]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - virt/kvm/kvm_main.c
Merge tag 'drm-misc-fixes-2019-11-25' of git://anongit.freedesktop.org/drm/drm-misc...
[mirror_ubuntu-jammy-kernel.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93 /*
94 * Ordering of locks:
95 *
96 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97 */
98
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106
107 struct kmem_cache *kvm_vcpu_cache;
108 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations *stat_fops_per_vm[];
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg);
123 #define KVM_COMPAT(c) .compat_ioctl = (c)
124 #else
125 /*
126 * For architectures that don't implement a compat infrastructure,
127 * adopt a double line of defense:
128 * - Prevent a compat task from opening /dev/kvm
129 * - If the open has been done by a 64bit task, and the KVM fd
130 * passed to a compat task, let the ioctls fail.
131 */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
140 .open = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 static bool largepages_enabled = true;
153
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159
160 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161 unsigned long start, unsigned long end, bool blockable)
162 {
163 return 0;
164 }
165
166 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
167 {
168 /*
169 * The metadata used by is_zone_device_page() to determine whether or
170 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171 * the device has been pinned, e.g. by get_user_pages(). WARN if the
172 * page_count() is zero to help detect bad usage of this helper.
173 */
174 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
175 return false;
176
177 return is_zone_device_page(pfn_to_page(pfn));
178 }
179
180 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
181 {
182 /*
183 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
184 * perspective they are "normal" pages, albeit with slightly different
185 * usage rules.
186 */
187 if (pfn_valid(pfn))
188 return PageReserved(pfn_to_page(pfn)) &&
189 !kvm_is_zone_device_pfn(pfn);
190
191 return true;
192 }
193
194 /*
195 * Switches to specified vcpu, until a matching vcpu_put()
196 */
197 void vcpu_load(struct kvm_vcpu *vcpu)
198 {
199 int cpu = get_cpu();
200 preempt_notifier_register(&vcpu->preempt_notifier);
201 kvm_arch_vcpu_load(vcpu, cpu);
202 put_cpu();
203 }
204 EXPORT_SYMBOL_GPL(vcpu_load);
205
206 void vcpu_put(struct kvm_vcpu *vcpu)
207 {
208 preempt_disable();
209 kvm_arch_vcpu_put(vcpu);
210 preempt_notifier_unregister(&vcpu->preempt_notifier);
211 preempt_enable();
212 }
213 EXPORT_SYMBOL_GPL(vcpu_put);
214
215 /* TODO: merge with kvm_arch_vcpu_should_kick */
216 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
217 {
218 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
219
220 /*
221 * We need to wait for the VCPU to reenable interrupts and get out of
222 * READING_SHADOW_PAGE_TABLES mode.
223 */
224 if (req & KVM_REQUEST_WAIT)
225 return mode != OUTSIDE_GUEST_MODE;
226
227 /*
228 * Need to kick a running VCPU, but otherwise there is nothing to do.
229 */
230 return mode == IN_GUEST_MODE;
231 }
232
233 static void ack_flush(void *_completed)
234 {
235 }
236
237 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
238 {
239 if (unlikely(!cpus))
240 cpus = cpu_online_mask;
241
242 if (cpumask_empty(cpus))
243 return false;
244
245 smp_call_function_many(cpus, ack_flush, NULL, wait);
246 return true;
247 }
248
249 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
250 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
251 {
252 int i, cpu, me;
253 struct kvm_vcpu *vcpu;
254 bool called;
255
256 me = get_cpu();
257
258 kvm_for_each_vcpu(i, vcpu, kvm) {
259 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
260 continue;
261
262 kvm_make_request(req, vcpu);
263 cpu = vcpu->cpu;
264
265 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
266 continue;
267
268 if (tmp != NULL && cpu != -1 && cpu != me &&
269 kvm_request_needs_ipi(vcpu, req))
270 __cpumask_set_cpu(cpu, tmp);
271 }
272
273 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
274 put_cpu();
275
276 return called;
277 }
278
279 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
280 {
281 cpumask_var_t cpus;
282 bool called;
283
284 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
285
286 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
287
288 free_cpumask_var(cpus);
289 return called;
290 }
291
292 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
293 void kvm_flush_remote_tlbs(struct kvm *kvm)
294 {
295 /*
296 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
297 * kvm_make_all_cpus_request.
298 */
299 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
300
301 /*
302 * We want to publish modifications to the page tables before reading
303 * mode. Pairs with a memory barrier in arch-specific code.
304 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
305 * and smp_mb in walk_shadow_page_lockless_begin/end.
306 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
307 *
308 * There is already an smp_mb__after_atomic() before
309 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
310 * barrier here.
311 */
312 if (!kvm_arch_flush_remote_tlb(kvm)
313 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
314 ++kvm->stat.remote_tlb_flush;
315 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
316 }
317 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
318 #endif
319
320 void kvm_reload_remote_mmus(struct kvm *kvm)
321 {
322 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
323 }
324
325 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
326 {
327 struct page *page;
328 int r;
329
330 mutex_init(&vcpu->mutex);
331 vcpu->cpu = -1;
332 vcpu->kvm = kvm;
333 vcpu->vcpu_id = id;
334 vcpu->pid = NULL;
335 init_swait_queue_head(&vcpu->wq);
336 kvm_async_pf_vcpu_init(vcpu);
337
338 vcpu->pre_pcpu = -1;
339 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
340
341 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
342 if (!page) {
343 r = -ENOMEM;
344 goto fail;
345 }
346 vcpu->run = page_address(page);
347
348 kvm_vcpu_set_in_spin_loop(vcpu, false);
349 kvm_vcpu_set_dy_eligible(vcpu, false);
350 vcpu->preempted = false;
351 vcpu->ready = false;
352
353 r = kvm_arch_vcpu_init(vcpu);
354 if (r < 0)
355 goto fail_free_run;
356 return 0;
357
358 fail_free_run:
359 free_page((unsigned long)vcpu->run);
360 fail:
361 return r;
362 }
363 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
364
365 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
366 {
367 /*
368 * no need for rcu_read_lock as VCPU_RUN is the only place that
369 * will change the vcpu->pid pointer and on uninit all file
370 * descriptors are already gone.
371 */
372 put_pid(rcu_dereference_protected(vcpu->pid, 1));
373 kvm_arch_vcpu_uninit(vcpu);
374 free_page((unsigned long)vcpu->run);
375 }
376 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
377
378 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
379 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
380 {
381 return container_of(mn, struct kvm, mmu_notifier);
382 }
383
384 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
385 struct mm_struct *mm,
386 unsigned long address,
387 pte_t pte)
388 {
389 struct kvm *kvm = mmu_notifier_to_kvm(mn);
390 int idx;
391
392 idx = srcu_read_lock(&kvm->srcu);
393 spin_lock(&kvm->mmu_lock);
394 kvm->mmu_notifier_seq++;
395
396 if (kvm_set_spte_hva(kvm, address, pte))
397 kvm_flush_remote_tlbs(kvm);
398
399 spin_unlock(&kvm->mmu_lock);
400 srcu_read_unlock(&kvm->srcu, idx);
401 }
402
403 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
404 const struct mmu_notifier_range *range)
405 {
406 struct kvm *kvm = mmu_notifier_to_kvm(mn);
407 int need_tlb_flush = 0, idx;
408 int ret;
409
410 idx = srcu_read_lock(&kvm->srcu);
411 spin_lock(&kvm->mmu_lock);
412 /*
413 * The count increase must become visible at unlock time as no
414 * spte can be established without taking the mmu_lock and
415 * count is also read inside the mmu_lock critical section.
416 */
417 kvm->mmu_notifier_count++;
418 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
419 need_tlb_flush |= kvm->tlbs_dirty;
420 /* we've to flush the tlb before the pages can be freed */
421 if (need_tlb_flush)
422 kvm_flush_remote_tlbs(kvm);
423
424 spin_unlock(&kvm->mmu_lock);
425
426 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
427 range->end,
428 mmu_notifier_range_blockable(range));
429
430 srcu_read_unlock(&kvm->srcu, idx);
431
432 return ret;
433 }
434
435 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
436 const struct mmu_notifier_range *range)
437 {
438 struct kvm *kvm = mmu_notifier_to_kvm(mn);
439
440 spin_lock(&kvm->mmu_lock);
441 /*
442 * This sequence increase will notify the kvm page fault that
443 * the page that is going to be mapped in the spte could have
444 * been freed.
445 */
446 kvm->mmu_notifier_seq++;
447 smp_wmb();
448 /*
449 * The above sequence increase must be visible before the
450 * below count decrease, which is ensured by the smp_wmb above
451 * in conjunction with the smp_rmb in mmu_notifier_retry().
452 */
453 kvm->mmu_notifier_count--;
454 spin_unlock(&kvm->mmu_lock);
455
456 BUG_ON(kvm->mmu_notifier_count < 0);
457 }
458
459 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
460 struct mm_struct *mm,
461 unsigned long start,
462 unsigned long end)
463 {
464 struct kvm *kvm = mmu_notifier_to_kvm(mn);
465 int young, idx;
466
467 idx = srcu_read_lock(&kvm->srcu);
468 spin_lock(&kvm->mmu_lock);
469
470 young = kvm_age_hva(kvm, start, end);
471 if (young)
472 kvm_flush_remote_tlbs(kvm);
473
474 spin_unlock(&kvm->mmu_lock);
475 srcu_read_unlock(&kvm->srcu, idx);
476
477 return young;
478 }
479
480 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
481 struct mm_struct *mm,
482 unsigned long start,
483 unsigned long end)
484 {
485 struct kvm *kvm = mmu_notifier_to_kvm(mn);
486 int young, idx;
487
488 idx = srcu_read_lock(&kvm->srcu);
489 spin_lock(&kvm->mmu_lock);
490 /*
491 * Even though we do not flush TLB, this will still adversely
492 * affect performance on pre-Haswell Intel EPT, where there is
493 * no EPT Access Bit to clear so that we have to tear down EPT
494 * tables instead. If we find this unacceptable, we can always
495 * add a parameter to kvm_age_hva so that it effectively doesn't
496 * do anything on clear_young.
497 *
498 * Also note that currently we never issue secondary TLB flushes
499 * from clear_young, leaving this job up to the regular system
500 * cadence. If we find this inaccurate, we might come up with a
501 * more sophisticated heuristic later.
502 */
503 young = kvm_age_hva(kvm, start, end);
504 spin_unlock(&kvm->mmu_lock);
505 srcu_read_unlock(&kvm->srcu, idx);
506
507 return young;
508 }
509
510 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
511 struct mm_struct *mm,
512 unsigned long address)
513 {
514 struct kvm *kvm = mmu_notifier_to_kvm(mn);
515 int young, idx;
516
517 idx = srcu_read_lock(&kvm->srcu);
518 spin_lock(&kvm->mmu_lock);
519 young = kvm_test_age_hva(kvm, address);
520 spin_unlock(&kvm->mmu_lock);
521 srcu_read_unlock(&kvm->srcu, idx);
522
523 return young;
524 }
525
526 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
527 struct mm_struct *mm)
528 {
529 struct kvm *kvm = mmu_notifier_to_kvm(mn);
530 int idx;
531
532 idx = srcu_read_lock(&kvm->srcu);
533 kvm_arch_flush_shadow_all(kvm);
534 srcu_read_unlock(&kvm->srcu, idx);
535 }
536
537 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
538 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
539 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
540 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
541 .clear_young = kvm_mmu_notifier_clear_young,
542 .test_young = kvm_mmu_notifier_test_young,
543 .change_pte = kvm_mmu_notifier_change_pte,
544 .release = kvm_mmu_notifier_release,
545 };
546
547 static int kvm_init_mmu_notifier(struct kvm *kvm)
548 {
549 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
550 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
551 }
552
553 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
554
555 static int kvm_init_mmu_notifier(struct kvm *kvm)
556 {
557 return 0;
558 }
559
560 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
561
562 static struct kvm_memslots *kvm_alloc_memslots(void)
563 {
564 int i;
565 struct kvm_memslots *slots;
566
567 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
568 if (!slots)
569 return NULL;
570
571 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
572 slots->id_to_index[i] = slots->memslots[i].id = i;
573
574 return slots;
575 }
576
577 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
578 {
579 if (!memslot->dirty_bitmap)
580 return;
581
582 kvfree(memslot->dirty_bitmap);
583 memslot->dirty_bitmap = NULL;
584 }
585
586 /*
587 * Free any memory in @free but not in @dont.
588 */
589 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
590 struct kvm_memory_slot *dont)
591 {
592 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
593 kvm_destroy_dirty_bitmap(free);
594
595 kvm_arch_free_memslot(kvm, free, dont);
596
597 free->npages = 0;
598 }
599
600 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
601 {
602 struct kvm_memory_slot *memslot;
603
604 if (!slots)
605 return;
606
607 kvm_for_each_memslot(memslot, slots)
608 kvm_free_memslot(kvm, memslot, NULL);
609
610 kvfree(slots);
611 }
612
613 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
614 {
615 int i;
616
617 if (!kvm->debugfs_dentry)
618 return;
619
620 debugfs_remove_recursive(kvm->debugfs_dentry);
621
622 if (kvm->debugfs_stat_data) {
623 for (i = 0; i < kvm_debugfs_num_entries; i++)
624 kfree(kvm->debugfs_stat_data[i]);
625 kfree(kvm->debugfs_stat_data);
626 }
627 }
628
629 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
630 {
631 char dir_name[ITOA_MAX_LEN * 2];
632 struct kvm_stat_data *stat_data;
633 struct kvm_stats_debugfs_item *p;
634
635 if (!debugfs_initialized())
636 return 0;
637
638 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
639 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
640
641 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
642 sizeof(*kvm->debugfs_stat_data),
643 GFP_KERNEL_ACCOUNT);
644 if (!kvm->debugfs_stat_data)
645 return -ENOMEM;
646
647 for (p = debugfs_entries; p->name; p++) {
648 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
649 if (!stat_data)
650 return -ENOMEM;
651
652 stat_data->kvm = kvm;
653 stat_data->offset = p->offset;
654 stat_data->mode = p->mode ? p->mode : 0644;
655 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
656 debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
657 stat_data, stat_fops_per_vm[p->kind]);
658 }
659 return 0;
660 }
661
662 /*
663 * Called after the VM is otherwise initialized, but just before adding it to
664 * the vm_list.
665 */
666 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
667 {
668 return 0;
669 }
670
671 /*
672 * Called just after removing the VM from the vm_list, but before doing any
673 * other destruction.
