]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/kvm_main.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90 * Ordering of locks:
91 *
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93 */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
138
139 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
140 {
141 if (pfn_valid(pfn))
142 return PageReserved(pfn_to_page(pfn));
143
144 return true;
145 }
146
147 /*
148 * Switches to specified vcpu, until a matching vcpu_put()
149 */
150 int vcpu_load(struct kvm_vcpu *vcpu)
151 {
152 int cpu;
153
154 if (mutex_lock_killable(&vcpu->mutex))
155 return -EINTR;
156 cpu = get_cpu();
157 preempt_notifier_register(&vcpu->preempt_notifier);
158 kvm_arch_vcpu_load(vcpu, cpu);
159 put_cpu();
160 return 0;
161 }
162 EXPORT_SYMBOL_GPL(vcpu_load);
163
164 void vcpu_put(struct kvm_vcpu *vcpu)
165 {
166 preempt_disable();
167 kvm_arch_vcpu_put(vcpu);
168 preempt_notifier_unregister(&vcpu->preempt_notifier);
169 preempt_enable();
170 mutex_unlock(&vcpu->mutex);
171 }
172 EXPORT_SYMBOL_GPL(vcpu_put);
173
174 /* TODO: merge with kvm_arch_vcpu_should_kick */
175 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
176 {
177 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
178
179 /*
180 * We need to wait for the VCPU to reenable interrupts and get out of
181 * READING_SHADOW_PAGE_TABLES mode.
182 */
183 if (req & KVM_REQUEST_WAIT)
184 return mode != OUTSIDE_GUEST_MODE;
185
186 /*
187 * Need to kick a running VCPU, but otherwise there is nothing to do.
188 */
189 return mode == IN_GUEST_MODE;
190 }
191
192 static void ack_flush(void *_completed)
193 {
194 }
195
196 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
197 {
198 if (unlikely(!cpus))
199 cpus = cpu_online_mask;
200
201 if (cpumask_empty(cpus))
202 return false;
203
204 smp_call_function_many(cpus, ack_flush, NULL, wait);
205 return true;
206 }
207
208 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
209 {
210 int i, cpu, me;
211 cpumask_var_t cpus;
212 bool called;
213 struct kvm_vcpu *vcpu;
214
215 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
216
217 me = get_cpu();
218 kvm_for_each_vcpu(i, vcpu, kvm) {
219 kvm_make_request(req, vcpu);
220 cpu = vcpu->cpu;
221
222 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
223 continue;
224
225 if (cpus != NULL && cpu != -1 && cpu != me &&
226 kvm_request_needs_ipi(vcpu, req))
227 __cpumask_set_cpu(cpu, cpus);
228 }
229 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
230 put_cpu();
231 free_cpumask_var(cpus);
232 return called;
233 }
234
235 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
236 void kvm_flush_remote_tlbs(struct kvm *kvm)
237 {
238 /*
239 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
240 * kvm_make_all_cpus_request.
241 */
242 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
243
244 /*
245 * We want to publish modifications to the page tables before reading
246 * mode. Pairs with a memory barrier in arch-specific code.
247 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
248 * and smp_mb in walk_shadow_page_lockless_begin/end.
249 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
250 *
251 * There is already an smp_mb__after_atomic() before
252 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
253 * barrier here.
254 */
255 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
256 ++kvm->stat.remote_tlb_flush;
257 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
258 }
259 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
260 #endif
261
262 void kvm_reload_remote_mmus(struct kvm *kvm)
263 {
264 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
265 }
266
267 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
268 {
269 struct page *page;
270 int r;
271
272 mutex_init(&vcpu->mutex);
273 vcpu->cpu = -1;
274 vcpu->kvm = kvm;
275 vcpu->vcpu_id = id;
276 vcpu->pid = NULL;
277 init_swait_queue_head(&vcpu->wq);
278 kvm_async_pf_vcpu_init(vcpu);
279
280 vcpu->pre_pcpu = -1;
281 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
282
283 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
284 if (!page) {
285 r = -ENOMEM;
286 goto fail;
287 }
288 vcpu->run = page_address(page);
289
290 kvm_vcpu_set_in_spin_loop(vcpu, false);
291 kvm_vcpu_set_dy_eligible(vcpu, false);
292 vcpu->preempted = false;
293
294 r = kvm_arch_vcpu_init(vcpu);
295 if (r < 0)
296 goto fail_free_run;
297 return 0;
298
299 fail_free_run:
300 free_page((unsigned long)vcpu->run);
301 fail:
302 return r;
303 }
304 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
305
306 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
307 {
308 /*
309 * no need for rcu_read_lock as VCPU_RUN is the only place that
310 * will change the vcpu->pid pointer and on uninit all file
311 * descriptors are already gone.
312 */
313 put_pid(rcu_dereference_protected(vcpu->pid, 1));
314 kvm_arch_vcpu_uninit(vcpu);
315 free_page((unsigned long)vcpu->run);
316 }
317 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
318
319 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
320 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
321 {
322 return container_of(mn, struct kvm, mmu_notifier);
323 }
324
325 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
326 struct mm_struct *mm,
327 unsigned long address)
328 {
329 struct kvm *kvm = mmu_notifier_to_kvm(mn);
330 int need_tlb_flush, idx;
331
332 /*
333 * When ->invalidate_page runs, the linux pte has been zapped
334 * already but the page is still allocated until
335 * ->invalidate_page returns. So if we increase the sequence
336 * here the kvm page fault will notice if the spte can't be
337 * established because the page is going to be freed. If
338 * instead the kvm page fault establishes the spte before
339 * ->invalidate_page runs, kvm_unmap_hva will release it
340 * before returning.
341 *
342 * The sequence increase only need to be seen at spin_unlock
343 * time, and not at spin_lock time.
344 *
345 * Increasing the sequence after the spin_unlock would be
346 * unsafe because the kvm page fault could then establish the
347 * pte after kvm_unmap_hva returned, without noticing the page
348 * is going to be freed.
349 */
350 idx = srcu_read_lock(&kvm->srcu);
351 spin_lock(&kvm->mmu_lock);
352
353 kvm->mmu_notifier_seq++;
354 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
355 /* we've to flush the tlb before the pages can be freed */
356 if (need_tlb_flush)
357 kvm_flush_remote_tlbs(kvm);
358
359 spin_unlock(&kvm->mmu_lock);
360
361 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
362
363 srcu_read_unlock(&kvm->srcu, idx);
364 }
365
366 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
367 struct mm_struct *mm,
368 unsigned long address,
369 pte_t pte)
370 {
371 struct kvm *kvm = mmu_notifier_to_kvm(mn);
372 int idx;
373
374 idx = srcu_read_lock(&kvm->srcu);
375 spin_lock(&kvm->mmu_lock);
376 kvm->mmu_notifier_seq++;
377 kvm_set_spte_hva(kvm, address, pte);
378 spin_unlock(&kvm->mmu_lock);
379 srcu_read_unlock(&kvm->srcu, idx);
380 }
381
382 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
383 struct mm_struct *mm,
384 unsigned long start,
385 unsigned long end)
386 {
387 struct kvm *kvm = mmu_notifier_to_kvm(mn);
388 int need_tlb_flush = 0, idx;
389
390 idx = srcu_read_lock(&kvm->srcu);
391 spin_lock(&kvm->mmu_lock);
392 /*
393 * The count increase must become visible at unlock time as no
394 * spte can be established without taking the mmu_lock and
395 * count is also read inside the mmu_lock critical section.
396 */
397 kvm->mmu_notifier_count++;
398 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
399 need_tlb_flush |= kvm->tlbs_dirty;
400 /* we've to flush the tlb before the pages can be freed */
401 if (need_tlb_flush)
402 kvm_flush_remote_tlbs(kvm);
403
404 spin_unlock(&kvm->mmu_lock);
405 srcu_read_unlock(&kvm->srcu, idx);
406 }
407
408 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
409 struct mm_struct *mm,
410 unsigned long start,
411 unsigned long end)
412 {
413 struct kvm *kvm = mmu_notifier_to_kvm(mn);
414
415 spin_lock(&kvm->mmu_lock);
416 /*
417 * This sequence increase will notify the kvm page fault that
418 * the page that is going to be mapped in the spte could have
419 * been freed.
420 */
421 kvm->mmu_notifier_seq++;
422 smp_wmb();
423 /*
424 * The above sequence increase must be visible before the
425 * below count decrease, which is ensured by the smp_wmb above
426 * in conjunction with the smp_rmb in mmu_notifier_retry().
427 */
428 kvm->mmu_notifier_count--;
429 spin_unlock(&kvm->mmu_lock);
430
431 BUG_ON(kvm->mmu_notifier_count < 0);
432 }
433
434 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
435 struct mm_struct *mm,
436 unsigned long start,
437 unsigned long end)
438 {
439 struct kvm *kvm = mmu_notifier_to_kvm(mn);
440 int young, idx;
441
442 idx = srcu_read_lock(&kvm->srcu);
443 spin_lock(&kvm->mmu_lock);
444
445 young = kvm_age_hva(kvm, start, end);
446 if (young)
447 kvm_flush_remote_tlbs(kvm);
448
449 spin_unlock(&kvm->mmu_lock);
450 srcu_read_unlock(&kvm->srcu, idx);
451
452 return young;
453 }
454
455 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
456 struct mm_struct *mm,
457 unsigned long start,
458 unsigned long end)
459 {
460 struct kvm *kvm = mmu_notifier_to_kvm(mn);
461 int young, idx;
462
463 idx = srcu_read_lock(&kvm->srcu);
464 spin_lock(&kvm->mmu_lock);
465 /*
466 * Even though we do not flush TLB, this will still adversely
467 * affect performance on pre-Haswell Intel EPT, where there is
468 * no EPT Access Bit to clear so that we have to tear down EPT
469 * tables instead. If we find this unacceptable, we can always
470 * add a parameter to kvm_age_hva so that it effectively doesn't
471 * do anything on clear_young.
