]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/arm/vgic.c
Merge branch 'pm-tools'
[mirror_ubuntu-artful-kernel.git] / virt / kvm / arm / vgic.c
1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
33 #include <trace/events/kvm.h>
34 #include <asm/kvm.h>
35 #include <kvm/iodev.h>
36
37 /*
38 * How the whole thing works (courtesy of Christoffer Dall):
39 *
40 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
41 * something is pending on the CPU interface.
42 * - Interrupts that are pending on the distributor are stored on the
43 * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
44 * ioctls and guest mmio ops, and other in-kernel peripherals such as the
45 * arch. timers).
46 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
47 * recalculated
48 * - To calculate the oracle, we need info for each cpu from
49 * compute_pending_for_cpu, which considers:
50 * - PPI: dist->irq_pending & dist->irq_enable
51 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
52 * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
53 * registers, stored on each vcpu. We only keep one bit of
54 * information per interrupt, making sure that only one vcpu can
55 * accept the interrupt.
56 * - If any of the above state changes, we must recalculate the oracle.
57 * - The same is true when injecting an interrupt, except that we only
58 * consider a single interrupt at a time. The irq_spi_cpu array
59 * contains the target CPU for each SPI.
60 *
61 * The handling of level interrupts adds some extra complexity. We
62 * need to track when the interrupt has been EOIed, so we can sample
63 * the 'line' again. This is achieved as such:
64 *
65 * - When a level interrupt is moved onto a vcpu, the corresponding
66 * bit in irq_queued is set. As long as this bit is set, the line
67 * will be ignored for further interrupts. The interrupt is injected
68 * into the vcpu with the GICH_LR_EOI bit set (generate a
69 * maintenance interrupt on EOI).
70 * - When the interrupt is EOIed, the maintenance interrupt fires,
71 * and clears the corresponding bit in irq_queued. This allows the
72 * interrupt line to be sampled again.
73 * - Note that level-triggered interrupts can also be set to pending from
74 * writes to GICD_ISPENDRn and lowering the external input line does not
75 * cause the interrupt to become inactive in such a situation.
76 * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
77 * inactive as long as the external input line is held high.
78 *
79 *
80 * Initialization rules: there are multiple stages to the vgic
81 * initialization, both for the distributor and the CPU interfaces.
82 *
83 * Distributor:
84 *
85 * - kvm_vgic_early_init(): initialization of static data that doesn't
86 * depend on any sizing information or emulation type. No allocation
87 * is allowed there.
88 *
89 * - vgic_init(): allocation and initialization of the generic data
90 * structures that depend on sizing information (number of CPUs,
91 * number of interrupts). Also initializes the vcpu specific data
92 * structures. Can be executed lazily for GICv2.
93 * [to be renamed to kvm_vgic_init??]
94 *
95 * CPU Interface:
96 *
97 * - kvm_vgic_cpu_early_init(): initialization of static data that
98 * doesn't depend on any sizing information or emulation type. No
99 * allocation is allowed there.
100 */
101
102 #include "vgic.h"
103
104 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
105 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
106 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
107 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
108 static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
109 int virt_irq);
110
111 static const struct vgic_ops *vgic_ops;
112 static const struct vgic_params *vgic;
113
114 static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
115 {
116 vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
117 }
118
119 static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
120 {
121 return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
122 }
123
124 int kvm_vgic_map_resources(struct kvm *kvm)
125 {
126 return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
127 }
128
129 /*
130 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
131 * extracts u32s out of them.
132 *
133 * This does not work on 64-bit BE systems, because the bitmap access
134 * will store two consecutive 32-bit words with the higher-addressed
135 * register's bits at the lower index and the lower-addressed register's
136 * bits at the higher index.
137 *
138 * Therefore, swizzle the register index when accessing the 32-bit word
139 * registers to access the right register's value.
140 */
141 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
142 #define REG_OFFSET_SWIZZLE 1
143 #else
144 #define REG_OFFSET_SWIZZLE 0
145 #endif
146
147 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
148 {
149 int nr_longs;
150
151 nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
152
153 b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
154 if (!b->private)
155 return -ENOMEM;
156
157 b->shared = b->private + nr_cpus;
158
159 return 0;
160 }
161
162 static void vgic_free_bitmap(struct vgic_bitmap *b)
163 {
164 kfree(b->private);
165 b->private = NULL;
166 b->shared = NULL;
167 }
168
169 /*
170 * Call this function to convert a u64 value to an unsigned long * bitmask
171 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
172 *
173 * Warning: Calling this function may modify *val.
174 */
175 static unsigned long *u64_to_bitmask(u64 *val)
176 {
177 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
178 *val = (*val >> 32) | (*val << 32);
179 #endif
180 return (unsigned long *)val;
181 }
182
183 u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
184 {
185 offset >>= 2;
186 if (!offset)
187 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
188 else
189 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
190 }
191
192 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
193 int cpuid, int irq)
194 {
195 if (irq < VGIC_NR_PRIVATE_IRQS)
196 return test_bit(irq, x->private + cpuid);
197
198 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
199 }
200
201 void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
202 int irq, int val)
203 {
204 unsigned long *reg;
205
206 if (irq < VGIC_NR_PRIVATE_IRQS) {
207 reg = x->private + cpuid;
208 } else {
209 reg = x->shared;
210 irq -= VGIC_NR_PRIVATE_IRQS;
211 }
212
213 if (val)
214 set_bit(irq, reg);
215 else
216 clear_bit(irq, reg);
217 }
218
219 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
220 {
221 return x->private + cpuid;
222 }
223
224 unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
225 {
226 return x->shared;
227 }
228
229 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
230 {
231 int size;
232
233 size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
234 size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
235
236 x->private = kzalloc(size, GFP_KERNEL);
237 if (!x->private)
238 return -ENOMEM;
239
240 x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
241 return 0;
242 }
243
244 static void vgic_free_bytemap(struct vgic_bytemap *b)
245 {
246 kfree(b->private);
247 b->private = NULL;
248 b->shared = NULL;
249 }
250
251 u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
252 {
253 u32 *reg;
254
255 if (offset < VGIC_NR_PRIVATE_IRQS) {
256 reg = x->private;
257 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
258 } else {
259 reg = x->shared;
260 offset -= VGIC_NR_PRIVATE_IRQS;
261 }
262
263 return reg + (offset / sizeof(u32));
264 }
265
266 #define VGIC_CFG_LEVEL 0
267 #define VGIC_CFG_EDGE 1
268
269 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
270 {
271 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
272 int irq_val;
273
274 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
275 return irq_val == VGIC_CFG_EDGE;
276 }
277
278 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
279 {
280 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
281
282 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
283 }
284
285 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
286 {
287 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
288
289 return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
290 }
291
292 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
293 {
294 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
295
296 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
297 }
298
299 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
300 {
301 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
302
303 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
304 }
305
306 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
307 {
308 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
309
310 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
311 }
312
313 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
314 {
315 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
316
317 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
318 }
319
320 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
321 {
322 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
323
324 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
325 }
326
327 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
328 {
329 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
330
331 return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
332 }
333
334 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
335 {
336 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
337
338 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
339 }
340
341 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
342 {
343 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
344
345 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
346 }
347
348 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
349 {
350 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
351
352 return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
353 }
354
355 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
356 {
357 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
358
359 vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
360 }
361
362 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
363 {
364 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
365
