2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/uaccess.h>
29 #include <linux/irqchip/arm-gic.h>
31 #include <asm/kvm_emulate.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_mmu.h>
36 * How the whole thing works (courtesy of Christoffer Dall):
38 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39 * something is pending on the CPU interface.
40 * - Interrupts that are pending on the distributor are stored on the
41 * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
42 * ioctls and guest mmio ops, and other in-kernel peripherals such as the
44 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
46 * - To calculate the oracle, we need info for each cpu from
47 * compute_pending_for_cpu, which considers:
48 * - PPI: dist->irq_pending & dist->irq_enable
49 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
50 * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
51 * registers, stored on each vcpu. We only keep one bit of
52 * information per interrupt, making sure that only one vcpu can
53 * accept the interrupt.
54 * - If any of the above state changes, we must recalculate the oracle.
55 * - The same is true when injecting an interrupt, except that we only
56 * consider a single interrupt at a time. The irq_spi_cpu array
57 * contains the target CPU for each SPI.
59 * The handling of level interrupts adds some extra complexity. We
60 * need to track when the interrupt has been EOIed, so we can sample
61 * the 'line' again. This is achieved as such:
63 * - When a level interrupt is moved onto a vcpu, the corresponding
64 * bit in irq_queued is set. As long as this bit is set, the line
65 * will be ignored for further interrupts. The interrupt is injected
66 * into the vcpu with the GICH_LR_EOI bit set (generate a
67 * maintenance interrupt on EOI).
68 * - When the interrupt is EOIed, the maintenance interrupt fires,
69 * and clears the corresponding bit in irq_queued. This allows the
70 * interrupt line to be sampled again.
71 * - Note that level-triggered interrupts can also be set to pending from
72 * writes to GICD_ISPENDRn and lowering the external input line does not
73 * cause the interrupt to become inactive in such a situation.
74 * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
75 * inactive as long as the external input line is held high.
78 #define VGIC_ADDR_UNDEF (-1)
79 #define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
81 #define PRODUCT_ID_KVM 0x4b /* ASCII code K */
82 #define IMPLEMENTER_ARM 0x43b
83 #define GICC_ARCH_VERSION_V2 0x2
85 #define ACCESS_READ_VALUE (1 << 0)
86 #define ACCESS_READ_RAZ (0 << 0)
87 #define ACCESS_READ_MASK(x) ((x) & (1 << 0))
88 #define ACCESS_WRITE_IGNORED (0 << 1)
89 #define ACCESS_WRITE_SETBIT (1 << 1)
90 #define ACCESS_WRITE_CLEARBIT (2 << 1)
91 #define ACCESS_WRITE_VALUE (3 << 1)
92 #define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
94 static void vgic_retire_disabled_irqs(struct kvm_vcpu
*vcpu
);
95 static void vgic_retire_lr(int lr_nr
, int irq
, struct kvm_vcpu
*vcpu
);
96 static void vgic_update_state(struct kvm
*kvm
);
97 static void vgic_kick_vcpus(struct kvm
*kvm
);
98 static u8
*vgic_get_sgi_sources(struct vgic_dist
*dist
, int vcpu_id
, int sgi
);
99 static void vgic_dispatch_sgi(struct kvm_vcpu
*vcpu
, u32 reg
);
100 static struct vgic_lr
vgic_get_lr(const struct kvm_vcpu
*vcpu
, int lr
);
101 static void vgic_set_lr(struct kvm_vcpu
*vcpu
, int lr
, struct vgic_lr lr_desc
);
102 static void vgic_get_vmcr(struct kvm_vcpu
*vcpu
, struct vgic_vmcr
*vmcr
);
103 static void vgic_set_vmcr(struct kvm_vcpu
*vcpu
, struct vgic_vmcr
*vmcr
);
105 static const struct vgic_ops
*vgic_ops
;
106 static const struct vgic_params
*vgic
;
109 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
110 * extracts u32s out of them.
112 * This does not work on 64-bit BE systems, because the bitmap access
113 * will store two consecutive 32-bit words with the higher-addressed
114 * register's bits at the lower index and the lower-addressed register's
115 * bits at the higher index.
117 * Therefore, swizzle the register index when accessing the 32-bit word
118 * registers to access the right register's value.
120 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
121 #define REG_OFFSET_SWIZZLE 1
123 #define REG_OFFSET_SWIZZLE 0
126 static int vgic_init_bitmap(struct vgic_bitmap
*b
, int nr_cpus
, int nr_irqs
)
130 nr_longs
= nr_cpus
+ BITS_TO_LONGS(nr_irqs
- VGIC_NR_PRIVATE_IRQS
);
132 b
->private = kzalloc(sizeof(unsigned long) * nr_longs
, GFP_KERNEL
);
136 b
->shared
= b
->private + nr_cpus
;
141 static void vgic_free_bitmap(struct vgic_bitmap
*b
)
149 * Call this function to convert a u64 value to an unsigned long * bitmask
150 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
152 * Warning: Calling this function may modify *val.
154 static unsigned long *u64_to_bitmask(u64
*val
)
156 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
157 *val
= (*val
>> 32) | (*val
<< 32);
159 return (unsigned long *)val
;
162 static u32
*vgic_bitmap_get_reg(struct vgic_bitmap
*x
,
163 int cpuid
, u32 offset
)
167 return (u32
*)(x
->private + cpuid
) + REG_OFFSET_SWIZZLE
;
169 return (u32
*)(x
->shared
) + ((offset
- 1) ^ REG_OFFSET_SWIZZLE
);
172 static int vgic_bitmap_get_irq_val(struct vgic_bitmap
*x
,
175 if (irq
< VGIC_NR_PRIVATE_IRQS
)
176 return test_bit(irq
, x
->private + cpuid
);
178 return test_bit(irq
- VGIC_NR_PRIVATE_IRQS
, x
->shared
);
181 static void vgic_bitmap_set_irq_val(struct vgic_bitmap
*x
, int cpuid
,
186 if (irq
< VGIC_NR_PRIVATE_IRQS
) {
187 reg
= x
->private + cpuid
;
190 irq
-= VGIC_NR_PRIVATE_IRQS
;
199 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap
*x
, int cpuid
)
201 return x
->private + cpuid
;
204 static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap
*x
)
209 static int vgic_init_bytemap(struct vgic_bytemap
*x
, int nr_cpus
, int nr_irqs
)
213 size
= nr_cpus
* VGIC_NR_PRIVATE_IRQS
;
214 size
+= nr_irqs
- VGIC_NR_PRIVATE_IRQS
;
216 x
->private = kzalloc(size
, GFP_KERNEL
);
220 x
->shared
= x
->private + nr_cpus
* VGIC_NR_PRIVATE_IRQS
/ sizeof(u32
);
224 static void vgic_free_bytemap(struct vgic_bytemap
*b
)
231 static u32
*vgic_bytemap_get_reg(struct vgic_bytemap
*x
, int cpuid
, u32 offset
)
235 if (offset
< VGIC_NR_PRIVATE_IRQS
) {
237 offset
+= cpuid
* VGIC_NR_PRIVATE_IRQS
;
240 offset
-= VGIC_NR_PRIVATE_IRQS
;
243 return reg
+ (offset
/ sizeof(u32
));
246 #define VGIC_CFG_LEVEL 0
247 #define VGIC_CFG_EDGE 1
249 static bool vgic_irq_is_edge(struct kvm_vcpu
*vcpu
, int irq
)
251 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
254 irq_val
= vgic_bitmap_get_irq_val(&dist
->irq_cfg
, vcpu
->vcpu_id
, irq
);
255 return irq_val
== VGIC_CFG_EDGE
;
258 static int vgic_irq_is_enabled(struct kvm_vcpu
*vcpu
, int irq
)
260 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
262 return vgic_bitmap_get_irq_val(&dist
->irq_enabled
, vcpu
->vcpu_id
, irq
);
265 static int vgic_irq_is_queued(struct kvm_vcpu
*vcpu
, int irq
)
267 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
269 return vgic_bitmap_get_irq_val(&dist
->irq_queued
, vcpu
->vcpu_id
, irq
);
272 static void vgic_irq_set_queued(struct kvm_vcpu
*vcpu
, int irq
)
274 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
276 vgic_bitmap_set_irq_val(&dist
->irq_queued
, vcpu
->vcpu_id
, irq
, 1);
279 static void vgic_irq_clear_queued(struct kvm_vcpu
*vcpu
, int irq
)
281 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
283 vgic_bitmap_set_irq_val(&dist
->irq_queued
, vcpu
->vcpu_id
, irq
, 0);
286 static int vgic_dist_irq_get_level(struct kvm_vcpu
*vcpu
, int irq
)
288 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
290 return vgic_bitmap_get_irq_val(&dist
->irq_level
, vcpu
->vcpu_id
, irq
);
293 static void vgic_dist_irq_set_level(struct kvm_vcpu
*vcpu
, int irq
)
295 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
297 vgic_bitmap_set_irq_val(&dist
->irq_level
, vcpu
->vcpu_id
, irq
, 1);
300 static void vgic_dist_irq_clear_level(struct kvm_vcpu
*vcpu
, int irq
)
302 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
304 vgic_bitmap_set_irq_val(&dist
->irq_level
, vcpu
->vcpu_id
, irq
, 0);
307 static int vgic_dist_irq_soft_pend(struct kvm_vcpu
*vcpu
, int irq
)
309 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
311 return vgic_bitmap_get_irq_val(&dist
->irq_soft_pend
, vcpu
->vcpu_id
, irq
);
314 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu
*vcpu
, int irq
)
316 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
318 vgic_bitmap_set_irq_val(&dist
->irq_soft_pend
, vcpu
->vcpu_id
, irq
, 0);
321 static int vgic_dist_irq_is_pending(struct kvm_vcpu
*vcpu
, int irq
)
323 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