674 */
675 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
676 {
677 }
678
679 static struct kvm *kvm_create_vm(unsigned long type)
680 {
681 struct kvm *kvm = kvm_arch_alloc_vm();
682 int r = -ENOMEM;
683 int i;
684
685 if (!kvm)
686 return ERR_PTR(-ENOMEM);
687
688 spin_lock_init(&kvm->mmu_lock);
689 mmgrab(current->mm);
690 kvm->mm = current->mm;
691 kvm_eventfd_init(kvm);
692 mutex_init(&kvm->lock);
693 mutex_init(&kvm->irq_lock);
694 mutex_init(&kvm->slots_lock);
695 INIT_LIST_HEAD(&kvm->devices);
696
697 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
698
699 if (init_srcu_struct(&kvm->srcu))
700 goto out_err_no_srcu;
701 if (init_srcu_struct(&kvm->irq_srcu))
702 goto out_err_no_irq_srcu;
703
704 refcount_set(&kvm->users_count, 1);
705 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
706 struct kvm_memslots *slots = kvm_alloc_memslots();
707
708 if (!slots)
709 goto out_err_no_arch_destroy_vm;
710 /* Generations must be different for each address space. */
711 slots->generation = i;
712 rcu_assign_pointer(kvm->memslots[i], slots);
713 }
714
715 for (i = 0; i < KVM_NR_BUSES; i++) {
716 rcu_assign_pointer(kvm->buses[i],
717 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
718 if (!kvm->buses[i])
719 goto out_err_no_arch_destroy_vm;
720 }
721
722 r = kvm_arch_init_vm(kvm, type);
723 if (r)
724 goto out_err_no_arch_destroy_vm;
725
726 r = hardware_enable_all();
727 if (r)
728 goto out_err_no_disable;
729
730 #ifdef CONFIG_HAVE_KVM_IRQFD
731 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
732 #endif
733
734 r = kvm_init_mmu_notifier(kvm);
735 if (r)
736 goto out_err_no_mmu_notifier;
737
738 r = kvm_arch_post_init_vm(kvm);
739 if (r)
740 goto out_err;
741
742 mutex_lock(&kvm_lock);
743 list_add(&kvm->vm_list, &vm_list);
744 mutex_unlock(&kvm_lock);
745
746 preempt_notifier_inc();
747
748 return kvm;
749
750 out_err:
751 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
752 if (kvm->mmu_notifier.ops)
753 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
754 #endif
755 out_err_no_mmu_notifier:
756 hardware_disable_all();
757 out_err_no_disable:
758 kvm_arch_destroy_vm(kvm);
759 out_err_no_arch_destroy_vm:
760 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
761 for (i = 0; i < KVM_NR_BUSES; i++)
762 kfree(kvm_get_bus(kvm, i));
763 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
764 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
765 cleanup_srcu_struct(&kvm->irq_srcu);
766 out_err_no_irq_srcu:
767 cleanup_srcu_struct(&kvm->srcu);
768 out_err_no_srcu:
769 kvm_arch_free_vm(kvm);
770 mmdrop(current->mm);
771 return ERR_PTR(r);
772 }
773
774 static void kvm_destroy_devices(struct kvm *kvm)
775 {
776 struct kvm_device *dev, *tmp;
777
778 /*
779 * We do not need to take the kvm->lock here, because nobody else
780 * has a reference to the struct kvm at this point and therefore
781 * cannot access the devices list anyhow.
782 */
783 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
784 list_del(&dev->vm_node);
785 dev->ops->destroy(dev);
786 }
787 }
788
789 static void kvm_destroy_vm(struct kvm *kvm)
790 {
791 int i;
792 struct mm_struct *mm = kvm->mm;
793
794 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
795 kvm_destroy_vm_debugfs(kvm);
796 kvm_arch_sync_events(kvm);
797 mutex_lock(&kvm_lock);
798 list_del(&kvm->vm_list);
799 mutex_unlock(&kvm_lock);
800 kvm_arch_pre_destroy_vm(kvm);
801
802 kvm_free_irq_routing(kvm);
803 for (i = 0; i < KVM_NR_BUSES; i++) {
804 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
805
806 if (bus)
807 kvm_io_bus_destroy(bus);
808 kvm->buses[i] = NULL;
809 }
810 kvm_coalesced_mmio_free(kvm);
811 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
812 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
813 #else
814 kvm_arch_flush_shadow_all(kvm);
815 #endif
816 kvm_arch_destroy_vm(kvm);
817 kvm_destroy_devices(kvm);
818 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
819 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820 cleanup_srcu_struct(&kvm->irq_srcu);
821 cleanup_srcu_struct(&kvm->srcu);
822 kvm_arch_free_vm(kvm);
823 preempt_notifier_dec();
824 hardware_disable_all();
825 mmdrop(mm);
826 }
827
828 void kvm_get_kvm(struct kvm *kvm)
829 {
830 refcount_inc(&kvm->users_count);
831 }
832 EXPORT_SYMBOL_GPL(kvm_get_kvm);
833
834 void kvm_put_kvm(struct kvm *kvm)
835 {
836 if (refcount_dec_and_test(&kvm->users_count))
837 kvm_destroy_vm(kvm);
838 }
839 EXPORT_SYMBOL_GPL(kvm_put_kvm);
840
841 /*
842 * Used to put a reference that was taken on behalf of an object associated
843 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
844 * of the new file descriptor fails and the reference cannot be transferred to
845 * its final owner. In such cases, the caller is still actively using @kvm and
846 * will fail miserably if the refcount unexpectedly hits zero.
847 */
848 void kvm_put_kvm_no_destroy(struct kvm *kvm)
849 {
850 WARN_ON(refcount_dec_and_test(&kvm->users_count));
851 }
852 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
853
854 static int kvm_vm_release(struct inode *inode, struct file *filp)
855 {
856 struct kvm *kvm = filp->private_data;
857
858 kvm_irqfd_release(kvm);
859
860 kvm_put_kvm(kvm);
861 return 0;
862 }
863
864 /*
865 * Allocation size is twice as large as the actual dirty bitmap size.
866 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
867 */
868 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
869 {
870 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
871
872 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
873 if (!memslot->dirty_bitmap)
874 return -ENOMEM;
875
876 return 0;
877 }
878
879 /*
880 * Insert memslot and re-sort memslots based on their GFN,
881 * so binary search could be used to lookup GFN.
882 * Sorting algorithm takes advantage of having initially
883 * sorted array and known changed memslot position.
884 */
885 static void update_memslots(struct kvm_memslots *slots,
886 struct kvm_memory_slot *new,
887 enum kvm_mr_change change)
888 {
889 int id = new->id;
890 int i = slots->id_to_index[id];
891 struct kvm_memory_slot *mslots = slots->memslots;
892
893 WARN_ON(mslots[i].id != id);
894 switch (change) {
895 case KVM_MR_CREATE:
896 slots->used_slots++;
897 WARN_ON(mslots[i].npages || !new->npages);
898 break;
899 case KVM_MR_DELETE:
900 slots->used_slots--;
901 WARN_ON(new->npages || !mslots[i].npages);
902 break;
903 default:
904 break;
905 }
906
907 while (i < KVM_MEM_SLOTS_NUM - 1 &&
908 new->base_gfn <= mslots[i + 1].base_gfn) {
909 if (!mslots[i + 1].npages)
910 break;
911 mslots[i] = mslots[i + 1];
912 slots->id_to_index[mslots[i].id] = i;
913 i++;
914 }
915
916 /*
917 * The ">=" is needed when creating a slot with base_gfn == 0,
918 * so that it moves before all those with base_gfn == npages == 0.
919 *
920 * On the other hand, if new->npages is zero, the above loop has
921 * already left i pointing to the beginning of the empty part of
922 * mslots, and the ">=" would move the hole backwards in this
923 * case---which is wrong. So skip the loop when deleting a slot.
924 */
925 if (new->npages) {
926 while (i > 0 &&
927 new->base_gfn >= mslots[i - 1].base_gfn) {
928 mslots[i] = mslots[i - 1];
929 slots->id_to_index[mslots[i].id] = i;
930 i--;
931 }
932 } else
933 WARN_ON_ONCE(i != slots->used_slots);
934
935 mslots[i] = *new;
936 slots->id_to_index[mslots[i].id] = i;
937 }
938
939 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
940 {
941 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
942
943 #ifdef __KVM_HAVE_READONLY_MEM
944 valid_flags |= KVM_MEM_READONLY;
945 #endif
946
947 if (mem->flags & ~valid_flags)
948 return -EINVAL;
949
950 return 0;
951 }
952
953 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
954 int as_id, struct kvm_memslots *slots)
955 {
956 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
957 u64 gen = old_memslots->generation;
958
959 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
960 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
961
962 rcu_assign_pointer(kvm->memslots[as_id], slots);
963 synchronize_srcu_expedited(&kvm->srcu);
964
965 /*
966 * Increment the new memslot generation a second time, dropping the
967 * update in-progress flag and incrementing then generation based on
968 * the number of address spaces. This provides a unique and easily
969 * identifiable generation number while the memslots are in flux.
970 */
971 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
972
973 /*
974 * Generations must be unique even across address spaces. We do not need
975 * a global counter for that, instead the generation space is evenly split
976 * across address spaces. For example, with two address spaces, address
977 * space 0 will use generations 0, 2, 4, ... while address space 1 will
978 * use generations 1, 3, 5, ...
979 */
980 gen += KVM_ADDRESS_SPACE_NUM;
981
982 kvm_arch_memslots_updated(kvm, gen);
983
984 slots->generation = gen;
985
986 return old_memslots;
987 }
988
989 /*
990 * Allocate some memory and give it an address in the guest physical address
991 * space.
992 *
993 * Discontiguous memory is allowed, mostly for framebuffers.
994 *
995 * Must be called holding kvm->slots_lock for write.
996 */
997 int __kvm_set_memory_region(struct kvm *kvm,
998 const struct kvm_userspace_memory_region *mem)
999 {
1000 int r;
1001 gfn_t base_gfn;
1002 unsigned long npages;
1003 struct kvm_memory_slot *slot;
1004 struct kvm_memory_slot old, new;
1005 struct kvm_memslots *slots = NULL, *old_memslots;
1006 int as_id, id;
1007 enum kvm_mr_change change;
1008
1009 r = check_memory_region_flags(mem);
1010 if (r)
1011 goto out;
1012
1013 r = -EINVAL;
1014 as_id = mem->slot >> 16;
1015 id = (u16)mem->slot;
1016
1017 /* General sanity checks */
1018 if (mem->memory_size & (PAGE_SIZE - 1))
1019 goto out;
1020 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1021 goto out;
1022 /* We can read the guest memory with __xxx_user() later on. */
1023 if ((id < KVM_USER_MEM_SLOTS) &&
1024 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1025 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1026 mem->memory_size)))
1027 goto out;
1028 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1029 goto out;
1030 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1031 goto out;
1032
1033 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1034 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1035 npages = mem->memory_size >> PAGE_SHIFT;
1036
1037 if (npages > KVM_MEM_MAX_NR_PAGES)
1038 goto out;
1039
1040 new = old = *slot;
1041
1042 new.id = id;
1043 new.base_gfn = base_gfn;
1044 new.npages = npages;
1045 new.flags = mem->flags;
1046
1047 if (npages) {
1048 if (!old.npages)
1049 change = KVM_MR_CREATE;
1050 else { /* Modify an existing slot. */
1051 if ((mem->userspace_addr != old.userspace_addr) ||
1052 (npages != old.npages) ||
1053 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1054 goto out;
1055
1056 if (base_gfn != old.base_gfn)
1057 change = KVM_MR_MOVE;
1058 else if (new.flags != old.flags)
1059 change = KVM_MR_FLAGS_ONLY;
1060 else { /* Nothing to change. */
1061 r = 0;
1062 goto out;
1063 }
1064 }
1065 } else {
1066 if (!old.npages)
1067 goto out;
1068
1069 change = KVM_MR_DELETE;
1070 new.base_gfn = 0;
1071 new.flags = 0;
1072 }
1073
1074 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1075 /* Check for overlaps */
1076 r = -EEXIST;
1077 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1078 if (slot->id == id)
1079 continue;
1080 if (!((base_gfn + npages <= slot->base_gfn) ||
1081 (base_gfn >= slot->base_gfn + slot->npages)))
1082 goto out;
1083 }
1084 }
1085
1086 /* Free page dirty bitmap if unneeded */
1087 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1088 new.dirty_bitmap = NULL;
1089
1090 r = -ENOMEM;
1091 if (change == KVM_MR_CREATE) {
1092 new.userspace_addr = mem->userspace_addr;
1093
1094 if (kvm_arch_create_memslot(kvm, &new, npages))
1095 goto out_free;
1096 }
1097
1098 /* Allocate page dirty bitmap if needed */
1099 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1100 if (kvm_create_dirty_bitmap(&new) < 0)
1101 goto out_free;
1102 }
1103
1104 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1105 if (!slots)
1106 goto out_free;
1107 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1108
1109 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1110 slot = id_to_memslot(slots, id);
1111 slot->flags |= KVM_MEMSLOT_INVALID;
1112
1113 old_memslots = install_new_memslots(kvm, as_id, slots);
1114
1115 /* From this point no new shadow pages pointing to a deleted,
1116 * or moved, memslot will be created.
1117 *
1118 * validation of sp->gfn happens in:
1119 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1120 * - kvm_is_visible_gfn (mmu_check_roots)
1121 */
1122 kvm_arch_flush_shadow_memslot(kvm, slot);
1123
1124 /*
1125 * We can re-use the old_memslots from above, the only difference
1126 * from the currently installed memslots is the invalid flag. This
1127 * will get overwritten by update_memslots anyway.
1128 */
1129 slots = old_memslots;
1130 }
1131
1132 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1133 if (r)
1134 goto out_slots;
1135
1136 /* actual memory is freed via old in kvm_free_memslot below */
1137 if (change == KVM_MR_DELETE) {
1138 new.dirty_bitmap = NULL;
1139 memset(&new.arch, 0, sizeof(new.arch));
1140 }
1141
1142 update_memslots(slots, &new, change);
1143 old_memslots = install_new_memslots(kvm, as_id, slots);
1144
1145 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1146
1147 kvm_free_memslot(kvm, &old, &new);
1148 kvfree(old_memslots);
1149 return 0;
1150
1151 out_slots:
1152 kvfree(slots);
1153 out_free:
1154 kvm_free_memslot(kvm, &new, &old);
1155 out:
1156 return r;
1157 }
1158 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1159
1160 int kvm_set_memory_region(struct kvm *kvm,
1161 const struct kvm_userspace_memory_region *mem)
1162 {
1163 int r;
1164
1165 mutex_lock(&kvm->slots_lock);
1166 r = __kvm_set_memory_region(kvm, mem);
1167 mutex_unlock(&kvm->slots_lock);
1168 return r;
1169 }
1170 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1171
1172 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1173 struct kvm_userspace_memory_region *mem)
1174 {
1175 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1176 return -EINVAL;
1177
1178 return kvm_set_memory_region(kvm, mem);
1179 }
1180
1181 int kvm_get_dirty_log(struct kvm *kvm,
1182 struct kvm_dirty_log *log, int *is_dirty)
1183 {
1184 struct kvm_memslots *slots;
1185 struct kvm_memory_slot *memslot;
1186 int i, as_id, id;
1187 unsigned long n;
1188 unsigned long any = 0;
1189
1190 as_id = log->slot >> 16;
1191 id = (u16)log->slot;
1192 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1193 return -EINVAL;
1194
1195 slots = __kvm_memslots(kvm, as_id);
1196 memslot = id_to_memslot(slots, id);
1197 if (!memslot->dirty_bitmap)
1198 return -ENOENT;
1199
1200 n = kvm_dirty_bitmap_bytes(memslot);
1201
1202 for (i = 0; !any && i < n/sizeof(long); ++i)
1203 any = memslot->dirty_bitmap[i];
1204
1205 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1206 return -EFAULT;
1207
1208 if (any)
1209 *is_dirty = 1;
1210 return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1213
1214 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1215 /**
1216 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1217 * and reenable dirty page tracking for the corresponding pages.
