int ret = 0;
493
494 if (!irqchip_in_kernel(kvm))
495 return 0;
496
497 mutex_lock(&kvm->lock);
498
499 if (vgic_ready(kvm))
500 goto out;
501
502 if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
503 IS_VGIC_ADDR_UNDEF(dist->vgic_cpu_base)) {
504 kvm_err("Need to set vgic cpu and dist addresses first\n");
505 ret = -ENXIO;
506 goto out;
507 }
508
509 vgic_register_kvm_io_dev(kvm, dist->vgic_dist_base,
510 KVM_VGIC_V2_DIST_SIZE,
511 vgic_dist_ranges, -1, &dist->dist_iodev);
512
513 /*
514 * Initialize the vgic if this hasn't already been done on demand by
515 * accessing the vgic state from userspace.
516 */
517 ret = vgic_init(kvm);
518 if (ret) {
519 kvm_err("Unable to allocate maps\n");
520 goto out_unregister;
521 }
522
523 ret = kvm_phys_addr_ioremap(kvm, dist->vgic_cpu_base,
524 params->vcpu_base, KVM_VGIC_V2_CPU_SIZE,
525 true);
526 if (ret) {
527 kvm_err("Unable to remap VGIC CPU to VCPU\n");
528 goto out_unregister;
529 }
530
531 dist->ready = true;
532 goto out;
533
534 out_unregister:
535 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, &dist->dist_iodev.dev);
536
537 out:
538 if (ret)
539 kvm_vgic_destroy(kvm);
540 mutex_unlock(&kvm->lock);
541 return ret;
542 }
543
544 static void vgic_v2_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
545 {
546 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
547
548 *vgic_get_sgi_sources(dist, vcpu->vcpu_id, irq) |= 1 << source;
549 }
550
551 static int vgic_v2_init_model(struct kvm *kvm)
552 {
553 int i;
554
555 for (i = VGIC_NR_PRIVATE_IRQS; i < kvm->arch.vgic.nr_irqs; i += 4)
556 vgic_set_target_reg(kvm, 0, i);
557
558 return 0;
559 }
560
561 void vgic_v2_init_emulation(struct kvm *kvm)
562 {
563 struct vgic_dist *dist = &kvm->arch.vgic;
564
565 dist->vm_ops.queue_sgi = vgic_v2_queue_sgi;
566 dist->vm_ops.add_sgi_source = vgic_v2_add_sgi_source;
567 dist->vm_ops.init_model = vgic_v2_init_model;
568 dist->vm_ops.map_resources = vgic_v2_map_resources;
569
570 kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS;
571 }
572
573 static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
574 struct kvm_exit_mmio *mmio, phys_addr_t offset)
575 {
576 bool updated = false;
577 struct vgic_vmcr vmcr;
578 u32 *vmcr_field;
579 u32 reg;
580
581 vgic_get_vmcr(vcpu, &vmcr);
582
583 switch (offset & ~0x3) {
584 case GIC_CPU_CTRL:
585 vmcr_field = &vmcr.ctlr;
586 break;
587 case GIC_CPU_PRIMASK:
588 vmcr_field = &vmcr.pmr;
589 break;
590 case GIC_CPU_BINPOINT:
591 vmcr_field = &vmcr.bpr;
592 break;
593 case GIC_CPU_ALIAS_BINPOINT:
594 vmcr_field = &vmcr.abpr;
595 break;
596 default:
597 BUG();
598 }
599
600 if (!mmio->is_write) {
601 reg = *vmcr_field;
602 mmio_data_write(mmio, ~0, reg);
603 } else {
604 reg = mmio_data_read(mmio, ~0);
605 if (reg != *vmcr_field) {
606 *vmcr_field = reg;
607 vgic_set_vmcr(vcpu, &vmcr);
608 updated = true;
609 }
610 }
611 return updated;
612 }
613
614 static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
615 struct kvm_exit_mmio *mmio, phys_addr_t offset)
616 {
617 return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
618 }
619
620 static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
621 struct kvm_exit_mmio *mmio,
622 phys_addr_t offset)
623 {
624 u32 reg;
625
626 if (mmio->is_write)
627 return false;
628
629 /* GICC_IIDR */
630 reg = (PRODUCT_ID_KVM << 20) |
631 (GICC_ARCH_VERSION_V2 << 16) |
632 (IMPLEMENTER_ARM << 0);
633 mmio_data_write(mmio, ~0, reg);
634 return false;
635 }
636
637 /*
638 * CPU Interface Register accesses - these are not accessed by the VM, but by
639 * user space for saving and restoring VGIC state.