366 return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
367 }
368
369 void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
370 {
371 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
372
373 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
374 }
375
376 void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
377 {
378 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
379
380 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
381 }
382
383 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
384 {
385 if (irq < VGIC_NR_PRIVATE_IRQS)
386 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
387 else
388 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
389 vcpu->arch.vgic_cpu.pending_shared);
390 }
391
392 void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
393 {
394 if (irq < VGIC_NR_PRIVATE_IRQS)
395 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
396 else
397 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
398 vcpu->arch.vgic_cpu.pending_shared);
399 }
400
401 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
402 {
403 return !vgic_irq_is_queued(vcpu, irq);
404 }
405
406 /**
407 * vgic_reg_access - access vgic register
408 * @mmio: pointer to the data describing the mmio access
409 * @reg: pointer to the virtual backing of vgic distributor data
410 * @offset: least significant 2 bits used for word offset
411 * @mode: ACCESS_ mode (see defines above)
412 *
413 * Helper to make vgic register access easier using one of the access
414 * modes defined for vgic register access
415 * (read,raz,write-ignored,setbit,clearbit,write)
416 */
417 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
418 phys_addr_t offset, int mode)
419 {
420 int word_offset = (offset & 3) * 8;
421 u32 mask = (1UL << (mmio->len * 8)) - 1;
422 u32 regval;
423
424 /*
425 * Any alignment fault should have been delivered to the guest
426 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
427 */
428
429 if (reg) {
430 regval = *reg;
431 } else {
432 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
433 regval = 0;
434 }
435
436 if (mmio->is_write) {
437 u32 data = mmio_data_read(mmio, mask) << word_offset;
438 switch (ACCESS_WRITE_MASK(mode)) {
439 case ACCESS_WRITE_IGNORED:
440 return;
441
442 case ACCESS_WRITE_SETBIT:
443 regval |= data;
444 break;
445
446 case ACCESS_WRITE_CLEARBIT:
447 regval &= ~data;
448 break;
449
450 case ACCESS_WRITE_VALUE:
451 regval = (regval & ~(mask << word_offset)) | data;
452 break;
453 }
454 *reg = regval;
455 } else {
456 switch (ACCESS_READ_MASK(mode)) {
457 case ACCESS_READ_RAZ:
458 regval = 0;
459 /* fall through */
460
461 case ACCESS_READ_VALUE:
462 mmio_data_write(mmio, mask, regval >> word_offset);
463 }
464 }
465 }
466
467 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
468 phys_addr_t offset)
469 {
470 vgic_reg_access(mmio, NULL, offset,
471 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
472 return false;
473 }
474
475 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
476 phys_addr_t offset, int vcpu_id, int access)
477 {
478 u32 *reg;
479 int mode = ACCESS_READ_VALUE | access;
480 struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
481
482 reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
483 vgic_reg_access(mmio, reg, offset, mode);
484 if (mmio->is_write) {
485 if (access & ACCESS_WRITE_CLEARBIT) {
486 if (offset < 4) /* Force SGI enabled */
487 *reg |= 0xffff;
488 vgic_retire_disabled_irqs(target_vcpu);
489 }
490 vgic_update_state(kvm);
491 return true;
492 }
493
494 return false;
495 }
496
497 bool vgic_handle_set_pending_reg(struct kvm *kvm,
498 struct kvm_exit_mmio *mmio,
499 phys_addr_t offset, int vcpu_id)
500 {
501 u32 *reg, orig;
502 u32 level_mask;
503 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
504 struct vgic_dist *dist = &kvm->arch.vgic;
505
506 reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
507 level_mask = (~(*reg));
508
509 /* Mark both level and edge triggered irqs as pending */
510 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
511 orig = *reg;
512 vgic_reg_access(mmio, reg, offset, mode);
513
514 if (mmio->is_write) {
515 /* Set the soft-pending flag only for level-triggered irqs */
516 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
517 vcpu_id, offset);
518 vgic_reg_access(mmio, reg, offset, mode);
519 *reg &= level_mask;
520
521 /* Ignore writes to SGIs */
522 if (offset < 2) {
523 *reg &= ~0xffff;
524 *reg |= orig & 0xffff;
525 }
526
527 vgic_update_state(kvm);
528 return true;
529 }
530
531 return false;
532 }
533
534 /*
535 * If a mapped interrupt's state has been modified by the guest such that it
536 * is no longer active or pending, without it have gone through the sync path,
537 * then the map->active field must be cleared so the interrupt can be taken
538 * again.
539 */
540 static void vgic_handle_clear_mapped_irq(struct kvm_vcpu *vcpu)
541 {
542 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
543 struct list_head *root;
544 struct irq_phys_map_entry *entry;
545 struct irq_phys_map *map;
546
547 rcu_read_lock();
548
549 /* Check for PPIs */
550 root = &vgic_cpu->irq_phys_map_list;
551 list_for_each_entry_rcu(entry, root, entry) {
552 map = &entry->map;
553
554 if (!vgic_dist_irq_is_pending(vcpu, map->virt_irq) &&
555 !vgic_irq_is_active(vcpu, map->virt_irq))
556 map->active = false;
557 }
558
559 rcu_read_unlock();
560 }
561
562 bool vgic_handle_clear_pending_reg(struct kvm *kvm,
563 struct kvm_exit_mmio *mmio,
564 phys_addr_t offset, int vcpu_id)
565 {
566 u32 *level_active;
567 u32 *reg, orig;
568 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
569 struct vgic_dist *dist = &kvm->arch.vgic;
570
571 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
572 orig = *reg;
573 vgic_reg_access(mmio, reg, offset, mode);
574 if (mmio->is_write) {
575 /* Re-set level triggered level-active interrupts */
576 level_active = vgic_bitmap_get_reg(&dist->irq_level,
577 vcpu_id, offset);
578 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
579 *reg |= *level_active;
580
581 /* Ignore writes to SGIs */
582 if (offset < 2) {
583 *reg &= ~0xffff;
584 *reg |= orig & 0xffff;
585 }
586
587 /* Clear soft-pending flags */
588 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
589 vcpu_id, offset);
590 vgic_reg_access(mmio, reg, offset, mode);
591
592 vgic_handle_clear_mapped_irq(kvm_get_vcpu(kvm, vcpu_id));
593 vgic_update_state(kvm);
594 return true;
595 }
596 return false;
597 }
598
599 bool vgic_handle_set_active_reg(struct kvm *kvm,
600 struct kvm_exit_mmio *mmio,
601 phys_addr_t offset, int vcpu_id)
602 {
603 u32 *reg;
604 struct vgic_dist *dist = &kvm->arch.vgic;
605
606 reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
607 vgic_reg_access(mmio, reg, offset,
608 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
609
610 if (mmio->is_write) {
611 vgic_update_state(kvm);
612 return true;
613 }
614
615 return false;
616 }
617
618 bool vgic_handle_clear_active_reg(struct kvm *kvm,
619 struct kvm_exit_mmio *mmio,
620 phys_addr_t offset, int vcpu_id)
621 {
622 u32 *reg;
623 struct vgic_dist *dist = &kvm->arch.vgic;
624
625 reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
626 vgic_reg_access(mmio, reg, offset,
627 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
628
629 if (mmio->is_write) {
630 vgic_handle_clear_mapped_irq(kvm_get_vcpu(kvm, vcpu_id));
631 vgic_update_state(kvm);
632 return true;
633 }
634
635 return false;
636 }
637
638 static u32 vgic_cfg_expand(u16 val)
639 {
640 u32 res = 0;
641 int i;
642
643 /*
644 * Turn a 16bit value like abcd...mnop into a 32bit word
645 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
646 */
647 for (i = 0; i < 16; i++)
648 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
649
650 return res;
651 }
652
653 static u16 vgic_cfg_compress(u32 val)
654 {
655 u16 res = 0;
656 int i;
657
658 /*
659 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
660 * abcd...mnop which is what we really care about.
661 */
662 for (i = 0; i < 16; i++)
663 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
664
665 return res;
666 }
667
668 /*
669 * The distributor uses 2 bits per IRQ for the CFG register, but the
670 * LSB is always 0. As such, we only keep the upper bit, and use the
671 * two above functions to compress/expand the bits
672 */
673 bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
674 phys_addr_t offset)
675 {
676 u32 val;
677
678 if (offset & 4)
679 val = *reg >> 16;
680 else
681 val = *reg & 0xffff;
682
683 val = vgic_cfg_expand(val);
684 vgic_reg_access(mmio, &val, offset,
685 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
686 if (mmio->is_write) {
687 if (offset < 8) {
688 *reg = ~0U; /* Force PPIs/SGIs to 1 */
689 return false;
690 }
691
692 val = vgic_cfg_compress(val);
693 if (offset & 4) {
694 *reg &= 0xffff;
695 *reg |= val << 16;
696 } else {
697 *reg &= 0xffff << 16;
698 *reg |= val;
699 }
700 }
701
702 return false;
703 }
704
705 /**
706 * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
707 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
708 *
709 * Move any IRQs that have already been assigned to LRs back to the
710 * emulated distributor state so that the complete emulated state can be read
711 * from the main emulation structures without investigating the LRs.
712 */
713 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
714 {
715 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
716 int i;
717
718 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
719 struct vgic_lr lr = vgic_get_lr(vcpu, i);
720
721 /*
722 * There are three options for the state bits:
723 *
724 * 01: pending
725 * 10: active
726 * 11: pending and active
727 */
728 BUG_ON(!(lr.state & LR_STATE_MASK));
729
730 /* Reestablish SGI source for pending and active IRQs */
731 if (lr.irq < VGIC_NR_SGIS)
732 add_sgi_source(vcpu, lr.irq, lr.source);
733
734 /*
735 * If the LR holds an active (10) or a pending and active (11)
736 * interrupt then move the active state to the
737 * distributor tracking bit.
738 */
739 if (lr.state & LR_STATE_ACTIVE) {
740 vgic_irq_set_active(vcpu, lr.irq);
741 lr.state &= ~LR_STATE_ACTIVE;
742 }
743
744 /*
745 * Reestablish the pending state on the distributor and the
746 * CPU interface. It may have already been pending, but that
747 * is fine, then we are only setting a few bits that were
748 * already set.