1218 * @kvm: pointer to kvm instance
1219 * @log: slot id and address to which we copy the log
1220 * @flush: true if TLB flush is needed by caller
1221 *
1222 * We need to keep it in mind that VCPU threads can write to the bitmap
1223 * concurrently. So, to avoid losing track of dirty pages we keep the
1224 * following order:
1225 *
1226 * 1. Take a snapshot of the bit and clear it if needed.
1227 * 2. Write protect the corresponding page.
1228 * 3. Copy the snapshot to the userspace.
1229 * 4. Upon return caller flushes TLB's if needed.
1230 *
1231 * Between 2 and 4, the guest may write to the page using the remaining TLB
1232 * entry. This is not a problem because the page is reported dirty using
1233 * the snapshot taken before and step 4 ensures that writes done after
1234 * exiting to userspace will be logged for the next call.
1235 *
1236 */
1237 int kvm_get_dirty_log_protect(struct kvm *kvm,
1238 struct kvm_dirty_log *log, bool *flush)
1239 {
1240 struct kvm_memslots *slots;
1241 struct kvm_memory_slot *memslot;
1242 int i, as_id, id;
1243 unsigned long n;
1244 unsigned long *dirty_bitmap;
1245 unsigned long *dirty_bitmap_buffer;
1246
1247 as_id = log->slot >> 16;
1248 id = (u16)log->slot;
1249 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1250 return -EINVAL;
1251
1252 slots = __kvm_memslots(kvm, as_id);
1253 memslot = id_to_memslot(slots, id);
1254
1255 dirty_bitmap = memslot->dirty_bitmap;
1256 if (!dirty_bitmap)
1257 return -ENOENT;
1258
1259 n = kvm_dirty_bitmap_bytes(memslot);
1260 *flush = false;
1261 if (kvm->manual_dirty_log_protect) {
1262 /*
1263 * Unlike kvm_get_dirty_log, we always return false in *flush,
1264 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1265 * is some code duplication between this function and
1266 * kvm_get_dirty_log, but hopefully all architecture
1267 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1268 * can be eliminated.
1269 */
1270 dirty_bitmap_buffer = dirty_bitmap;
1271 } else {
1272 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1273 memset(dirty_bitmap_buffer, 0, n);
1274
1275 spin_lock(&kvm->mmu_lock);
1276 for (i = 0; i < n / sizeof(long); i++) {
1277 unsigned long mask;
1278 gfn_t offset;
1279
1280 if (!dirty_bitmap[i])
1281 continue;
1282
1283 *flush = true;
1284 mask = xchg(&dirty_bitmap[i], 0);
1285 dirty_bitmap_buffer[i] = mask;
1286
1287 offset = i * BITS_PER_LONG;
1288 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1289 offset, mask);
1290 }
1291 spin_unlock(&kvm->mmu_lock);
1292 }
1293
1294 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1295 return -EFAULT;
1296 return 0;
1297 }
1298 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1299
1300 /**
1301 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1302 * and reenable dirty page tracking for the corresponding pages.
1303 * @kvm: pointer to kvm instance
1304 * @log: slot id and address from which to fetch the bitmap of dirty pages
1305 * @flush: true if TLB flush is needed by caller
1306 */
1307 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1308 struct kvm_clear_dirty_log *log, bool *flush)
1309 {
1310 struct kvm_memslots *slots;
1311 struct kvm_memory_slot *memslot;
1312 int as_id, id;
1313 gfn_t offset;
1314 unsigned long i, n;
1315 unsigned long *dirty_bitmap;
1316 unsigned long *dirty_bitmap_buffer;
1317
1318 as_id = log->slot >> 16;
1319 id = (u16)log->slot;
1320 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1321 return -EINVAL;
1322
1323 if (log->first_page & 63)
1324 return -EINVAL;
1325
1326 slots = __kvm_memslots(kvm, as_id);
1327 memslot = id_to_memslot(slots, id);
1328
1329 dirty_bitmap = memslot->dirty_bitmap;
1330 if (!dirty_bitmap)
1331 return -ENOENT;
1332
1333 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1334
1335 if (log->first_page > memslot->npages ||
1336 log->num_pages > memslot->npages - log->first_page ||
1337 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1338 return -EINVAL;
1339
1340 *flush = false;
1341 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1342 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1343 return -EFAULT;
1344
1345 spin_lock(&kvm->mmu_lock);
1346 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1347 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1348 i++, offset += BITS_PER_LONG) {
1349 unsigned long mask = *dirty_bitmap_buffer++;
1350 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1351 if (!mask)
1352 continue;
1353
1354 mask &= atomic_long_fetch_andnot(mask, p);
1355
1356 /*
1357 * mask contains the bits that really have been cleared. This
1358 * never includes any bits beyond the length of the memslot (if
1359 * the length is not aligned to 64 pages), therefore it is not
1360 * a problem if userspace sets them in log->dirty_bitmap.
1361 */
1362 if (mask) {
1363 *flush = true;
1364 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1365 offset, mask);
1366 }
1367 }
1368 spin_unlock(&kvm->mmu_lock);
1369
1370 return 0;
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1373 #endif
1374
1375 bool kvm_largepages_enabled(void)
1376 {
1377 return largepages_enabled;
1378 }
1379
1380 void kvm_disable_largepages(void)
1381 {
1382 largepages_enabled = false;
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1385
1386 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1387 {
1388 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1389 }
1390 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1391
1392 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1393 {
1394 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1395 }
1396
1397 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1398 {
1399 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1400
1401 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1402 memslot->flags & KVM_MEMSLOT_INVALID)
1403 return false;
1404
1405 return true;
1406 }
1407 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1408
1409 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1410 {
1411 struct vm_area_struct *vma;
1412 unsigned long addr, size;
1413
1414 size = PAGE_SIZE;
1415
1416 addr = gfn_to_hva(kvm, gfn);
1417 if (kvm_is_error_hva(addr))
1418 return PAGE_SIZE;
1419
1420 down_read(&current->mm->mmap_sem);
1421 vma = find_vma(current->mm, addr);
1422 if (!vma)
1423 goto out;
1424
1425 size = vma_kernel_pagesize(vma);
1426
1427 out:
1428 up_read(&current->mm->mmap_sem);
1429
1430 return size;
1431 }
1432
1433 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1434 {
1435 return slot->flags & KVM_MEM_READONLY;
1436 }
1437
1438 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1439 gfn_t *nr_pages, bool write)
1440 {
1441 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1442 return KVM_HVA_ERR_BAD;
1443
1444 if (memslot_is_readonly(slot) && write)
1445 return KVM_HVA_ERR_RO_BAD;
1446
1447 if (nr_pages)
1448 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1449
1450 return __gfn_to_hva_memslot(slot, gfn);
1451 }
1452
1453 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1454 gfn_t *nr_pages)
1455 {
1456 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1457 }
1458
1459 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1460 gfn_t gfn)
1461 {
1462 return gfn_to_hva_many(slot, gfn, NULL);
1463 }
1464 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1465
1466 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1467 {
1468 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1469 }
1470 EXPORT_SYMBOL_GPL(gfn_to_hva);
1471
1472 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1473 {
1474 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1475 }
1476 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1477
1478 /*
1479 * Return the hva of a @gfn and the R/W attribute if possible.
1480 *
1481 * @slot: the kvm_memory_slot which contains @gfn
1482 * @gfn: the gfn to be translated
1483 * @writable: used to return the read/write attribute of the @slot if the hva
1484 * is valid and @writable is not NULL
1485 */
1486 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1487 gfn_t gfn, bool *writable)
1488 {
1489 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1490
1491 if (!kvm_is_error_hva(hva) && writable)
1492 *writable = !memslot_is_readonly(slot);
1493
1494 return hva;
1495 }
1496
1497 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1498 {
1499 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1500
1501 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1502 }
1503
1504 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1505 {
1506 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1507
1508 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1509 }
1510
1511 static inline int check_user_page_hwpoison(unsigned long addr)
1512 {
1513 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1514
1515 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1516 return rc == -EHWPOISON;
1517 }
1518
1519 /*
1520 * The fast path to get the writable pfn which will be stored in @pfn,
1521 * true indicates success, otherwise false is returned. It's also the
1522 * only part that runs if we can are in atomic context.
1523 */
1524 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1525 bool *writable, kvm_pfn_t *pfn)
1526 {
1527 struct page *page[1];
1528 int npages;
1529
1530 /*
1531 * Fast pin a writable pfn only if it is a write fault request
1532 * or the caller allows to map a writable pfn for a read fault
1533 * request.
1534 */
1535 if (!(write_fault || writable))
1536 return false;
1537
1538 npages = __get_user_pages_fast(addr, 1, 1, page);
1539 if (npages == 1) {
1540 *pfn = page_to_pfn(page[0]);
1541
1542 if (writable)
1543 *writable = true;
1544 return true;
1545 }
1546
1547 return false;
1548 }
1549
1550 /*
1551 * The slow path to get the pfn of the specified host virtual address,
1552 * 1 indicates success, -errno is returned if error is detected.
1553 */
1554 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1555 bool *writable, kvm_pfn_t *pfn)
1556 {
1557 unsigned int flags = FOLL_HWPOISON;
1558 struct page *page;
1559 int npages = 0;
1560
1561 might_sleep();
1562
1563 if (writable)
1564 *writable = write_fault;
1565
1566 if (write_fault)
1567 flags |= FOLL_WRITE;
1568 if (async)
1569 flags |= FOLL_NOWAIT;
1570
1571 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1572 if (npages != 1)
1573 return npages;
1574
1575 /* map read fault as writable if possible */
1576 if (unlikely(!write_fault) && writable) {
1577 struct page *wpage;
1578
1579 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1580 *writable = true;
1581 put_page(page);
1582 page = wpage;
1583 }
1584 }
1585 *pfn = page_to_pfn(page);
1586 return npages;
1587 }
1588
1589 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1590 {
1591 if (unlikely(!(vma->vm_flags & VM_READ)))
1592 return false;
1593
1594 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1595 return false;
1596
1597 return true;
1598 }
1599
1600 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1601 unsigned long addr, bool *async,
1602 bool write_fault, bool *writable,
1603 kvm_pfn_t *p_pfn)
1604 {
1605 unsigned long pfn;
1606 int r;
1607
1608 r = follow_pfn(vma, addr, &pfn);
1609 if (r) {
1610 /*
1611 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1612 * not call the fault handler, so do it here.
1613 */
1614 bool unlocked = false;
1615 r = fixup_user_fault(current, current->mm, addr,
1616 (write_fault ? FAULT_FLAG_WRITE : 0),
1617 &unlocked);
1618 if (unlocked)
1619 return -EAGAIN;
1620 if (r)
1621 return r;
1622
1623 r = follow_pfn(vma, addr, &pfn);
1624 if (r)
1625 return r;
1626
1627 }
1628
1629 if (writable)
1630 *writable = true;
1631
1632 /*
1633 * Get a reference here because callers of *hva_to_pfn* and
1634 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1635 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1636 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1637 * simply do nothing for reserved pfns.
1638 *
1639 * Whoever called remap_pfn_range is also going to call e.g.
1640 * unmap_mapping_range before the underlying pages are freed,
1641 * causing a call to our MMU notifier.
1642 */
1643 kvm_get_pfn(pfn);
1644
1645 *p_pfn = pfn;
1646 return 0;
1647 }
1648
1649 /*
1650 * Pin guest page in memory and return its pfn.
1651 * @addr: host virtual address which maps memory to the guest
1652 * @atomic: whether this function can sleep
1653 * @async: whether this function need to wait IO complete if the
1654 * host page is not in the memory
1655 * @write_fault: whether we should get a writable host page
1656 * @writable: whether it allows to map a writable host page for !@write_fault
1657 *
1658 * The function will map a writable host page for these two cases:
1659 * 1): @write_fault = true
1660 * 2): @write_fault = false && @writable, @writable will tell the caller
1661 * whether the mapping is writable.