640 */
641 static const struct vgic_io_range vgic_cpu_ranges[] = {
642 {
643 .base = GIC_CPU_CTRL,
644 .len = 12,
645 .handle_mmio = handle_cpu_mmio_misc,
646 },
647 {
648 .base = GIC_CPU_ALIAS_BINPOINT,
649 .len = 4,
650 .handle_mmio = handle_mmio_abpr,
651 },
652 {
653 .base = GIC_CPU_ACTIVEPRIO,
654 .len = 16,
655 .handle_mmio = handle_mmio_raz_wi,
656 },
657 {
658 .base = GIC_CPU_IDENT,
659 .len = 4,
660 .handle_mmio = handle_cpu_mmio_ident,
661 },
662 };
663
664 static int vgic_attr_regs_access(struct kvm_device *dev,
665 struct kvm_device_attr *attr,
666 u32 *reg, bool is_write)
667 {
668 const struct vgic_io_range *r = NULL, *ranges;
669 phys_addr_t offset;
670 int ret, cpuid, c;
671 struct kvm_vcpu *vcpu, *tmp_vcpu;
672 struct vgic_dist *vgic;
673 struct kvm_exit_mmio mmio;
674 u32 data;
675
676 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
677 cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
678 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
679
680 mutex_lock(&dev->kvm->lock);
681
682 ret = vgic_init(dev->kvm);
683 if (ret)
684 goto out;
685
686 if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
687 ret = -EINVAL;
688 goto out;
689 }
690
691 vcpu = kvm_get_vcpu(dev->kvm, cpuid);
692 vgic = &dev->kvm->arch.vgic;
693
694 mmio.len = 4;
695 mmio.is_write = is_write;
696 mmio.data = &data;
697 if (is_write)
698 mmio_data_write(&mmio, ~0, *reg);
699 switch (attr->group) {
700 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
701 mmio.phys_addr = vgic->vgic_dist_base + offset;
702 ranges = vgic_dist_ranges;
703 break;
704 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
705 mmio.phys_addr = vgic->vgic_cpu_base + offset;
706 ranges = vgic_cpu_ranges;
707 break;
708 default:
709 BUG();
710 }
711 r = vgic_find_range(ranges, 4, offset);
712
713 if (unlikely(!r || !r->handle_mmio)) {
714 ret = -ENXIO;
715 goto out;
716 }
717
718
719 spin_lock(&vgic->lock);
720
721 /*
722 * Ensure that no other VCPU is running by checking the vcpu->cpu
723 * field. If no other VPCUs are running we can safely access the VGIC
724 * state, because even if another VPU is run after this point, that
725 * VCPU will not touch the vgic state, because it will block on
726 * getting the vgic->lock in kvm_vgic_sync_hwstate().
727 */
728 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
729 if (unlikely(tmp_vcpu->cpu != -1)) {
730 ret = -EBUSY;
731 goto out_vgic_unlock;
732 }
733 }
734
735 /*
736 * Move all pending IRQs from the LRs on all VCPUs so the pending
737 * state can be properly represented in the register state accessible
738 * through this API.
739 */
740 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
741 vgic_unqueue_irqs(tmp_vcpu);
742
743 offset -= r->base;
744 r->handle_mmio(vcpu, &mmio, offset);
745
746 if (!is_write)
747 *reg = mmio_data_read(&mmio, ~0);
748
749 ret = 0;
750 out_vgic_unlock:
751 spin_unlock(&vgic->lock);
752 out:
753 mutex_unlock(&dev->kvm->lock);
754 return ret;
755 }
756
757 static int vgic_v2_create(struct kvm_device *dev, u32 type)
758 {
759 return kvm_vgic_create(dev->kvm, type);
760 }
761
762 static void vgic_v2_destroy(struct kvm_device *dev)
763 {
764 kfree(dev);
765 }
766
767 static int vgic_v2_set_attr(struct kvm_device *dev,
768 struct kvm_device_attr *attr)
769 {
770 int ret;
771
772 ret = vgic_set_common_attr(dev, attr);
773 if (ret != -ENXIO)
774 return ret;
775
776 switch (attr->group) {
777 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
778 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
779 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
780 u32 reg;
781
782 if (get_user(reg, uaddr))
783 return -EFAULT;
784
785 return vgic_attr_regs_access(dev, attr, &reg, true);
786 }
787
788 }
789
790 return -ENXIO;
791 }
792
793 static int vgic_v2_get_attr(struct kvm_device *dev,
794 struct kvm_device_attr *attr)
795 {
796 int ret;
797
798 ret = vgic_get_common_attr(dev, attr);
799 if (ret != -ENXIO)
800 return ret;
801
802 switch (attr->group) {
803 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
804 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
805 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
806 u32 reg = 0;
807
808 ret = vgic_attr_regs_access(dev, attr, &reg, false);
809 if (ret)
810 return ret;
811 return put_user(reg, uaddr);
812 }
813
814 }
815
816 return -ENXIO;
817 }
818
819 static int vgic_v2_has_attr(struct kvm_device *dev,
820 struct kvm_device_attr *attr)
821 {
822 phys_addr_t offset;
823
824 switch (attr->group) {
825 case KVM_DEV_ARM_VGIC_GRP_ADDR:
826 switch (attr->attr) {
827 case KVM_VGIC_V2_ADDR_TYPE_DIST:
828 case KVM_VGIC_V2_ADDR_TYPE_CPU:
829 return 0;
830 }
831 break;
832 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
833 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
834 return vgic_has_attr_regs(vgic_dist_ranges, offset);
835 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
836 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
837 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
838 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
839 return 0;
840 case KVM_DEV_ARM_VGIC_GRP_CTRL:
841 switch (attr->attr) {
842 case KVM_DEV_ARM_VGIC_CTRL_INIT:
843 return 0;
844 }
845 }
846 return -ENXIO;
847 }
848
849 struct kvm_device_ops kvm_arm_vgic_v2_ops = {
850 .name = "kvm-arm-vgic-v2",
851 .create = vgic_v2_create,
852 .destroy = vgic_v2_destroy,
853 .set_attr = vgic_v2_set_attr,
854 .get_attr = vgic_v2_get_attr,
855 .has_attr = vgic_v2_has_attr,
856 };