325 return vgic_bitmap_get_irq_val(&dist
->irq_pending
, vcpu
->vcpu_id
, irq
);
328 static void vgic_dist_irq_set_pending(struct kvm_vcpu
*vcpu
, int irq
)
330 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
332 vgic_bitmap_set_irq_val(&dist
->irq_pending
, vcpu
->vcpu_id
, irq
, 1);
335 static void vgic_dist_irq_clear_pending(struct kvm_vcpu
*vcpu
, int irq
)
337 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
339 vgic_bitmap_set_irq_val(&dist
->irq_pending
, vcpu
->vcpu_id
, irq
, 0);
342 static void vgic_cpu_irq_set(struct kvm_vcpu
*vcpu
, int irq
)
344 if (irq
< VGIC_NR_PRIVATE_IRQS
)
345 set_bit(irq
, vcpu
->arch
.vgic_cpu
.pending_percpu
);
347 set_bit(irq
- VGIC_NR_PRIVATE_IRQS
,
348 vcpu
->arch
.vgic_cpu
.pending_shared
);
351 static void vgic_cpu_irq_clear(struct kvm_vcpu
*vcpu
, int irq
)
353 if (irq
< VGIC_NR_PRIVATE_IRQS
)
354 clear_bit(irq
, vcpu
->arch
.vgic_cpu
.pending_percpu
);
356 clear_bit(irq
- VGIC_NR_PRIVATE_IRQS
,
357 vcpu
->arch
.vgic_cpu
.pending_shared
);
360 static bool vgic_can_sample_irq(struct kvm_vcpu
*vcpu
, int irq
)
362 return vgic_irq_is_edge(vcpu
, irq
) || !vgic_irq_is_queued(vcpu
, irq
);
365 static u32
mmio_data_read(struct kvm_exit_mmio
*mmio
, u32 mask
)
367 return le32_to_cpu(*((u32
*)mmio
->data
)) & mask
;
370 static void mmio_data_write(struct kvm_exit_mmio
*mmio
, u32 mask
, u32 value
)
372 *((u32
*)mmio
->data
) = cpu_to_le32(value
) & mask
;
376 * vgic_reg_access - access vgic register
377 * @mmio: pointer to the data describing the mmio access
378 * @reg: pointer to the virtual backing of vgic distributor data
379 * @offset: least significant 2 bits used for word offset
380 * @mode: ACCESS_ mode (see defines above)
382 * Helper to make vgic register access easier using one of the access
383 * modes defined for vgic register access
384 * (read,raz,write-ignored,setbit,clearbit,write)
386 static void vgic_reg_access(struct kvm_exit_mmio
*mmio
, u32
*reg
,
387 phys_addr_t offset
, int mode
)
389 int word_offset
= (offset
& 3) * 8;
390 u32 mask
= (1UL << (mmio
->len
* 8)) - 1;
394 * Any alignment fault should have been delivered to the guest
395 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
401 BUG_ON(mode
!= (ACCESS_READ_RAZ
| ACCESS_WRITE_IGNORED
));
405 if (mmio
->is_write
) {
406 u32 data
= mmio_data_read(mmio
, mask
) << word_offset
;
407 switch (ACCESS_WRITE_MASK(mode
)) {
408 case ACCESS_WRITE_IGNORED
:
411 case ACCESS_WRITE_SETBIT
:
415 case ACCESS_WRITE_CLEARBIT
:
419 case ACCESS_WRITE_VALUE
:
420 regval
= (regval
& ~(mask
<< word_offset
)) | data
;
425 switch (ACCESS_READ_MASK(mode
)) {
426 case ACCESS_READ_RAZ
:
430 case ACCESS_READ_VALUE
:
431 mmio_data_write(mmio
, mask
, regval
>> word_offset
);
436 static bool handle_mmio_misc(struct kvm_vcpu
*vcpu
,
437 struct kvm_exit_mmio
*mmio
, phys_addr_t offset
)
440 u32 word_offset
= offset
& 3;
442 switch (offset
& ~3) {
443 case 0: /* GICD_CTLR */
444 reg
= vcpu
->kvm
->arch
.vgic
.enabled
;
445 vgic_reg_access(mmio
, ®
, word_offset
,
446 ACCESS_READ_VALUE
| ACCESS_WRITE_VALUE
);
447 if (mmio
->is_write
) {
448 vcpu
->kvm
->arch
.vgic
.enabled
= reg
& 1;
449 vgic_update_state(vcpu
->kvm
);
454 case 4: /* GICD_TYPER */
455 reg
= (atomic_read(&vcpu
->kvm
->online_vcpus
) - 1) << 5;
456 reg
|= (vcpu
->kvm
->arch
.vgic
.nr_irqs
>> 5) - 1;
457 vgic_reg_access(mmio
, ®
, word_offset
,
458 ACCESS_READ_VALUE
| ACCESS_WRITE_IGNORED
);
461 case 8: /* GICD_IIDR */
462 reg
= (PRODUCT_ID_KVM
<< 24) | (IMPLEMENTER_ARM
<< 0);
463 vgic_reg_access(mmio
, ®
, word_offset
,
464 ACCESS_READ_VALUE
| ACCESS_WRITE_IGNORED
);
471 static bool handle_mmio_raz_wi(struct kvm_vcpu
*vcpu
,
472 struct kvm_exit_mmio
*mmio
, phys_addr_t offset
)
474 vgic_reg_access(mmio
, NULL
, offset
,
475 ACCESS_READ_RAZ
| ACCESS_WRITE_IGNORED
);
479 static bool handle_mmio_set_enable_reg(struct kvm_vcpu
*vcpu
,
480 struct kvm_exit_mmio
*mmio
,
483 u32
*reg
= vgic_bitmap_get_reg(&vcpu
->kvm
->arch
.vgic
.irq_enabled
,
484 vcpu
->vcpu_id
, offset
);
485 vgic_reg_access(mmio
, reg
, offset
,
486 ACCESS_READ_VALUE
| ACCESS_WRITE_SETBIT
);
487 if (mmio
->is_write
) {
488 vgic_update_state(vcpu
->kvm
);
495 static bool handle_mmio_clear_enable_reg(struct kvm_vcpu
*vcpu
,
496 struct kvm_exit_mmio
*mmio
,
499 u32
*reg
= vgic_bitmap_get_reg(&vcpu
->kvm
->arch
.vgic
.irq_enabled
,
500 vcpu
->vcpu_id
, offset
);
501 vgic_reg_access(mmio
, reg
, offset
,
502 ACCESS_READ_VALUE
| ACCESS_WRITE_CLEARBIT
);
503 if (mmio
->is_write
) {
504 if (offset
< 4) /* Force SGI enabled */
506 vgic_retire_disabled_irqs(vcpu
);
507 vgic_update_state(vcpu
->kvm
);
514 static bool handle_mmio_set_pending_reg(struct kvm_vcpu
*vcpu
,
515 struct kvm_exit_mmio
*mmio
,
520 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
522 reg
= vgic_bitmap_get_reg(&dist
->irq_cfg
, vcpu
->vcpu_id
, offset
);
523 level_mask
= (~(*reg
));
525 /* Mark both level and edge triggered irqs as pending */
526 reg
= vgic_bitmap_get_reg(&dist
->irq_pending
, vcpu
->vcpu_id
, offset
);
528 vgic_reg_access(mmio
, reg
, offset
,
529 ACCESS_READ_VALUE
| ACCESS_WRITE_SETBIT
);
531 if (mmio
->is_write
) {
532 /* Set the soft-pending flag only for level-triggered irqs */
533 reg
= vgic_bitmap_get_reg(&dist
->irq_soft_pend
,
534 vcpu
->vcpu_id
, offset
);
535 vgic_reg_access(mmio
, reg
, offset
,
536 ACCESS_READ_VALUE
| ACCESS_WRITE_SETBIT
);
539 /* Ignore writes to SGIs */
542 *reg
|= orig
& 0xffff;
545 vgic_update_state(vcpu
->kvm
);
552 static bool handle_mmio_clear_pending_reg(struct kvm_vcpu
*vcpu
,
553 struct kvm_exit_mmio
*mmio
,
558 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
560 reg
= vgic_bitmap_get_reg(&dist
->irq_pending
, vcpu
->vcpu_id
, offset
);
562 vgic_reg_access(mmio
, reg
, offset
,
563 ACCESS_READ_VALUE
| ACCESS_WRITE_CLEARBIT
);
564 if (mmio
->is_write
) {
565 /* Re-set level triggered level-active interrupts */
566 level_active
= vgic_bitmap_get_reg(&dist
->irq_level
,
567 vcpu
->vcpu_id
, offset
);
568 reg
= vgic_bitmap_get_reg(&dist
->irq_pending
,
569 vcpu
->vcpu_id
, offset
);
570 *reg
|= *level_active
;
572 /* Ignore writes to SGIs */
575 *reg
|= orig
& 0xffff;
578 /* Clear soft-pending flags */
579 reg
= vgic_bitmap_get_reg(&dist
->irq_soft_pend
,
580 vcpu
->vcpu_id
, offset
);
581 vgic_reg_access(mmio
, reg
, offset
,
582 ACCESS_READ_VALUE
| ACCESS_WRITE_CLEARBIT
);
584 vgic_update_state(vcpu
->kvm
);
591 static bool handle_mmio_priority_reg(struct kvm_vcpu
*vcpu
,
592 struct kvm_exit_mmio
*mmio
,
595 u32
*reg
= vgic_bytemap_get_reg(&vcpu
->kvm
->arch
.vgic
.irq_priority
,
596 vcpu
->vcpu_id
, offset
);
597 vgic_reg_access(mmio
, reg
, offset
,
598 ACCESS_READ_VALUE
| ACCESS_WRITE_VALUE
);
602 #define GICD_ITARGETSR_SIZE 32
603 #define GICD_CPUTARGETS_BITS 8
604 #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
605 static u32
vgic_get_target_reg(struct kvm
*kvm
, int irq
)
607 struct vgic_dist
*dist
= &kvm
->arch
.vgic
;
611 irq
-= VGIC_NR_PRIVATE_IRQS
;
613 for (i
= 0; i
< GICD_IRQS_PER_ITARGETSR
; i
++)
614 val
|= 1 << (dist
->irq_spi_cpu
[irq
+ i
] + i
* 8);
619 static void vgic_set_target_reg(struct kvm
*kvm
, u32 val
, int irq
)
621 struct vgic_dist
*dist
= &kvm
->arch
.vgic
;
622 struct kvm_vcpu
*vcpu
;
627 irq
-= VGIC_NR_PRIVATE_IRQS
;
630 * Pick the LSB in each byte. This ensures we target exactly
631 * one vcpu per IRQ. If the byte is null, assume we target
634 for (i
= 0; i
< GICD_IRQS_PER_ITARGETSR
; i
++) {
635 int shift
= i
* GICD_CPUTARGETS_BITS
;
636 target
= ffs((val
>> shift
) & 0xffU
);
637 target
= target
? (target
- 1) : 0;
638 dist
->irq_spi_cpu
[irq
+ i
] = target
;
639 kvm_for_each_vcpu(c
, vcpu
, kvm
) {
640 bmap
= vgic_bitmap_get_shared_map(&dist
->irq_spi_target
[c
]);
642 set_bit(irq
+ i
, bmap
);
644 clear_bit(irq
+ i
, bmap
);
649 static bool handle_mmio_target_reg(struct kvm_vcpu
*vcpu
,
650 struct kvm_exit_mmio
*mmio
,
655 /* We treat the banked interrupts targets as read-only */
657 u32 roreg
= 1 << vcpu
->vcpu_id
;
659 roreg
|= roreg
<< 16;
661 vgic_reg_access(mmio
, &roreg
, offset
,
662 ACCESS_READ_VALUE
| ACCESS_WRITE_IGNORED
);
666 reg
= vgic_get_target_reg(vcpu
->kvm
, offset
& ~3U);
667 vgic_reg_access(mmio
, ®
, offset
,
668 ACCESS_READ_VALUE
| ACCESS_WRITE_VALUE
);
669 if (mmio
->is_write
) {
670 vgic_set_target_reg(vcpu
->kvm
, reg
, offset
& ~3U);
671 vgic_update_state(vcpu
->kvm
);
678 static u32
vgic_cfg_expand(u16 val
)
684 * Turn a 16bit value like abcd...mnop into a 32bit word
685 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
687 for (i
= 0; i
< 16; i
++)
688 res
|= ((val
>> i
) & VGIC_CFG_EDGE
) << (2 * i
+ 1);
693 static u16
vgic_cfg_compress(u32 val
)
699 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
700 * abcd...mnop which is what we really care about.