1662 */
1663 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1664 bool write_fault, bool *writable)
1665 {
1666 struct vm_area_struct *vma;
1667 kvm_pfn_t pfn = 0;
1668 int npages, r;
1669
1670 /* we can do it either atomically or asynchronously, not both */
1671 BUG_ON(atomic && async);
1672
1673 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1674 return pfn;
1675
1676 if (atomic)
1677 return KVM_PFN_ERR_FAULT;
1678
1679 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1680 if (npages == 1)
1681 return pfn;
1682
1683 down_read(&current->mm->mmap_sem);
1684 if (npages == -EHWPOISON ||
1685 (!async && check_user_page_hwpoison(addr))) {
1686 pfn = KVM_PFN_ERR_HWPOISON;
1687 goto exit;
1688 }
1689
1690 retry:
1691 vma = find_vma_intersection(current->mm, addr, addr + 1);
1692
1693 if (vma == NULL)
1694 pfn = KVM_PFN_ERR_FAULT;
1695 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1696 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1697 if (r == -EAGAIN)
1698 goto retry;
1699 if (r < 0)
1700 pfn = KVM_PFN_ERR_FAULT;
1701 } else {
1702 if (async && vma_is_valid(vma, write_fault))
1703 *async = true;
1704 pfn = KVM_PFN_ERR_FAULT;
1705 }
1706 exit:
1707 up_read(&current->mm->mmap_sem);
1708 return pfn;
1709 }
1710
1711 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1712 bool atomic, bool *async, bool write_fault,
1713 bool *writable)
1714 {
1715 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1716
1717 if (addr == KVM_HVA_ERR_RO_BAD) {
1718 if (writable)
1719 *writable = false;
1720 return KVM_PFN_ERR_RO_FAULT;
1721 }
1722
1723 if (kvm_is_error_hva(addr)) {
1724 if (writable)
1725 *writable = false;
1726 return KVM_PFN_NOSLOT;
1727 }
1728
1729 /* Do not map writable pfn in the readonly memslot. */
1730 if (writable && memslot_is_readonly(slot)) {
1731 *writable = false;
1732 writable = NULL;
1733 }
1734
1735 return hva_to_pfn(addr, atomic, async, write_fault,
1736 writable);
1737 }
1738 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1739
1740 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1741 bool *writable)
1742 {
1743 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1744 write_fault, writable);
1745 }
1746 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1747
1748 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1749 {
1750 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1751 }
1752 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1753
1754 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1755 {
1756 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1757 }
1758 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1759
1760 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1761 {
1762 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1763 }
1764 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1765
1766 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1767 {
1768 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1769 }
1770 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1771
1772 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1773 {
1774 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1775 }
1776 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1777
1778 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1779 {
1780 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1783
1784 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1785 struct page **pages, int nr_pages)
1786 {
1787 unsigned long addr;
1788 gfn_t entry = 0;
1789
1790 addr = gfn_to_hva_many(slot, gfn, &entry);
1791 if (kvm_is_error_hva(addr))
1792 return -1;
1793
1794 if (entry < nr_pages)
1795 return 0;
1796
1797 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1798 }
1799 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1800
1801 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1802 {
1803 if (is_error_noslot_pfn(pfn))
1804 return KVM_ERR_PTR_BAD_PAGE;
1805
1806 if (kvm_is_reserved_pfn(pfn)) {
1807 WARN_ON(1);
1808 return KVM_ERR_PTR_BAD_PAGE;
1809 }
1810
1811 return pfn_to_page(pfn);
1812 }
1813
1814 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1815 {
1816 kvm_pfn_t pfn;
1817
1818 pfn = gfn_to_pfn(kvm, gfn);
1819
1820 return kvm_pfn_to_page(pfn);
1821 }
1822 EXPORT_SYMBOL_GPL(gfn_to_page);
1823
1824 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1825 struct kvm_host_map *map)
1826 {
1827 kvm_pfn_t pfn;
1828 void *hva = NULL;
1829 struct page *page = KVM_UNMAPPED_PAGE;
1830
1831 if (!map)
1832 return -EINVAL;
1833
1834 pfn = gfn_to_pfn_memslot(slot, gfn);
1835 if (is_error_noslot_pfn(pfn))
1836 return -EINVAL;
1837
1838 if (pfn_valid(pfn)) {
1839 page = pfn_to_page(pfn);
1840 hva = kmap(page);
1841 #ifdef CONFIG_HAS_IOMEM
1842 } else {
1843 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1844 #endif
1845 }
1846
1847 if (!hva)
1848 return -EFAULT;
1849
1850 map->page = page;
1851 map->hva = hva;
1852 map->pfn = pfn;
1853 map->gfn = gfn;
1854
1855 return 0;
1856 }
1857
1858 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1859 {
1860 return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1863
1864 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1865 bool dirty)
1866 {
1867 if (!map)
1868 return;
1869
1870 if (!map->hva)
1871 return;
1872
1873 if (map->page != KVM_UNMAPPED_PAGE)
1874 kunmap(map->page);
1875 #ifdef CONFIG_HAS_IOMEM
1876 else
1877 memunmap(map->hva);
1878 #endif
1879
1880 if (dirty) {
1881 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1882 kvm_release_pfn_dirty(map->pfn);
1883 } else {
1884 kvm_release_pfn_clean(map->pfn);
1885 }
1886
1887 map->hva = NULL;
1888 map->page = NULL;
1889 }
1890 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1891
1892 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1893 {
1894 kvm_pfn_t pfn;
1895
1896 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1897
1898 return kvm_pfn_to_page(pfn);
1899 }
1900 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1901
1902 void kvm_release_page_clean(struct page *page)
1903 {
1904 WARN_ON(is_error_page(page));
1905
1906 kvm_release_pfn_clean(page_to_pfn(page));
1907 }
1908 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1909
1910 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1911 {
1912 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1913 put_page(pfn_to_page(pfn));
1914 }
1915 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1916
1917 void kvm_release_page_dirty(struct page *page)
1918 {
1919 WARN_ON(is_error_page(page));
1920
1921 kvm_release_pfn_dirty(page_to_pfn(page));
1922 }
1923 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1924
1925 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1926 {
1927 kvm_set_pfn_dirty(pfn);
1928 kvm_release_pfn_clean(pfn);
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1931
1932 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1933 {
1934 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) {
1935 struct page *page = pfn_to_page(pfn);
1936
1937 SetPageDirty(page);
1938 }
1939 }
1940 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1941
1942 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1943 {
1944 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1945 mark_page_accessed(pfn_to_page(pfn));
1946 }
1947 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1948
1949 void kvm_get_pfn(kvm_pfn_t pfn)
1950 {
1951 if (!kvm_is_reserved_pfn(pfn))
1952 get_page(pfn_to_page(pfn));
1953 }
1954 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1955
1956 static int next_segment(unsigned long len, int offset)
1957 {
1958 if (len > PAGE_SIZE - offset)
1959 return PAGE_SIZE - offset;
1960 else
1961 return len;
1962 }
1963
1964 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1965 void *data, int offset, int len)
1966 {
1967 int r;
1968 unsigned long addr;
1969
1970 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1971 if (kvm_is_error_hva(addr))
1972 return -EFAULT;
1973 r = __copy_from_user(data, (void __user *)addr + offset, len);
1974 if (r)
1975 return -EFAULT;
1976 return 0;
1977 }
1978
1979 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1980 int len)
1981 {
1982 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1983
1984 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1987
1988 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1989 int offset, int len)
1990 {
1991 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1992
1993 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1994 }
1995 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1996
1997 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1998 {
1999 gfn_t gfn = gpa >> PAGE_SHIFT;
2000 int seg;
2001 int offset = offset_in_page(gpa);
2002 int ret;
2003
2004 while ((seg = next_segment(len, offset)) != 0) {
2005 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2006 if (ret < 0)
2007 return ret;
2008 offset = 0;
2009 len -= seg;
2010 data += seg;
2011 ++gfn;
2012 }
2013 return 0;
2014 }
2015 EXPORT_SYMBOL_GPL(kvm_read_guest);
2016
2017 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2018 {
2019 gfn_t gfn = gpa >> PAGE_SHIFT;
2020 int seg;
2021 int offset = offset_in_page(gpa);
2022 int ret;
2023
2024 while ((seg = next_segment(len, offset)) != 0) {
2025 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2026 if (ret < 0)
2027 return ret;
2028 offset = 0;
2029 len -= seg;
2030 data += seg;
2031 ++gfn;
2032 }
2033 return 0;
2034 }
2035 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2036
2037 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2038 void *data, int offset, unsigned long len)
2039 {
2040 int r;
2041 unsigned long addr;
2042
2043 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2044 if (kvm_is_error_hva(addr))
2045 return -EFAULT;
2046 pagefault_disable();
2047 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2048 pagefault_enable();
2049 if (r)
2050 return -EFAULT;
2051 return 0;
2052 }
2053
2054 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
2055 unsigned long len)
2056 {
2057 gfn_t gfn = gpa >> PAGE_SHIFT;
2058 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2059 int offset = offset_in_page(gpa);
2060
2061 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2062 }
2063 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
2064
2065 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2066 void *data, unsigned long len)
2067 {
2068 gfn_t gfn = gpa >> PAGE_SHIFT;
2069 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2070 int offset = offset_in_page(gpa);
2071
2072 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2073 }
2074 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2075
2076 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2077 const void *data, int offset, int len)
2078 {
2079 int r;
2080 unsigned long addr;
2081
2082 addr = gfn_to_hva_memslot(memslot, gfn);
2083 if (kvm_is_error_hva(addr))
2084 return -EFAULT;
2085 r = __copy_to_user((void __user *)addr + offset, data, len);
2086 if (r)
2087 return -EFAULT;
2088 mark_page_dirty_in_slot(memslot, gfn);
2089 return 0;
2090 }
2091
2092 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2093 const void *data, int offset, int len)
2094 {
2095 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2096
2097 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2098 }
2099 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2100
2101 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2102 const void *data, int offset, int len)
2103 {
2104 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2105
2106 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2107 }
2108 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2109
2110 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2111 unsigned long len)
2112 {
2113 gfn_t gfn = gpa >> PAGE_SHIFT;
2114 int seg;
2115 int offset = offset_in_page(gpa);
2116 int ret;
2117
2118 while ((seg = next_segment(len, offset)) != 0) {
2119 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2120 if (ret < 0)
2121 return ret;
2122 offset = 0;
2123 len -= seg;
2124 data += seg;
2125 ++gfn;
2126 }
2127 return 0;
2128 }
2129 EXPORT_SYMBOL_GPL(kvm_write_guest);
2130
2131 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2132 unsigned long len)
2133 {
2134 gfn_t gfn = gpa >> PAGE_SHIFT;
2135 int seg;
2136 int offset = offset_in_page(gpa);
2137 int ret;
2138
2139 while ((seg = next_segment(len, offset)) != 0) {
2140 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2141 if (ret < 0)
2142 return ret;
2143 offset = 0;
2144 len -= seg;
2145 data += seg;
2146 ++gfn;
2147 }
2148 return 0;
2149 }
2150 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2151
2152 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2153 struct gfn_to_hva_cache *ghc,
2154 gpa_t gpa, unsigned long len)
2155 {
2156 int offset = offset_in_page(gpa);
2157 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2158 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2159 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2160 gfn_t nr_pages_avail;
2161 int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2162
2163 ghc->gpa = gpa;
2164 ghc->generation = slots->generation;
2165 ghc->len = len;
2166 ghc->hva = KVM_HVA_ERR_BAD;
2167
2168 /*
2169 * If the requested region crosses two memslots, we still
2170 * verify that the entire region is valid here.
2171 */
2172 while (!r && start_gfn <= end_gfn) {
2173 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2174 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2175 &nr_pages_avail);
2176 if (kvm_is_error_hva(ghc->hva))
2177 r = -EFAULT;
2178 start_gfn += nr_pages_avail;
2179 }
2180
2181 /* Use the slow path for cross page reads and writes. */
2182 if (!r && nr_pages_needed == 1)
2183 ghc->hva += offset;
2184 else
2185 ghc->memslot = NULL;
2186
2187 return r;
2188 }
2189
2190 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2191 gpa_t gpa, unsigned long len)
2192 {
2193 struct kvm_memslots *slots = kvm_memslots(kvm);
2194 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2195 }
2196 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2197
2198 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2199 void *data, unsigned int offset,
2200 unsigned long len)
2201 {
2202 struct kvm_memslots *slots = kvm_memslots(kvm);
2203 int r;
2204 gpa_t gpa = ghc->gpa + offset;
2205
2206 BUG_ON(len + offset > ghc->len);
2207
2208 if (slots->generation != ghc->generation)
2209 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2210
2211 if (unlikely(!ghc->memslot))
2212 return kvm_write_guest(kvm, gpa, data, len);
2213
2214 if (kvm_is_error_hva(ghc->hva))
2215 return -EFAULT;
2216
2217 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2218 if (r)
2219 return -EFAULT;
2220 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2221
2222 return 0;
2223 }
2224 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2225
2226 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2227 void *data, unsigned long len)
2228 {
2229 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2230 }
2231 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2232
2233 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2234 void *data, unsigned long len)
2235 {
2236 struct kvm_memslots *slots = kvm_memslots(kvm);
2237 int r;
2238
2239 BUG_ON(len > ghc->len);
2240
2241 if (slots->generation != ghc->generation)
2242 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2243
2244 if (unlikely(!ghc->memslot))
2245 return kvm_read_guest(kvm, ghc->gpa, data, len);
2246
2247 if (kvm_is_error_hva(ghc->hva))
2248 return -EFAULT;
2249
2250 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2251 if (r)
2252 return -EFAULT;
2253
2254 return 0;
2255 }
2256 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2257
2258 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2259 {
2260 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2261
2262 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2263 }
2264 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2265
2266 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2267 {
2268 gfn_t gfn = gpa >> PAGE_SHIFT;
2269 int seg;
2270 int offset = offset_in_page(gpa);
2271 int ret;
2272
2273 while ((seg = next_segment(len, offset)) != 0) {
2274 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2275 if (ret < 0)
2276 return ret;
2277 offset = 0;
2278 len -= seg;
2279 ++gfn;
2280 }
2281 return 0;
2282 }
2283 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2284
2285 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2286 gfn_t gfn)
2287 {
2288 if (memslot && memslot->dirty_bitmap) {
2289 unsigned long rel_gfn = gfn - memslot->base_gfn;
2290
2291 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2292 }
2293 }
2294
2295 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2296 {
2297 struct kvm_memory_slot *memslot;
2298
2299 memslot = gfn_to_memslot(kvm, gfn);
2300 mark_page_dirty_in_slot(memslot, gfn);
2301 }
2302 EXPORT_SYMBOL_GPL(mark_page_dirty);
2303
2304 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2305 {
2306 struct kvm_memory_slot *memslot;
2307
2308 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2309 mark_page_dirty_in_slot(memslot, gfn);
2310 }
2311 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2312
2313 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2314 {
2315 if (!vcpu->sigset_active)
2316 return;
2317
2318 /*
2319 * This does a lockless modification of ->real_blocked, which is fine
2320 * because, only current can change ->real_blocked and all readers of
2321 * ->real_blocked don't care as long ->real_blocked is always a subset
2322 * of ->blocked.
2323 */
2324 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2325 }
2326
2327 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2328 {
2329 if (!vcpu->sigset_active)
2330 return;
2331
2332 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2333 sigemptyset(&current->real_blocked);
2334 }
2335
2336 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2337 {
2338 unsigned int old, val, grow, grow_start;
2339
2340 old = val = vcpu->halt_poll_ns;
2341 grow_start = READ_ONCE(halt_poll_ns_grow_start);
2342 grow = READ_ONCE(halt_poll_ns_grow);
2343 if (!grow)
2344 goto out;
2345
2346 val *= grow;
2347 if (val < grow_start)
2348 val = grow_start;
2349
2350 if (val > halt_poll_ns)
2351 val = halt_poll_ns;
2352
2353 vcpu->halt_poll_ns = val;
2354 out:
2355 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2356 }
2357
2358 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2359 {
2360 unsigned int old, val, shrink;
2361
2362 old = val = vcpu->halt_poll_ns;
2363 shrink = READ_ONCE(halt_poll_ns_shrink);
2364 if (shrink == 0)
2365 val = 0;
2366 else
2367 val /= shrink;
2368
2369 vcpu->halt_poll_ns = val;
2370 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2371 }
2372
2373 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2374 {
2375 int ret = -EINTR;
2376 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2377
2378 if (kvm_arch_vcpu_runnable(vcpu)) {
2379 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2380 goto out;
2381 }
2382 if (kvm_cpu_has_pending_timer(vcpu))
2383 goto out;
2384 if (signal_pending(current))
2385 goto out;
2386
2387 ret = 0;
2388 out:
2389 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2390 return ret;
2391 }
2392
2393 /*
2394 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2395 */
2396 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2397 {
2398 ktime_t start, cur;
2399 DECLARE_SWAITQUEUE(wait);
2400 bool waited = false;
2401 u64 block_ns;
2402
2403 kvm_arch_vcpu_blocking(vcpu);
2404
2405 start = cur = ktime_get();
2406 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2407 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2408
2409 ++vcpu->stat.halt_attempted_poll;
2410 do {
2411 /*
2412 * This sets KVM_REQ_UNHALT if an interrupt
2413 * arrives.