472 *
473 * Also note that currently we never issue secondary TLB flushes
474 * from clear_young, leaving this job up to the regular system
475 * cadence. If we find this inaccurate, we might come up with a
476 * more sophisticated heuristic later.
477 */
478 young = kvm_age_hva(kvm, start, end);
479 spin_unlock(&kvm->mmu_lock);
480 srcu_read_unlock(&kvm->srcu, idx);
481
482 return young;
483 }
484
485 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
486 struct mm_struct *mm,
487 unsigned long address)
488 {
489 struct kvm *kvm = mmu_notifier_to_kvm(mn);
490 int young, idx;
491
492 idx = srcu_read_lock(&kvm->srcu);
493 spin_lock(&kvm->mmu_lock);
494 young = kvm_test_age_hva(kvm, address);
495 spin_unlock(&kvm->mmu_lock);
496 srcu_read_unlock(&kvm->srcu, idx);
497
498 return young;
499 }
500
501 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
502 struct mm_struct *mm)
503 {
504 struct kvm *kvm = mmu_notifier_to_kvm(mn);
505 int idx;
506
507 idx = srcu_read_lock(&kvm->srcu);
508 kvm_arch_flush_shadow_all(kvm);
509 srcu_read_unlock(&kvm->srcu, idx);
510 }
511
512 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
513 .invalidate_page = kvm_mmu_notifier_invalidate_page,
514 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
515 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
516 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
517 .clear_young = kvm_mmu_notifier_clear_young,
518 .test_young = kvm_mmu_notifier_test_young,
519 .change_pte = kvm_mmu_notifier_change_pte,
520 .release = kvm_mmu_notifier_release,
521 };
522
523 static int kvm_init_mmu_notifier(struct kvm *kvm)
524 {
525 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
526 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
527 }
528
529 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
530
531 static int kvm_init_mmu_notifier(struct kvm *kvm)
532 {
533 return 0;
534 }
535
536 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
537
538 static struct kvm_memslots *kvm_alloc_memslots(void)
539 {
540 int i;
541 struct kvm_memslots *slots;
542
543 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
544 if (!slots)
545 return NULL;
546
547 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
548 slots->id_to_index[i] = slots->memslots[i].id = i;
549
550 return slots;
551 }
552
553 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
554 {
555 if (!memslot->dirty_bitmap)
556 return;
557
558 kvfree(memslot->dirty_bitmap);
559 memslot->dirty_bitmap = NULL;
560 }
561
562 /*
563 * Free any memory in @free but not in @dont.
564 */
565 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
566 struct kvm_memory_slot *dont)
567 {
568 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
569 kvm_destroy_dirty_bitmap(free);
570
571 kvm_arch_free_memslot(kvm, free, dont);
572
573 free->npages = 0;
574 }
575
576 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
577 {
578 struct kvm_memory_slot *memslot;
579
580 if (!slots)
581 return;
582
583 kvm_for_each_memslot(memslot, slots)
584 kvm_free_memslot(kvm, memslot, NULL);
585
586 kvfree(slots);
587 }
588
589 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
590 {
591 int i;
592
593 if (!kvm->debugfs_dentry)
594 return;
595
596 debugfs_remove_recursive(kvm->debugfs_dentry);
597
598 if (kvm->debugfs_stat_data) {
599 for (i = 0; i < kvm_debugfs_num_entries; i++)
600 kfree(kvm->debugfs_stat_data[i]);
601 kfree(kvm->debugfs_stat_data);
602 }
603 }
604
605 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
606 {
607 char dir_name[ITOA_MAX_LEN * 2];
608 struct kvm_stat_data *stat_data;
609 struct kvm_stats_debugfs_item *p;
610
611 if (!debugfs_initialized())
612 return 0;
613
614 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
615 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
616 kvm_debugfs_dir);
617 if (!kvm->debugfs_dentry)
618 return -ENOMEM;
619
620 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
621 sizeof(*kvm->debugfs_stat_data),
622 GFP_KERNEL);
623 if (!kvm->debugfs_stat_data)
624 return -ENOMEM;
625
626 for (p = debugfs_entries; p->name; p++) {
627 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
628 if (!stat_data)
629 return -ENOMEM;
630
631 stat_data->kvm = kvm;
632 stat_data->offset = p->offset;
633 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
634 if (!debugfs_create_file(p->name, 0644,
635 kvm->debugfs_dentry,
636 stat_data,
637 stat_fops_per_vm[p->kind]))
638 return -ENOMEM;
639 }
640 return 0;
641 }
642
643 static struct kvm *kvm_create_vm(unsigned long type)
644 {
645 int r, i;
646 struct kvm *kvm = kvm_arch_alloc_vm();
647
648 if (!kvm)
649 return ERR_PTR(-ENOMEM);
650
651 spin_lock_init(&kvm->mmu_lock);
652 mmgrab(current->mm);
653 kvm->mm = current->mm;
654 kvm_eventfd_init(kvm);
655 mutex_init(&kvm->lock);
656 mutex_init(&kvm->irq_lock);
657 mutex_init(&kvm->slots_lock);
658 refcount_set(&kvm->users_count, 1);
659 INIT_LIST_HEAD(&kvm->devices);
660
661 r = kvm_arch_init_vm(kvm, type);
662 if (r)
663 goto out_err_no_disable;
664
665 r = hardware_enable_all();
666 if (r)
667 goto out_err_no_disable;
668
669 #ifdef CONFIG_HAVE_KVM_IRQFD
670 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
671 #endif
672
673 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
674
675 r = -ENOMEM;
676 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
677 struct kvm_memslots *slots = kvm_alloc_memslots();
678 if (!slots)
679 goto out_err_no_srcu;
680 /*
681 * Generations must be different for each address space.
682 * Init kvm generation close to the maximum to easily test the
683 * code of handling generation number wrap-around.
684 */
685 slots->generation = i * 2 - 150;
686 rcu_assign_pointer(kvm->memslots[i], slots);
687 }
688
689 if (init_srcu_struct(&kvm->srcu))
690 goto out_err_no_srcu;
691 if (init_srcu_struct(&kvm->irq_srcu))
692 goto out_err_no_irq_srcu;
693 for (i = 0; i < KVM_NR_BUSES; i++) {
694 rcu_assign_pointer(kvm->buses[i],
695 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
696 if (!kvm->buses[i])
697 goto out_err;
698 }
699
700 r = kvm_init_mmu_notifier(kvm);
701 if (r)
702 goto out_err;
703
704 spin_lock(&kvm_lock);
705 list_add(&kvm->vm_list, &vm_list);
706 spin_unlock(&kvm_lock);
707
708 preempt_notifier_inc();
709
710 return kvm;
711
712 out_err:
713 cleanup_srcu_struct(&kvm->irq_srcu);
714 out_err_no_irq_srcu:
715 cleanup_srcu_struct(&kvm->srcu);
716 out_err_no_srcu:
717 hardware_disable_all();
718 out_err_no_disable:
719 for (i = 0; i < KVM_NR_BUSES; i++)
720 kfree(kvm_get_bus(kvm, i));
721 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
722 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
723 kvm_arch_free_vm(kvm);
724 mmdrop(current->mm);
725 return ERR_PTR(r);
726 }
727
728 static void kvm_destroy_devices(struct kvm *kvm)
729 {
730 struct kvm_device *dev, *tmp;
731
732 /*
733 * We do not need to take the kvm->lock here, because nobody else
734 * has a reference to the struct kvm at this point and therefore
735 * cannot access the devices list anyhow.
736 */
737 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
738 list_del(&dev->vm_node);
739 dev->ops->destroy(dev);
740 }
741 }
742
743 static void kvm_destroy_vm(struct kvm *kvm)
744 {
745 int i;
746 struct mm_struct *mm = kvm->mm;
747
748 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
749 kvm_destroy_vm_debugfs(kvm);
750 kvm_arch_sync_events(kvm);
751 spin_lock(&kvm_lock);
752 list_del(&kvm->vm_list);
753 spin_unlock(&kvm_lock);
754 kvm_free_irq_routing(kvm);
755 for (i = 0; i < KVM_NR_BUSES; i++) {
756 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
757
758 if (bus)
759 kvm_io_bus_destroy(bus);
760 kvm->buses[i] = NULL;
761 }
762 kvm_coalesced_mmio_free(kvm);
763 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
764 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
765 #else
766 kvm_arch_flush_shadow_all(kvm);
767 #endif
768 kvm_arch_destroy_vm(kvm);
769 kvm_destroy_devices(kvm);
770 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
771 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
772 cleanup_srcu_struct(&kvm->irq_srcu);
773 cleanup_srcu_struct(&kvm->srcu);
774 kvm_arch_free_vm(kvm);
775 preempt_notifier_dec();
776 hardware_disable_all();
777 mmdrop(mm);
778 }
779
780 void kvm_get_kvm(struct kvm *kvm)
781 {
782 refcount_inc(&kvm->users_count);
783 }
784 EXPORT_SYMBOL_GPL(kvm_get_kvm);
785
786 void kvm_put_kvm(struct kvm *kvm)
787 {
788 if (refcount_dec_and_test(&kvm->users_count))
789 kvm_destroy_vm(kvm);
790 }
791 EXPORT_SYMBOL_GPL(kvm_put_kvm);
792
793
794 static int kvm_vm_release(struct inode *inode, struct file *filp)
795 {
796 struct kvm *kvm = filp->private_data;
797
798 kvm_irqfd_release(kvm);
799
800 kvm_put_kvm(kvm);
801 return 0;
802 }
803
804 /*
805 * Allocation size is twice as large as the actual dirty bitmap size.
806 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
807 */
808 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
809 {
810 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
811
812 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
813 if (!memslot->dirty_bitmap)
814 return -ENOMEM;
815
816 return 0;
817 }
818
819 /*
820 * Insert memslot and re-sort memslots based on their GFN,
821 * so binary search could be used to lookup GFN.
822 * Sorting algorithm takes advantage of having initially
823 * sorted array and known changed memslot position.