702 for (i
= 0; i
< 16; i
++)
703 res
|= ((val
>> (i
* 2 + 1)) & VGIC_CFG_EDGE
) << i
;
709 * The distributor uses 2 bits per IRQ for the CFG register, but the
710 * LSB is always 0. As such, we only keep the upper bit, and use the
711 * two above functions to compress/expand the bits
713 static bool handle_mmio_cfg_reg(struct kvm_vcpu
*vcpu
,
714 struct kvm_exit_mmio
*mmio
, phys_addr_t offset
)
719 reg
= vgic_bitmap_get_reg(&vcpu
->kvm
->arch
.vgic
.irq_cfg
,
720 vcpu
->vcpu_id
, offset
>> 1);
727 val
= vgic_cfg_expand(val
);
728 vgic_reg_access(mmio
, &val
, offset
,
729 ACCESS_READ_VALUE
| ACCESS_WRITE_VALUE
);
730 if (mmio
->is_write
) {
732 *reg
= ~0U; /* Force PPIs/SGIs to 1 */
736 val
= vgic_cfg_compress(val
);
741 *reg
&= 0xffff << 16;
749 static bool handle_mmio_sgi_reg(struct kvm_vcpu
*vcpu
,
750 struct kvm_exit_mmio
*mmio
, phys_addr_t offset
)
753 vgic_reg_access(mmio
, ®
, offset
,
754 ACCESS_READ_RAZ
| ACCESS_WRITE_VALUE
);
755 if (mmio
->is_write
) {
756 vgic_dispatch_sgi(vcpu
, reg
);
757 vgic_update_state(vcpu
->kvm
);
765 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
766 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
768 * Move any pending IRQs that have already been assigned to LRs back to the
769 * emulated distributor state so that the complete emulated state can be read
770 * from the main emulation structures without investigating the LRs.
772 * Note that IRQs in the active state in the LRs get their pending state moved
773 * to the distributor but the active state stays in the LRs, because we don't
774 * track the active state on the distributor side.
776 static void vgic_unqueue_irqs(struct kvm_vcpu
*vcpu
)
778 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
779 struct vgic_cpu
*vgic_cpu
= &vcpu
->arch
.vgic_cpu
;
780 int vcpu_id
= vcpu
->vcpu_id
;
783 for_each_set_bit(i
, vgic_cpu
->lr_used
, vgic_cpu
->nr_lr
) {
784 struct vgic_lr lr
= vgic_get_lr(vcpu
, i
);
787 * There are three options for the state bits:
791 * 11: pending and active
793 * If the LR holds only an active interrupt (not pending) then
794 * just leave it alone.
796 if ((lr
.state
& LR_STATE_MASK
) == LR_STATE_ACTIVE
)
800 * Reestablish the pending state on the distributor and the
801 * CPU interface. It may have already been pending, but that
802 * is fine, then we are only setting a few bits that were
805 vgic_dist_irq_set_pending(vcpu
, lr
.irq
);
806 if (lr
.irq
< VGIC_NR_SGIS
)
807 *vgic_get_sgi_sources(dist
, vcpu_id
, lr
.irq
) |= 1 << lr
.source
;
808 lr
.state
&= ~LR_STATE_PENDING
;
809 vgic_set_lr(vcpu
, i
, lr
);
812 * If there's no state left on the LR (it could still be
813 * active), then the LR does not hold any useful info and can
814 * be marked as free for other use.
816 if (!(lr
.state
& LR_STATE_MASK
)) {
817 vgic_retire_lr(i
, lr
.irq
, vcpu
);
818 vgic_irq_clear_queued(vcpu
, lr
.irq
);
821 /* Finally update the VGIC state. */
822 vgic_update_state(vcpu
->kvm
);
826 /* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
827 static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu
*vcpu
,
828 struct kvm_exit_mmio
*mmio
,
831 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
833 int min_sgi
= (offset
& ~0x3);
834 int max_sgi
= min_sgi
+ 3;
835 int vcpu_id
= vcpu
->vcpu_id
;
838 /* Copy source SGIs from distributor side */
839 for (sgi
= min_sgi
; sgi
<= max_sgi
; sgi
++) {
840 int shift
= 8 * (sgi
- min_sgi
);
841 reg
|= ((u32
)*vgic_get_sgi_sources(dist
, vcpu_id
, sgi
)) << shift
;
844 mmio_data_write(mmio
, ~0, reg
);
848 static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu
*vcpu
,
849 struct kvm_exit_mmio
*mmio
,
850 phys_addr_t offset
, bool set
)
852 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
854 int min_sgi
= (offset
& ~0x3);
855 int max_sgi
= min_sgi
+ 3;
856 int vcpu_id
= vcpu
->vcpu_id
;
858 bool updated
= false;
860 reg
= mmio_data_read(mmio
, ~0);
862 /* Clear pending SGIs on the distributor */
863 for (sgi
= min_sgi
; sgi
<= max_sgi
; sgi
++) {
864 u8 mask
= reg
>> (8 * (sgi
- min_sgi
));
865 u8
*src
= vgic_get_sgi_sources(dist
, vcpu_id
, sgi
);
867 if ((*src
& mask
) != mask
)
878 vgic_update_state(vcpu
->kvm
);
883 static bool handle_mmio_sgi_set(struct kvm_vcpu
*vcpu
,
884 struct kvm_exit_mmio
*mmio
,
888 return read_set_clear_sgi_pend_reg(vcpu
, mmio
, offset
);
890 return write_set_clear_sgi_pend_reg(vcpu
, mmio
, offset
, true);
893 static bool handle_mmio_sgi_clear(struct kvm_vcpu
*vcpu
,
894 struct kvm_exit_mmio
*mmio
,
898 return read_set_clear_sgi_pend_reg(vcpu
, mmio
, offset
);
900 return write_set_clear_sgi_pend_reg(vcpu
, mmio
, offset
, false);
904 * I would have liked to use the kvm_bus_io_*() API instead, but it
905 * cannot cope with banked registers (only the VM pointer is passed
906 * around, and we need the vcpu). One of these days, someone please
913 bool (*handle_mmio
)(struct kvm_vcpu
*vcpu
, struct kvm_exit_mmio
*mmio
,
917 static const struct mmio_range vgic_dist_ranges
[] = {
919 .base
= GIC_DIST_CTRL
,
922 .handle_mmio
= handle_mmio_misc
,
925 .base
= GIC_DIST_IGROUP
,
926 .len
= VGIC_MAX_IRQS
/ 8,
928 .handle_mmio
= handle_mmio_raz_wi
,
931 .base
= GIC_DIST_ENABLE_SET
,
932 .len
= VGIC_MAX_IRQS
/ 8,
934 .handle_mmio
= handle_mmio_set_enable_reg
,
937 .base
= GIC_DIST_ENABLE_CLEAR
,
938 .len
= VGIC_MAX_IRQS
/ 8,
940 .handle_mmio
= handle_mmio_clear_enable_reg
,
943 .base
= GIC_DIST_PENDING_SET
,
944 .len
= VGIC_MAX_IRQS
/ 8,
946 .handle_mmio
= handle_mmio_set_pending_reg
,
949 .base
= GIC_DIST_PENDING_CLEAR
,
950 .len
= VGIC_MAX_IRQS
/ 8,
952 .handle_mmio
= handle_mmio_clear_pending_reg
,
955 .base
= GIC_DIST_ACTIVE_SET
,
956 .len
= VGIC_MAX_IRQS
/ 8,
958 .handle_mmio
= handle_mmio_raz_wi
,
961 .base
= GIC_DIST_ACTIVE_CLEAR
,
962 .len
= VGIC_MAX_IRQS
/ 8,
964 .handle_mmio
= handle_mmio_raz_wi
,
967 .base
= GIC_DIST_PRI
,
968 .len
= VGIC_MAX_IRQS
,
970 .handle_mmio
= handle_mmio_priority_reg
,
973 .base
= GIC_DIST_TARGET
,
974 .len
= VGIC_MAX_IRQS
,
976 .handle_mmio
= handle_mmio_target_reg
,
979 .base
= GIC_DIST_CONFIG
,
980 .len
= VGIC_MAX_IRQS
/ 4,
982 .handle_mmio
= handle_mmio_cfg_reg
,
985 .base
= GIC_DIST_SOFTINT
,
987 .handle_mmio
= handle_mmio_sgi_reg
,
990 .base
= GIC_DIST_SGI_PENDING_CLEAR
,
992 .handle_mmio
= handle_mmio_sgi_clear
,
995 .base
= GIC_DIST_SGI_PENDING_SET
,
997 .handle_mmio
= handle_mmio_sgi_set
,
1003 struct mmio_range
*find_matching_range(const struct mmio_range
*ranges
,
1004 struct kvm_exit_mmio
*mmio
,
1007 const struct mmio_range
*r
= ranges
;
1010 if (offset
>= r
->base
&&
1011 (offset
+ mmio
->len
) <= (r
->base
+ r
->len
))
1019 static bool vgic_validate_access(const struct vgic_dist
*dist
,
1020 const struct mmio_range
*range
,
1021 unsigned long offset
)
1025 if (!range
->bits_per_irq
)
1026 return true; /* Not an irq-based access */
1028 irq
= offset
* 8 / range
->bits_per_irq
;
1029 if (irq
>= dist
->nr_irqs
)
1036 * vgic_handle_mmio - handle an in-kernel MMIO access
1037 * @vcpu: pointer to the vcpu performing the access
1038 * @run: pointer to the kvm_run structure
1039 * @mmio: pointer to the data describing the access
1041 * returns true if the MMIO access has been performed in kernel space,
1042 * and false if it needs to be emulated in user space.