749 */
750 if (lr.state & LR_STATE_PENDING) {
751 vgic_dist_irq_set_pending(vcpu, lr.irq);
752 lr.state &= ~LR_STATE_PENDING;
753 }
754
755 vgic_set_lr(vcpu, i, lr);
756
757 /*
758 * Mark the LR as free for other use.
759 */
760 BUG_ON(lr.state & LR_STATE_MASK);
761 vgic_retire_lr(i, lr.irq, vcpu);
762 vgic_irq_clear_queued(vcpu, lr.irq);
763
764 /* Finally update the VGIC state. */
765 vgic_update_state(vcpu->kvm);
766 }
767 }
768
769 const
770 struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
771 int len, gpa_t offset)
772 {
773 while (ranges->len) {
774 if (offset >= ranges->base &&
775 (offset + len) <= (ranges->base + ranges->len))
776 return ranges;
777 ranges++;
778 }
779
780 return NULL;
781 }
782
783 static bool vgic_validate_access(const struct vgic_dist *dist,
784 const struct vgic_io_range *range,
785 unsigned long offset)
786 {
787 int irq;
788
789 if (!range->bits_per_irq)
790 return true; /* Not an irq-based access */
791
792 irq = offset * 8 / range->bits_per_irq;
793 if (irq >= dist->nr_irqs)
794 return false;
795
796 return true;
797 }
798
799 /*
800 * Call the respective handler function for the given range.
801 * We split up any 64 bit accesses into two consecutive 32 bit
802 * handler calls and merge the result afterwards.
803 * We do this in a little endian fashion regardless of the host's
804 * or guest's endianness, because the GIC is always LE and the rest of
805 * the code (vgic_reg_access) also puts it in a LE fashion already.
806 * At this point we have already identified the handle function, so
807 * range points to that one entry and offset is relative to this.
808 */
809 static bool call_range_handler(struct kvm_vcpu *vcpu,
810 struct kvm_exit_mmio *mmio,
811 unsigned long offset,
812 const struct vgic_io_range *range)
813 {
814 struct kvm_exit_mmio mmio32;
815 bool ret;
816
817 if (likely(mmio->len <= 4))
818 return range->handle_mmio(vcpu, mmio, offset);
819
820 /*
821 * Any access bigger than 4 bytes (that we currently handle in KVM)
822 * is actually 8 bytes long, caused by a 64-bit access
823 */
824
825 mmio32.len = 4;
826 mmio32.is_write = mmio->is_write;
827 mmio32.private = mmio->private;
828
829 mmio32.phys_addr = mmio->phys_addr + 4;
830 mmio32.data = &((u32 *)mmio->data)[1];
831 ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
832
833 mmio32.phys_addr = mmio->phys_addr;
834 mmio32.data = &((u32 *)mmio->data)[0];
835 ret |= range->handle_mmio(vcpu, &mmio32, offset);
836
837 return ret;
838 }
839
840 /**
841 * vgic_handle_mmio_access - handle an in-kernel MMIO access
842 * This is called by the read/write KVM IO device wrappers below.
843 * @vcpu: pointer to the vcpu performing the access
844 * @this: pointer to the KVM IO device in charge
845 * @addr: guest physical address of the access
846 * @len: size of the access
847 * @val: pointer to the data region
848 * @is_write: read or write access
849 *
850 * returns true if the MMIO access could be performed
851 */
852 static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
853 struct kvm_io_device *this, gpa_t addr,
854 int len, void *val, bool is_write)
855 {
856 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
857 struct vgic_io_device *iodev = container_of(this,
858 struct vgic_io_device, dev);
859 struct kvm_run *run = vcpu->run;
860 const struct vgic_io_range *range;
861 struct kvm_exit_mmio mmio;
862 bool updated_state;
863 gpa_t offset;
864
865 offset = addr - iodev->addr;
866 range = vgic_find_range(iodev->reg_ranges, len, offset);
867 if (unlikely(!range || !range->handle_mmio)) {
868 pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
869 return -ENXIO;
870 }
871
872 mmio.phys_addr = addr;
873 mmio.len = len;
874 mmio.is_write = is_write;
875 mmio.data = val;
876 mmio.private = iodev->redist_vcpu;
877
878 spin_lock(&dist->lock);
879 offset -= range->base;
880 if (vgic_validate_access(dist, range, offset)) {
881 updated_state = call_range_handler(vcpu, &mmio, offset, range);
882 } else {
883 if (!is_write)
884 memset(val, 0, len);
885 updated_state = false;
886 }
887 spin_unlock(&dist->lock);
888 run->mmio.is_write = is_write;
889 run->mmio.len = len;
890 run->mmio.phys_addr = addr;
891 memcpy(run->mmio.data, val, len);
892
893 kvm_handle_mmio_return(vcpu, run);
894
895 if (updated_state)
896 vgic_kick_vcpus(vcpu->kvm);
897
898 return 0;
899 }
900
901 static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
902 struct kvm_io_device *this,
903 gpa_t addr, int len, void *val)
904 {
905 return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
906 }
907
908 static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
909 struct kvm_io_device *this,
910 gpa_t addr, int len, const void *val)
911 {
912 return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
913 true);
914 }
915
916 struct kvm_io_device_ops vgic_io_ops = {
917 .read = vgic_handle_mmio_read,
918 .write = vgic_handle_mmio_write,
919 };
920
921 /**
922 * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
923 * @kvm: The VM structure pointer
924 * @base: The (guest) base address for the register frame
925 * @len: Length of the register frame window
926 * @ranges: Describing the handler functions for each register
927 * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
928 * @iodev: Points to memory to be passed on to the handler
929 *
930 * @iodev stores the parameters of this function to be usable by the handler
931 * respectively the dispatcher function (since the KVM I/O bus framework lacks
932 * an opaque parameter). Initialization is done in this function, but the
933 * reference should be valid and unique for the whole VGIC lifetime.
934 * If the register frame is not mapped for a specific VCPU, pass -1 to
935 * @redist_vcpu_id.
936 */
937 int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
938 const struct vgic_io_range *ranges,
939 int redist_vcpu_id,
940 struct vgic_io_device *iodev)
941 {
942 struct kvm_vcpu *vcpu = NULL;
943 int ret;
944
945 if (redist_vcpu_id >= 0)
946 vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
947
948 iodev->addr = base;
949 iodev->len = len;
950 iodev->reg_ranges = ranges;
951 iodev->redist_vcpu = vcpu;
952
953 kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
954
955 mutex_lock(&kvm->slots_lock);
956
957 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
958 &iodev->dev);
959 mutex_unlock(&kvm->slots_lock);
960
961 /* Mark the iodev as invalid if registration fails. */
962 if (ret)
963 iodev->dev.ops = NULL;
964
965 return ret;
966 }
967
968 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
969 {
970 return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
971 }
972
973 static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
974 {
975 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
976 unsigned long *active, *enabled, *act_percpu, *act_shared;
977 unsigned long active_private, active_shared;
978 int nr_shared = vgic_nr_shared_irqs(dist);
979 int vcpu_id;
980
981 vcpu_id = vcpu->vcpu_id;
982 act_percpu = vcpu->arch.vgic_cpu.active_percpu;
983 act_shared = vcpu->arch.vgic_cpu.active_shared;
984
985 active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
986 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
987 bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
988
989 active = vgic_bitmap_get_shared_map(&dist->irq_active);
990 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
991 bitmap_and(act_shared, active, enabled, nr_shared);
992 bitmap_and(act_shared, act_shared,
993 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
994 nr_shared);
995
996 active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
997 active_shared = find_first_bit(act_shared, nr_shared);
998
999 return (active_private < VGIC_NR_PRIVATE_IRQS ||
1000 active_shared < nr_shared);
1001 }
1002
1003 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
1004 {
1005 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1006 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
1007 unsigned long pending_private, pending_shared;
1008 int nr_shared = vgic_nr_shared_irqs(dist);
1009 int vcpu_id;
1010
1011 vcpu_id = vcpu->vcpu_id;
1012 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
1013 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
1014
1015 if (!dist->enabled) {
1016 bitmap_zero(pend_percpu, VGIC_NR_PRIVATE_IRQS);
1017 bitmap_zero(pend_shared, nr_shared);
1018 return 0;
1019 }
1020
1021 pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
1022 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
1023 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
1024
1025 pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
1026 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
1027 bitmap_and(pend_shared, pending, enabled, nr_shared);
1028 bitmap_and(pend_shared, pend_shared,
1029 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
1030 nr_shared);
1031
1032 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
1033 pending_shared = find_first_bit(pend_shared, nr_shared);
1034 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
1035 pending_shared < vgic_nr_shared_irqs(dist));
1036 }
1037
1038 /*
1039 * Update the interrupt state and determine which CPUs have pending
1040 * or active interrupts. Must be called with distributor lock held.