2414 */
2415 if (kvm_vcpu_check_block(vcpu) < 0) {
2416 ++vcpu->stat.halt_successful_poll;
2417 if (!vcpu_valid_wakeup(vcpu))
2418 ++vcpu->stat.halt_poll_invalid;
2419 goto out;
2420 }
2421 cur = ktime_get();
2422 } while (single_task_running() && ktime_before(cur, stop));
2423 }
2424
2425 for (;;) {
2426 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2427
2428 if (kvm_vcpu_check_block(vcpu) < 0)
2429 break;
2430
2431 waited = true;
2432 schedule();
2433 }
2434
2435 finish_swait(&vcpu->wq, &wait);
2436 cur = ktime_get();
2437 out:
2438 kvm_arch_vcpu_unblocking(vcpu);
2439 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2440
2441 if (!kvm_arch_no_poll(vcpu)) {
2442 if (!vcpu_valid_wakeup(vcpu)) {
2443 shrink_halt_poll_ns(vcpu);
2444 } else if (halt_poll_ns) {
2445 if (block_ns <= vcpu->halt_poll_ns)
2446 ;
2447 /* we had a long block, shrink polling */
2448 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2449 shrink_halt_poll_ns(vcpu);
2450 /* we had a short halt and our poll time is too small */
2451 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2452 block_ns < halt_poll_ns)
2453 grow_halt_poll_ns(vcpu);
2454 } else {
2455 vcpu->halt_poll_ns = 0;
2456 }
2457 }
2458
2459 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2460 kvm_arch_vcpu_block_finish(vcpu);
2461 }
2462 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2463
2464 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2465 {
2466 struct swait_queue_head *wqp;
2467
2468 wqp = kvm_arch_vcpu_wq(vcpu);
2469 if (swq_has_sleeper(wqp)) {
2470 swake_up_one(wqp);
2471 WRITE_ONCE(vcpu->ready, true);
2472 ++vcpu->stat.halt_wakeup;
2473 return true;
2474 }
2475
2476 return false;
2477 }
2478 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2479
2480 #ifndef CONFIG_S390
2481 /*
2482 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2483 */
2484 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2485 {
2486 int me;
2487 int cpu = vcpu->cpu;
2488
2489 if (kvm_vcpu_wake_up(vcpu))
2490 return;
2491
2492 me = get_cpu();
2493 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2494 if (kvm_arch_vcpu_should_kick(vcpu))
2495 smp_send_reschedule(cpu);
2496 put_cpu();
2497 }
2498 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2499 #endif /* !CONFIG_S390 */
2500
2501 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2502 {
2503 struct pid *pid;
2504 struct task_struct *task = NULL;
2505 int ret = 0;
2506
2507 rcu_read_lock();
2508 pid = rcu_dereference(target->pid);
2509 if (pid)
2510 task = get_pid_task(pid, PIDTYPE_PID);
2511 rcu_read_unlock();
2512 if (!task)
2513 return ret;
2514 ret = yield_to(task, 1);
2515 put_task_struct(task);
2516
2517 return ret;
2518 }
2519 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2520
2521 /*
2522 * Helper that checks whether a VCPU is eligible for directed yield.
2523 * Most eligible candidate to yield is decided by following heuristics:
2524 *
2525 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2526 * (preempted lock holder), indicated by @in_spin_loop.
2527 * Set at the beiginning and cleared at the end of interception/PLE handler.
2528 *
2529 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2530 * chance last time (mostly it has become eligible now since we have probably
2531 * yielded to lockholder in last iteration. This is done by toggling
2532 * @dy_eligible each time a VCPU checked for eligibility.)
2533 *
2534 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2535 * to preempted lock-holder could result in wrong VCPU selection and CPU
2536 * burning. Giving priority for a potential lock-holder increases lock
2537 * progress.
2538 *
2539 * Since algorithm is based on heuristics, accessing another VCPU data without
2540 * locking does not harm. It may result in trying to yield to same VCPU, fail
2541 * and continue with next VCPU and so on.
2542 */
2543 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2544 {
2545 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2546 bool eligible;
2547
2548 eligible = !vcpu->spin_loop.in_spin_loop ||
2549 vcpu->spin_loop.dy_eligible;
2550
2551 if (vcpu->spin_loop.in_spin_loop)
2552 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2553
2554 return eligible;
2555 #else
2556 return true;
2557 #endif
2558 }
2559
2560 /*
2561 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2562 * a vcpu_load/vcpu_put pair. However, for most architectures
2563 * kvm_arch_vcpu_runnable does not require vcpu_load.
2564 */
2565 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2566 {
2567 return kvm_arch_vcpu_runnable(vcpu);
2568 }
2569
2570 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2571 {
2572 if (kvm_arch_dy_runnable(vcpu))
2573 return true;
2574
2575 #ifdef CONFIG_KVM_ASYNC_PF
2576 if (!list_empty_careful(&vcpu->async_pf.done))
2577 return true;
2578 #endif
2579
2580 return false;
2581 }
2582
2583 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2584 {
2585 struct kvm *kvm = me->kvm;
2586 struct kvm_vcpu *vcpu;
2587 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2588 int yielded = 0;
2589 int try = 3;
2590 int pass;
2591 int i;
2592
2593 kvm_vcpu_set_in_spin_loop(me, true);
2594 /*
2595 * We boost the priority of a VCPU that is runnable but not
2596 * currently running, because it got preempted by something
2597 * else and called schedule in __vcpu_run. Hopefully that
2598 * VCPU is holding the lock that we need and will release it.
2599 * We approximate round-robin by starting at the last boosted VCPU.
2600 */
2601 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2602 kvm_for_each_vcpu(i, vcpu, kvm) {
2603 if (!pass && i <= last_boosted_vcpu) {
2604 i = last_boosted_vcpu;
2605 continue;
2606 } else if (pass && i > last_boosted_vcpu)
2607 break;
2608 if (!READ_ONCE(vcpu->ready))
2609 continue;
2610 if (vcpu == me)
2611 continue;
2612 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2613 continue;
2614 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2615 !kvm_arch_vcpu_in_kernel(vcpu))
2616 continue;
2617 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2618 continue;
2619
2620 yielded = kvm_vcpu_yield_to(vcpu);
2621 if (yielded > 0) {
2622 kvm->last_boosted_vcpu = i;
2623 break;
2624 } else if (yielded < 0) {
2625 try--;
2626 if (!try)
2627 break;
2628 }
2629 }
2630 }
2631 kvm_vcpu_set_in_spin_loop(me, false);
2632
2633 /* Ensure vcpu is not eligible during next spinloop */
2634 kvm_vcpu_set_dy_eligible(me, false);
2635 }
2636 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2637
2638 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2639 {
2640 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2641 struct page *page;
2642
2643 if (vmf->pgoff == 0)
2644 page = virt_to_page(vcpu->run);
2645 #ifdef CONFIG_X86
2646 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2647 page = virt_to_page(vcpu->arch.pio_data);
2648 #endif
2649 #ifdef CONFIG_KVM_MMIO
2650 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2651 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2652 #endif
2653 else
2654 return kvm_arch_vcpu_fault(vcpu, vmf);
2655 get_page(page);
2656 vmf->page = page;
2657 return 0;
2658 }
2659
2660 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2661 .fault = kvm_vcpu_fault,
2662 };
2663
2664 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2665 {
2666 vma->vm_ops = &kvm_vcpu_vm_ops;
2667 return 0;
2668 }
2669
2670 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2671 {
2672 struct kvm_vcpu *vcpu = filp->private_data;
2673
2674 debugfs_remove_recursive(vcpu->debugfs_dentry);
2675 kvm_put_kvm(vcpu->kvm);
2676 return 0;
2677 }
2678
2679 static struct file_operations kvm_vcpu_fops = {
2680 .release = kvm_vcpu_release,
2681 .unlocked_ioctl = kvm_vcpu_ioctl,
2682 .mmap = kvm_vcpu_mmap,
2683 .llseek = noop_llseek,
2684 KVM_COMPAT(kvm_vcpu_compat_ioctl),
2685 };
2686
2687 /*
2688 * Allocates an inode for the vcpu.
2689 */
2690 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2691 {
2692 char name[8 + 1 + ITOA_MAX_LEN + 1];
2693
2694 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2695 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2696 }
2697
2698 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2699 {
2700 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2701 char dir_name[ITOA_MAX_LEN * 2];
2702
2703 if (!debugfs_initialized())
2704 return;
2705
2706 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2707 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2708 vcpu->kvm->debugfs_dentry);
2709
2710 kvm_arch_create_vcpu_debugfs(vcpu);
2711 #endif
2712 }
2713
2714 /*
2715 * Creates some virtual cpus. Good luck creating more than one.
2716 */
2717 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2718 {
2719 int r;
2720 struct kvm_vcpu *vcpu;
2721
2722 if (id >= KVM_MAX_VCPU_ID)
2723 return -EINVAL;
2724
2725 mutex_lock(&kvm->lock);
2726 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2727 mutex_unlock(&kvm->lock);
2728 return -EINVAL;
2729 }
2730
2731 kvm->created_vcpus++;
2732 mutex_unlock(&kvm->lock);
2733
2734 vcpu = kvm_arch_vcpu_create(kvm, id);
2735 if (IS_ERR(vcpu)) {
2736 r = PTR_ERR(vcpu);
2737 goto vcpu_decrement;
2738 }
2739
2740 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2741
2742 r = kvm_arch_vcpu_setup(vcpu);
2743 if (r)
2744 goto vcpu_destroy;
2745
2746 kvm_create_vcpu_debugfs(vcpu);
2747
2748 mutex_lock(&kvm->lock);
2749 if (kvm_get_vcpu_by_id(kvm, id)) {
2750 r = -EEXIST;
2751 goto unlock_vcpu_destroy;
2752 }
2753
2754 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
2755 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
2756
2757 /* Now it's all set up, let userspace reach it */
2758 kvm_get_kvm(kvm);
2759 r = create_vcpu_fd(vcpu);
2760 if (r < 0) {
2761 kvm_put_kvm_no_destroy(kvm);
2762 goto unlock_vcpu_destroy;
2763 }
2764
2765 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
2766
2767 /*
2768 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2769 * before kvm->online_vcpu's incremented value.
2770 */
2771 smp_wmb();
2772 atomic_inc(&kvm->online_vcpus);
2773
2774 mutex_unlock(&kvm->lock);
2775 kvm_arch_vcpu_postcreate(vcpu);
2776 return r;
2777
2778 unlock_vcpu_destroy:
2779 mutex_unlock(&kvm->lock);
2780 debugfs_remove_recursive(vcpu->debugfs_dentry);
2781 vcpu_destroy:
2782 kvm_arch_vcpu_destroy(vcpu);
2783 vcpu_decrement:
2784 mutex_lock(&kvm->lock);
2785 kvm->created_vcpus--;
2786 mutex_unlock(&kvm->lock);
2787 return r;
2788 }
2789
2790 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2791 {
2792 if (sigset) {
2793 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2794 vcpu->sigset_active = 1;
2795 vcpu->sigset = *sigset;
2796 } else
2797 vcpu->sigset_active = 0;
2798 return 0;
2799 }
2800
2801 static long kvm_vcpu_ioctl(struct file *filp,
2802 unsigned int ioctl, unsigned long arg)
2803 {
2804 struct kvm_vcpu *vcpu = filp->private_data;
2805 void __user *argp = (void __user *)arg;
2806 int r;
2807 struct kvm_fpu *fpu = NULL;
2808 struct kvm_sregs *kvm_sregs = NULL;
2809
2810 if (vcpu->kvm->mm != current->mm)
2811 return -EIO;
2812
2813 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2814 return -EINVAL;
2815
2816 /*
2817 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2818 * execution; mutex_lock() would break them.