824 */
825 static void update_memslots(struct kvm_memslots *slots,
826 struct kvm_memory_slot *new)
827 {
828 int id = new->id;
829 int i = slots->id_to_index[id];
830 struct kvm_memory_slot *mslots = slots->memslots;
831
832 WARN_ON(mslots[i].id != id);
833 if (!new->npages) {
834 WARN_ON(!mslots[i].npages);
835 if (mslots[i].npages)
836 slots->used_slots--;
837 } else {
838 if (!mslots[i].npages)
839 slots->used_slots++;
840 }
841
842 while (i < KVM_MEM_SLOTS_NUM - 1 &&
843 new->base_gfn <= mslots[i + 1].base_gfn) {
844 if (!mslots[i + 1].npages)
845 break;
846 mslots[i] = mslots[i + 1];
847 slots->id_to_index[mslots[i].id] = i;
848 i++;
849 }
850
851 /*
852 * The ">=" is needed when creating a slot with base_gfn == 0,
853 * so that it moves before all those with base_gfn == npages == 0.
854 *
855 * On the other hand, if new->npages is zero, the above loop has
856 * already left i pointing to the beginning of the empty part of
857 * mslots, and the ">=" would move the hole backwards in this
858 * case---which is wrong. So skip the loop when deleting a slot.
859 */
860 if (new->npages) {
861 while (i > 0 &&
862 new->base_gfn >= mslots[i - 1].base_gfn) {
863 mslots[i] = mslots[i - 1];
864 slots->id_to_index[mslots[i].id] = i;
865 i--;
866 }
867 } else
868 WARN_ON_ONCE(i != slots->used_slots);
869
870 mslots[i] = *new;
871 slots->id_to_index[mslots[i].id] = i;
872 }
873
874 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
875 {
876 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
877
878 #ifdef __KVM_HAVE_READONLY_MEM
879 valid_flags |= KVM_MEM_READONLY;
880 #endif
881
882 if (mem->flags & ~valid_flags)
883 return -EINVAL;
884
885 return 0;
886 }
887
888 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
889 int as_id, struct kvm_memslots *slots)
890 {
891 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
892
893 /*
894 * Set the low bit in the generation, which disables SPTE caching
895 * until the end of synchronize_srcu_expedited.
896 */
897 WARN_ON(old_memslots->generation & 1);
898 slots->generation = old_memslots->generation + 1;
899
900 rcu_assign_pointer(kvm->memslots[as_id], slots);
901 synchronize_srcu_expedited(&kvm->srcu);
902
903 /*
904 * Increment the new memslot generation a second time. This prevents
905 * vm exits that race with memslot updates from caching a memslot
906 * generation that will (potentially) be valid forever.
907 *
908 * Generations must be unique even across address spaces. We do not need
909 * a global counter for that, instead the generation space is evenly split
910 * across address spaces. For example, with two address spaces, address
911 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
912 * use generations 2, 6, 10, 14, ...
913 */
914 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
915
916 kvm_arch_memslots_updated(kvm, slots);
917
918 return old_memslots;
919 }
920
921 /*
922 * Allocate some memory and give it an address in the guest physical address
923 * space.
924 *
925 * Discontiguous memory is allowed, mostly for framebuffers.
926 *
927 * Must be called holding kvm->slots_lock for write.
928 */
929 int __kvm_set_memory_region(struct kvm *kvm,
930 const struct kvm_userspace_memory_region *mem)
931 {
932 int r;
933 gfn_t base_gfn;
934 unsigned long npages;
935 struct kvm_memory_slot *slot;
936 struct kvm_memory_slot old, new;
937 struct kvm_memslots *slots = NULL, *old_memslots;
938 int as_id, id;
939 enum kvm_mr_change change;
940
941 r = check_memory_region_flags(mem);
942 if (r)
943 goto out;
944
945 r = -EINVAL;
946 as_id = mem->slot >> 16;
947 id = (u16)mem->slot;
948
949 /* General sanity checks */
950 if (mem->memory_size & (PAGE_SIZE - 1))
951 goto out;
952 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
953 goto out;
954 /* We can read the guest memory with __xxx_user() later on. */
955 if ((id < KVM_USER_MEM_SLOTS) &&
956 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
957 !access_ok(VERIFY_WRITE,
958 (void __user *)(unsigned long)mem->userspace_addr,
959 mem->memory_size)))
960 goto out;
961 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
962 goto out;
963 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
964 goto out;
965
966 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
967 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
968 npages = mem->memory_size >> PAGE_SHIFT;
969
970 if (npages > KVM_MEM_MAX_NR_PAGES)
971 goto out;
972
973 new = old = *slot;
974
975 new.id = id;
976 new.base_gfn = base_gfn;
977 new.npages = npages;
978 new.flags = mem->flags;
979
980 if (npages) {
981 if (!old.npages)
982 change = KVM_MR_CREATE;
983 else { /* Modify an existing slot. */
984 if ((mem->userspace_addr != old.userspace_addr) ||
985 (npages != old.npages) ||
986 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
987 goto out;
988
989 if (base_gfn != old.base_gfn)
990 change = KVM_MR_MOVE;
991 else if (new.flags != old.flags)
992 change = KVM_MR_FLAGS_ONLY;
993 else { /* Nothing to change. */
994 r = 0;
995 goto out;
996 }
997 }
998 } else {
999 if (!old.npages)
1000 goto out;
1001
1002 change = KVM_MR_DELETE;
1003 new.base_gfn = 0;
1004 new.flags = 0;
1005 }
1006
1007 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1008 /* Check for overlaps */
1009 r = -EEXIST;
1010 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1011 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
1012 (slot->id == id))
1013 continue;
1014 if (!((base_gfn + npages <= slot->base_gfn) ||
1015 (base_gfn >= slot->base_gfn + slot->npages)))
1016 goto out;
1017 }
1018 }
1019
1020 /* Free page dirty bitmap if unneeded */
1021 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1022 new.dirty_bitmap = NULL;
1023
1024 r = -ENOMEM;
1025 if (change == KVM_MR_CREATE) {
1026 new.userspace_addr = mem->userspace_addr;
1027
1028 if (kvm_arch_create_memslot(kvm, &new, npages))
1029 goto out_free;
1030 }
1031
1032 /* Allocate page dirty bitmap if needed */
1033 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1034 if (kvm_create_dirty_bitmap(&new) < 0)
1035 goto out_free;
1036 }
1037
1038 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1039 if (!slots)
1040 goto out_free;
1041 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1042
1043 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1044 slot = id_to_memslot(slots, id);
1045 slot->flags |= KVM_MEMSLOT_INVALID;
1046
1047 old_memslots = install_new_memslots(kvm, as_id, slots);
1048
1049 /* From this point no new shadow pages pointing to a deleted,
1050 * or moved, memslot will be created.
1051 *
1052 * validation of sp->gfn happens in:
1053 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1054 * - kvm_is_visible_gfn (mmu_check_roots)
1055 */
1056 kvm_arch_flush_shadow_memslot(kvm, slot);
1057
1058 /*
1059 * We can re-use the old_memslots from above, the only difference
1060 * from the currently installed memslots is the invalid flag. This
1061 * will get overwritten by update_memslots anyway.
1062 */
1063 slots = old_memslots;
1064 }
1065
1066 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1067 if (r)
1068 goto out_slots;
1069
1070 /* actual memory is freed via old in kvm_free_memslot below */
1071 if (change == KVM_MR_DELETE) {
1072 new.dirty_bitmap = NULL;
1073 memset(&new.arch, 0, sizeof(new.arch));
1074 }
1075
1076 update_memslots(slots, &new);
1077 old_memslots = install_new_memslots(kvm, as_id, slots);
1078
1079 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1080
1081 kvm_free_memslot(kvm, &old, &new);
1082 kvfree(old_memslots);
1083 return 0;
1084
1085 out_slots:
1086 kvfree(slots);
1087 out_free:
1088 kvm_free_memslot(kvm, &new, &old);
1089 out:
1090 return r;
1091 }
1092 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1093
1094 int kvm_set_memory_region(struct kvm *kvm,
1095 const struct kvm_userspace_memory_region *mem)
1096 {
1097 int r;
1098
1099 mutex_lock(&kvm->slots_lock);
1100 r = __kvm_set_memory_region(kvm, mem);
1101 mutex_unlock(&kvm->slots_lock);
1102 return r;
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1105
1106 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1107 struct kvm_userspace_memory_region *mem)
1108 {
1109 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1110 return -EINVAL;
1111
1112 return kvm_set_memory_region(kvm, mem);
1113 }
1114
1115 int kvm_get_dirty_log(struct kvm *kvm,
1116 struct kvm_dirty_log *log, int *is_dirty)
1117 {
1118 struct kvm_memslots *slots;
1119 struct kvm_memory_slot *memslot;
1120 int i, as_id, id;
1121 unsigned long n;
1122 unsigned long any = 0;
1123
1124 as_id = log->slot >> 16;
1125 id = (u16)log->slot;
1126 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1127 return -EINVAL;
1128
1129 slots = __kvm_memslots(kvm, as_id);
1130 memslot = id_to_memslot(slots, id);
1131 if (!memslot->dirty_bitmap)
1132 return -ENOENT;
1133
1134 n = kvm_dirty_bitmap_bytes(memslot);
1135
1136 for (i = 0; !any && i < n/sizeof(long); ++i)
1137 any = memslot->dirty_bitmap[i];
1138
1139 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1140 return -EFAULT;
1141
1142 if (any)
1143 *is_dirty = 1;
1144 return 0;
1145 }
1146 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1147
1148 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1149 /**
1150 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1151 * are dirty write protect them for next write.
1152 * @kvm: pointer to kvm instance
1153 * @log: slot id and address to which we copy the log
1154 * @is_dirty: flag set if any page is dirty
1155 *
1156 * We need to keep it in mind that VCPU threads can write to the bitmap
1157 * concurrently. So, to avoid losing track of dirty pages we keep the
1158 * following order:
1159 *
1160 * 1. Take a snapshot of the bit and clear it if needed.
1161 * 2. Write protect the corresponding page.
1162 * 3. Copy the snapshot to the userspace.