1044 bool vgic_handle_mmio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
,
1045 struct kvm_exit_mmio
*mmio
)
1047 const struct mmio_range
*range
;
1048 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
1049 unsigned long base
= dist
->vgic_dist_base
;
1051 unsigned long offset
;
1053 if (!irqchip_in_kernel(vcpu
->kvm
) ||
1054 mmio
->phys_addr
< base
||
1055 (mmio
->phys_addr
+ mmio
->len
) > (base
+ KVM_VGIC_V2_DIST_SIZE
))
1058 /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
1059 if (mmio
->len
> 4) {
1060 kvm_inject_dabt(vcpu
, mmio
->phys_addr
);
1064 offset
= mmio
->phys_addr
- base
;
1065 range
= find_matching_range(vgic_dist_ranges
, mmio
, offset
);
1066 if (unlikely(!range
|| !range
->handle_mmio
)) {
1067 pr_warn("Unhandled access %d %08llx %d\n",
1068 mmio
->is_write
, mmio
->phys_addr
, mmio
->len
);
1072 spin_lock(&vcpu
->kvm
->arch
.vgic
.lock
);
1073 offset
= mmio
->phys_addr
- range
->base
- base
;
1074 if (vgic_validate_access(dist
, range
, offset
)) {
1075 updated_state
= range
->handle_mmio(vcpu
, mmio
, offset
);
1077 vgic_reg_access(mmio
, NULL
, offset
,
1078 ACCESS_READ_RAZ
| ACCESS_WRITE_IGNORED
);
1079 updated_state
= false;
1081 spin_unlock(&vcpu
->kvm
->arch
.vgic
.lock
);
1082 kvm_prepare_mmio(run
, mmio
);
1083 kvm_handle_mmio_return(vcpu
, run
);
1086 vgic_kick_vcpus(vcpu
->kvm
);
1091 static u8
*vgic_get_sgi_sources(struct vgic_dist
*dist
, int vcpu_id
, int sgi
)
1093 return dist
->irq_sgi_sources
+ vcpu_id
* VGIC_NR_SGIS
+ sgi
;
1096 static void vgic_dispatch_sgi(struct kvm_vcpu
*vcpu
, u32 reg
)
1098 struct kvm
*kvm
= vcpu
->kvm
;
1099 struct vgic_dist
*dist
= &kvm
->arch
.vgic
;
1100 int nrcpus
= atomic_read(&kvm
->online_vcpus
);
1102 int sgi
, mode
, c
, vcpu_id
;
1104 vcpu_id
= vcpu
->vcpu_id
;
1107 target_cpus
= (reg
>> 16) & 0xff;
1108 mode
= (reg
>> 24) & 3;
1117 target_cpus
= ((1 << nrcpus
) - 1) & ~(1 << vcpu_id
) & 0xff;
1121 target_cpus
= 1 << vcpu_id
;
1125 kvm_for_each_vcpu(c
, vcpu
, kvm
) {
1126 if (target_cpus
& 1) {
1127 /* Flag the SGI as pending */
1128 vgic_dist_irq_set_pending(vcpu
, sgi
);
1129 *vgic_get_sgi_sources(dist
, c
, sgi
) |= 1 << vcpu_id
;
1130 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi
, vcpu_id
, c
);
1137 static int vgic_nr_shared_irqs(struct vgic_dist
*dist
)
1139 return dist
->nr_irqs
- VGIC_NR_PRIVATE_IRQS
;
1142 static int compute_pending_for_cpu(struct kvm_vcpu
*vcpu
)
1144 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
1145 unsigned long *pending
, *enabled
, *pend_percpu
, *pend_shared
;
1146 unsigned long pending_private
, pending_shared
;
1147 int nr_shared
= vgic_nr_shared_irqs(dist
);
1150 vcpu_id
= vcpu
->vcpu_id
;
1151 pend_percpu
= vcpu
->arch
.vgic_cpu
.pending_percpu
;
1152 pend_shared
= vcpu
->arch
.vgic_cpu
.pending_shared
;
1154 pending
= vgic_bitmap_get_cpu_map(&dist
->irq_pending
, vcpu_id
);
1155 enabled
= vgic_bitmap_get_cpu_map(&dist
->irq_enabled
, vcpu_id
);
1156 bitmap_and(pend_percpu
, pending
, enabled
, VGIC_NR_PRIVATE_IRQS
);
1158 pending
= vgic_bitmap_get_shared_map(&dist
->irq_pending
);
1159 enabled
= vgic_bitmap_get_shared_map(&dist
->irq_enabled
);
1160 bitmap_and(pend_shared
, pending
, enabled
, nr_shared
);
1161 bitmap_and(pend_shared
, pend_shared
,
1162 vgic_bitmap_get_shared_map(&dist
->irq_spi_target
[vcpu_id
]),
1165 pending_private
= find_first_bit(pend_percpu
, VGIC_NR_PRIVATE_IRQS
);
1166 pending_shared
= find_first_bit(pend_shared
, nr_shared
);
1167 return (pending_private
< VGIC_NR_PRIVATE_IRQS
||
1168 pending_shared
< vgic_nr_shared_irqs(dist
));
1172 * Update the interrupt state and determine which CPUs have pending
1173 * interrupts. Must be called with distributor lock held.
1175 static void vgic_update_state(struct kvm
*kvm
)
1177 struct vgic_dist
*dist
= &kvm
->arch
.vgic
;
1178 struct kvm_vcpu
*vcpu
;
1181 if (!dist
->enabled
) {
1182 set_bit(0, dist
->irq_pending_on_cpu
);
1186 kvm_for_each_vcpu(c
, vcpu
, kvm
) {
1187 if (compute_pending_for_cpu(vcpu
)) {
1188 pr_debug("CPU%d has pending interrupts\n", c
);
1189 set_bit(c
, dist
->irq_pending_on_cpu
);
1194 static struct vgic_lr
vgic_get_lr(const struct kvm_vcpu
*vcpu
, int lr
)
1196 return vgic_ops
->get_lr(vcpu
, lr
);
1199 static void vgic_set_lr(struct kvm_vcpu
*vcpu
, int lr
,
1202 vgic_ops
->set_lr(vcpu
, lr
, vlr
);
1205 static void vgic_sync_lr_elrsr(struct kvm_vcpu
*vcpu
, int lr
,
1208 vgic_ops
->sync_lr_elrsr(vcpu
, lr
, vlr
);
1211 static inline u64
vgic_get_elrsr(struct kvm_vcpu
*vcpu
)
1213 return vgic_ops
->get_elrsr(vcpu
);
1216 static inline u64
vgic_get_eisr(struct kvm_vcpu
*vcpu
)
1218 return vgic_ops
->get_eisr(vcpu
);
1221 static inline u32
vgic_get_interrupt_status(struct kvm_vcpu
*vcpu
)
1223 return vgic_ops
->get_interrupt_status(vcpu
);
1226 static inline void vgic_enable_underflow(struct kvm_vcpu
*vcpu
)
1228 vgic_ops
->enable_underflow(vcpu
);
1231 static inline void vgic_disable_underflow(struct kvm_vcpu
*vcpu
)
1233 vgic_ops
->disable_underflow(vcpu
);
1236 static inline void vgic_get_vmcr(struct kvm_vcpu
*vcpu
, struct vgic_vmcr
*vmcr
)
1238 vgic_ops
->get_vmcr(vcpu
, vmcr
);
1241 static void vgic_set_vmcr(struct kvm_vcpu
*vcpu
, struct vgic_vmcr
*vmcr
)
1243 vgic_ops
->set_vmcr(vcpu
, vmcr
);
1246 static inline void vgic_enable(struct kvm_vcpu
*vcpu
)
1248 vgic_ops
->enable(vcpu
);
1251 static void vgic_retire_lr(int lr_nr
, int irq
, struct kvm_vcpu
*vcpu
)
1253 struct vgic_cpu
*vgic_cpu
= &vcpu
->arch
.vgic_cpu
;
1254 struct vgic_lr vlr
= vgic_get_lr(vcpu
, lr_nr
);
1257 vgic_set_lr(vcpu
, lr_nr
, vlr
);
1258 clear_bit(lr_nr
, vgic_cpu
->lr_used
);
1259 vgic_cpu
->vgic_irq_lr_map
[irq
] = LR_EMPTY
;
1263 * An interrupt may have been disabled after being made pending on the
1264 * CPU interface (the classic case is a timer running while we're
1265 * rebooting the guest - the interrupt would kick as soon as the CPU
1266 * interface gets enabled, with deadly consequences).