2819 */
2820 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2821 if (r != -ENOIOCTLCMD)
2822 return r;
2823
2824 if (mutex_lock_killable(&vcpu->mutex))
2825 return -EINTR;
2826 switch (ioctl) {
2827 case KVM_RUN: {
2828 struct pid *oldpid;
2829 r = -EINVAL;
2830 if (arg)
2831 goto out;
2832 oldpid = rcu_access_pointer(vcpu->pid);
2833 if (unlikely(oldpid != task_pid(current))) {
2834 /* The thread running this VCPU changed. */
2835 struct pid *newpid;
2836
2837 r = kvm_arch_vcpu_run_pid_change(vcpu);
2838 if (r)
2839 break;
2840
2841 newpid = get_task_pid(current, PIDTYPE_PID);
2842 rcu_assign_pointer(vcpu->pid, newpid);
2843 if (oldpid)
2844 synchronize_rcu();
2845 put_pid(oldpid);
2846 }
2847 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2848 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2849 break;
2850 }
2851 case KVM_GET_REGS: {
2852 struct kvm_regs *kvm_regs;
2853
2854 r = -ENOMEM;
2855 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2856 if (!kvm_regs)
2857 goto out;
2858 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2859 if (r)
2860 goto out_free1;
2861 r = -EFAULT;
2862 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2863 goto out_free1;
2864 r = 0;
2865 out_free1:
2866 kfree(kvm_regs);
2867 break;
2868 }
2869 case KVM_SET_REGS: {
2870 struct kvm_regs *kvm_regs;
2871
2872 r = -ENOMEM;
2873 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2874 if (IS_ERR(kvm_regs)) {
2875 r = PTR_ERR(kvm_regs);
2876 goto out;
2877 }
2878 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2879 kfree(kvm_regs);
2880 break;
2881 }
2882 case KVM_GET_SREGS: {
2883 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2884 GFP_KERNEL_ACCOUNT);
2885 r = -ENOMEM;
2886 if (!kvm_sregs)
2887 goto out;
2888 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2889 if (r)
2890 goto out;
2891 r = -EFAULT;
2892 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2893 goto out;
2894 r = 0;
2895 break;
2896 }
2897 case KVM_SET_SREGS: {
2898 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2899 if (IS_ERR(kvm_sregs)) {
2900 r = PTR_ERR(kvm_sregs);
2901 kvm_sregs = NULL;
2902 goto out;
2903 }
2904 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2905 break;
2906 }
2907 case KVM_GET_MP_STATE: {
2908 struct kvm_mp_state mp_state;
2909
2910 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2911 if (r)
2912 goto out;
2913 r = -EFAULT;
2914 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2915 goto out;
2916 r = 0;
2917 break;
2918 }
2919 case KVM_SET_MP_STATE: {
2920 struct kvm_mp_state mp_state;
2921
2922 r = -EFAULT;
2923 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2924 goto out;
2925 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2926 break;
2927 }
2928 case KVM_TRANSLATE: {
2929 struct kvm_translation tr;
2930
2931 r = -EFAULT;
2932 if (copy_from_user(&tr, argp, sizeof(tr)))
2933 goto out;
2934 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2935 if (r)
2936 goto out;
2937 r = -EFAULT;
2938 if (copy_to_user(argp, &tr, sizeof(tr)))
2939 goto out;
2940 r = 0;
2941 break;
2942 }
2943 case KVM_SET_GUEST_DEBUG: {
2944 struct kvm_guest_debug dbg;
2945
2946 r = -EFAULT;
2947 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2948 goto out;
2949 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2950 break;
2951 }
2952 case KVM_SET_SIGNAL_MASK: {
2953 struct kvm_signal_mask __user *sigmask_arg = argp;
2954 struct kvm_signal_mask kvm_sigmask;
2955 sigset_t sigset, *p;
2956
2957 p = NULL;
2958 if (argp) {
2959 r = -EFAULT;
2960 if (copy_from_user(&kvm_sigmask, argp,
2961 sizeof(kvm_sigmask)))
2962 goto out;
2963 r = -EINVAL;
2964 if (kvm_sigmask.len != sizeof(sigset))
2965 goto out;
2966 r = -EFAULT;
2967 if (copy_from_user(&sigset, sigmask_arg->sigset,
2968 sizeof(sigset)))
2969 goto out;
2970 p = &sigset;
2971 }
2972 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2973 break;
2974 }
2975 case KVM_GET_FPU: {
2976 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2977 r = -ENOMEM;
2978 if (!fpu)
2979 goto out;
2980 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2981 if (r)
2982 goto out;
2983 r = -EFAULT;
2984 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2985 goto out;
2986 r = 0;
2987 break;
2988 }
2989 case KVM_SET_FPU: {
2990 fpu = memdup_user(argp, sizeof(*fpu));
2991 if (IS_ERR(fpu)) {
2992 r = PTR_ERR(fpu);
2993 fpu = NULL;
2994 goto out;
2995 }
2996 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2997 break;
2998 }
2999 default:
3000 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3001 }
3002 out:
3003 mutex_unlock(&vcpu->mutex);
3004 kfree(fpu);
3005 kfree(kvm_sregs);
3006 return r;
3007 }
3008
3009 #ifdef CONFIG_KVM_COMPAT
3010 static long kvm_vcpu_compat_ioctl(struct file *filp,
3011 unsigned int ioctl, unsigned long arg)
3012 {
3013 struct kvm_vcpu *vcpu = filp->private_data;
3014 void __user *argp = compat_ptr(arg);
3015 int r;
3016
3017 if (vcpu->kvm->mm != current->mm)
3018 return -EIO;
3019
3020 switch (ioctl) {
3021 case KVM_SET_SIGNAL_MASK: {
3022 struct kvm_signal_mask __user *sigmask_arg = argp;
3023 struct kvm_signal_mask kvm_sigmask;
3024 sigset_t sigset;
3025
3026 if (argp) {
3027 r = -EFAULT;
3028 if (copy_from_user(&kvm_sigmask, argp,
3029 sizeof(kvm_sigmask)))
3030 goto out;
3031 r = -EINVAL;
3032 if (kvm_sigmask.len != sizeof(compat_sigset_t))
3033 goto out;
3034 r = -EFAULT;
3035 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3036 goto out;
3037 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3038 } else
3039 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3040 break;
3041 }
3042 default:
3043 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3044 }
3045
3046 out:
3047 return r;
3048 }
3049 #endif
3050
3051 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3052 {
3053 struct kvm_device *dev = filp->private_data;
3054
3055 if (dev->ops->mmap)
3056 return dev->ops->mmap(dev, vma);
3057
3058 return -ENODEV;
3059 }
3060
3061 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3062 int (*accessor)(struct kvm_device *dev,
3063 struct kvm_device_attr *attr),
3064 unsigned long arg)
3065 {
3066 struct kvm_device_attr attr;
3067
3068 if (!accessor)
3069 return -EPERM;
3070
3071 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3072 return -EFAULT;
3073
3074 return accessor(dev, &attr);
3075 }
3076
3077 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3078 unsigned long arg)
3079 {
3080 struct kvm_device *dev = filp->private_data;
3081
3082 if (dev->kvm->mm != current->mm)
3083 return -EIO;
3084
3085 switch (ioctl) {
3086 case KVM_SET_DEVICE_ATTR:
3087 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3088 case KVM_GET_DEVICE_ATTR:
3089 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3090 case KVM_HAS_DEVICE_ATTR:
3091 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3092 default:
3093 if (dev->ops->ioctl)
3094 return dev->ops->ioctl(dev, ioctl, arg);
3095
3096 return -ENOTTY;
3097 }
3098 }
3099
3100 static int kvm_device_release(struct inode *inode, struct file *filp)
3101 {
3102 struct kvm_device *dev = filp->private_data;
3103 struct kvm *kvm = dev->kvm;
3104
3105 if (dev->ops->release) {
3106 mutex_lock(&kvm->lock);
3107 list_del(&dev->vm_node);
3108 dev->ops->release(dev);
3109 mutex_unlock(&kvm->lock);
3110 }
3111
3112 kvm_put_kvm(kvm);
3113 return 0;
3114 }
3115
3116 static const struct file_operations kvm_device_fops = {
3117 .unlocked_ioctl = kvm_device_ioctl,
3118 .release = kvm_device_release,
3119 KVM_COMPAT(kvm_device_ioctl),
3120 .mmap = kvm_device_mmap,
3121 };
3122
3123 struct kvm_device *kvm_device_from_filp(struct file *filp)
3124 {
3125 if (filp->f_op != &kvm_device_fops)
3126 return NULL;
3127
3128 return filp->private_data;
3129 }
3130
3131 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3132 #ifdef CONFIG_KVM_MPIC
3133 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3134 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3135 #endif
3136 };
3137
3138 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3139 {
3140 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3141 return -ENOSPC;
3142
3143 if (kvm_device_ops_table[type] != NULL)
3144 return -EEXIST;
3145
3146 kvm_device_ops_table[type] = ops;
3147 return 0;
3148 }
3149
3150 void kvm_unregister_device_ops(u32 type)
3151 {
3152 if (kvm_device_ops_table[type] != NULL)
3153 kvm_device_ops_table[type] = NULL;
3154 }
3155
3156 static int kvm_ioctl_create_device(struct kvm *kvm,
3157 struct kvm_create_device *cd)
3158 {
3159 const struct kvm_device_ops *ops = NULL;
3160 struct kvm_device *dev;
3161 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3162 int type;
3163 int ret;
3164
3165 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3166 return -ENODEV;
3167
3168 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3169 ops = kvm_device_ops_table[type];
3170 if (ops == NULL)
3171 return -ENODEV;
3172
3173 if (test)
3174 return 0;
3175
3176 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3177 if (!dev)
3178 return -ENOMEM;
3179
3180 dev->ops = ops;
3181 dev->kvm = kvm;
3182
3183 mutex_lock(&kvm->lock);
3184 ret = ops->create(dev, type);
3185 if (ret < 0) {
3186 mutex_unlock(&kvm->lock);
3187 kfree(dev);
3188 return ret;
3189 }
3190 list_add(&dev->vm_node, &kvm->devices);
3191 mutex_unlock(&kvm->lock);
3192
3193 if (ops->init)
3194 ops->init(dev);
3195
3196 kvm_get_kvm(kvm);
3197 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3198 if (ret < 0) {
3199 kvm_put_kvm_no_destroy(kvm);
3200 mutex_lock(&kvm->lock);
3201 list_del(&dev->vm_node);
3202 mutex_unlock(&kvm->lock);
3203 ops->destroy(dev);
3204 return ret;
3205 }
3206
3207 cd->fd = ret;
3208 return 0;
3209 }
3210
3211 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3212 {
3213 switch (arg) {
3214 case KVM_CAP_USER_MEMORY:
3215 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3216 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3217 case KVM_CAP_INTERNAL_ERROR_DATA:
3218 #ifdef CONFIG_HAVE_KVM_MSI
3219 case KVM_CAP_SIGNAL_MSI:
3220 #endif
3221 #ifdef CONFIG_HAVE_KVM_IRQFD
3222 case KVM_CAP_IRQFD:
3223 case KVM_CAP_IRQFD_RESAMPLE:
3224 #endif
3225 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3226 case KVM_CAP_CHECK_EXTENSION_VM:
3227 case KVM_CAP_ENABLE_CAP_VM:
3228 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3229 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3230 #endif
3231 return 1;
3232 #ifdef CONFIG_KVM_MMIO
3233 case KVM_CAP_COALESCED_MMIO:
3234 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3235 case KVM_CAP_COALESCED_PIO:
3236 return 1;
3237 #endif
3238 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3239 case KVM_CAP_IRQ_ROUTING:
3240 return KVM_MAX_IRQ_ROUTES;
3241 #endif
3242 #if KVM_ADDRESS_SPACE_NUM > 1
3243 case KVM_CAP_MULTI_ADDRESS_SPACE:
3244 return KVM_ADDRESS_SPACE_NUM;
3245 #endif
3246 case KVM_CAP_NR_MEMSLOTS:
3247 return KVM_USER_MEM_SLOTS;
3248 default:
3249 break;
3250 }
3251 return kvm_vm_ioctl_check_extension(kvm, arg);
3252 }
3253
3254 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3255 struct kvm_enable_cap *cap)
3256 {
3257 return -EINVAL;
3258 }
3259
3260 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3261 struct kvm_enable_cap *cap)
3262 {
3263 switch (cap->cap) {
3264 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3265 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3266 if (cap->flags || (cap->args[0] & ~1))
3267 return -EINVAL;
3268 kvm->manual_dirty_log_protect = cap->args[0];
3269 return 0;
3270 #endif
3271 default:
3272 return kvm_vm_ioctl_enable_cap(kvm, cap);
3273 }
3274 }
3275
3276 static long kvm_vm_ioctl(struct file *filp,
3277 unsigned int ioctl, unsigned long arg)
3278 {
3279 struct kvm *kvm = filp->private_data;
3280 void __user *argp = (void __user *)arg;
3281 int r;
3282
3283 if (kvm->mm != current->mm)
3284 return -EIO;
3285 switch (ioctl) {
3286 case KVM_CREATE_VCPU:
3287 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3288 break;
3289 case KVM_ENABLE_CAP: {
3290 struct kvm_enable_cap cap;
3291
3292 r = -EFAULT;
3293 if (copy_from_user(&cap, argp, sizeof(cap)))
3294 goto out;
3295 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3296 break;
3297 }
3298 case KVM_SET_USER_MEMORY_REGION: {
3299 struct kvm_userspace_memory_region kvm_userspace_mem;
3300
3301 r = -EFAULT;
3302 if (copy_from_user(&kvm_userspace_mem, argp,
3303 sizeof(kvm_userspace_mem)))
3304 goto out;
3305
3306 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3307 break;
3308 }
3309 case KVM_GET_DIRTY_LOG: {
3310 struct kvm_dirty_log log;
3311
3312 r = -EFAULT;
3313 if (copy_from_user(&log, argp, sizeof(log)))
3314 goto out;
3315 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3316 break;
3317 }
3318 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3319 case KVM_CLEAR_DIRTY_LOG: {
3320 struct kvm_clear_dirty_log log;
3321
3322 r = -EFAULT;
3323 if (copy_from_user(&log, argp, sizeof(log)))
3324 goto out;
3325 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3326 break;
3327 }
3328 #endif
3329 #ifdef CONFIG_KVM_MMIO
3330 case KVM_REGISTER_COALESCED_MMIO: {
3331 struct kvm_coalesced_mmio_zone zone;
3332
3333 r = -EFAULT;
3334 if (copy_from_user(&zone, argp, sizeof(zone)))
3335 goto out;
3336 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3337 break;
3338 }
3339 case KVM_UNREGISTER_COALESCED_MMIO: {
3340 struct kvm_coalesced_mmio_zone zone;
3341
3342 r = -EFAULT;
3343 if (copy_from_user(&zone, argp, sizeof(zone)))
3344 goto out;
3345 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3346 break;
3347 }
3348 #endif
3349 case KVM_IRQFD: {
3350 struct kvm_irqfd data;
3351
3352 r = -EFAULT;
3353 if (copy_from_user(&data, argp, sizeof(data)))
3354 goto out;
3355 r = kvm_irqfd(kvm, &data);
3356 break;
3357 }
3358 case KVM_IOEVENTFD: {
3359 struct kvm_ioeventfd data;
3360
3361 r = -EFAULT;
3362 if (copy_from_user(&data, argp, sizeof(data)))
3363 goto out;
3364 r = kvm_ioeventfd(kvm, &data);
3365 break;
3366 }
3367 #ifdef CONFIG_HAVE_KVM_MSI
3368 case KVM_SIGNAL_MSI: {
3369 struct kvm_msi msi;
3370
3371 r = -EFAULT;
3372 if (copy_from_user(&msi, argp, sizeof(msi)))
3373 goto out;
3374 r = kvm_send_userspace_msi(kvm, &msi);
3375 break;
3376 }
3377 #endif
3378 #ifdef __KVM_HAVE_IRQ_LINE
3379 case KVM_IRQ_LINE_STATUS:
3380 case KVM_IRQ_LINE: {
3381 struct kvm_irq_level irq_event;
3382
3383 r = -EFAULT;
3384 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3385 goto out;
3386
3387 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3388 ioctl == KVM_IRQ_LINE_STATUS);
3389 if (r)
3390 goto out;
3391
3392 r = -EFAULT;
3393 if (ioctl == KVM_IRQ_LINE_STATUS) {
3394 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3395 goto out;
3396 }
3397
3398 r = 0;
3399 break;
3400 }
3401 #endif
3402 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3403 case KVM_SET_GSI_ROUTING: {
3404 struct kvm_irq_routing routing;
3405 struct kvm_irq_routing __user *urouting;
3406 struct kvm_irq_routing_entry *entries = NULL;
3407
3408 r = -EFAULT;
3409 if (copy_from_user(&routing, argp, sizeof(routing)))
3410 goto out;
3411 r = -EINVAL;
3412 if (!kvm_arch_can_set_irq_routing(kvm))
3413 goto out;
3414 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3415 goto out;
3416 if (routing.flags)
3417 goto out;
3418 if (routing.nr) {
3419 r = -ENOMEM;
3420 entries = vmalloc(array_size(sizeof(*entries),
3421 routing.nr));
3422 if (!entries)
3423 goto out;
3424 r = -EFAULT;
3425 urouting = argp;
3426 if (copy_from_user(entries, urouting->entries,
3427 routing.nr * sizeof(*entries)))
3428 goto out_free_irq_routing;
3429 }
3430 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3431 routing.flags);
3432 out_free_irq_routing:
3433 vfree(entries);
3434 break;
3435 }
3436 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3437 case KVM_CREATE_DEVICE: {
3438 struct kvm_create_device cd;
3439
3440 r = -EFAULT;
3441 if (copy_from_user(&cd, argp, sizeof(cd)))
3442 goto out;
3443
3444 r = kvm_ioctl_create_device(kvm, &cd);
3445 if (r)
3446 goto out;
3447
3448 r = -EFAULT;
3449 if (copy_to_user(argp, &cd, sizeof(cd)))
3450 goto out;
3451
3452 r = 0;
3453 break;
3454 }
3455 case KVM_CHECK_EXTENSION:
3456 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3457 break;
3458 default:
3459 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3460 }
3461 out:
3462 return r;
3463 }
3464
3465 #ifdef CONFIG_KVM_COMPAT
3466 struct compat_kvm_dirty_log {
3467 __u32 slot;
3468 __u32 padding1;
3469 union {
3470 compat_uptr_t dirty_bitmap; /* one bit per page */
3471 __u64 padding2;
3472 };
3473 };
3474
3475 static long kvm_vm_compat_ioctl(struct file *filp,
3476 unsigned int ioctl, unsigned long arg)
3477 {
3478 struct kvm *kvm = filp->private_data;
3479 int r;
3480
3481 if (kvm->mm != current->mm)
3482 return -EIO;
3483 switch (ioctl) {
3484 case KVM_GET_DIRTY_LOG: {
3485 struct compat_kvm_dirty_log compat_log;
3486 struct kvm_dirty_log log;
3487
3488 if (copy_from_user(&compat_log, (void __user *)arg,
3489 sizeof(compat_log)))
3490 return -EFAULT;
3491 log.slot = compat_log.slot;
3492 log.padding1 = compat_log.padding1;
3493 log.padding2 = compat_log.padding2;
3494 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3495
3496 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3497 break;
3498 }
3499 default:
3500 r = kvm_vm_ioctl(filp, ioctl, arg);
3501 }
3502 return r;
3503 }
3504 #endif
3505
3506 static struct file_operations kvm_vm_fops = {
3507 .release = kvm_vm_release,
3508 .unlocked_ioctl = kvm_vm_ioctl,
3509 .llseek = noop_llseek,
3510 KVM_COMPAT(kvm_vm_compat_ioctl),
3511 };
3512
3513 static int kvm_dev_ioctl_create_vm(unsigned long type)
3514 {
3515 int r;
3516 struct kvm *kvm;
3517 struct file *file;
3518
3519 kvm = kvm_create_vm(type);
3520 if (IS_ERR(kvm))
3521 return PTR_ERR(kvm);
3522 #ifdef CONFIG_KVM_MMIO
3523 r = kvm_coalesced_mmio_init(kvm);
3524 if (r < 0)
3525 goto put_kvm;
3526 #endif
3527 r = get_unused_fd_flags(O_CLOEXEC);
3528 if (r < 0)
3529 goto put_kvm;
3530
3531 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3532 if (IS_ERR(file)) {
3533 put_unused_fd(r);
3534 r = PTR_ERR(file);
3535 goto put_kvm;
3536 }
3537
3538 /*
3539 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3540 * already set, with ->release() being kvm_vm_release(). In error
3541 * cases it will be called by the final fput(file) and will take
3542 * care of doing kvm_put_kvm(kvm).