1041 */
1042 void vgic_update_state(struct kvm *kvm)
1043 {
1044 struct vgic_dist *dist = &kvm->arch.vgic;
1045 struct kvm_vcpu *vcpu;
1046 int c;
1047
1048 kvm_for_each_vcpu(c, vcpu, kvm) {
1049 if (compute_pending_for_cpu(vcpu))
1050 set_bit(c, dist->irq_pending_on_cpu);
1051
1052 if (compute_active_for_cpu(vcpu))
1053 set_bit(c, dist->irq_active_on_cpu);
1054 else
1055 clear_bit(c, dist->irq_active_on_cpu);
1056 }
1057 }
1058
1059 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1060 {
1061 return vgic_ops->get_lr(vcpu, lr);
1062 }
1063
1064 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1065 struct vgic_lr vlr)
1066 {
1067 vgic_ops->set_lr(vcpu, lr, vlr);
1068 }
1069
1070 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1071 struct vgic_lr vlr)
1072 {
1073 vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1074 }
1075
1076 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1077 {
1078 return vgic_ops->get_elrsr(vcpu);
1079 }
1080
1081 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1082 {
1083 return vgic_ops->get_eisr(vcpu);
1084 }
1085
1086 static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
1087 {
1088 vgic_ops->clear_eisr(vcpu);
1089 }
1090
1091 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1092 {
1093 return vgic_ops->get_interrupt_status(vcpu);
1094 }
1095
1096 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1097 {
1098 vgic_ops->enable_underflow(vcpu);
1099 }
1100
1101 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1102 {
1103 vgic_ops->disable_underflow(vcpu);
1104 }
1105
1106 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1107 {
1108 vgic_ops->get_vmcr(vcpu, vmcr);
1109 }
1110
1111 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1112 {
1113 vgic_ops->set_vmcr(vcpu, vmcr);
1114 }
1115
1116 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1117 {
1118 vgic_ops->enable(vcpu);
1119 }
1120
1121 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1122 {
1123 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1124 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1125
1126 /*
1127 * We must transfer the pending state back to the distributor before
1128 * retiring the LR, otherwise we may loose edge-triggered interrupts.
1129 */
1130 if (vlr.state & LR_STATE_PENDING) {
1131 vgic_dist_irq_set_pending(vcpu, irq);
1132 vlr.hwirq = 0;
1133 }
1134
1135 vlr.state = 0;
1136 vgic_set_lr(vcpu, lr_nr, vlr);
1137 clear_bit(lr_nr, vgic_cpu->lr_used);
1138 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1139 vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1140 }
1141
1142 /*
1143 * An interrupt may have been disabled after being made pending on the
1144 * CPU interface (the classic case is a timer running while we're
1145 * rebooting the guest - the interrupt would kick as soon as the CPU
1146 * interface gets enabled, with deadly consequences).
1147 *
1148 * The solution is to examine already active LRs, and check the
1149 * interrupt is still enabled. If not, just retire it.
1150 */
1151 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1152 {
1153 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1154 int lr;
1155
1156 for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1157 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1158
1159 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1160 vgic_retire_lr(lr, vlr.irq, vcpu);
1161 if (vgic_irq_is_queued(vcpu, vlr.irq))
1162 vgic_irq_clear_queued(vcpu, vlr.irq);
1163 }
1164 }
1165 }
1166
1167 static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1168 int lr_nr, struct vgic_lr vlr)
1169 {
1170 if (vgic_irq_is_active(vcpu, irq)) {
1171 vlr.state |= LR_STATE_ACTIVE;
1172 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1173 vgic_irq_clear_active(vcpu, irq);
1174 vgic_update_state(vcpu->kvm);
1175 } else {
1176 WARN_ON(!vgic_dist_irq_is_pending(vcpu, irq));
1177 vlr.state |= LR_STATE_PENDING;
1178 kvm_debug("Set pending: 0x%x\n", vlr.state);
1179 }
1180
1181 if (!vgic_irq_is_edge(vcpu, irq))
1182 vlr.state |= LR_EOI_INT;
1183
1184 if (vlr.irq >= VGIC_NR_SGIS) {
1185 struct irq_phys_map *map;
1186 map = vgic_irq_map_search(vcpu, irq);
1187
1188 if (map) {
1189 vlr.hwirq = map->phys_irq;
1190 vlr.state |= LR_HW;
1191 vlr.state &= ~LR_EOI_INT;
1192
1193 /*
1194 * Make sure we're not going to sample this
1195 * again, as a HW-backed interrupt cannot be
1196 * in the PENDING_ACTIVE stage.
1197 */
1198 vgic_irq_set_queued(vcpu, irq);
1199 }
1200 }
1201
1202 vgic_set_lr(vcpu, lr_nr, vlr);
1203 vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1204 }
1205
1206 /*
1207 * Queue an interrupt to a CPU virtual interface. Return true on success,
1208 * or false if it wasn't possible to queue it.
1209 * sgi_source must be zero for any non-SGI interrupts.
1210 */
1211 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1212 {
1213 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1214 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1215 struct vgic_lr vlr;
1216 int lr;
1217
1218 /* Sanitize the input... */
1219 BUG_ON(sgi_source_id & ~7);
1220 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1221 BUG_ON(irq >= dist->nr_irqs);
1222
1223 kvm_debug("Queue IRQ%d\n", irq);
1224
1225 lr = vgic_cpu->vgic_irq_lr_map[irq];
1226
1227 /* Do we have an active interrupt for the same CPUID? */
1228 if (lr != LR_EMPTY) {
1229 vlr = vgic_get_lr(vcpu, lr);
1230 if (vlr.source == sgi_source_id) {
1231 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1232 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1233 vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1234 return true;
1235 }
1236 }
1237
1238 /* Try to use another LR for this interrupt */
1239 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1240 vgic->nr_lr);
1241 if (lr >= vgic->nr_lr)
1242 return false;
1243
1244 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1245 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1246 set_bit(lr, vgic_cpu->lr_used);
1247
1248 vlr.irq = irq;
1249 vlr.source = sgi_source_id;
1250 vlr.state = 0;
1251 vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1252
1253 return true;
1254 }
1255
1256 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1257 {
1258 if (!vgic_can_sample_irq(vcpu, irq))
1259 return true; /* level interrupt, already queued */
1260
1261 if (vgic_queue_irq(vcpu, 0, irq)) {
1262 if (vgic_irq_is_edge(vcpu, irq)) {
1263 vgic_dist_irq_clear_pending(vcpu, irq);
1264 vgic_cpu_irq_clear(vcpu, irq);
1265 } else {
1266 vgic_irq_set_queued(vcpu, irq);
1267 }
1268
1269 return true;
1270 }
1271
1272 return false;
1273 }
1274
1275 /*
1276 * Fill the list registers with pending interrupts before running the
1277 * guest.
1278 */
1279 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1280 {
1281 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1282 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1283 unsigned long *pa_percpu, *pa_shared;
1284 int i, vcpu_id;
1285 int overflow = 0;
1286 int nr_shared = vgic_nr_shared_irqs(dist);
1287
1288 vcpu_id = vcpu->vcpu_id;
1289
1290 pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1291 pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1292
1293 bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1294 VGIC_NR_PRIVATE_IRQS);
1295 bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1296 nr_shared);
1297 /*
1298 * We may not have any pending interrupt, or the interrupts
1299 * may have been serviced from another vcpu. In all cases,
1300 * move along.
1301 */
1302 if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
1303 goto epilog;
1304
1305 /* SGIs */
1306 for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
1307 if (!queue_sgi(vcpu, i))
1308 overflow = 1;
1309 }
1310
1311 /* PPIs */
1312 for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
1313 if (!vgic_queue_hwirq(vcpu, i))
1314 overflow = 1;
1315 }
1316
1317 /* SPIs */
1318 for_each_set_bit(i, pa_shared, nr_shared) {
1319 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1320 overflow = 1;
1321 }
1322
1323
1324
1325
1326 epilog:
1327 if (overflow) {
1328 vgic_enable_underflow(vcpu);
1329 } else {
1330 vgic_disable_underflow(vcpu);
1331 /*
1332 * We're about to run this VCPU, and we've consumed
1333 * everything the distributor had in store for
1334 * us. Claim we don't have anything pending. We'll
1335 * adjust that if needed while exiting.
1336 */
1337 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1338 }
1339 }
1340
1341 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1342 {
1343 u32 status = vgic_get_interrupt_status(vcpu);
1344 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1345 bool level_pending = false;
1346 struct kvm *kvm = vcpu->kvm;
1347
1348 kvm_debug("STATUS = %08x\n", status);
1349
1350 if (status & INT_STATUS_EOI) {
1351 /*
1352 * Some level interrupts have been EOIed. Clear their
1353 * active bit.