1163 * 4. Upon return caller flushes TLB's if needed.
1164 *
1165 * Between 2 and 4, the guest may write to the page using the remaining TLB
1166 * entry. This is not a problem because the page is reported dirty using
1167 * the snapshot taken before and step 4 ensures that writes done after
1168 * exiting to userspace will be logged for the next call.
1169 *
1170 */
1171 int kvm_get_dirty_log_protect(struct kvm *kvm,
1172 struct kvm_dirty_log *log, bool *is_dirty)
1173 {
1174 struct kvm_memslots *slots;
1175 struct kvm_memory_slot *memslot;
1176 int i, as_id, id;
1177 unsigned long n;
1178 unsigned long *dirty_bitmap;
1179 unsigned long *dirty_bitmap_buffer;
1180
1181 as_id = log->slot >> 16;
1182 id = (u16)log->slot;
1183 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1184 return -EINVAL;
1185
1186 slots = __kvm_memslots(kvm, as_id);
1187 memslot = id_to_memslot(slots, id);
1188
1189 dirty_bitmap = memslot->dirty_bitmap;
1190 if (!dirty_bitmap)
1191 return -ENOENT;
1192
1193 n = kvm_dirty_bitmap_bytes(memslot);
1194
1195 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1196 memset(dirty_bitmap_buffer, 0, n);
1197
1198 spin_lock(&kvm->mmu_lock);
1199 *is_dirty = false;
1200 for (i = 0; i < n / sizeof(long); i++) {
1201 unsigned long mask;
1202 gfn_t offset;
1203
1204 if (!dirty_bitmap[i])
1205 continue;
1206
1207 *is_dirty = true;
1208
1209 mask = xchg(&dirty_bitmap[i], 0);
1210 dirty_bitmap_buffer[i] = mask;
1211
1212 if (mask) {
1213 offset = i * BITS_PER_LONG;
1214 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1215 offset, mask);
1216 }
1217 }
1218
1219 spin_unlock(&kvm->mmu_lock);
1220 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1221 return -EFAULT;
1222 return 0;
1223 }
1224 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1225 #endif
1226
1227 bool kvm_largepages_enabled(void)
1228 {
1229 return largepages_enabled;
1230 }
1231
1232 void kvm_disable_largepages(void)
1233 {
1234 largepages_enabled = false;
1235 }
1236 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1237
1238 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1239 {
1240 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1241 }
1242 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1243
1244 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1245 {
1246 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1247 }
1248
1249 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1250 {
1251 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1252
1253 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1254 memslot->flags & KVM_MEMSLOT_INVALID)
1255 return false;
1256
1257 return true;
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1260
1261 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1262 {
1263 struct vm_area_struct *vma;
1264 unsigned long addr, size;
1265
1266 size = PAGE_SIZE;
1267
1268 addr = gfn_to_hva(kvm, gfn);
1269 if (kvm_is_error_hva(addr))
1270 return PAGE_SIZE;
1271
1272 down_read(&current->mm->mmap_sem);
1273 vma = find_vma(current->mm, addr);
1274 if (!vma)
1275 goto out;
1276
1277 size = vma_kernel_pagesize(vma);
1278
1279 out:
1280 up_read(&current->mm->mmap_sem);
1281
1282 return size;
1283 }
1284
1285 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1286 {
1287 return slot->flags & KVM_MEM_READONLY;
1288 }
1289
1290 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1291 gfn_t *nr_pages, bool write)
1292 {
1293 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1294 return KVM_HVA_ERR_BAD;
1295
1296 if (memslot_is_readonly(slot) && write)
1297 return KVM_HVA_ERR_RO_BAD;
1298
1299 if (nr_pages)
1300 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1301
1302 return __gfn_to_hva_memslot(slot, gfn);
1303 }
1304
1305 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1306 gfn_t *nr_pages)
1307 {
1308 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1309 }
1310
1311 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1312 gfn_t gfn)
1313 {
1314 return gfn_to_hva_many(slot, gfn, NULL);
1315 }
1316 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1317
1318 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1319 {
1320 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1321 }
1322 EXPORT_SYMBOL_GPL(gfn_to_hva);
1323
1324 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1325 {
1326 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1329
1330 /*
1331 * If writable is set to false, the hva returned by this function is only
1332 * allowed to be read.
1333 */
1334 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1335 gfn_t gfn, bool *writable)
1336 {
1337 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1338
1339 if (!kvm_is_error_hva(hva) && writable)
1340 *writable = !memslot_is_readonly(slot);
1341
1342 return hva;
1343 }
1344
1345 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1346 {
1347 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1348
1349 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1350 }
1351
1352 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1353 {
1354 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1355
1356 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1357 }
1358
1359 static int get_user_page_nowait(unsigned long start, int write,
1360 struct page **page)
1361 {
1362 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1363
1364 if (write)
1365 flags |= FOLL_WRITE;
1366
1367 return get_user_pages(start, 1, flags, page, NULL);
1368 }
1369
1370 static inline int check_user_page_hwpoison(unsigned long addr)
1371 {
1372 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1373
1374 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1375 return rc == -EHWPOISON;
1376 }
1377
1378 /*
1379 * The atomic path to get the writable pfn which will be stored in @pfn,
1380 * true indicates success, otherwise false is returned.
1381 */
1382 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1383 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1384 {
1385 struct page *page[1];
1386 int npages;
1387
1388 if (!(async || atomic))
1389 return false;
1390
1391 /*
1392 * Fast pin a writable pfn only if it is a write fault request
1393 * or the caller allows to map a writable pfn for a read fault
1394 * request.
1395 */
1396 if (!(write_fault || writable))
1397 return false;
1398
1399 npages = __get_user_pages_fast(addr, 1, 1, page);
1400 if (npages == 1) {
1401 *pfn = page_to_pfn(page[0]);
1402
1403 if (writable)
1404 *writable = true;
1405 return true;
1406 }
1407
1408 return false;
1409 }
1410
1411 /*
1412 * The slow path to get the pfn of the specified host virtual address,
1413 * 1 indicates success, -errno is returned if error is detected.
1414 */
1415 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1416 bool *writable, kvm_pfn_t *pfn)
1417 {
1418 struct page *page[1];
1419 int npages = 0;
1420
1421 might_sleep();
1422
1423 if (writable)
1424 *writable = write_fault;
1425
1426 if (async) {
1427 down_read(&current->mm->mmap_sem);
1428 npages = get_user_page_nowait(addr, write_fault, page);
1429 up_read(&current->mm->mmap_sem);
1430 } else {
1431 unsigned int flags = FOLL_HWPOISON;
1432
1433 if (write_fault)
1434 flags |= FOLL_WRITE;
1435
1436 npages = get_user_pages_unlocked(addr, 1, page, flags);
1437 }
1438 if (npages != 1)
1439 return npages;
1440
1441 /* map read fault as writable if possible */
1442 if (unlikely(!write_fault) && writable) {
1443 struct page *wpage[1];
1444
1445 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1446 if (npages == 1) {
1447 *writable = true;
1448 put_page(page[0]);
1449 page[0] = wpage[0];
1450 }
1451
1452 npages = 1;
1453 }
1454 *pfn = page_to_pfn(page[0]);
1455 return npages;
1456 }
1457
1458 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1459 {
1460 if (unlikely(!(vma->vm_flags & VM_READ)))
1461 return false;
1462
1463 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1464 return false;
1465
1466 return true;
1467 }
1468
1469 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1470 unsigned long addr, bool *async,
1471 bool write_fault, kvm_pfn_t *p_pfn)
1472 {
1473 unsigned long pfn;
1474 int r;
1475
1476 r = follow_pfn(vma, addr, &pfn);
1477 if (r) {
1478 /*
1479 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1480 * not call the fault handler, so do it here.
1481 */
1482 bool unlocked = false;
1483 r = fixup_user_fault(current, current->mm, addr,
1484 (write_fault ? FAULT_FLAG_WRITE : 0),
1485 &unlocked);
1486 if (unlocked)
1487 return -EAGAIN;
1488 if (r)
1489 return r;
1490
1491 r = follow_pfn(vma, addr, &pfn);
1492 if (r)
1493 return r;
1494
1495 }
1496
1497
1498 /*
1499 * Get a reference here because callers of *hva_to_pfn* and
1500 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1501 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1502 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1503 * simply do nothing for reserved pfns.
1504 *
1505 * Whoever called remap_pfn_range is also going to call e.g.
1506 * unmap_mapping_range before the underlying pages are freed,
1507 * causing a call to our MMU notifier.
1508 */
1509 kvm_get_pfn(pfn);
1510
1511 *p_pfn = pfn;
1512 return 0;
1513 }
1514
1515 /*
1516 * Pin guest page in memory and return its pfn.
1517 * @addr: host virtual address which maps memory to the guest
1518 * @atomic: whether this function can sleep
1519 * @async: whether this function need to wait IO complete if the
1520 * host page is not in the memory
1521 * @write_fault: whether we should get a writable host page
1522 * @writable: whether it allows to map a writable host page for !@write_fault
1523 *
1524 * The function will map a writable host page for these two cases:
1525 * 1): @write_fault = true
1526 * 2): @write_fault = false && @writable, @writable will tell the caller
1527 * whether the mapping is writable.