1268 * The solution is to examine already active LRs, and check the
1269 * interrupt is still enabled. If not, just retire it.
1271 static void vgic_retire_disabled_irqs(struct kvm_vcpu
*vcpu
)
1273 struct vgic_cpu
*vgic_cpu
= &vcpu
->arch
.vgic_cpu
;
1276 for_each_set_bit(lr
, vgic_cpu
->lr_used
, vgic
->nr_lr
) {
1277 struct vgic_lr vlr
= vgic_get_lr(vcpu
, lr
);
1279 if (!vgic_irq_is_enabled(vcpu
, vlr
.irq
)) {
1280 vgic_retire_lr(lr
, vlr
.irq
, vcpu
);
1281 if (vgic_irq_is_queued(vcpu
, vlr
.irq
))
1282 vgic_irq_clear_queued(vcpu
, vlr
.irq
);
1288 * Queue an interrupt to a CPU virtual interface. Return true on success,
1289 * or false if it wasn't possible to queue it.
1291 static bool vgic_queue_irq(struct kvm_vcpu
*vcpu
, u8 sgi_source_id
, int irq
)
1293 struct vgic_cpu
*vgic_cpu
= &vcpu
->arch
.vgic_cpu
;
1294 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
1298 /* Sanitize the input... */
1299 BUG_ON(sgi_source_id
& ~7);
1300 BUG_ON(sgi_source_id
&& irq
>= VGIC_NR_SGIS
);
1301 BUG_ON(irq
>= dist
->nr_irqs
);
1303 kvm_debug("Queue IRQ%d\n", irq
);
1305 lr
= vgic_cpu
->vgic_irq_lr_map
[irq
];
1307 /* Do we have an active interrupt for the same CPUID? */
1308 if (lr
!= LR_EMPTY
) {
1309 vlr
= vgic_get_lr(vcpu
, lr
);
1310 if (vlr
.source
== sgi_source_id
) {
1311 kvm_debug("LR%d piggyback for IRQ%d\n", lr
, vlr
.irq
);
1312 BUG_ON(!test_bit(lr
, vgic_cpu
->lr_used
));
1313 vlr
.state
|= LR_STATE_PENDING
;
1314 vgic_set_lr(vcpu
, lr
, vlr
);
1319 /* Try to use another LR for this interrupt */
1320 lr
= find_first_zero_bit((unsigned long *)vgic_cpu
->lr_used
,
1322 if (lr
>= vgic
->nr_lr
)
1325 kvm_debug("LR%d allocated for IRQ%d %x\n", lr
, irq
, sgi_source_id
);
1326 vgic_cpu
->vgic_irq_lr_map
[irq
] = lr
;
1327 set_bit(lr
, vgic_cpu
->lr_used
);
1330 vlr
.source
= sgi_source_id
;
1331 vlr
.state
= LR_STATE_PENDING
;
1332 if (!vgic_irq_is_edge(vcpu
, irq
))
1333 vlr
.state
|= LR_EOI_INT
;
1335 vgic_set_lr(vcpu
, lr
, vlr
);
1340 static bool vgic_queue_sgi(struct kvm_vcpu
*vcpu
, int irq
)
1342 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
1343 unsigned long sources
;
1344 int vcpu_id
= vcpu
->vcpu_id
;
1347 sources
= *vgic_get_sgi_sources(dist
, vcpu_id
, irq
);
1349 for_each_set_bit(c
, &sources
, dist
->nr_cpus
) {
1350 if (vgic_queue_irq(vcpu
, c
, irq
))
1351 clear_bit(c
, &sources
);
1354 *vgic_get_sgi_sources(dist
, vcpu_id
, irq
) = sources
;
1357 * If the sources bitmap has been cleared it means that we
1358 * could queue all the SGIs onto link registers (see the
1359 * clear_bit above), and therefore we are done with them in
1360 * our emulated gic and can get rid of them.
1363 vgic_dist_irq_clear_pending(vcpu
, irq
);
1364 vgic_cpu_irq_clear(vcpu
, irq
);
1371 static bool vgic_queue_hwirq(struct kvm_vcpu
*vcpu
, int irq
)
1373 if (!vgic_can_sample_irq(vcpu
, irq
))
1374 return true; /* level interrupt, already queued */
1376 if (vgic_queue_irq(vcpu
, 0, irq
)) {
1377 if (vgic_irq_is_edge(vcpu
, irq
)) {
1378 vgic_dist_irq_clear_pending(vcpu
, irq
);
1379 vgic_cpu_irq_clear(vcpu
, irq
);
1381 vgic_irq_set_queued(vcpu
, irq
);
1391 * Fill the list registers with pending interrupts before running the
1394 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu
*vcpu
)
1396 struct vgic_cpu
*vgic_cpu
= &vcpu
->arch
.vgic_cpu
;
1397 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
1401 vcpu_id
= vcpu
->vcpu_id
;
1404 * We may not have any pending interrupt, or the interrupts
1405 * may have been serviced from another vcpu. In all cases,
1408 if (!kvm_vgic_vcpu_pending_irq(vcpu
)) {
1409 pr_debug("CPU%d has no pending interrupt\n", vcpu_id
);
1414 for_each_set_bit(i
, vgic_cpu
->pending_percpu
, VGIC_NR_SGIS
) {
1415 if (!vgic_queue_sgi(vcpu
, i
))
1420 for_each_set_bit_from(i
, vgic_cpu
->pending_percpu
, VGIC_NR_PRIVATE_IRQS
) {
1421 if (!vgic_queue_hwirq(vcpu
, i
))
1426 for_each_set_bit(i
, vgic_cpu
->pending_shared
, vgic_nr_shared_irqs(dist
)) {
1427 if (!vgic_queue_hwirq(vcpu
, i
+ VGIC_NR_PRIVATE_IRQS
))
1433 vgic_enable_underflow(vcpu
);
1435 vgic_disable_underflow(vcpu
);
1437 * We're about to run this VCPU, and we've consumed
1438 * everything the distributor had in store for
1439 * us. Claim we don't have anything pending. We'll
1440 * adjust that if needed while exiting.
1442 clear_bit(vcpu_id
, dist
->irq_pending_on_cpu
);
1446 static bool vgic_process_maintenance(struct kvm_vcpu
*vcpu
)
1448 u32 status
= vgic_get_interrupt_status(vcpu
);
1449 bool level_pending
= false;
1451 kvm_debug("STATUS = %08x\n", status
);
1453 if (status
& INT_STATUS_EOI
) {
1455 * Some level interrupts have been EOIed. Clear their
1458 u64 eisr
= vgic_get_eisr(vcpu
);
1459 unsigned long *eisr_ptr
= u64_to_bitmask(&eisr
);
1462 for_each_set_bit(lr
, eisr_ptr
, vgic
->nr_lr
) {
1463 struct vgic_lr vlr
= vgic_get_lr(vcpu
, lr
);
1464 WARN_ON(vgic_irq_is_edge(vcpu
, vlr
.irq
));
1466 vgic_irq_clear_queued(vcpu
, vlr
.irq
);
1467 WARN_ON(vlr
.state
& LR_STATE_MASK
);
1469 vgic_set_lr(vcpu
, lr
, vlr
);
1472 * If the IRQ was EOIed it was also ACKed and we we
1473 * therefore assume we can clear the soft pending
1474 * state (should it had been set) for this interrupt.
1476 * Note: if the IRQ soft pending state was set after
1477 * the IRQ was acked, it actually shouldn't be
1478 * cleared, but we have no way of knowing that unless
1479 * we start trapping ACKs when the soft-pending state
1482 vgic_dist_irq_clear_soft_pend(vcpu
, vlr
.irq
);
1484 /* Any additional pending interrupt? */
1485 if (vgic_dist_irq_get_level(vcpu
, vlr
.irq
)) {
1486 vgic_cpu_irq_set(vcpu
, vlr
.irq
);
1487 level_pending
= true;
1489 vgic_dist_irq_clear_pending(vcpu
, vlr
.irq
);
1490 vgic_cpu_irq_clear(vcpu
, vlr
.irq
);
1494 * Despite being EOIed, the LR may not have
1495 * been marked as empty.
1497 vgic_sync_lr_elrsr(vcpu
, lr
, vlr
);
1501 if (status
& INT_STATUS_UNDERFLOW
)
1502 vgic_disable_underflow(vcpu
);
1504 return level_pending
;
1508 * Sync back the VGIC state after a guest run. The distributor lock is
1509 * needed so we don't get preempted in the middle of the state processing.