1354 */
1355 u64 eisr = vgic_get_eisr(vcpu);
1356 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1357 int lr;
1358
1359 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1360 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1361 WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1362
1363 spin_lock(&dist->lock);
1364 vgic_irq_clear_queued(vcpu, vlr.irq);
1365 WARN_ON(vlr.state & LR_STATE_MASK);
1366 vlr.state = 0;
1367 vgic_set_lr(vcpu, lr, vlr);
1368
1369 /*
1370 * If the IRQ was EOIed it was also ACKed and we we
1371 * therefore assume we can clear the soft pending
1372 * state (should it had been set) for this interrupt.
1373 *
1374 * Note: if the IRQ soft pending state was set after
1375 * the IRQ was acked, it actually shouldn't be
1376 * cleared, but we have no way of knowing that unless
1377 * we start trapping ACKs when the soft-pending state
1378 * is set.
1379 */
1380 vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1381
1382 /*
1383 * kvm_notify_acked_irq calls kvm_set_irq()
1384 * to reset the IRQ level. Need to release the
1385 * lock for kvm_set_irq to grab it.
1386 */
1387 spin_unlock(&dist->lock);
1388
1389 kvm_notify_acked_irq(kvm, 0,
1390 vlr.irq - VGIC_NR_PRIVATE_IRQS);
1391 spin_lock(&dist->lock);
1392
1393 /* Any additional pending interrupt? */
1394 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1395 vgic_cpu_irq_set(vcpu, vlr.irq);
1396 level_pending = true;
1397 } else {
1398 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1399 vgic_cpu_irq_clear(vcpu, vlr.irq);
1400 }
1401
1402 spin_unlock(&dist->lock);
1403
1404 /*
1405 * Despite being EOIed, the LR may not have
1406 * been marked as empty.
1407 */
1408 vgic_sync_lr_elrsr(vcpu, lr, vlr);
1409 }
1410 }
1411
1412 if (status & INT_STATUS_UNDERFLOW)
1413 vgic_disable_underflow(vcpu);
1414
1415 /*
1416 * In the next iterations of the vcpu loop, if we sync the vgic state
1417 * after flushing it, but before entering the guest (this happens for
1418 * pending signals and vmid rollovers), then make sure we don't pick
1419 * up any old maintenance interrupts here.
1420 */
1421 vgic_clear_eisr(vcpu);
1422
1423 return level_pending;
1424 }
1425
1426 /*
1427 * Save the physical active state, and reset it to inactive.
1428 *
1429 * Return 1 if HW interrupt went from active to inactive, and 0 otherwise.
1430 */
1431 static int vgic_sync_hwirq(struct kvm_vcpu *vcpu, struct vgic_lr vlr)
1432 {
1433 struct irq_phys_map *map;
1434 int ret;
1435
1436 if (!(vlr.state & LR_HW))
1437 return 0;
1438
1439 map = vgic_irq_map_search(vcpu, vlr.irq);
1440 BUG_ON(!map);
1441
1442 ret = irq_get_irqchip_state(map->irq,
1443 IRQCHIP_STATE_ACTIVE,
1444 &map->active);
1445
1446 WARN_ON(ret);
1447
1448 if (map->active)
1449 return 0;
1450
1451 return 1;
1452 }
1453
1454 /* Sync back the VGIC state after a guest run */
1455 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1456 {
1457 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1458 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1459 u64 elrsr;
1460 unsigned long *elrsr_ptr;
1461 int lr, pending;
1462 bool level_pending;
1463
1464 level_pending = vgic_process_maintenance(vcpu);
1465 elrsr = vgic_get_elrsr(vcpu);
1466 elrsr_ptr = u64_to_bitmask(&elrsr);
1467
1468 /* Deal with HW interrupts, and clear mappings for empty LRs */
1469 for (lr = 0; lr < vgic->nr_lr; lr++) {
1470 struct vgic_lr vlr;
1471
1472 if (!test_bit(lr, vgic_cpu->lr_used))
1473 continue;
1474
1475 vlr = vgic_get_lr(vcpu, lr);
1476 if (vgic_sync_hwirq(vcpu, vlr)) {
1477 /*
1478 * So this is a HW interrupt that the guest
1479 * EOI-ed. Clean the LR state and allow the
1480 * interrupt to be sampled again.
1481 */
1482 vlr.state = 0;
1483 vlr.hwirq = 0;
1484 vgic_set_lr(vcpu, lr, vlr);
1485 vgic_irq_clear_queued(vcpu, vlr.irq);
1486 set_bit(lr, elrsr_ptr);
1487 }
1488
1489 if (!test_bit(lr, elrsr_ptr))
1490 continue;
1491
1492 clear_bit(lr, vgic_cpu->lr_used);
1493
1494 BUG_ON(vlr.irq >= dist->nr_irqs);
1495 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1496 }
1497
1498 /* Check if we still have something up our sleeve... */
1499 pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1500 if (level_pending || pending < vgic->nr_lr)
1501 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1502 }
1503
1504 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1505 {
1506 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1507
1508 if (!irqchip_in_kernel(vcpu->kvm))
1509 return;
1510
1511 spin_lock(&dist->lock);
1512 __kvm_vgic_flush_hwstate(vcpu);
1513 spin_unlock(&dist->lock);
1514 }
1515
1516 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1517 {
1518 if (!irqchip_in_kernel(vcpu->kvm))
1519 return;
1520
1521 __kvm_vgic_sync_hwstate(vcpu);
1522 }
1523
1524 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1525 {
1526 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1527
1528 if (!irqchip_in_kernel(vcpu->kvm))
1529 return 0;
1530
1531 return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1532 }
1533
1534 int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
1535 {
1536 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1537
1538 if (!irqchip_in_kernel(vcpu->kvm))
1539 return 0;
1540
1541 return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1542 }
1543
1544
1545 void vgic_kick_vcpus(struct kvm *kvm)
1546 {
1547 struct kvm_vcpu *vcpu;
1548 int c;
1549
1550 /*
1551 * We've injected an interrupt, time to find out who deserves
1552 * a good kick...
1553 */
1554 kvm_for_each_vcpu(c, vcpu, kvm) {
1555 if (kvm_vgic_vcpu_pending_irq(vcpu))
1556 kvm_vcpu_kick(vcpu);
1557 }
1558 }
1559
1560 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1561 {
1562 int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1563
1564 /*
1565 * Only inject an interrupt if:
1566 * - edge triggered and we have a rising edge
1567 * - level triggered and we change level
1568 */
1569 if (edge_triggered) {
1570 int state = vgic_dist_irq_is_pending(vcpu, irq);
1571 return level > state;
1572 } else {
1573 int state = vgic_dist_irq_get_level(vcpu, irq);
1574 return level != state;
1575 }
1576 }
1577
1578 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1579 struct irq_phys_map *map,
1580 unsigned int irq_num, bool level)
1581 {
1582 struct vgic_dist *dist = &kvm->arch.vgic;
1583 struct kvm_vcpu *vcpu;
1584 int edge_triggered, level_triggered;
1585 int enabled;
1586 bool ret = true, can_inject = true;
1587
1588 if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
1589 return -EINVAL;
1590
1591 spin_lock(&dist->lock);
1592
1593 vcpu = kvm_get_vcpu(kvm, cpuid);
1594 edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1595 level_triggered = !edge_triggered;
1596
1597 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1598 ret = false;
1599 goto out;
1600 }
1601
1602 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1603 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1604 if (cpuid == VCPU_NOT_ALLOCATED) {
1605 /* Pretend we use CPU0, and prevent injection */
1606 cpuid = 0;
1607 can_inject = false;
1608 }
1609 vcpu = kvm_get_vcpu(kvm, cpuid);
1610 }
1611
1612 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1613
1614 if (level) {
1615 if (level_triggered)
1616 vgic_dist_irq_set_level(vcpu, irq_num);
1617 vgic_dist_irq_set_pending(vcpu, irq_num);
1618 } else {
1619 if (level_triggered) {
1620 vgic_dist_irq_clear_level(vcpu, irq_num);
1621 if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) {
1622 vgic_dist_irq_clear_pending(vcpu, irq_num);
1623 vgic_cpu_irq_clear(vcpu, irq_num);
1624 if (!compute_pending_for_cpu(vcpu))
1625 clear_bit(cpuid, dist->irq_pending_on_cpu);
1626 }
1627 }
1628
1629 ret = false;
1630 goto out;
1631 }
1632
1633 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1634
1635 if (!enabled || !can_inject) {
1636 ret = false;
1637 goto out;
1638 }
1639
1640 if (!vgic_can_sample_irq(vcpu, irq_num)) {
1641 /*
1642 * Level interrupt in progress, will be picked up
1643 * when EOId.