1528 */
1529 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1530 bool write_fault, bool *writable)
1531 {
1532 struct vm_area_struct *vma;
1533 kvm_pfn_t pfn = 0;
1534 int npages, r;
1535
1536 /* we can do it either atomically or asynchronously, not both */
1537 BUG_ON(atomic && async);
1538
1539 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1540 return pfn;
1541
1542 if (atomic)
1543 return KVM_PFN_ERR_FAULT;
1544
1545 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1546 if (npages == 1)
1547 return pfn;
1548
1549 down_read(&current->mm->mmap_sem);
1550 if (npages == -EHWPOISON ||
1551 (!async && check_user_page_hwpoison(addr))) {
1552 pfn = KVM_PFN_ERR_HWPOISON;
1553 goto exit;
1554 }
1555
1556 retry:
1557 vma = find_vma_intersection(current->mm, addr, addr + 1);
1558
1559 if (vma == NULL)
1560 pfn = KVM_PFN_ERR_FAULT;
1561 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1562 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1563 if (r == -EAGAIN)
1564 goto retry;
1565 if (r < 0)
1566 pfn = KVM_PFN_ERR_FAULT;
1567 } else {
1568 if (async && vma_is_valid(vma, write_fault))
1569 *async = true;
1570 pfn = KVM_PFN_ERR_FAULT;
1571 }
1572 exit:
1573 up_read(&current->mm->mmap_sem);
1574 return pfn;
1575 }
1576
1577 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1578 bool atomic, bool *async, bool write_fault,
1579 bool *writable)
1580 {
1581 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1582
1583 if (addr == KVM_HVA_ERR_RO_BAD) {
1584 if (writable)
1585 *writable = false;
1586 return KVM_PFN_ERR_RO_FAULT;
1587 }
1588
1589 if (kvm_is_error_hva(addr)) {
1590 if (writable)
1591 *writable = false;
1592 return KVM_PFN_NOSLOT;
1593 }
1594
1595 /* Do not map writable pfn in the readonly memslot. */
1596 if (writable && memslot_is_readonly(slot)) {
1597 *writable = false;
1598 writable = NULL;
1599 }
1600
1601 return hva_to_pfn(addr, atomic, async, write_fault,
1602 writable);
1603 }
1604 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1605
1606 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1607 bool *writable)
1608 {
1609 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1610 write_fault, writable);
1611 }
1612 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1613
1614 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1615 {
1616 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1617 }
1618 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1619
1620 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1621 {
1622 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1623 }
1624 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1625
1626 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1627 {
1628 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1629 }
1630 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1631
1632 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1633 {
1634 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1635 }
1636 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1637
1638 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1639 {
1640 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1641 }
1642 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1643
1644 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1645 {
1646 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1647 }
1648 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1649
1650 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1651 struct page **pages, int nr_pages)
1652 {
1653 unsigned long addr;
1654 gfn_t entry;
1655
1656 addr = gfn_to_hva_many(slot, gfn, &entry);
1657 if (kvm_is_error_hva(addr))
1658 return -1;
1659
1660 if (entry < nr_pages)
1661 return 0;
1662
1663 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1664 }
1665 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1666
1667 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1668 {
1669 if (is_error_noslot_pfn(pfn))
1670 return KVM_ERR_PTR_BAD_PAGE;
1671
1672 if (kvm_is_reserved_pfn(pfn)) {
1673 WARN_ON(1);
1674 return KVM_ERR_PTR_BAD_PAGE;
1675 }
1676
1677 return pfn_to_page(pfn);
1678 }
1679
1680 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1681 {
1682 kvm_pfn_t pfn;
1683
1684 pfn = gfn_to_pfn(kvm, gfn);
1685
1686 return kvm_pfn_to_page(pfn);
1687 }
1688 EXPORT_SYMBOL_GPL(gfn_to_page);
1689
1690 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1691 {
1692 kvm_pfn_t pfn;
1693
1694 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1695
1696 return kvm_pfn_to_page(pfn);
1697 }
1698 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1699
1700 void kvm_release_page_clean(struct page *page)
1701 {
1702 WARN_ON(is_error_page(page));
1703
1704 kvm_release_pfn_clean(page_to_pfn(page));
1705 }
1706 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1707
1708 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1709 {
1710 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1711 put_page(pfn_to_page(pfn));
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1714
1715 void kvm_release_page_dirty(struct page *page)
1716 {
1717 WARN_ON(is_error_page(page));
1718
1719 kvm_release_pfn_dirty(page_to_pfn(page));
1720 }
1721 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1722
1723 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1724 {
1725 kvm_set_pfn_dirty(pfn);
1726 kvm_release_pfn_clean(pfn);
1727 }
1728
1729 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1730 {
1731 if (!kvm_is_reserved_pfn(pfn)) {
1732 struct page *page = pfn_to_page(pfn);
1733
1734 if (!PageReserved(page))
1735 SetPageDirty(page);
1736 }
1737 }
1738 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1739
1740 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1741 {
1742 if (!kvm_is_reserved_pfn(pfn))
1743 mark_page_accessed(pfn_to_page(pfn));
1744 }
1745 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1746
1747 void kvm_get_pfn(kvm_pfn_t pfn)
1748 {
1749 if (!kvm_is_reserved_pfn(pfn))
1750 get_page(pfn_to_page(pfn));
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1753
1754 static int next_segment(unsigned long len, int offset)
1755 {
1756 if (len > PAGE_SIZE - offset)
1757 return PAGE_SIZE - offset;
1758 else
1759 return len;
1760 }
1761
1762 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1763 void *data, int offset, int len)
1764 {
1765 int r;
1766 unsigned long addr;
1767
1768 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1769 if (kvm_is_error_hva(addr))
1770 return -EFAULT;
1771 r = __copy_from_user(data, (void __user *)addr + offset, len);
1772 if (r)
1773 return -EFAULT;
1774 return 0;
1775 }
1776
1777 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1778 int len)
1779 {
1780 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1781
1782 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1783 }
1784 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1785
1786 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1787 int offset, int len)
1788 {
1789 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1790
1791 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1792 }
1793 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1794
1795 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1796 {
1797 gfn_t gfn = gpa >> PAGE_SHIFT;
1798 int seg;
1799 int offset = offset_in_page(gpa);
1800 int ret;
1801
1802 while ((seg = next_segment(len, offset)) != 0) {
1803 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1804 if (ret < 0)
1805 return ret;
1806 offset = 0;
1807 len -= seg;
1808 data += seg;
1809 ++gfn;
1810 }
1811 return 0;
1812 }
1813 EXPORT_SYMBOL_GPL(kvm_read_guest);
1814
1815 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1816 {
1817 gfn_t gfn = gpa >> PAGE_SHIFT;
1818 int seg;
1819 int offset = offset_in_page(gpa);
1820 int ret;
1821
1822 while ((seg = next_segment(len, offset)) != 0) {
1823 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1824 if (ret < 0)
1825 return ret;
1826 offset = 0;
1827 len -= seg;
1828 data += seg;
1829 ++gfn;
1830 }
1831 return 0;
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1834
1835 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1836 void *data, int offset, unsigned long len)
1837 {
1838 int r;
1839 unsigned long addr;
1840
1841 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1842 if (kvm_is_error_hva(addr))
1843 return -EFAULT;
1844 pagefault_disable();
1845 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1846 pagefault_enable();
1847 if (r)
1848 return -EFAULT;
1849 return 0;
1850 }
1851
1852 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1853 unsigned long len)
1854 {
1855 gfn_t gfn = gpa >> PAGE_SHIFT;
1856 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1857 int offset = offset_in_page(gpa);
1858
1859 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1860 }
1861 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1862
1863 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1864 void *data, unsigned long len)
1865 {
1866 gfn_t gfn = gpa >> PAGE_SHIFT;
1867 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1868 int offset = offset_in_page(gpa);
1869
1870 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1871 }
1872 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1873
1874 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1875 const void *data, int offset, int len)
1876 {
1877 int r;
1878 unsigned long addr;
1879
1880 addr = gfn_to_hva_memslot(memslot, gfn);
1881 if (kvm_is_error_hva(addr))
1882 return -EFAULT;
1883 r = __copy_to_user((void __user *)addr + offset, data, len);
1884 if (r)
1885 return -EFAULT;
1886 mark_page_dirty_in_slot(memslot, gfn);
1887 return 0;
1888 }
1889
1890 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1891 const void *data, int offset, int len)
1892 {
1893 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1894
1895 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1896 }
1897 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1898
1899 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1900 const void *data, int offset, int len)
1901 {
1902 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1903
1904 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1905 }
1906 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1907
1908 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1909 unsigned long len)
1910 {
1911 gfn_t gfn = gpa >> PAGE_SHIFT;
1912 int seg;
1913 int offset = offset_in_page(gpa);
1914 int ret;
1915
1916 while ((seg = next_segment(len, offset)) != 0) {
1917 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1918 if (ret < 0)
1919 return ret;
1920 offset = 0;
1921 len -= seg;
1922 data += seg;
1923 ++gfn;
1924 }
1925 return 0;
1926 }
1927 EXPORT_SYMBOL_GPL(kvm_write_guest);
1928
1929 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1930 unsigned long len)
1931 {
1932 gfn_t gfn = gpa >> PAGE_SHIFT;
1933 int seg;
1934 int offset = offset_in_page(gpa);
1935 int ret;
1936
1937 while ((seg = next_segment(len, offset)) != 0) {
1938 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1939 if (ret < 0)
1940 return ret;
1941 offset = 0;
1942 len -= seg;
1943 data += seg;
1944 ++gfn;
1945 }
1946 return 0;
1947 }
1948 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1949
1950 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1951 struct gfn_to_hva_cache *ghc,
1952 gpa_t gpa, unsigned long len)
1953 {
1954 int offset = offset_in_page(gpa);
1955 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1956 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1957 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1958 gfn_t nr_pages_avail;
1959
1960 ghc->gpa = gpa;
1961 ghc->generation = slots->generation;
1962 ghc->len = len;
1963 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1964 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1965 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1966 ghc->hva += offset;
1967 } else {
1968 /*
1969 * If the requested region crosses two memslots, we still
1970 * verify that the entire region is valid here.