1511 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu
*vcpu
)
1513 struct vgic_cpu
*vgic_cpu
= &vcpu
->arch
.vgic_cpu
;
1514 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
1516 unsigned long *elrsr_ptr
;
1520 level_pending
= vgic_process_maintenance(vcpu
);
1521 elrsr
= vgic_get_elrsr(vcpu
);
1522 elrsr_ptr
= u64_to_bitmask(&elrsr
);
1524 /* Clear mappings for empty LRs */
1525 for_each_set_bit(lr
, elrsr_ptr
, vgic
->nr_lr
) {
1528 if (!test_and_clear_bit(lr
, vgic_cpu
->lr_used
))
1531 vlr
= vgic_get_lr(vcpu
, lr
);
1533 BUG_ON(vlr
.irq
>= dist
->nr_irqs
);
1534 vgic_cpu
->vgic_irq_lr_map
[vlr
.irq
] = LR_EMPTY
;
1537 /* Check if we still have something up our sleeve... */
1538 pending
= find_first_zero_bit(elrsr_ptr
, vgic
->nr_lr
);
1539 if (level_pending
|| pending
< vgic
->nr_lr
)
1540 set_bit(vcpu
->vcpu_id
, dist
->irq_pending_on_cpu
);
1543 void kvm_vgic_flush_hwstate(struct kvm_vcpu
*vcpu
)
1545 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
1547 if (!irqchip_in_kernel(vcpu
->kvm
))
1550 spin_lock(&dist
->lock
);
1551 __kvm_vgic_flush_hwstate(vcpu
);
1552 spin_unlock(&dist
->lock
);
1555 void kvm_vgic_sync_hwstate(struct kvm_vcpu
*vcpu
)
1557 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
1559 if (!irqchip_in_kernel(vcpu
->kvm
))
1562 spin_lock(&dist
->lock
);
1563 __kvm_vgic_sync_hwstate(vcpu
);
1564 spin_unlock(&dist
->lock
);
1567 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu
*vcpu
)
1569 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
1571 if (!irqchip_in_kernel(vcpu
->kvm
))
1574 return test_bit(vcpu
->vcpu_id
, dist
->irq_pending_on_cpu
);
1577 static void vgic_kick_vcpus(struct kvm
*kvm
)
1579 struct kvm_vcpu
*vcpu
;
1583 * We've injected an interrupt, time to find out who deserves
1586 kvm_for_each_vcpu(c
, vcpu
, kvm
) {
1587 if (kvm_vgic_vcpu_pending_irq(vcpu
))
1588 kvm_vcpu_kick(vcpu
);
1592 static int vgic_validate_injection(struct kvm_vcpu
*vcpu
, int irq
, int level
)
1594 int edge_triggered
= vgic_irq_is_edge(vcpu
, irq
);
1597 * Only inject an interrupt if:
1598 * - edge triggered and we have a rising edge
1599 * - level triggered and we change level
1601 if (edge_triggered
) {
1602 int state
= vgic_dist_irq_is_pending(vcpu
, irq
);
1603 return level
> state
;
1605 int state
= vgic_dist_irq_get_level(vcpu
, irq
);
1606 return level
!= state
;
1610 static bool vgic_update_irq_pending(struct kvm
*kvm
, int cpuid
,
1611 unsigned int irq_num
, bool level
)
1613 struct vgic_dist
*dist
= &kvm
->arch
.vgic
;
1614 struct kvm_vcpu
*vcpu
;
1615 int edge_triggered
, level_triggered
;
1619 spin_lock(&dist
->lock
);
1621 vcpu
= kvm_get_vcpu(kvm
, cpuid
);
1622 edge_triggered
= vgic_irq_is_edge(vcpu
, irq_num
);
1623 level_triggered
= !edge_triggered
;
1625 if (!vgic_validate_injection(vcpu
, irq_num
, level
)) {
1630 if (irq_num
>= VGIC_NR_PRIVATE_IRQS
) {
1631 cpuid
= dist
->irq_spi_cpu
[irq_num
- VGIC_NR_PRIVATE_IRQS
];
1632 vcpu
= kvm_get_vcpu(kvm
, cpuid
);
1635 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num
, level
, cpuid
);
1638 if (level_triggered
)
1639 vgic_dist_irq_set_level(vcpu
, irq_num
);
1640 vgic_dist_irq_set_pending(vcpu
, irq_num
);
1642 if (level_triggered
) {
1643 vgic_dist_irq_clear_level(vcpu
, irq_num
);
1644 if (!vgic_dist_irq_soft_pend(vcpu
, irq_num
))
1645 vgic_dist_irq_clear_pending(vcpu
, irq_num
);
1647 vgic_dist_irq_clear_pending(vcpu
, irq_num
);
1651 enabled
= vgic_irq_is_enabled(vcpu
, irq_num
);
1658 if (!vgic_can_sample_irq(vcpu
, irq_num
)) {
1660 * Level interrupt in progress, will be picked up
1668 vgic_cpu_irq_set(vcpu
, irq_num
);
1669 set_bit(cpuid
, dist
->irq_pending_on_cpu
);
1673 spin_unlock(&dist
->lock
);
1679 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1680 * @kvm: The VM structure pointer
1681 * @cpuid: The CPU for PPIs
1682 * @irq_num: The IRQ number that is assigned to the device
1683 * @level: Edge-triggered: true: to trigger the interrupt
1684 * false: to ignore the call
1685 * Level-sensitive true: activates an interrupt
1686 * false: deactivates an interrupt
1688 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1689 * level-sensitive interrupts. You can think of the level parameter as 1
1690 * being HIGH and 0 being LOW and all devices being active-HIGH.
1692 int kvm_vgic_inject_irq(struct kvm
*kvm
, int cpuid
, unsigned int irq_num
,
1695 if (likely(vgic_initialized(kvm
)) &&
1696 vgic_update_irq_pending(kvm
, cpuid
, irq_num
, level
))
1697 vgic_kick_vcpus(kvm
);
1702 static irqreturn_t
vgic_maintenance_handler(int irq
, void *data
)
1705 * We cannot rely on the vgic maintenance interrupt to be
1706 * delivered synchronously. This means we can only use it to
1707 * exit the VM, and we perform the handling of EOIed
1708 * interrupts on the exit path (see vgic_process_maintenance).
1713 void kvm_vgic_vcpu_destroy(struct kvm_vcpu
*vcpu
)
1715 struct vgic_cpu
*vgic_cpu
= &vcpu
->arch
.vgic_cpu
;
1717 kfree(vgic_cpu
->pending_shared
);
1718 kfree(vgic_cpu
->vgic_irq_lr_map
);
1719 vgic_cpu
->pending_shared
= NULL
;
1720 vgic_cpu
->vgic_irq_lr_map
= NULL
;
1723 static int vgic_vcpu_init_maps(struct kvm_vcpu
*vcpu
, int nr_irqs
)
1725 struct vgic_cpu
*vgic_cpu
= &vcpu
->arch
.vgic_cpu
;
1727 int sz
= (nr_irqs
- VGIC_NR_PRIVATE_IRQS
) / 8;
1728 vgic_cpu
->pending_shared
= kzalloc(sz
, GFP_KERNEL
);
1729 vgic_cpu
->vgic_irq_lr_map
= kzalloc(nr_irqs
, GFP_KERNEL
);
1731 if (!vgic_cpu
->pending_shared
|| !vgic_cpu
->vgic_irq_lr_map
) {
1732 kvm_vgic_vcpu_destroy(vcpu
);
1740 * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1741 * @vcpu: pointer to the vcpu struct
1743 * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1744 * this vcpu and enable the VGIC for this VCPU
1746 static void kvm_vgic_vcpu_init(struct kvm_vcpu
*vcpu
)
1748 struct vgic_cpu
*vgic_cpu
= &vcpu
->arch
.vgic_cpu
;
1749 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
1752 for (i
= 0; i
< dist
->nr_irqs
; i
++) {
1753 if (i
< VGIC_NR_PPIS
)
1754 vgic_bitmap_set_irq_val(&dist
->irq_enabled
,
1755 vcpu
->vcpu_id
, i
, 1);
1756 if (i
< VGIC_NR_PRIVATE_IRQS
)
1757 vgic_bitmap_set_irq_val(&dist
->irq_cfg
,
1758 vcpu
->vcpu_id
, i
, VGIC_CFG_EDGE
);
1760 vgic_cpu
->vgic_irq_lr_map
[i
] = LR_EMPTY
;
1764 * Store the number of LRs per vcpu, so we don't have to go
1765 * all the way to the distributor structure to find out. Only
1766 * assembly code should use this one.
1768 vgic_cpu
->nr_lr
= vgic
->nr_lr
;
1773 void kvm_vgic_destroy(struct kvm
*kvm
)
1775 struct vgic_dist
*dist
= &kvm
->arch
.vgic
;
1776 struct kvm_vcpu
*vcpu
;
1779 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1780 kvm_vgic_vcpu_destroy(vcpu
);
1782 vgic_free_bitmap(&dist
->irq_enabled
);
1783 vgic_free_bitmap(&dist
->irq_level
);
1784 vgic_free_bitmap(&dist
->irq_pending
);
1785 vgic_free_bitmap(&dist
->irq_soft_pend
);
1786 vgic_free_bitmap(&dist
->irq_queued
);
1787 vgic_free_bitmap(&dist
->irq_cfg
);
1788 vgic_free_bytemap(&dist
->irq_priority
);
1789 if (dist
->irq_spi_target
) {
1790 for (i
= 0; i
< dist
->nr_cpus
; i
++)
1791 vgic_free_bitmap(&dist
->irq_spi_target
[i
]);
1793 kfree(dist
->irq_sgi_sources
);
1794 kfree(dist
->irq_spi_cpu
);
1795 kfree(dist
->irq_spi_target
);
1796 kfree(dist
->irq_pending_on_cpu
);
1797 dist
->irq_sgi_sources
= NULL
;
1798 dist
->irq_spi_cpu
= NULL
;
1799 dist
->irq_spi_target
= NULL
;
1800 dist
->irq_pending_on_cpu
= NULL
;
1804 * Allocate and initialize the various data structures. Must be called
1805 * with kvm->lock held!