3543 */
3544 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3545 put_unused_fd(r);
3546 fput(file);
3547 return -ENOMEM;
3548 }
3549 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3550
3551 fd_install(r, file);
3552 return r;
3553
3554 put_kvm:
3555 kvm_put_kvm(kvm);
3556 return r;
3557 }
3558
3559 static long kvm_dev_ioctl(struct file *filp,
3560 unsigned int ioctl, unsigned long arg)
3561 {
3562 long r = -EINVAL;
3563
3564 switch (ioctl) {
3565 case KVM_GET_API_VERSION:
3566 if (arg)
3567 goto out;
3568 r = KVM_API_VERSION;
3569 break;
3570 case KVM_CREATE_VM:
3571 r = kvm_dev_ioctl_create_vm(arg);
3572 break;
3573 case KVM_CHECK_EXTENSION:
3574 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3575 break;
3576 case KVM_GET_VCPU_MMAP_SIZE:
3577 if (arg)
3578 goto out;
3579 r = PAGE_SIZE; /* struct kvm_run */
3580 #ifdef CONFIG_X86
3581 r += PAGE_SIZE; /* pio data page */
3582 #endif
3583 #ifdef CONFIG_KVM_MMIO
3584 r += PAGE_SIZE; /* coalesced mmio ring page */
3585 #endif
3586 break;
3587 case KVM_TRACE_ENABLE:
3588 case KVM_TRACE_PAUSE:
3589 case KVM_TRACE_DISABLE:
3590 r = -EOPNOTSUPP;
3591 break;
3592 default:
3593 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3594 }
3595 out:
3596 return r;
3597 }
3598
3599 static struct file_operations kvm_chardev_ops = {
3600 .unlocked_ioctl = kvm_dev_ioctl,
3601 .llseek = noop_llseek,
3602 KVM_COMPAT(kvm_dev_ioctl),
3603 };
3604
3605 static struct miscdevice kvm_dev = {
3606 KVM_MINOR,
3607 "kvm",
3608 &kvm_chardev_ops,
3609 };
3610
3611 static void hardware_enable_nolock(void *junk)
3612 {
3613 int cpu = raw_smp_processor_id();
3614 int r;
3615
3616 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3617 return;
3618
3619 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3620
3621 r = kvm_arch_hardware_enable();
3622
3623 if (r) {
3624 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3625 atomic_inc(&hardware_enable_failed);
3626 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3627 }
3628 }
3629
3630 static int kvm_starting_cpu(unsigned int cpu)
3631 {
3632 raw_spin_lock(&kvm_count_lock);
3633 if (kvm_usage_count)
3634 hardware_enable_nolock(NULL);
3635 raw_spin_unlock(&kvm_count_lock);
3636 return 0;
3637 }
3638
3639 static void hardware_disable_nolock(void *junk)
3640 {
3641 int cpu = raw_smp_processor_id();
3642
3643 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3644 return;
3645 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3646 kvm_arch_hardware_disable();
3647 }
3648
3649 static int kvm_dying_cpu(unsigned int cpu)
3650 {
3651 raw_spin_lock(&kvm_count_lock);
3652 if (kvm_usage_count)
3653 hardware_disable_nolock(NULL);
3654 raw_spin_unlock(&kvm_count_lock);
3655 return 0;
3656 }
3657
3658 static void hardware_disable_all_nolock(void)
3659 {
3660 BUG_ON(!kvm_usage_count);
3661
3662 kvm_usage_count--;
3663 if (!kvm_usage_count)
3664 on_each_cpu(hardware_disable_nolock, NULL, 1);
3665 }
3666
3667 static void hardware_disable_all(void)
3668 {
3669 raw_spin_lock(&kvm_count_lock);
3670 hardware_disable_all_nolock();
3671 raw_spin_unlock(&kvm_count_lock);
3672 }
3673
3674 static int hardware_enable_all(void)
3675 {
3676 int r = 0;
3677
3678 raw_spin_lock(&kvm_count_lock);
3679
3680 kvm_usage_count++;
3681 if (kvm_usage_count == 1) {
3682 atomic_set(&hardware_enable_failed, 0);
3683 on_each_cpu(hardware_enable_nolock, NULL, 1);
3684
3685 if (atomic_read(&hardware_enable_failed)) {
3686 hardware_disable_all_nolock();
3687 r = -EBUSY;
3688 }
3689 }
3690
3691 raw_spin_unlock(&kvm_count_lock);
3692
3693 return r;
3694 }
3695
3696 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3697 void *v)
3698 {
3699 /*
3700 * Some (well, at least mine) BIOSes hang on reboot if
3701 * in vmx root mode.
3702 *
3703 * And Intel TXT required VMX off for all cpu when system shutdown.
3704 */
3705 pr_info("kvm: exiting hardware virtualization\n");
3706 kvm_rebooting = true;
3707 on_each_cpu(hardware_disable_nolock, NULL, 1);
3708 return NOTIFY_OK;
3709 }
3710
3711 static struct notifier_block kvm_reboot_notifier = {
3712 .notifier_call = kvm_reboot,
3713 .priority = 0,
3714 };
3715
3716 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3717 {
3718 int i;
3719
3720 for (i = 0; i < bus->dev_count; i++) {
3721 struct kvm_io_device *pos = bus->range[i].dev;
3722
3723 kvm_iodevice_destructor(pos);
3724 }
3725 kfree(bus);
3726 }
3727
3728 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3729 const struct kvm_io_range *r2)
3730 {
3731 gpa_t addr1 = r1->addr;
3732 gpa_t addr2 = r2->addr;
3733
3734 if (addr1 < addr2)
3735 return -1;
3736
3737 /* If r2->len == 0, match the exact address. If r2->len != 0,
3738 * accept any overlapping write. Any order is acceptable for
3739 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3740 * we process all of them.
3741 */
3742 if (r2->len) {
3743 addr1 += r1->len;
3744 addr2 += r2->len;
3745 }
3746
3747 if (addr1 > addr2)
3748 return 1;
3749
3750 return 0;
3751 }
3752
3753 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3754 {
3755 return kvm_io_bus_cmp(p1, p2);
3756 }
3757
3758 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3759 gpa_t addr, int len)
3760 {
3761 struct kvm_io_range *range, key;
3762 int off;
3763
3764 key = (struct kvm_io_range) {
3765 .addr = addr,
3766 .len = len,
3767 };
3768
3769 range = bsearch(&key, bus->range, bus->dev_count,
3770 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3771 if (range == NULL)
3772 return -ENOENT;
3773
3774 off = range - bus->range;
3775
3776 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3777 off--;
3778
3779 return off;
3780 }
3781
3782 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3783 struct kvm_io_range *range, const void *val)
3784 {
3785 int idx;
3786
3787 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3788 if (idx < 0)
3789 return -EOPNOTSUPP;
3790
3791 while (idx < bus->dev_count &&
3792 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3793 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3794 range->len, val))
3795 return idx;
3796 idx++;
3797 }
3798
3799 return -EOPNOTSUPP;
3800 }
3801
3802 /* kvm_io_bus_write - called under kvm->slots_lock */
3803 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3804 int len, const void *val)
3805 {
3806 struct kvm_io_bus *bus;
3807 struct kvm_io_range range;
3808 int r;
3809
3810 range = (struct kvm_io_range) {
3811 .addr = addr,
3812 .len = len,
3813 };
3814
3815 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3816 if (!bus)
3817 return -ENOMEM;
3818 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3819 return r < 0 ? r : 0;
3820 }
3821 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3822
3823 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3824 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3825 gpa_t addr, int len, const void *val, long cookie)
3826 {
3827 struct kvm_io_bus *bus;
3828 struct kvm_io_range range;
3829
3830 range = (struct kvm_io_range) {
3831 .addr = addr,
3832 .len = len,
3833 };
3834
3835 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3836 if (!bus)
3837 return -ENOMEM;
3838
3839 /* First try the device referenced by cookie. */
3840 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3841 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3842 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3843 val))
3844 return cookie;
3845
3846 /*
3847 * cookie contained garbage; fall back to search and return the
3848 * correct cookie value.
3849 */
3850 return __kvm_io_bus_write(vcpu, bus, &range, val);
3851 }
3852
3853 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3854 struct kvm_io_range *range, void *val)
3855 {
3856 int idx;
3857
3858 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3859 if (idx < 0)
3860 return -EOPNOTSUPP;
3861
3862 while (idx < bus->dev_count &&
3863 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3864 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3865 range->len, val))
3866 return idx;
3867 idx++;
3868 }
3869
3870 return -EOPNOTSUPP;
3871 }
3872
3873 /* kvm_io_bus_read - called under kvm->slots_lock */
3874 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3875 int len, void *val)
3876 {
3877 struct kvm_io_bus *bus;
3878 struct kvm_io_range range;
3879 int r;
3880
3881 range = (struct kvm_io_range) {
3882 .addr = addr,
3883 .len = len,
3884 };
3885
3886 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3887 if (!bus)
3888 return -ENOMEM;
3889 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3890 return r < 0 ? r : 0;
3891 }
3892
3893 /* Caller must hold slots_lock. */
3894 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3895 int len, struct kvm_io_device *dev)
3896 {
3897 int i;
3898 struct kvm_io_bus *new_bus, *bus;
3899 struct kvm_io_range range;
3900
3901 bus = kvm_get_bus(kvm, bus_idx);
3902 if (!bus)
3903 return -ENOMEM;
3904
3905 /* exclude ioeventfd which is limited by maximum fd */
3906 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3907 return -ENOSPC;
3908
3909 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3910 GFP_KERNEL_ACCOUNT);
3911 if (!new_bus)
3912 return -ENOMEM;
3913
3914 range = (struct kvm_io_range) {
3915 .addr = addr,
3916 .len = len,
3917 .dev = dev,
3918 };
3919
3920 for (i = 0; i < bus->dev_count; i++)
3921 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3922 break;
3923
3924 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3925 new_bus->dev_count++;
3926 new_bus->range[i] = range;
3927 memcpy(new_bus->range + i + 1, bus->range + i,
3928 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3929 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3930 synchronize_srcu_expedited(&kvm->srcu);
3931 kfree(bus);
3932
3933 return 0;
3934 }
3935
3936 /* Caller must hold slots_lock. */
3937 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3938 struct kvm_io_device *dev)
3939 {
3940 int i;
3941 struct kvm_io_bus *new_bus, *bus;
3942
3943 bus = kvm_get_bus(kvm, bus_idx);
3944 if (!bus)
3945 return;
3946
3947 for (i = 0; i < bus->dev_count; i++)
3948 if (bus->range[i].dev == dev) {
3949 break;
3950 }
3951
3952 if (i == bus->dev_count)
3953 return;
3954
3955 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3956 GFP_KERNEL_ACCOUNT);
3957 if (!new_bus) {
3958 pr_err("kvm: failed to shrink bus, removing it completely\n");
3959 goto broken;
3960 }
3961
3962 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3963 new_bus->dev_count--;
3964 memcpy(new_bus->range + i, bus->range + i + 1,
3965 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3966
3967 broken:
3968 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3969 synchronize_srcu_expedited(&kvm->srcu);
3970 kfree(bus);
3971 return;
3972 }
3973
3974 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3975 gpa_t addr)
3976 {
3977 struct kvm_io_bus *bus;
3978 int dev_idx, srcu_idx;
3979 struct kvm_io_device *iodev = NULL;
3980
3981 srcu_idx = srcu_read_lock(&kvm->srcu);
3982
3983 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3984 if (!bus)
3985 goto out_unlock;
3986
3987 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3988 if (dev_idx < 0)
3989 goto out_unlock;
3990
3991 iodev = bus->range[dev_idx].dev;
3992
3993 out_unlock:
3994 srcu_read_unlock(&kvm->srcu, srcu_idx);
3995
3996 return iodev;
3997 }
3998 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3999
4000 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4001 int (*get)(void *, u64 *), int (*set)(void *, u64),
4002 const char *fmt)
4003 {
4004 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4005 inode->i_private;
4006
4007 /* The debugfs files are a reference to the kvm struct which
4008 * is still valid when kvm_destroy_vm is called.
4009 * To avoid the race between open and the removal of the debugfs
4010 * directory we test against the users count.