1971 */
1972 while (start_gfn <= end_gfn) {
1973 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1974 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1975 &nr_pages_avail);
1976 if (kvm_is_error_hva(ghc->hva))
1977 return -EFAULT;
1978 start_gfn += nr_pages_avail;
1979 }
1980 /* Use the slow path for cross page reads and writes. */
1981 ghc->memslot = NULL;
1982 }
1983 return 0;
1984 }
1985
1986 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1987 gpa_t gpa, unsigned long len)
1988 {
1989 struct kvm_memslots *slots = kvm_memslots(kvm);
1990 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1991 }
1992 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1993
1994 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1995 void *data, int offset, unsigned long len)
1996 {
1997 struct kvm_memslots *slots = kvm_memslots(kvm);
1998 int r;
1999 gpa_t gpa = ghc->gpa + offset;
2000
2001 BUG_ON(len + offset > ghc->len);
2002
2003 if (slots->generation != ghc->generation)
2004 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2005
2006 if (unlikely(!ghc->memslot))
2007 return kvm_write_guest(kvm, gpa, data, len);
2008
2009 if (kvm_is_error_hva(ghc->hva))
2010 return -EFAULT;
2011
2012 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2013 if (r)
2014 return -EFAULT;
2015 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2016
2017 return 0;
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2020
2021 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2022 void *data, unsigned long len)
2023 {
2024 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2025 }
2026 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2027
2028 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2029 void *data, unsigned long len)
2030 {
2031 struct kvm_memslots *slots = kvm_memslots(kvm);
2032 int r;
2033
2034 BUG_ON(len > ghc->len);
2035
2036 if (slots->generation != ghc->generation)
2037 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2038
2039 if (unlikely(!ghc->memslot))
2040 return kvm_read_guest(kvm, ghc->gpa, data, len);
2041
2042 if (kvm_is_error_hva(ghc->hva))
2043 return -EFAULT;
2044
2045 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2046 if (r)
2047 return -EFAULT;
2048
2049 return 0;
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2052
2053 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2054 {
2055 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2056
2057 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2058 }
2059 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2060
2061 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2062 {
2063 gfn_t gfn = gpa >> PAGE_SHIFT;
2064 int seg;
2065 int offset = offset_in_page(gpa);
2066 int ret;
2067
2068 while ((seg = next_segment(len, offset)) != 0) {
2069 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2070 if (ret < 0)
2071 return ret;
2072 offset = 0;
2073 len -= seg;
2074 ++gfn;
2075 }
2076 return 0;
2077 }
2078 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2079
2080 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2081 gfn_t gfn)
2082 {
2083 if (memslot && memslot->dirty_bitmap) {
2084 unsigned long rel_gfn = gfn - memslot->base_gfn;
2085
2086 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2087 }
2088 }
2089
2090 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2091 {
2092 struct kvm_memory_slot *memslot;
2093
2094 memslot = gfn_to_memslot(kvm, gfn);
2095 mark_page_dirty_in_slot(memslot, gfn);
2096 }
2097 EXPORT_SYMBOL_GPL(mark_page_dirty);
2098
2099 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2100 {
2101 struct kvm_memory_slot *memslot;
2102
2103 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2104 mark_page_dirty_in_slot(memslot, gfn);
2105 }
2106 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2107
2108 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2109 {
2110 unsigned int old, val, grow;
2111
2112 old = val = vcpu->halt_poll_ns;
2113 grow = READ_ONCE(halt_poll_ns_grow);
2114 /* 10us base */
2115 if (val == 0 && grow)
2116 val = 10000;
2117 else
2118 val *= grow;
2119
2120 if (val > halt_poll_ns)
2121 val = halt_poll_ns;
2122
2123 vcpu->halt_poll_ns = val;
2124 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2125 }
2126
2127 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2128 {
2129 unsigned int old, val, shrink;
2130
2131 old = val = vcpu->halt_poll_ns;
2132 shrink = READ_ONCE(halt_poll_ns_shrink);
2133 if (shrink == 0)
2134 val = 0;
2135 else
2136 val /= shrink;
2137
2138 vcpu->halt_poll_ns = val;
2139 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2140 }
2141
2142 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2143 {
2144 if (kvm_arch_vcpu_runnable(vcpu)) {
2145 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2146 return -EINTR;
2147 }
2148 if (kvm_cpu_has_pending_timer(vcpu))
2149 return -EINTR;
2150 if (signal_pending(current))
2151 return -EINTR;
2152
2153 return 0;
2154 }
2155
2156 /*
2157 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2158 */
2159 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2160 {
2161 ktime_t start, cur;
2162 DECLARE_SWAITQUEUE(wait);
2163 bool waited = false;
2164 u64 block_ns;
2165
2166 start = cur = ktime_get();
2167 if (vcpu->halt_poll_ns) {
2168 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2169
2170 ++vcpu->stat.halt_attempted_poll;
2171 do {
2172 /*
2173 * This sets KVM_REQ_UNHALT if an interrupt
2174 * arrives.
2175 */
2176 if (kvm_vcpu_check_block(vcpu) < 0) {
2177 ++vcpu->stat.halt_successful_poll;
2178 if (!vcpu_valid_wakeup(vcpu))
2179 ++vcpu->stat.halt_poll_invalid;
2180 goto out;
2181 }
2182 cur = ktime_get();
2183 } while (single_task_running() && ktime_before(cur, stop));
2184 }
2185
2186 kvm_arch_vcpu_blocking(vcpu);
2187
2188 for (;;) {
2189 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2190
2191 if (kvm_vcpu_check_block(vcpu) < 0)
2192 break;
2193
2194 waited = true;
2195 schedule();
2196 }
2197
2198 finish_swait(&vcpu->wq, &wait);
2199 cur = ktime_get();
2200
2201 kvm_arch_vcpu_unblocking(vcpu);
2202 out:
2203 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2204
2205 if (!vcpu_valid_wakeup(vcpu))
2206 shrink_halt_poll_ns(vcpu);
2207 else if (halt_poll_ns) {
2208 if (block_ns <= vcpu->halt_poll_ns)
2209 ;
2210 /* we had a long block, shrink polling */
2211 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2212 shrink_halt_poll_ns(vcpu);
2213 /* we had a short halt and our poll time is too small */
2214 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2215 block_ns < halt_poll_ns)
2216 grow_halt_poll_ns(vcpu);
2217 } else
2218 vcpu->halt_poll_ns = 0;
2219
2220 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2221 kvm_arch_vcpu_block_finish(vcpu);
2222 }
2223 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2224
2225 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2226 {
2227 struct swait_queue_head *wqp;
2228
2229 wqp = kvm_arch_vcpu_wq(vcpu);
2230 if (swait_active(wqp)) {
2231 swake_up(wqp);
2232 ++vcpu->stat.halt_wakeup;
2233 return true;
2234 }
2235
2236 return false;
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2239
2240 #ifndef CONFIG_S390
2241 /*
2242 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2243 */
2244 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2245 {
2246 int me;
2247 int cpu = vcpu->cpu;
2248
2249 if (kvm_vcpu_wake_up(vcpu))
2250 return;
2251
2252 me = get_cpu();
2253 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2254 if (kvm_arch_vcpu_should_kick(vcpu))
2255 smp_send_reschedule(cpu);
2256 put_cpu();
2257 }
2258 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2259 #endif /* !CONFIG_S390 */
2260
2261 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2262 {
2263 struct pid *pid;
2264 struct task_struct *task = NULL;
2265 int ret = 0;
2266
2267 rcu_read_lock();
2268 pid = rcu_dereference(target->pid);
2269 if (pid)
2270 task = get_pid_task(pid, PIDTYPE_PID);
2271 rcu_read_unlock();
2272 if (!task)
2273 return ret;
2274 ret = yield_to(task, 1);
2275 put_task_struct(task);
2276
2277 return ret;
2278 }
2279 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2280
2281 /*
2282 * Helper that checks whether a VCPU is eligible for directed yield.
2283 * Most eligible candidate to yield is decided by following heuristics:
2284 *
2285 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2286 * (preempted lock holder), indicated by @in_spin_loop.
2287 * Set at the beiginning and cleared at the end of interception/PLE handler.
2288 *
2289 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2290 * chance last time (mostly it has become eligible now since we have probably
2291 * yielded to lockholder in last iteration. This is done by toggling
2292 * @dy_eligible each time a VCPU checked for eligibility.)
2293 *
2294 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2295 * to preempted lock-holder could result in wrong VCPU selection and CPU
2296 * burning. Giving priority for a potential lock-holder increases lock
2297 * progress.
2298 *
2299 * Since algorithm is based on heuristics, accessing another VCPU data without
2300 * locking does not harm. It may result in trying to yield to same VCPU, fail
2301 * and continue with next VCPU and so on.
2302 */
2303 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2304 {
2305 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2306 bool eligible;
2307
2308 eligible = !vcpu->spin_loop.in_spin_loop ||
2309 vcpu->spin_loop.dy_eligible;
2310
2311 if (vcpu->spin_loop.in_spin_loop)
2312 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2313
2314 return eligible;
2315 #else
2316 return true;
2317 #endif
2318 }
2319
2320 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2321 {
2322 struct kvm *kvm = me->kvm;
2323 struct kvm_vcpu *vcpu;
2324 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2325 int yielded = 0;
2326 int try = 3;
2327 int pass;
2328 int i;
2329
2330 kvm_vcpu_set_in_spin_loop(me, true);
2331 /*
2332 * We boost the priority of a VCPU that is runnable but not
2333 * currently running, because it got preempted by something
2334 * else and called schedule in __vcpu_run. Hopefully that
2335 * VCPU is holding the lock that we need and will release it.
2336 * We approximate round-robin by starting at the last boosted VCPU.