1807 static int vgic_init_maps(struct kvm
*kvm
)
1809 struct vgic_dist
*dist
= &kvm
->arch
.vgic
;
1810 struct kvm_vcpu
*vcpu
;
1811 int nr_cpus
, nr_irqs
;
1814 if (dist
->nr_cpus
) /* Already allocated */
1817 nr_cpus
= dist
->nr_cpus
= atomic_read(&kvm
->online_vcpus
);
1818 if (!nr_cpus
) /* No vcpus? Can't be good... */
1822 * If nobody configured the number of interrupts, use the
1826 dist
->nr_irqs
= VGIC_NR_IRQS_LEGACY
;
1828 nr_irqs
= dist
->nr_irqs
;
1830 ret
= vgic_init_bitmap(&dist
->irq_enabled
, nr_cpus
, nr_irqs
);
1831 ret
|= vgic_init_bitmap(&dist
->irq_level
, nr_cpus
, nr_irqs
);
1832 ret
|= vgic_init_bitmap(&dist
->irq_pending
, nr_cpus
, nr_irqs
);
1833 ret
|= vgic_init_bitmap(&dist
->irq_soft_pend
, nr_cpus
, nr_irqs
);
1834 ret
|= vgic_init_bitmap(&dist
->irq_queued
, nr_cpus
, nr_irqs
);
1835 ret
|= vgic_init_bitmap(&dist
->irq_cfg
, nr_cpus
, nr_irqs
);
1836 ret
|= vgic_init_bytemap(&dist
->irq_priority
, nr_cpus
, nr_irqs
);
1841 dist
->irq_sgi_sources
= kzalloc(nr_cpus
* VGIC_NR_SGIS
, GFP_KERNEL
);
1842 dist
->irq_spi_cpu
= kzalloc(nr_irqs
- VGIC_NR_PRIVATE_IRQS
, GFP_KERNEL
);
1843 dist
->irq_spi_target
= kzalloc(sizeof(*dist
->irq_spi_target
) * nr_cpus
,
1845 dist
->irq_pending_on_cpu
= kzalloc(BITS_TO_LONGS(nr_cpus
) * sizeof(long),
1847 if (!dist
->irq_sgi_sources
||
1848 !dist
->irq_spi_cpu
||
1849 !dist
->irq_spi_target
||
1850 !dist
->irq_pending_on_cpu
) {
1855 for (i
= 0; i
< nr_cpus
; i
++)
1856 ret
|= vgic_init_bitmap(&dist
->irq_spi_target
[i
],
1862 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1863 ret
= vgic_vcpu_init_maps(vcpu
, nr_irqs
);
1865 kvm_err("VGIC: Failed to allocate vcpu memory\n");
1870 for (i
= VGIC_NR_PRIVATE_IRQS
; i
< dist
->nr_irqs
; i
+= 4)
1871 vgic_set_target_reg(kvm
, 0, i
);
1875 kvm_vgic_destroy(kvm
);
1881 * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1882 * @kvm: pointer to the kvm struct
1884 * Map the virtual CPU interface into the VM before running any VCPUs. We
1885 * can't do this at creation time, because user space must first set the
1886 * virtual CPU interface address in the guest physical address space. Also
1887 * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1889 int kvm_vgic_init(struct kvm
*kvm
)
1891 struct kvm_vcpu
*vcpu
;
1894 if (!irqchip_in_kernel(kvm
))
1897 mutex_lock(&kvm
->lock
);
1899 if (vgic_initialized(kvm
))
1902 if (IS_VGIC_ADDR_UNDEF(kvm
->arch
.vgic
.vgic_dist_base
) ||
1903 IS_VGIC_ADDR_UNDEF(kvm
->arch
.vgic
.vgic_cpu_base
)) {
1904 kvm_err("Need to set vgic cpu and dist addresses first\n");
1909 ret
= vgic_init_maps(kvm
);
1911 kvm_err("Unable to allocate maps\n");
1915 ret
= kvm_phys_addr_ioremap(kvm
, kvm
->arch
.vgic
.vgic_cpu_base
,
1916 vgic
->vcpu_base
, KVM_VGIC_V2_CPU_SIZE
,
1919 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1923 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1924 kvm_vgic_vcpu_init(vcpu
);
1926 kvm
->arch
.vgic
.ready
= true;
1929 kvm_vgic_destroy(kvm
);
1930 mutex_unlock(&kvm
->lock
);
1934 int kvm_vgic_create(struct kvm
*kvm
)
1936 int i
, vcpu_lock_idx
= -1, ret
;
1937 struct kvm_vcpu
*vcpu
;
1939 mutex_lock(&kvm
->lock
);
1941 if (kvm
->arch
.vgic
.vctrl_base
) {
1947 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1948 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1949 * that no other VCPUs are run while we create the vgic.
1952 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1953 if (!mutex_trylock(&vcpu
->mutex
))
1958 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1959 if (vcpu
->arch
.has_run_once
)
1964 spin_lock_init(&kvm
->arch
.vgic
.lock
);
1965 kvm
->arch
.vgic
.in_kernel
= true;
1966 kvm
->arch
.vgic
.vctrl_base
= vgic
->vctrl_base
;
1967 kvm
->arch
.vgic
.vgic_dist_base
= VGIC_ADDR_UNDEF
;
1968 kvm
->arch
.vgic
.vgic_cpu_base
= VGIC_ADDR_UNDEF
;
1971 for (; vcpu_lock_idx
>= 0; vcpu_lock_idx
--) {
1972 vcpu
= kvm_get_vcpu(kvm
, vcpu_lock_idx
);
1973 mutex_unlock(&vcpu
->mutex
);
1977 mutex_unlock(&kvm
->lock
);
1981 static int vgic_ioaddr_overlap(struct kvm
*kvm
)
1983 phys_addr_t dist
= kvm
->arch
.vgic
.vgic_dist_base
;
1984 phys_addr_t cpu
= kvm
->arch
.vgic
.vgic_cpu_base
;
1986 if (IS_VGIC_ADDR_UNDEF(dist
) || IS_VGIC_ADDR_UNDEF(cpu
))
1988 if ((dist
<= cpu
&& dist
+ KVM_VGIC_V2_DIST_SIZE
> cpu
) ||
1989 (cpu
<= dist
&& cpu
+ KVM_VGIC_V2_CPU_SIZE
> dist
))
1994 static int vgic_ioaddr_assign(struct kvm
*kvm
, phys_addr_t
*ioaddr
,
1995 phys_addr_t addr
, phys_addr_t size
)
1999 if (addr
& ~KVM_PHYS_MASK
)
2002 if (addr
& (SZ_4K
- 1))
2005 if (!IS_VGIC_ADDR_UNDEF(*ioaddr
))
2007 if (addr
+ size
< addr
)
2011 ret
= vgic_ioaddr_overlap(kvm
);
2013 *ioaddr
= VGIC_ADDR_UNDEF
;
2019 * kvm_vgic_addr - set or get vgic VM base addresses
2020 * @kvm: pointer to the vm struct
2021 * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
2022 * @addr: pointer to address value
2023 * @write: if true set the address in the VM address space, if false read the
2026 * Set or get the vgic base addresses for the distributor and the virtual CPU
2027 * interface in the VM physical address space. These addresses are properties
2028 * of the emulated core/SoC and therefore user space initially knows this
2031 int kvm_vgic_addr(struct kvm
*kvm
, unsigned long type
, u64
*addr
, bool write
)
2034 struct vgic_dist
*vgic
= &kvm
->arch
.vgic
;
2036 mutex_lock(&kvm
->lock
);
2038 case KVM_VGIC_V2_ADDR_TYPE_DIST
:
2040 r
= vgic_ioaddr_assign(kvm
, &vgic
->vgic_dist_base
,
2041 *addr
, KVM_VGIC_V2_DIST_SIZE
);
2043 *addr
= vgic
->vgic_dist_base
;
2046 case KVM_VGIC_V2_ADDR_TYPE_CPU
:
2048 r
= vgic_ioaddr_assign(kvm
, &vgic
->vgic_cpu_base
,
2049 *addr
, KVM_VGIC_V2_CPU_SIZE
);
2051 *addr
= vgic
->vgic_cpu_base
;
2058 mutex_unlock(&kvm
->lock
);
2062 static bool handle_cpu_mmio_misc(struct kvm_vcpu
*vcpu
,
2063 struct kvm_exit_mmio
*mmio
, phys_addr_t offset
)
2065 bool updated
= false;
2066 struct vgic_vmcr vmcr
;
2070 vgic_get_vmcr(vcpu
, &vmcr
);
2072 switch (offset
& ~0x3) {
2074 vmcr_field
= &vmcr
.ctlr
;
2076 case GIC_CPU_PRIMASK
:
2077 vmcr_field
= &vmcr
.pmr
;
2079 case GIC_CPU_BINPOINT
:
2080 vmcr_field
= &vmcr
.bpr
;
2082 case GIC_CPU_ALIAS_BINPOINT
:
2083 vmcr_field
= &vmcr
.abpr
;
2089 if (!mmio
->is_write
) {
2091 mmio_data_write(mmio
, ~0, reg
);
2093 reg
= mmio_data_read(mmio
, ~0);
2094 if (reg
!= *vmcr_field
) {
2096 vgic_set_vmcr(vcpu
, &vmcr
);
2103 static bool handle_mmio_abpr(struct kvm_vcpu
*vcpu
,
2104 struct kvm_exit_mmio
*mmio
, phys_addr_t offset
)
2106 return handle_cpu_mmio_misc(vcpu
, mmio
, GIC_CPU_ALIAS_BINPOINT
);
2109 static bool handle_cpu_mmio_ident(struct kvm_vcpu
*vcpu
,
2110 struct kvm_exit_mmio
*mmio
,
2119 reg
= (PRODUCT_ID_KVM
<< 20) |
2120 (GICC_ARCH_VERSION_V2
<< 16) |
2121 (IMPLEMENTER_ARM
<< 0);
2122 mmio_data_write(mmio
, ~0, reg
);
2127 * CPU Interface Register accesses - these are not accessed by the VM, but by
2128 * user space for saving and restoring VGIC state.