1644 */
1645 ret = false;
1646 goto out;
1647 }
1648
1649 if (level) {
1650 vgic_cpu_irq_set(vcpu, irq_num);
1651 set_bit(cpuid, dist->irq_pending_on_cpu);
1652 }
1653
1654 out:
1655 spin_unlock(&dist->lock);
1656
1657 if (ret) {
1658 /* kick the specified vcpu */
1659 kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid));
1660 }
1661
1662 return 0;
1663 }
1664
1665 static int vgic_lazy_init(struct kvm *kvm)
1666 {
1667 int ret = 0;
1668
1669 if (unlikely(!vgic_initialized(kvm))) {
1670 /*
1671 * We only provide the automatic initialization of the VGIC
1672 * for the legacy case of a GICv2. Any other type must
1673 * be explicitly initialized once setup with the respective
1674 * KVM device call.
1675 */
1676 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
1677 return -EBUSY;
1678
1679 mutex_lock(&kvm->lock);
1680 ret = vgic_init(kvm);
1681 mutex_unlock(&kvm->lock);
1682 }
1683
1684 return ret;
1685 }
1686
1687 /**
1688 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1689 * @kvm: The VM structure pointer
1690 * @cpuid: The CPU for PPIs
1691 * @irq_num: The IRQ number that is assigned to the device. This IRQ
1692 * must not be mapped to a HW interrupt.
1693 * @level: Edge-triggered: true: to trigger the interrupt
1694 * false: to ignore the call
1695 * Level-sensitive true: raise the input signal
1696 * false: lower the input signal
1697 *
1698 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1699 * level-sensitive interrupts. You can think of the level parameter as 1
1700 * being HIGH and 0 being LOW and all devices being active-HIGH.
1701 */
1702 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1703 bool level)
1704 {
1705 struct irq_phys_map *map;
1706 int ret;
1707
1708 ret = vgic_lazy_init(kvm);
1709 if (ret)
1710 return ret;
1711
1712 map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num);
1713 if (map)
1714 return -EINVAL;
1715
1716 return vgic_update_irq_pending(kvm, cpuid, NULL, irq_num, level);
1717 }
1718
1719 /**
1720 * kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic
1721 * @kvm: The VM structure pointer
1722 * @cpuid: The CPU for PPIs
1723 * @map: Pointer to a irq_phys_map structure describing the mapping
1724 * @level: Edge-triggered: true: to trigger the interrupt
1725 * false: to ignore the call
1726 * Level-sensitive true: raise the input signal
1727 * false: lower the input signal
1728 *
1729 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1730 * level-sensitive interrupts. You can think of the level parameter as 1
1731 * being HIGH and 0 being LOW and all devices being active-HIGH.
1732 */
1733 int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid,
1734 struct irq_phys_map *map, bool level)
1735 {
1736 int ret;
1737
1738 ret = vgic_lazy_init(kvm);
1739 if (ret)
1740 return ret;
1741
1742 return vgic_update_irq_pending(kvm, cpuid, map, map->virt_irq, level);
1743 }
1744
1745 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1746 {
1747 /*
1748 * We cannot rely on the vgic maintenance interrupt to be
1749 * delivered synchronously. This means we can only use it to
1750 * exit the VM, and we perform the handling of EOIed
1751 * interrupts on the exit path (see vgic_process_maintenance).
1752 */
1753 return IRQ_HANDLED;
1754 }
1755
1756 static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu,
1757 int virt_irq)
1758 {
1759 if (virt_irq < VGIC_NR_PRIVATE_IRQS)
1760 return &vcpu->arch.vgic_cpu.irq_phys_map_list;
1761 else
1762 return &vcpu->kvm->arch.vgic.irq_phys_map_list;
1763 }
1764
1765 /**
1766 * kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ
1767 * @vcpu: The VCPU pointer
1768 * @virt_irq: The virtual irq number
1769 * @irq: The Linux IRQ number
1770 *
1771 * Establish a mapping between a guest visible irq (@virt_irq) and a
1772 * Linux irq (@irq). On injection, @virt_irq will be associated with
1773 * the physical interrupt represented by @irq. This mapping can be
1774 * established multiple times as long as the parameters are the same.
1775 *
1776 * Returns a valid pointer on success, and an error pointer otherwise
1777 */
1778 struct irq_phys_map *kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu,
1779 int virt_irq, int irq)
1780 {
1781 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1782 struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1783 struct irq_phys_map *map;
1784 struct irq_phys_map_entry *entry;
1785 struct irq_desc *desc;
1786 struct irq_data *data;
1787 int phys_irq;
1788
1789 desc = irq_to_desc(irq);
1790 if (!desc) {
1791 kvm_err("%s: no interrupt descriptor\n", __func__);
1792 return ERR_PTR(-EINVAL);
1793 }
1794
1795 data = irq_desc_get_irq_data(desc);
1796 while (data->parent_data)
1797 data = data->parent_data;
1798
1799 phys_irq = data->hwirq;
1800
1801 /* Create a new mapping */
1802 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1803 if (!entry)
1804 return ERR_PTR(-ENOMEM);
1805
1806 spin_lock(&dist->irq_phys_map_lock);
1807
1808 /* Try to match an existing mapping */
1809 map = vgic_irq_map_search(vcpu, virt_irq);
1810 if (map) {
1811 /* Make sure this mapping matches */
1812 if (map->phys_irq != phys_irq ||
1813 map->irq != irq)
1814 map = ERR_PTR(-EINVAL);
1815
1816 /* Found an existing, valid mapping */
1817 goto out;
1818 }
1819
1820 map = &entry->map;
1821 map->virt_irq = virt_irq;
1822 map->phys_irq = phys_irq;
1823 map->irq = irq;
1824
1825 list_add_tail_rcu(&entry->entry, root);
1826
1827 out:
1828 spin_unlock(&dist->irq_phys_map_lock);
1829 /* If we've found a hit in the existing list, free the useless
1830 * entry */
1831 if (IS_ERR(map) || map != &entry->map)
1832 kfree(entry);
1833 return map;
1834 }
1835
1836 static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
1837 int virt_irq)
1838 {
1839 struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1840 struct irq_phys_map_entry *entry;
1841 struct irq_phys_map *map;
1842
1843 rcu_read_lock();
1844
1845 list_for_each_entry_rcu(entry, root, entry) {
1846 map = &entry->map;
1847 if (map->virt_irq == virt_irq) {
1848 rcu_read_unlock();
1849 return map;
1850 }
1851 }
1852
1853 rcu_read_unlock();
1854
1855 return NULL;
1856 }
1857
1858 static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu)
1859 {
1860 struct irq_phys_map_entry *entry;
1861
1862 entry = container_of(rcu, struct irq_phys_map_entry, rcu);
1863 kfree(entry);
1864 }
1865
1866 /**
1867 * kvm_vgic_get_phys_irq_active - Return the active state of a mapped IRQ
1868 *
1869 * Return the logical active state of a mapped interrupt. This doesn't
1870 * necessarily reflects the current HW state.
1871 */
1872 bool kvm_vgic_get_phys_irq_active(struct irq_phys_map *map)
1873 {
1874 BUG_ON(!map);
1875 return map->active;
1876 }
1877
1878 /**
1879 * kvm_vgic_set_phys_irq_active - Set the active state of a mapped IRQ
1880 *
1881 * Set the logical active state of a mapped interrupt. This doesn't
1882 * immediately affects the HW state.
1883 */
1884 void kvm_vgic_set_phys_irq_active(struct irq_phys_map *map, bool active)
1885 {
1886 BUG_ON(!map);
1887 map->active = active;
1888 }
1889
1890 /**
1891 * kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping
1892 * @vcpu: The VCPU pointer
1893 * @map: The pointer to a mapping obtained through kvm_vgic_map_phys_irq
1894 *
1895 * Remove an existing mapping between virtual and physical interrupts.