4011 */
4012 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4013 return -ENOENT;
4014
4015 if (simple_attr_open(inode, file, get,
4016 stat_data->mode & S_IWUGO ? set : NULL,
4017 fmt)) {
4018 kvm_put_kvm(stat_data->kvm);
4019 return -ENOMEM;
4020 }
4021
4022 return 0;
4023 }
4024
4025 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4026 {
4027 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4028 inode->i_private;
4029
4030 simple_attr_release(inode, file);
4031 kvm_put_kvm(stat_data->kvm);
4032
4033 return 0;
4034 }
4035
4036 static int vm_stat_get_per_vm(void *data, u64 *val)
4037 {
4038 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4039
4040 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
4041
4042 return 0;
4043 }
4044
4045 static int vm_stat_clear_per_vm(void *data, u64 val)
4046 {
4047 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4048
4049 if (val)
4050 return -EINVAL;
4051
4052 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
4053
4054 return 0;
4055 }
4056
4057 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
4058 {
4059 __simple_attr_check_format("%llu\n", 0ull);
4060 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
4061 vm_stat_clear_per_vm, "%llu\n");
4062 }
4063
4064 static const struct file_operations vm_stat_get_per_vm_fops = {
4065 .owner = THIS_MODULE,
4066 .open = vm_stat_get_per_vm_open,
4067 .release = kvm_debugfs_release,
4068 .read = simple_attr_read,
4069 .write = simple_attr_write,
4070 .llseek = no_llseek,
4071 };
4072
4073 static int vcpu_stat_get_per_vm(void *data, u64 *val)
4074 {
4075 int i;
4076 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4077 struct kvm_vcpu *vcpu;
4078
4079 *val = 0;
4080
4081 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4082 *val += *(u64 *)((void *)vcpu + stat_data->offset);
4083
4084 return 0;
4085 }
4086
4087 static int vcpu_stat_clear_per_vm(void *data, u64 val)
4088 {
4089 int i;
4090 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4091 struct kvm_vcpu *vcpu;
4092
4093 if (val)
4094 return -EINVAL;
4095
4096 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4097 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4098
4099 return 0;
4100 }
4101
4102 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4103 {
4104 __simple_attr_check_format("%llu\n", 0ull);
4105 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4106 vcpu_stat_clear_per_vm, "%llu\n");
4107 }
4108
4109 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4110 .owner = THIS_MODULE,
4111 .open = vcpu_stat_get_per_vm_open,
4112 .release = kvm_debugfs_release,
4113 .read = simple_attr_read,
4114 .write = simple_attr_write,
4115 .llseek = no_llseek,
4116 };
4117
4118 static const struct file_operations *stat_fops_per_vm[] = {
4119 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4120 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
4121 };
4122
4123 static int vm_stat_get(void *_offset, u64 *val)
4124 {
4125 unsigned offset = (long)_offset;
4126 struct kvm *kvm;
4127 struct kvm_stat_data stat_tmp = {.offset = offset};
4128 u64 tmp_val;
4129
4130 *val = 0;
4131 mutex_lock(&kvm_lock);
4132 list_for_each_entry(kvm, &vm_list, vm_list) {
4133 stat_tmp.kvm = kvm;
4134 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4135 *val += tmp_val;
4136 }
4137 mutex_unlock(&kvm_lock);
4138 return 0;
4139 }
4140
4141 static int vm_stat_clear(void *_offset, u64 val)
4142 {
4143 unsigned offset = (long)_offset;
4144 struct kvm *kvm;
4145 struct kvm_stat_data stat_tmp = {.offset = offset};
4146
4147 if (val)
4148 return -EINVAL;
4149
4150 mutex_lock(&kvm_lock);
4151 list_for_each_entry(kvm, &vm_list, vm_list) {
4152 stat_tmp.kvm = kvm;
4153 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4154 }
4155 mutex_unlock(&kvm_lock);
4156
4157 return 0;
4158 }
4159
4160 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4161
4162 static int vcpu_stat_get(void *_offset, u64 *val)
4163 {
4164 unsigned offset = (long)_offset;
4165 struct kvm *kvm;
4166 struct kvm_stat_data stat_tmp = {.offset = offset};
4167 u64 tmp_val;
4168
4169 *val = 0;
4170 mutex_lock(&kvm_lock);
4171 list_for_each_entry(kvm, &vm_list, vm_list) {
4172 stat_tmp.kvm = kvm;
4173 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4174 *val += tmp_val;
4175 }
4176 mutex_unlock(&kvm_lock);
4177 return 0;
4178 }
4179
4180 static int vcpu_stat_clear(void *_offset, u64 val)
4181 {
4182 unsigned offset = (long)_offset;
4183 struct kvm *kvm;
4184 struct kvm_stat_data stat_tmp = {.offset = offset};
4185
4186 if (val)
4187 return -EINVAL;
4188
4189 mutex_lock(&kvm_lock);
4190 list_for_each_entry(kvm, &vm_list, vm_list) {
4191 stat_tmp.kvm = kvm;
4192 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4193 }
4194 mutex_unlock(&kvm_lock);
4195
4196 return 0;
4197 }
4198
4199 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4200 "%llu\n");
4201
4202 static const struct file_operations *stat_fops[] = {
4203 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4204 [KVM_STAT_VM] = &vm_stat_fops,
4205 };
4206
4207 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4208 {
4209 struct kobj_uevent_env *env;
4210 unsigned long long created, active;
4211
4212 if (!kvm_dev.this_device || !kvm)
4213 return;
4214
4215 mutex_lock(&kvm_lock);
4216 if (type == KVM_EVENT_CREATE_VM) {
4217 kvm_createvm_count++;
4218 kvm_active_vms++;
4219 } else if (type == KVM_EVENT_DESTROY_VM) {
4220 kvm_active_vms--;
4221 }
4222 created = kvm_createvm_count;
4223 active = kvm_active_vms;
4224 mutex_unlock(&kvm_lock);
4225
4226 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4227 if (!env)
4228 return;
4229
4230 add_uevent_var(env, "CREATED=%llu", created);
4231 add_uevent_var(env, "COUNT=%llu", active);
4232
4233 if (type == KVM_EVENT_CREATE_VM) {
4234 add_uevent_var(env, "EVENT=create");
4235 kvm->userspace_pid = task_pid_nr(current);
4236 } else if (type == KVM_EVENT_DESTROY_VM) {
4237 add_uevent_var(env, "EVENT=destroy");
4238 }
4239 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4240
4241 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4242 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4243
4244 if (p) {
4245 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4246 if (!IS_ERR(tmp))
4247 add_uevent_var(env, "STATS_PATH=%s", tmp);
4248 kfree(p);
4249 }
4250 }
4251 /* no need for checks, since we are adding at most only 5 keys */
4252 env->envp[env->envp_idx++] = NULL;
4253 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4254 kfree(env);
4255 }
4256
4257 static void kvm_init_debug(void)
4258 {
4259 struct kvm_stats_debugfs_item *p;
4260
4261 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4262
4263 kvm_debugfs_num_entries = 0;
4264 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4265 int mode = p->mode ? p->mode : 0644;
4266 debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4267 (void *)(long)p->offset,
4268 stat_fops[p->kind]);
4269 }
4270 }
4271
4272 static int kvm_suspend(void)
4273 {
4274 if (kvm_usage_count)
4275 hardware_disable_nolock(NULL);
4276 return 0;
4277 }
4278
4279 static void kvm_resume(void)
4280 {
4281 if (kvm_usage_count) {
4282 #ifdef CONFIG_LOCKDEP
4283 WARN_ON(lockdep_is_held(&kvm_count_lock));
4284 #endif
4285 hardware_enable_nolock(NULL);
4286 }
4287 }
4288
4289 static struct syscore_ops kvm_syscore_ops = {
4290 .suspend = kvm_suspend,
4291 .resume = kvm_resume,
4292 };
4293
4294 static inline
4295 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4296 {
4297 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4298 }
4299
4300 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4301 {
4302 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4303
4304 WRITE_ONCE(vcpu->preempted, false);
4305 WRITE_ONCE(vcpu->ready, false);
4306
4307 kvm_arch_sched_in(vcpu, cpu);
4308
4309 kvm_arch_vcpu_load(vcpu, cpu);
4310 }
4311
4312 static void kvm_sched_out(struct preempt_notifier *pn,
4313 struct task_struct *next)
4314 {
4315 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4316
4317 if (current->state == TASK_RUNNING) {
4318 WRITE_ONCE(vcpu->preempted, true);
4319 WRITE_ONCE(vcpu->ready, true);
4320 }
4321 kvm_arch_vcpu_put(vcpu);
4322 }
4323
4324 static void check_processor_compat(void *rtn)
4325 {
4326 *(int *)rtn = kvm_arch_check_processor_compat();
4327 }
4328
4329 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4330 struct module *module)
4331 {
4332 int r;
4333 int cpu;
4334
4335 r = kvm_arch_init(opaque);
4336 if (r)
4337 goto out_fail;
4338
4339 /*
4340 * kvm_arch_init makes sure there's at most one caller
4341 * for architectures that support multiple implementations,
4342 * like intel and amd on x86.
4343 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4344 * conflicts in case kvm is already setup for another implementation.
4345 */
4346 r = kvm_irqfd_init();
4347 if (r)
4348 goto out_irqfd;
4349
4350 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4351 r = -ENOMEM;
4352 goto out_free_0;
4353 }
4354
4355 r = kvm_arch_hardware_setup();
4356 if (r < 0)
4357 goto out_free_1;
4358
4359 for_each_online_cpu(cpu) {
4360 smp_call_function_single(cpu, check_processor_compat, &r, 1);
4361 if (r < 0)
4362 goto out_free_2;
4363 }
4364
4365 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4366 kvm_starting_cpu, kvm_dying_cpu);
4367 if (r)
4368 goto out_free_2;
4369 register_reboot_notifier(&kvm_reboot_notifier);
4370
4371 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4372 if (!vcpu_align)
4373 vcpu_align = __alignof__(struct kvm_vcpu);
4374 kvm_vcpu_cache =
4375 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4376 SLAB_ACCOUNT,
4377 offsetof(struct kvm_vcpu, arch),
4378 sizeof_field(struct kvm_vcpu, arch),
4379 NULL);
4380 if (!kvm_vcpu_cache) {
4381 r = -ENOMEM;
4382 goto out_free_3;
4383 }
4384
4385 r = kvm_async_pf_init();
4386 if (r)
4387 goto out_free;
4388
4389 kvm_chardev_ops.owner = module;
4390 kvm_vm_fops.owner = module;
4391 kvm_vcpu_fops.owner = module;
4392
4393 r = misc_register(&kvm_dev);
4394 if (r) {
4395 pr_err("kvm: misc device register failed\n");
4396 goto out_unreg;
4397 }
4398
4399 register_syscore_ops(&kvm_syscore_ops);
4400
4401 kvm_preempt_ops.sched_in = kvm_sched_in;
4402 kvm_preempt_ops.sched_out = kvm_sched_out;
4403
4404 kvm_init_debug();
4405
4406 r = kvm_vfio_ops_init();
4407 WARN_ON(r);
4408
4409 return 0;
4410
4411 out_unreg:
4412 kvm_async_pf_deinit();
4413 out_free:
4414 kmem_cache_destroy(kvm_vcpu_cache);
4415 out_free_3:
4416 unregister_reboot_notifier(&kvm_reboot_notifier);
4417 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4418 out_free_2:
4419 kvm_arch_hardware_unsetup();
4420 out_free_1:
4421 free_cpumask_var(cpus_hardware_enabled);
4422 out_free_0:
4423 kvm_irqfd_exit();
4424 out_irqfd:
4425 kvm_arch_exit();
4426 out_fail:
4427 return r;
4428 }
4429 EXPORT_SYMBOL_GPL(kvm_init);
4430
4431 void kvm_exit(void)
4432 {
4433 debugfs_remove_recursive(kvm_debugfs_dir);
4434 misc_deregister(&kvm_dev);
4435 kmem_cache_destroy(kvm_vcpu_cache);
4436 kvm_async_pf_deinit();
4437 unregister_syscore_ops(&kvm_syscore_ops);
4438 unregister_reboot_notifier(&kvm_reboot_notifier);
4439 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4440 on_each_cpu(hardware_disable_nolock, NULL, 1);
4441 kvm_arch_hardware_unsetup();
4442 kvm_arch_exit();
4443 kvm_irqfd_exit();
4444 free_cpumask_var(cpus_hardware_enabled);
4445 kvm_vfio_ops_exit();
4446 }
4447 EXPORT_SYMBOL_GPL(kvm_exit);
4448
4449 struct kvm_vm_worker_thread_context {
4450 struct kvm *kvm;
4451 struct task_struct *parent;
4452 struct completion init_done;
4453 kvm_vm_thread_fn_t thread_fn;
4454 uintptr_t data;
4455 int err;
4456 };
4457
4458 static int kvm_vm_worker_thread(void *context)
4459 {
4460 /*
4461 * The init_context is allocated on the stack of the parent thread, so
4462 * we have to locally copy anything that is needed beyond initialization
4463 */
4464 struct kvm_vm_worker_thread_context *init_context = context;
4465 struct kvm *kvm = init_context->kvm;
4466 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4467 uintptr_t data = init_context->data;
4468 int err;
4469
4470 err = kthread_park(current);
4471 /* kthread_park(current) is never supposed to return an error */
4472 WARN_ON(err != 0);
4473 if (err)
4474 goto init_complete;
4475
4476 err = cgroup_attach_task_all(init_context->parent, current);
4477 if (err) {
4478 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4479 __func__, err);
4480 goto init_complete;
4481 }
4482
4483 set_user_nice(current, task_nice(init_context->parent));
4484
4485 init_complete:
4486 init_context->err = err;
4487 complete(&init_context->init_done);
4488 init_context = NULL;
4489
4490 if (err)
4491 return err;
4492
4493 /* Wait to be woken up by the spawner before proceeding. */
4494 kthread_parkme();
4495
4496 if (!kthread_should_stop())
4497 err = thread_fn(kvm, data);
4498
4499 return err;
4500 }
4501
4502 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4503 uintptr_t data, const char *name,
4504 struct task_struct **thread_ptr)
4505 {
4506 struct kvm_vm_worker_thread_context init_context = {};
4507 struct task_struct *thread;
4508
4509 *thread_ptr = NULL;
4510 init_context.kvm = kvm;
4511 init_context.parent = current;
4512 init_context.thread_fn = thread_fn;
4513 init_context.data = data;
4514 init_completion(&init_context.init_done);
4515
4516 thread = kthread_run(kvm_vm_worker_thread, &init_context,
4517 "%s-%d", name, task_pid_nr(current));
4518 if (IS_ERR(thread))
4519 return PTR_ERR(thread);
4520
4521 /* kthread_run is never supposed to return NULL */
4522 WARN_ON(thread == NULL);
4523
4524 wait_for_completion(&init_context.init_done);
4525
4526 if (!init_context.err)
4527 *thread_ptr = thread;
4528
4529 return init_context.err;
4530 }