2130 static const struct mmio_range vgic_cpu_ranges
[] = {
2132 .base
= GIC_CPU_CTRL
,
2134 .handle_mmio
= handle_cpu_mmio_misc
,
2137 .base
= GIC_CPU_ALIAS_BINPOINT
,
2139 .handle_mmio
= handle_mmio_abpr
,
2142 .base
= GIC_CPU_ACTIVEPRIO
,
2144 .handle_mmio
= handle_mmio_raz_wi
,
2147 .base
= GIC_CPU_IDENT
,
2149 .handle_mmio
= handle_cpu_mmio_ident
,
2153 static int vgic_attr_regs_access(struct kvm_device
*dev
,
2154 struct kvm_device_attr
*attr
,
2155 u32
*reg
, bool is_write
)
2157 const struct mmio_range
*r
= NULL
, *ranges
;
2160 struct kvm_vcpu
*vcpu
, *tmp_vcpu
;
2161 struct vgic_dist
*vgic
;
2162 struct kvm_exit_mmio mmio
;
2164 offset
= attr
->attr
& KVM_DEV_ARM_VGIC_OFFSET_MASK
;
2165 cpuid
= (attr
->attr
& KVM_DEV_ARM_VGIC_CPUID_MASK
) >>
2166 KVM_DEV_ARM_VGIC_CPUID_SHIFT
;
2168 mutex_lock(&dev
->kvm
->lock
);
2170 ret
= vgic_init_maps(dev
->kvm
);
2174 if (cpuid
>= atomic_read(&dev
->kvm
->online_vcpus
)) {
2179 vcpu
= kvm_get_vcpu(dev
->kvm
, cpuid
);
2180 vgic
= &dev
->kvm
->arch
.vgic
;
2183 mmio
.is_write
= is_write
;
2185 mmio_data_write(&mmio
, ~0, *reg
);
2186 switch (attr
->group
) {
2187 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS
:
2188 mmio
.phys_addr
= vgic
->vgic_dist_base
+ offset
;
2189 ranges
= vgic_dist_ranges
;
2191 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS
:
2192 mmio
.phys_addr
= vgic
->vgic_cpu_base
+ offset
;
2193 ranges
= vgic_cpu_ranges
;
2198 r
= find_matching_range(ranges
, &mmio
, offset
);
2200 if (unlikely(!r
|| !r
->handle_mmio
)) {
2206 spin_lock(&vgic
->lock
);
2209 * Ensure that no other VCPU is running by checking the vcpu->cpu
2210 * field. If no other VPCUs are running we can safely access the VGIC
2211 * state, because even if another VPU is run after this point, that
2212 * VCPU will not touch the vgic state, because it will block on
2213 * getting the vgic->lock in kvm_vgic_sync_hwstate().
2215 kvm_for_each_vcpu(c
, tmp_vcpu
, dev
->kvm
) {
2216 if (unlikely(tmp_vcpu
->cpu
!= -1)) {
2218 goto out_vgic_unlock
;
2223 * Move all pending IRQs from the LRs on all VCPUs so the pending
2224 * state can be properly represented in the register state accessible
2227 kvm_for_each_vcpu(c
, tmp_vcpu
, dev
->kvm
)
2228 vgic_unqueue_irqs(tmp_vcpu
);
2231 r
->handle_mmio(vcpu
, &mmio
, offset
);
2234 *reg
= mmio_data_read(&mmio
, ~0);
2238 spin_unlock(&vgic
->lock
);
2240 mutex_unlock(&dev
->kvm
->lock
);
2244 static int vgic_set_attr(struct kvm_device
*dev
, struct kvm_device_attr
*attr
)
2248 switch (attr
->group
) {
2249 case KVM_DEV_ARM_VGIC_GRP_ADDR
: {
2250 u64 __user
*uaddr
= (u64 __user
*)(long)attr
->addr
;
2252 unsigned long type
= (unsigned long)attr
->attr
;
2254 if (copy_from_user(&addr
, uaddr
, sizeof(addr
)))
2257 r
= kvm_vgic_addr(dev
->kvm
, type
, &addr
, true);
2258 return (r
== -ENODEV
) ? -ENXIO
: r
;
2261 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS
:
2262 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS
: {
2263 u32 __user
*uaddr
= (u32 __user
*)(long)attr
->addr
;
2266 if (get_user(reg
, uaddr
))
2269 return vgic_attr_regs_access(dev
, attr
, ®
, true);
2271 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS
: {
2272 u32 __user
*uaddr
= (u32 __user
*)(long)attr
->addr
;
2276 if (get_user(val
, uaddr
))
2281 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
2282 * - at most 1024 interrupts
2283 * - a multiple of 32 interrupts
2285 if (val
< (VGIC_NR_PRIVATE_IRQS
+ 32) ||
2286 val
> VGIC_MAX_IRQS
||
2290 mutex_lock(&dev
->kvm
->lock
);
2292 if (vgic_initialized(dev
->kvm
) || dev
->kvm
->arch
.vgic
.nr_irqs
)
2295 dev
->kvm
->arch
.vgic
.nr_irqs
= val
;
2297 mutex_unlock(&dev
->kvm
->lock
);
2307 static int vgic_get_attr(struct kvm_device
*dev
, struct kvm_device_attr
*attr
)
2311 switch (attr
->group
) {
2312 case KVM_DEV_ARM_VGIC_GRP_ADDR
: {
2313 u64 __user
*uaddr
= (u64 __user
*)(long)attr
->addr
;
2315 unsigned long type
= (unsigned long)attr
->attr
;
2317 r
= kvm_vgic_addr(dev
->kvm
, type
, &addr
, false);
2319 return (r
== -ENODEV
) ? -ENXIO
: r
;
2321 if (copy_to_user(uaddr
, &addr
, sizeof(addr
)))
2326 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS
:
2327 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS
: {
2328 u32 __user
*uaddr
= (u32 __user
*)(long)attr
->addr
;
2331 r
= vgic_attr_regs_access(dev
, attr
, ®
, false);
2334 r
= put_user(reg
, uaddr
);
2337 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS
: {
2338 u32 __user
*uaddr
= (u32 __user
*)(long)attr
->addr
;
2339 r
= put_user(dev
->kvm
->arch
.vgic
.nr_irqs
, uaddr
);
2348 static int vgic_has_attr_regs(const struct mmio_range
*ranges
,
2351 struct kvm_exit_mmio dev_attr_mmio
;
2353 dev_attr_mmio
.len
= 4;
2354 if (find_matching_range(ranges
, &dev_attr_mmio
, offset
))
2360 static int vgic_has_attr(struct kvm_device
*dev
, struct kvm_device_attr
*attr
)
2364 switch (attr
->group
) {
2365 case KVM_DEV_ARM_VGIC_GRP_ADDR
:
2366 switch (attr
->attr
) {
2367 case KVM_VGIC_V2_ADDR_TYPE_DIST
:
2368 case KVM_VGIC_V2_ADDR_TYPE_CPU
:
2372 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS
:
2373 offset
= attr
->attr
& KVM_DEV_ARM_VGIC_OFFSET_MASK
;
2374 return vgic_has_attr_regs(vgic_dist_ranges
, offset
);
2375 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS
:
2376 offset
= attr
->attr
& KVM_DEV_ARM_VGIC_OFFSET_MASK
;
2377 return vgic_has_attr_regs(vgic_cpu_ranges
, offset
);
2378 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS
:
2384 static void vgic_destroy(struct kvm_device
*dev
)
2389 static int vgic_create(struct kvm_device
*dev
, u32 type
)
2391 return kvm_vgic_create(dev
->kvm
);
2394 static struct kvm_device_ops kvm_arm_vgic_v2_ops
= {
2395 .name
= "kvm-arm-vgic",
2396 .create
= vgic_create
,
2397 .destroy
= vgic_destroy
,
2398 .set_attr
= vgic_set_attr
,
2399 .get_attr
= vgic_get_attr
,
2400 .has_attr
= vgic_has_attr
,
2403 static void vgic_init_maintenance_interrupt(void *info
)
2405 enable_percpu_irq(vgic
->maint_irq
, 0);
2408 static int vgic_cpu_notify(struct notifier_block
*self
,
2409 unsigned long action
, void *cpu
)
2413 case CPU_STARTING_FROZEN
:
2414 vgic_init_maintenance_interrupt(NULL
);
2417 case CPU_DYING_FROZEN
:
2418 disable_percpu_irq(vgic
->maint_irq
);
2425 static struct notifier_block vgic_cpu_nb
= {
2426 .notifier_call
= vgic_cpu_notify
,
2429 static const struct of_device_id vgic_ids
[] = {
2430 { .compatible
= "arm,cortex-a15-gic", .data
= vgic_v2_probe
, },
2431 { .compatible
= "arm,gic-v3", .data
= vgic_v3_probe
, },
2435 int kvm_vgic_hyp_init(void)
2437 const struct of_device_id
*matched_id
;
2438 const int (*vgic_probe
)(struct device_node
*,const struct vgic_ops
**,
2439 const struct vgic_params
**);
2440 struct device_node
*vgic_node
;
2443 vgic_node
= of_find_matching_node_and_match(NULL
,
2444 vgic_ids
, &matched_id
);
2446 kvm_err("error: no compatible GIC node found\n");
2450 vgic_probe
= matched_id
->data
;
2451 ret
= vgic_probe(vgic_node
, &vgic_ops
, &vgic
);
2455 ret
= request_percpu_irq(vgic
->maint_irq
, vgic_maintenance_handler
,
2456 "vgic", kvm_get_running_vcpus());
2458 kvm_err("Cannot register interrupt %d\n", vgic
->maint_irq
);
2462 ret
= __register_cpu_notifier(&vgic_cpu_nb
);
2464 kvm_err("Cannot register vgic CPU notifier\n");
2468 /* Callback into for arch code for setup */
2469 vgic_arch_setup(vgic
);
2471 on_each_cpu(vgic_init_maintenance_interrupt
, NULL
, 1);
2473 return kvm_register_device_ops(&kvm_arm_vgic_v2_ops
,
2474 KVM_DEV_TYPE_ARM_VGIC_V2
);
2477 free_percpu_irq(vgic
->maint_irq
, kvm_get_running_vcpus());