1896 */
1897 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
1898 {
1899 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1900 struct irq_phys_map_entry *entry;
1901 struct list_head *root;
1902
1903 if (!map)
1904 return -EINVAL;
1905
1906 root = vgic_get_irq_phys_map_list(vcpu, map->virt_irq);
1907
1908 spin_lock(&dist->irq_phys_map_lock);
1909
1910 list_for_each_entry(entry, root, entry) {
1911 if (&entry->map == map) {
1912 list_del_rcu(&entry->entry);
1913 call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1914 break;
1915 }
1916 }
1917
1918 spin_unlock(&dist->irq_phys_map_lock);
1919
1920 return 0;
1921 }
1922
1923 static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root)
1924 {
1925 struct vgic_dist *dist = &kvm->arch.vgic;
1926 struct irq_phys_map_entry *entry;
1927
1928 spin_lock(&dist->irq_phys_map_lock);
1929
1930 list_for_each_entry(entry, root, entry) {
1931 list_del_rcu(&entry->entry);
1932 call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1933 }
1934
1935 spin_unlock(&dist->irq_phys_map_lock);
1936 }
1937
1938 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1939 {
1940 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1941
1942 kfree(vgic_cpu->pending_shared);
1943 kfree(vgic_cpu->active_shared);
1944 kfree(vgic_cpu->pend_act_shared);
1945 kfree(vgic_cpu->vgic_irq_lr_map);
1946 vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list);
1947 vgic_cpu->pending_shared = NULL;
1948 vgic_cpu->active_shared = NULL;
1949 vgic_cpu->pend_act_shared = NULL;
1950 vgic_cpu->vgic_irq_lr_map = NULL;
1951 }
1952
1953 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1954 {
1955 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1956
1957 int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1958 vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1959 vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1960 vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
1961 vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1962
1963 if (!vgic_cpu->pending_shared
1964 || !vgic_cpu->active_shared
1965 || !vgic_cpu->pend_act_shared
1966 || !vgic_cpu->vgic_irq_lr_map) {
1967 kvm_vgic_vcpu_destroy(vcpu);
1968 return -ENOMEM;
1969 }
1970
1971 memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1972
1973 /*
1974 * Store the number of LRs per vcpu, so we don't have to go
1975 * all the way to the distributor structure to find out. Only
1976 * assembly code should use this one.
1977 */
1978 vgic_cpu->nr_lr = vgic->nr_lr;
1979
1980 return 0;
1981 }
1982
1983 /**
1984 * kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage
1985 *
1986 * No memory allocation should be performed here, only static init.
1987 */
1988 void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
1989 {
1990 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1991 INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list);
1992 }
1993
1994 /**
1995 * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1996 *
1997 * The host's GIC naturally limits the maximum amount of VCPUs a guest
1998 * can use.
1999 */
2000 int kvm_vgic_get_max_vcpus(void)
2001 {
2002 return vgic->max_gic_vcpus;
2003 }
2004
2005 void kvm_vgic_destroy(struct kvm *kvm)
2006 {
2007 struct vgic_dist *dist = &kvm->arch.vgic;
2008 struct kvm_vcpu *vcpu;
2009 int i;
2010
2011 kvm_for_each_vcpu(i, vcpu, kvm)
2012 kvm_vgic_vcpu_destroy(vcpu);
2013
2014 vgic_free_bitmap(&dist->irq_enabled);
2015 vgic_free_bitmap(&dist->irq_level);
2016 vgic_free_bitmap(&dist->irq_pending);
2017 vgic_free_bitmap(&dist->irq_soft_pend);
2018 vgic_free_bitmap(&dist->irq_queued);
2019 vgic_free_bitmap(&dist->irq_cfg);
2020 vgic_free_bytemap(&dist->irq_priority);
2021 if (dist->irq_spi_target) {
2022 for (i = 0; i < dist->nr_cpus; i++)
2023 vgic_free_bitmap(&dist->irq_spi_target[i]);
2024 }
2025 kfree(dist->irq_sgi_sources);
2026 kfree(dist->irq_spi_cpu);
2027 kfree(dist->irq_spi_mpidr);
2028 kfree(dist->irq_spi_target);
2029 kfree(dist->irq_pending_on_cpu);
2030 kfree(dist->irq_active_on_cpu);
2031 vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list);
2032 dist->irq_sgi_sources = NULL;
2033 dist->irq_spi_cpu = NULL;
2034 dist->irq_spi_target = NULL;
2035 dist->irq_pending_on_cpu = NULL;
2036 dist->irq_active_on_cpu = NULL;
2037 dist->nr_cpus = 0;
2038 }
2039
2040 /*
2041 * Allocate and initialize the various data structures. Must be called
2042 * with kvm->lock held!
2043 */
2044 int vgic_init(struct kvm *kvm)
2045 {
2046 struct vgic_dist *dist = &kvm->arch.vgic;
2047 struct kvm_vcpu *vcpu;
2048 int nr_cpus, nr_irqs;
2049 int ret, i, vcpu_id;
2050
2051 if (vgic_initialized(kvm))
2052 return 0;
2053
2054 nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
2055 if (!nr_cpus) /* No vcpus? Can't be good... */
2056 return -ENODEV;
2057
2058 /*
2059 * If nobody configured the number of interrupts, use the
2060 * legacy one.
2061 */
2062 if (!dist->nr_irqs)
2063 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
2064
2065 nr_irqs = dist->nr_irqs;
2066
2067 ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
2068 ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
2069 ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
2070 ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
2071 ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
2072 ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
2073 ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
2074 ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
2075
2076 if (ret)
2077 goto out;
2078
2079 dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
2080 dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
2081 dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
2082 GFP_KERNEL);
2083 dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2084 GFP_KERNEL);
2085 dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2086 GFP_KERNEL);
2087 if (!dist->irq_sgi_sources ||
2088 !dist->irq_spi_cpu ||
2089 !dist->irq_spi_target ||
2090 !dist->irq_pending_on_cpu ||
2091 !dist->irq_active_on_cpu) {
2092 ret = -ENOMEM;
2093 goto out;
2094 }
2095
2096 for (i = 0; i < nr_cpus; i++)
2097 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
2098 nr_cpus, nr_irqs);
2099
2100 if (ret)
2101 goto out;
2102
2103 ret = kvm->arch.vgic.vm_ops.init_model(kvm);
2104 if (ret)
2105 goto out;
2106
2107 kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
2108 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
2109 if (ret) {
2110 kvm_err("VGIC: Failed to allocate vcpu memory\n");
2111 break;
2112 }
2113
2114 for (i = 0; i < dist->nr_irqs; i++) {
2115 if (i < VGIC_NR_PPIS)
2116 vgic_bitmap_set_irq_val(&dist->irq_enabled,
2117 vcpu->vcpu_id, i, 1);
2118 if (i < VGIC_NR_PRIVATE_IRQS)
2119 vgic_bitmap_set_irq_val(&dist->irq_cfg,
2120 vcpu->vcpu_id, i,
2121 VGIC_CFG_EDGE);
2122 }
2123
2124 vgic_enable(vcpu);
2125 }
2126
2127 out:
2128 if (ret)
2129 kvm_vgic_destroy(kvm);
2130
2131 return ret;
2132 }
2133
2134 static int init_vgic_model(struct kvm *kvm, int type)
2135 {
2136 switch (type) {
2137 case KVM_DEV_TYPE_ARM_VGIC_V2:
2138 vgic_v2_init_emulation(kvm);
2139 break;
2140 #ifdef CONFIG_KVM_ARM_VGIC_V3
2141 case KVM_DEV_TYPE_ARM_VGIC_V3:
2142 vgic_v3_init_emulation(kvm);
2143 break;
2144 #endif
2145 default:
2146 return -ENODEV;
2147 }
2148
2149 if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
2150 return -E2BIG;
2151
2152 return 0;
2153 }
2154
2155 /**
2156 * kvm_vgic_early_init - Earliest possible vgic initialization stage
2157 *
2158 * No memory allocation should be performed here, only static init.
2159 */
2160 void kvm_vgic_early_init(struct kvm *kvm)
2161 {
2162 spin_lock_init(&kvm->arch.vgic.lock);
2163 spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock);
2164 INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list);
2165 }
2166
2167 int kvm_vgic_create(struct kvm *kvm, u32 type)
2168 {
2169 int i, vcpu_lock_idx = -1, ret;
2170 struct kvm_vcpu *vcpu;
2171
2172 mutex_lock(&kvm->lock);
2173
2174 if (irqchip_in_kernel(kvm)) {
2175 ret = -EEXIST;
2176 goto out;
2177 }
2178
2179 /*
2180 * This function is also called by the KVM_CREATE_IRQCHIP handler,
2181 * which had no chance yet to check the availability of the GICv2
2182 * emulation. So check this here again. KVM_CREATE_DEVICE does
2183 * the proper checks already.
2184 */
2185 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
2186 ret = -ENODEV;
2187 goto out;
2188 }
2189
2190 /*
2191 * Any time a vcpu is run, vcpu_load is called which tries to grab the
2192 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
2193 * that no other VCPUs are run while we create the vgic.