2337 */
2338 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2339 kvm_for_each_vcpu(i, vcpu, kvm) {
2340 if (!pass && i <= last_boosted_vcpu) {
2341 i = last_boosted_vcpu;
2342 continue;
2343 } else if (pass && i > last_boosted_vcpu)
2344 break;
2345 if (!ACCESS_ONCE(vcpu->preempted))
2346 continue;
2347 if (vcpu == me)
2348 continue;
2349 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2350 continue;
2351 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2352 continue;
2353
2354 yielded = kvm_vcpu_yield_to(vcpu);
2355 if (yielded > 0) {
2356 kvm->last_boosted_vcpu = i;
2357 break;
2358 } else if (yielded < 0) {
2359 try--;
2360 if (!try)
2361 break;
2362 }
2363 }
2364 }
2365 kvm_vcpu_set_in_spin_loop(me, false);
2366
2367 /* Ensure vcpu is not eligible during next spinloop */
2368 kvm_vcpu_set_dy_eligible(me, false);
2369 }
2370 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2371
2372 static int kvm_vcpu_fault(struct vm_fault *vmf)
2373 {
2374 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2375 struct page *page;
2376
2377 if (vmf->pgoff == 0)
2378 page = virt_to_page(vcpu->run);
2379 #ifdef CONFIG_X86
2380 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2381 page = virt_to_page(vcpu->arch.pio_data);
2382 #endif
2383 #ifdef CONFIG_KVM_MMIO
2384 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2385 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2386 #endif
2387 else
2388 return kvm_arch_vcpu_fault(vcpu, vmf);
2389 get_page(page);
2390 vmf->page = page;
2391 return 0;
2392 }
2393
2394 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2395 .fault = kvm_vcpu_fault,
2396 };
2397
2398 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2399 {
2400 vma->vm_ops = &kvm_vcpu_vm_ops;
2401 return 0;
2402 }
2403
2404 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2405 {
2406 struct kvm_vcpu *vcpu = filp->private_data;
2407
2408 debugfs_remove_recursive(vcpu->debugfs_dentry);
2409 kvm_put_kvm(vcpu->kvm);
2410 return 0;
2411 }
2412
2413 static struct file_operations kvm_vcpu_fops = {
2414 .release = kvm_vcpu_release,
2415 .unlocked_ioctl = kvm_vcpu_ioctl,
2416 #ifdef CONFIG_KVM_COMPAT
2417 .compat_ioctl = kvm_vcpu_compat_ioctl,
2418 #endif
2419 .mmap = kvm_vcpu_mmap,
2420 .llseek = noop_llseek,
2421 };
2422
2423 /*
2424 * Allocates an inode for the vcpu.
2425 */
2426 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2427 {
2428 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2429 }
2430
2431 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2432 {
2433 char dir_name[ITOA_MAX_LEN * 2];
2434 int ret;
2435
2436 if (!kvm_arch_has_vcpu_debugfs())
2437 return 0;
2438
2439 if (!debugfs_initialized())
2440 return 0;
2441
2442 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2443 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2444 vcpu->kvm->debugfs_dentry);
2445 if (!vcpu->debugfs_dentry)
2446 return -ENOMEM;
2447
2448 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2449 if (ret < 0) {
2450 debugfs_remove_recursive(vcpu->debugfs_dentry);
2451 return ret;
2452 }
2453
2454 return 0;
2455 }
2456
2457 /*
2458 * Creates some virtual cpus. Good luck creating more than one.
2459 */
2460 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2461 {
2462 int r;
2463 struct kvm_vcpu *vcpu;
2464
2465 if (id >= KVM_MAX_VCPU_ID)
2466 return -EINVAL;
2467
2468 mutex_lock(&kvm->lock);
2469 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2470 mutex_unlock(&kvm->lock);
2471 return -EINVAL;
2472 }
2473
2474 kvm->created_vcpus++;
2475 mutex_unlock(&kvm->lock);
2476
2477 vcpu = kvm_arch_vcpu_create(kvm, id);
2478 if (IS_ERR(vcpu)) {
2479 r = PTR_ERR(vcpu);
2480 goto vcpu_decrement;
2481 }
2482
2483 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2484
2485 r = kvm_arch_vcpu_setup(vcpu);
2486 if (r)
2487 goto vcpu_destroy;
2488
2489 r = kvm_create_vcpu_debugfs(vcpu);
2490 if (r)
2491 goto vcpu_destroy;
2492
2493 mutex_lock(&kvm->lock);
2494 if (kvm_get_vcpu_by_id(kvm, id)) {
2495 r = -EEXIST;
2496 goto unlock_vcpu_destroy;
2497 }
2498
2499 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2500
2501 /* Now it's all set up, let userspace reach it */
2502 kvm_get_kvm(kvm);
2503 r = create_vcpu_fd(vcpu);
2504 if (r < 0) {
2505 kvm_put_kvm(kvm);
2506 goto unlock_vcpu_destroy;
2507 }
2508
2509 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2510
2511 /*
2512 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2513 * before kvm->online_vcpu's incremented value.
2514 */
2515 smp_wmb();
2516 atomic_inc(&kvm->online_vcpus);
2517
2518 mutex_unlock(&kvm->lock);
2519 kvm_arch_vcpu_postcreate(vcpu);
2520 return r;
2521
2522 unlock_vcpu_destroy:
2523 mutex_unlock(&kvm->lock);
2524 debugfs_remove_recursive(vcpu->debugfs_dentry);
2525 vcpu_destroy:
2526 kvm_arch_vcpu_destroy(vcpu);
2527 vcpu_decrement:
2528 mutex_lock(&kvm->lock);
2529 kvm->created_vcpus--;
2530 mutex_unlock(&kvm->lock);
2531 return r;
2532 }
2533
2534 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2535 {
2536 if (sigset) {
2537 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2538 vcpu->sigset_active = 1;
2539 vcpu->sigset = *sigset;
2540 } else
2541 vcpu->sigset_active = 0;
2542 return 0;
2543 }
2544
2545 static long kvm_vcpu_ioctl(struct file *filp,
2546 unsigned int ioctl, unsigned long arg)
2547 {
2548 struct kvm_vcpu *vcpu = filp->private_data;
2549 void __user *argp = (void __user *)arg;
2550 int r;
2551 struct kvm_fpu *fpu = NULL;
2552 struct kvm_sregs *kvm_sregs = NULL;
2553
2554 if (vcpu->kvm->mm != current->mm)
2555 return -EIO;
2556
2557 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2558 return -EINVAL;
2559
2560 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2561 /*
2562 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2563 * so vcpu_load() would break it.
2564 */
2565 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2566 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2567 #endif
2568
2569
2570 r = vcpu_load(vcpu);
2571 if (r)
2572 return r;
2573 switch (ioctl) {
2574 case KVM_RUN: {
2575 struct pid *oldpid;
2576 r = -EINVAL;
2577 if (arg)
2578 goto out;
2579 oldpid = rcu_access_pointer(vcpu->pid);
2580 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2581 /* The thread running this VCPU changed. */
2582 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2583
2584 rcu_assign_pointer(vcpu->pid, newpid);
2585 if (oldpid)
2586 synchronize_rcu();
2587 put_pid(oldpid);
2588 }
2589 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2590 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2591 break;
2592 }
2593 case KVM_GET_REGS: {
2594 struct kvm_regs *kvm_regs;
2595
2596 r = -ENOMEM;
2597 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2598 if (!kvm_regs)
2599 goto out;
2600 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2601 if (r)
2602 goto out_free1;
2603 r = -EFAULT;
2604 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2605 goto out_free1;
2606 r = 0;
2607 out_free1:
2608 kfree(kvm_regs);
2609 break;
2610 }
2611 case KVM_SET_REGS: {
2612 struct kvm_regs *kvm_regs;
2613
2614 r = -ENOMEM;
2615 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2616 if (IS_ERR(kvm_regs)) {
2617 r = PTR_ERR(kvm_regs);
2618 goto out;
2619 }
2620 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2621 kfree(kvm_regs);
2622 break;
2623 }
2624 case KVM_GET_SREGS: {
2625 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2626 r = -ENOMEM;
2627 if (!kvm_sregs)
2628 goto out;
2629 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2630 if (r)
2631 goto out;
2632 r = -EFAULT;
2633 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2634 goto out;
2635 r = 0;
2636 break;
2637 }
2638 case KVM_SET_SREGS: {
2639 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2640 if (IS_ERR(kvm_sregs)) {
2641 r = PTR_ERR(kvm_sregs);
2642 kvm_sregs = NULL;
2643 goto out;
2644 }
2645 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2646 break;
2647 }
2648 case KVM_GET_MP_STATE: {
2649 struct kvm_mp_state mp_state;
2650
2651 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2652 if (r)
2653 goto out;
2654 r = -EFAULT;
2655 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2656 goto out;
2657 r = 0;
2658 break;
2659 }
2660 case KVM_SET_MP_STATE: {
2661 struct kvm_mp_state mp_state;
2662
2663 r = -EFAULT;
2664 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2665 goto out;
2666 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2667 break;
2668 }
2669 case KVM_TRANSLATE: {
2670 struct kvm_translation tr;
2671
2672 r = -EFAULT;
2673 if (copy_from_user(&tr, argp, sizeof(tr)))
2674 goto out;
2675 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2676 if (r)
2677 goto out;
2678 r = -EFAULT;
2679 if (copy_to_user(argp, &tr, sizeof(tr)))
2680 goto out;
2681 r = 0;
2682 break;
2683 }
2684 case KVM_SET_GUEST_DEBUG: {
2685 struct kvm_guest_debug dbg;
2686
2687 r = -EFAULT;
2688 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2689 goto out;
2690 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2691 break;
2692 }
2693 case KVM_SET_SIGNAL_MASK: {
2694 struct kvm_signal_mask __user *sigmask_arg = argp;
2695 struct kvm_signal_mask kvm_sigmask;
2696 sigset_t sigset, *p;
2697
2698 p = NULL;
2699 if (argp) {
2700 r = -EFAULT;