2194 */
2195 ret = -EBUSY;
2196 kvm_for_each_vcpu(i, vcpu, kvm) {
2197 if (!mutex_trylock(&vcpu->mutex))
2198 goto out_unlock;
2199 vcpu_lock_idx = i;
2200 }
2201
2202 kvm_for_each_vcpu(i, vcpu, kvm) {
2203 if (vcpu->arch.has_run_once)
2204 goto out_unlock;
2205 }
2206 ret = 0;
2207
2208 ret = init_vgic_model(kvm, type);
2209 if (ret)
2210 goto out_unlock;
2211
2212 kvm->arch.vgic.in_kernel = true;
2213 kvm->arch.vgic.vgic_model = type;
2214 kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
2215 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
2216 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
2217 kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
2218
2219 out_unlock:
2220 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
2221 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
2222 mutex_unlock(&vcpu->mutex);
2223 }
2224
2225 out:
2226 mutex_unlock(&kvm->lock);
2227 return ret;
2228 }
2229
2230 static int vgic_ioaddr_overlap(struct kvm *kvm)
2231 {
2232 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
2233 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
2234
2235 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
2236 return 0;
2237 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
2238 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
2239 return -EBUSY;
2240 return 0;
2241 }
2242
2243 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
2244 phys_addr_t addr, phys_addr_t size)
2245 {
2246 int ret;
2247
2248 if (addr & ~KVM_PHYS_MASK)
2249 return -E2BIG;
2250
2251 if (addr & (SZ_4K - 1))
2252 return -EINVAL;
2253
2254 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
2255 return -EEXIST;
2256 if (addr + size < addr)
2257 return -EINVAL;
2258
2259 *ioaddr = addr;
2260 ret = vgic_ioaddr_overlap(kvm);
2261 if (ret)
2262 *ioaddr = VGIC_ADDR_UNDEF;
2263
2264 return ret;
2265 }
2266
2267 /**
2268 * kvm_vgic_addr - set or get vgic VM base addresses
2269 * @kvm: pointer to the vm struct
2270 * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
2271 * @addr: pointer to address value
2272 * @write: if true set the address in the VM address space, if false read the
2273 * address
2274 *
2275 * Set or get the vgic base addresses for the distributor and the virtual CPU
2276 * interface in the VM physical address space. These addresses are properties
2277 * of the emulated core/SoC and therefore user space initially knows this
2278 * information.
2279 */
2280 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
2281 {
2282 int r = 0;
2283 struct vgic_dist *vgic = &kvm->arch.vgic;
2284 int type_needed;
2285 phys_addr_t *addr_ptr, block_size;
2286 phys_addr_t alignment;
2287
2288 mutex_lock(&kvm->lock);
2289 switch (type) {
2290 case KVM_VGIC_V2_ADDR_TYPE_DIST:
2291 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2292 addr_ptr = &vgic->vgic_dist_base;
2293 block_size = KVM_VGIC_V2_DIST_SIZE;
2294 alignment = SZ_4K;
2295 break;
2296 case KVM_VGIC_V2_ADDR_TYPE_CPU:
2297 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2298 addr_ptr = &vgic->vgic_cpu_base;
2299 block_size = KVM_VGIC_V2_CPU_SIZE;
2300 alignment = SZ_4K;
2301 break;
2302 #ifdef CONFIG_KVM_ARM_VGIC_V3
2303 case KVM_VGIC_V3_ADDR_TYPE_DIST:
2304 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2305 addr_ptr = &vgic->vgic_dist_base;
2306 block_size = KVM_VGIC_V3_DIST_SIZE;
2307 alignment = SZ_64K;
2308 break;
2309 case KVM_VGIC_V3_ADDR_TYPE_REDIST:
2310 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2311 addr_ptr = &vgic->vgic_redist_base;
2312 block_size = KVM_VGIC_V3_REDIST_SIZE;
2313 alignment = SZ_64K;
2314 break;
2315 #endif
2316 default:
2317 r = -ENODEV;
2318 goto out;
2319 }
2320
2321 if (vgic->vgic_model != type_needed) {
2322 r = -ENODEV;
2323 goto out;
2324 }
2325
2326 if (write) {
2327 if (!IS_ALIGNED(*addr, alignment))
2328 r = -EINVAL;
2329 else
2330 r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
2331 block_size);
2332 } else {
2333 *addr = *addr_ptr;
2334 }
2335
2336 out:
2337 mutex_unlock(&kvm->lock);
2338 return r;
2339 }
2340
2341 int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2342 {
2343 int r;
2344
2345 switch (attr->group) {
2346 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2347 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2348 u64 addr;
2349 unsigned long type = (unsigned long)attr->attr;
2350
2351 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2352 return -EFAULT;
2353
2354 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2355 return (r == -ENODEV) ? -ENXIO : r;
2356 }
2357 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2358 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2359 u32 val;
2360 int ret = 0;
2361
2362 if (get_user(val, uaddr))
2363 return -EFAULT;
2364
2365 /*
2366 * We require:
2367 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
2368 * - at most 1024 interrupts
2369 * - a multiple of 32 interrupts
2370 */
2371 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
2372 val > VGIC_MAX_IRQS ||
2373 (val & 31))
2374 return -EINVAL;
2375
2376 mutex_lock(&dev->kvm->lock);
2377
2378 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2379 ret = -EBUSY;
2380 else
2381 dev->kvm->arch.vgic.nr_irqs = val;
2382
2383 mutex_unlock(&dev->kvm->lock);
2384
2385 return ret;
2386 }
2387 case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2388 switch (attr->attr) {
2389 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2390 r = vgic_init(dev->kvm);
2391 return r;
2392 }
2393 break;
2394 }
2395 }
2396
2397 return -ENXIO;
2398 }
2399
2400 int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2401 {
2402 int r = -ENXIO;
2403
2404 switch (attr->group) {
2405 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2406 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2407 u64 addr;
2408 unsigned long type = (unsigned long)attr->attr;
2409
2410 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2411 if (r)
2412 return (r == -ENODEV) ? -ENXIO : r;
2413
2414 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2415 return -EFAULT;
2416 break;
2417 }
2418 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2419 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2420
2421 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2422 break;
2423 }
2424
2425 }
2426
2427 return r;
2428 }
2429
2430 int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
2431 {
2432 if (vgic_find_range(ranges, 4, offset))
2433 return 0;
2434 else
2435 return -ENXIO;
2436 }
2437
2438 static void vgic_init_maintenance_interrupt(void *info)
2439 {
2440 enable_percpu_irq(vgic->maint_irq, 0);
2441 }
2442
2443 static int vgic_cpu_notify(struct notifier_block *self,
2444 unsigned long action, void *cpu)
2445 {
2446 switch (action) {
2447 case CPU_STARTING:
2448 case CPU_STARTING_FROZEN:
2449 vgic_init_maintenance_interrupt(NULL);
2450 break;
2451 case CPU_DYING:
2452 case CPU_DYING_FROZEN:
2453 disable_percpu_irq(vgic->maint_irq);
2454 break;
2455 }
2456
2457 return NOTIFY_OK;
2458 }
2459
2460 static struct notifier_block vgic_cpu_nb = {
2461 .notifier_call = vgic_cpu_notify,
2462 };
2463
2464 static const struct of_device_id vgic_ids[] = {
2465 { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2466 { .compatible = "arm,cortex-a7-gic", .data = vgic_v2_probe, },
2467 { .compatible = "arm,gic-400", .data = vgic_v2_probe, },
2468 { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
2469 {},
2470 };
2471
2472 int kvm_vgic_hyp_init(void)
2473 {
2474 const struct of_device_id *matched_id;
2475 const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2476 const struct vgic_params **);
2477 struct device_node *vgic_node;
2478 int ret;
2479
2480 vgic_node = of_find_matching_node_and_match(NULL,
2481 vgic_ids, &matched_id);
2482 if (!vgic_node) {
2483 kvm_err("error: no compatible GIC node found\n");
2484 return -ENODEV;
2485 }
2486
2487 vgic_probe = matched_id->data;
2488 ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2489 if (ret)
2490 return ret;
2491
2492 ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2493 "vgic", kvm_get_running_vcpus());
2494 if (ret) {
2495 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2496 return ret;
2497 }
2498
2499 ret = __register_cpu_notifier(&vgic_cpu_nb);
2500 if (ret) {
2501 kvm_err("Cannot register vgic CPU notifier\n");
2502 goto out_free_irq;
2503 }
2504
2505 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2506
2507 return 0;
2508
2509 out_free_irq:
2510 free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2511 return ret;
2512 }
2513
2514 int kvm_irq_map_gsi(struct kvm *kvm,
2515 struct kvm_kernel_irq_routing_entry *entries,
2516 int gsi)
2517 {
2518 return 0;
2519 }
2520
2521 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2522 {
2523 return pin;
2524 }
2525
2526 int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2527 u32 irq, int level, bool line_status)
2528 {
2529 unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2530
2531 trace_kvm_set_irq(irq, level, irq_source_id);
2532
2533 BUG_ON(!vgic_initialized(kvm));
2534
2535 return kvm_vgic_inject_irq(kvm, 0, spi, level);
2536 }
2537
2538 /* MSI not implemented yet */
2539 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2540 struct kvm *kvm, int irq_source_id,
2541 int level, bool line_status)
2542 {
2543 return 0;
2544 }