2701 if (copy_from_user(&kvm_sigmask, argp,
2702 sizeof(kvm_sigmask)))
2703 goto out;
2704 r = -EINVAL;
2705 if (kvm_sigmask.len != sizeof(sigset))
2706 goto out;
2707 r = -EFAULT;
2708 if (copy_from_user(&sigset, sigmask_arg->sigset,
2709 sizeof(sigset)))
2710 goto out;
2711 p = &sigset;
2712 }
2713 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2714 break;
2715 }
2716 case KVM_GET_FPU: {
2717 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2718 r = -ENOMEM;
2719 if (!fpu)
2720 goto out;
2721 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2722 if (r)
2723 goto out;
2724 r = -EFAULT;
2725 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2726 goto out;
2727 r = 0;
2728 break;
2729 }
2730 case KVM_SET_FPU: {
2731 fpu = memdup_user(argp, sizeof(*fpu));
2732 if (IS_ERR(fpu)) {
2733 r = PTR_ERR(fpu);
2734 fpu = NULL;
2735 goto out;
2736 }
2737 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2738 break;
2739 }
2740 default:
2741 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2742 }
2743 out:
2744 vcpu_put(vcpu);
2745 kfree(fpu);
2746 kfree(kvm_sregs);
2747 return r;
2748 }
2749
2750 #ifdef CONFIG_KVM_COMPAT
2751 static long kvm_vcpu_compat_ioctl(struct file *filp,
2752 unsigned int ioctl, unsigned long arg)
2753 {
2754 struct kvm_vcpu *vcpu = filp->private_data;
2755 void __user *argp = compat_ptr(arg);
2756 int r;
2757
2758 if (vcpu->kvm->mm != current->mm)
2759 return -EIO;
2760
2761 switch (ioctl) {
2762 case KVM_SET_SIGNAL_MASK: {
2763 struct kvm_signal_mask __user *sigmask_arg = argp;
2764 struct kvm_signal_mask kvm_sigmask;
2765 compat_sigset_t csigset;
2766 sigset_t sigset;
2767
2768 if (argp) {
2769 r = -EFAULT;
2770 if (copy_from_user(&kvm_sigmask, argp,
2771 sizeof(kvm_sigmask)))
2772 goto out;
2773 r = -EINVAL;
2774 if (kvm_sigmask.len != sizeof(csigset))
2775 goto out;
2776 r = -EFAULT;
2777 if (copy_from_user(&csigset, sigmask_arg->sigset,
2778 sizeof(csigset)))
2779 goto out;
2780 sigset_from_compat(&sigset, &csigset);
2781 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2782 } else
2783 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2784 break;
2785 }
2786 default:
2787 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2788 }
2789
2790 out:
2791 return r;
2792 }
2793 #endif
2794
2795 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2796 int (*accessor)(struct kvm_device *dev,
2797 struct kvm_device_attr *attr),
2798 unsigned long arg)
2799 {
2800 struct kvm_device_attr attr;
2801
2802 if (!accessor)
2803 return -EPERM;
2804
2805 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2806 return -EFAULT;
2807
2808 return accessor(dev, &attr);
2809 }
2810
2811 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2812 unsigned long arg)
2813 {
2814 struct kvm_device *dev = filp->private_data;
2815
2816 switch (ioctl) {
2817 case KVM_SET_DEVICE_ATTR:
2818 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2819 case KVM_GET_DEVICE_ATTR:
2820 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2821 case KVM_HAS_DEVICE_ATTR:
2822 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2823 default:
2824 if (dev->ops->ioctl)
2825 return dev->ops->ioctl(dev, ioctl, arg);
2826
2827 return -ENOTTY;
2828 }
2829 }
2830
2831 static int kvm_device_release(struct inode *inode, struct file *filp)
2832 {
2833 struct kvm_device *dev = filp->private_data;
2834 struct kvm *kvm = dev->kvm;
2835
2836 kvm_put_kvm(kvm);
2837 return 0;
2838 }
2839
2840 static const struct file_operations kvm_device_fops = {
2841 .unlocked_ioctl = kvm_device_ioctl,
2842 #ifdef CONFIG_KVM_COMPAT
2843 .compat_ioctl = kvm_device_ioctl,
2844 #endif
2845 .release = kvm_device_release,
2846 };
2847
2848 struct kvm_device *kvm_device_from_filp(struct file *filp)
2849 {
2850 if (filp->f_op != &kvm_device_fops)
2851 return NULL;
2852
2853 return filp->private_data;
2854 }
2855
2856 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2857 #ifdef CONFIG_KVM_MPIC
2858 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2859 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2860 #endif
2861 };
2862
2863 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2864 {
2865 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2866 return -ENOSPC;
2867
2868 if (kvm_device_ops_table[type] != NULL)
2869 return -EEXIST;
2870
2871 kvm_device_ops_table[type] = ops;
2872 return 0;
2873 }
2874
2875 void kvm_unregister_device_ops(u32 type)
2876 {
2877 if (kvm_device_ops_table[type] != NULL)
2878 kvm_device_ops_table[type] = NULL;
2879 }
2880
2881 static int kvm_ioctl_create_device(struct kvm *kvm,
2882 struct kvm_create_device *cd)
2883 {
2884 struct kvm_device_ops *ops = NULL;
2885 struct kvm_device *dev;
2886 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2887 int ret;
2888
2889 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2890 return -ENODEV;
2891
2892 ops = kvm_device_ops_table[cd->type];
2893 if (ops == NULL)
2894 return -ENODEV;
2895
2896 if (test)
2897 return 0;
2898
2899 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2900 if (!dev)
2901 return -ENOMEM;
2902
2903 dev->ops = ops;
2904 dev->kvm = kvm;
2905
2906 mutex_lock(&kvm->lock);
2907 ret = ops->create(dev, cd->type);
2908 if (ret < 0) {
2909 mutex_unlock(&kvm->lock);
2910 kfree(dev);
2911 return ret;
2912 }
2913 list_add(&dev->vm_node, &kvm->devices);
2914 mutex_unlock(&kvm->lock);
2915
2916 if (ops->init)
2917 ops->init(dev);
2918
2919 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2920 if (ret < 0) {
2921 mutex_lock(&kvm->lock);
2922 list_del(&dev->vm_node);
2923 mutex_unlock(&kvm->lock);
2924 ops->destroy(dev);
2925 return ret;
2926 }
2927
2928 kvm_get_kvm(kvm);
2929 cd->fd = ret;
2930 return 0;
2931 }
2932
2933 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2934 {
2935 switch (arg) {
2936 case KVM_CAP_USER_MEMORY:
2937 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2938 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2939 case KVM_CAP_INTERNAL_ERROR_DATA:
2940 #ifdef CONFIG_HAVE_KVM_MSI
2941 case KVM_CAP_SIGNAL_MSI:
2942 #endif
2943 #ifdef CONFIG_HAVE_KVM_IRQFD
2944 case KVM_CAP_IRQFD:
2945 case KVM_CAP_IRQFD_RESAMPLE:
2946 #endif
2947 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2948 case KVM_CAP_CHECK_EXTENSION_VM:
2949 return 1;
2950 #ifdef CONFIG_KVM_MMIO
2951 case KVM_CAP_COALESCED_MMIO:
2952 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2953 #endif
2954 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2955 case KVM_CAP_IRQ_ROUTING:
2956 return KVM_MAX_IRQ_ROUTES;
2957 #endif
2958 #if KVM_ADDRESS_SPACE_NUM > 1
2959 case KVM_CAP_MULTI_ADDRESS_SPACE:
2960 return KVM_ADDRESS_SPACE_NUM;
2961 #endif
2962 case KVM_CAP_MAX_VCPU_ID:
2963 return KVM_MAX_VCPU_ID;
2964 default:
2965 break;
2966 }
2967 return kvm_vm_ioctl_check_extension(kvm, arg);
2968 }
2969
2970 static long kvm_vm_ioctl(struct file *filp,
2971 unsigned int ioctl, unsigned long arg)
2972 {
2973 struct kvm *kvm = filp->private_data;
2974 void __user *argp = (void __user *)arg;
2975 int r;
2976
2977 if (kvm->mm != current->mm)
2978 return -EIO;
2979 switch (ioctl) {
2980 case KVM_CREATE_VCPU:
2981 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2982 break;
2983 case KVM_SET_USER_MEMORY_REGION: {
2984 struct kvm_userspace_memory_region kvm_userspace_mem;
2985
2986 r = -EFAULT;
2987 if (copy_from_user(&kvm_userspace_mem, argp,
2988 sizeof(kvm_userspace_mem)))
2989 goto out;
2990
2991 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2992 break;
2993 }
2994 case KVM_GET_DIRTY_LOG: {
2995 struct kvm_dirty_log log;
2996
2997 r = -EFAULT;
2998 if (copy_from_user(&log, argp, sizeof(log)))
2999 goto out;
3000 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3001 break;
3002 }
3003 #ifdef CONFIG_KVM_MMIO
3004 case KVM_REGISTER_COALESCED_MMIO: {
3005 struct kvm_coalesced_mmio_zone zone;
3006
3007 r = -EFAULT;
3008 if (copy_from_user(&zone, argp, sizeof(zone)))
3009 goto out;
3010 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3011 break;
3012 }
3013 case KVM_UNREGISTER_COALESCED_MMIO: {
3014 struct kvm_coalesced_mmio_zone zone;
3015
3016 r = -EFAULT;
3017 if (copy_from_user(&zone, argp, sizeof(zone)))
3018 goto out;
3019 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3020 break;
3021 }
3022 #endif
3023 case KVM_IRQFD: {
3024 struct kvm_irqfd data;
3025
3026 r = -EFAULT;
3027 if (copy_from_user(&data, argp, sizeof(data)))
3028 goto out;
3029 r = kvm_irqfd(kvm, &data);
3030 break;
3031 }
3032 case KVM_IOEVENTFD: {
3033 struct kvm_ioeventfd data;
3034
3035 r = -EFAULT;
3036 if (copy_from_user(&data, argp, sizeof(data)))
3037 goto out;
3038 r = kvm_ioeventfd(kvm, &data);
3039 break;
3040 }
3041 #ifdef CONFIG_HAVE_KVM_MSI
3042 case KVM_SIGNAL_MSI: {
3043 struct kvm_msi msi;
3044
3045 r = -EFAULT;
3046 if (copy_from_user(&msi, argp, sizeof(msi)))
3047 goto out;
3048 r = kvm_send_userspace_msi(kvm, &msi);
3049 break;
3050 }
3051 #endif
3052 #ifdef __KVM_HAVE_IRQ_LINE
3053 case KVM_IRQ_LINE_STATUS:
3054 case KVM_IRQ_LINE: {
3055 struct kvm_irq_level irq_event;
3056
3057 r = -EFAULT;
3058 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3059 goto out;
3060
3061 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3062 ioctl == KVM_IRQ_LINE_STATUS);
3063 if (r)
3064 goto out;
3065
3066 r = -EFAULT;
3067 if (ioctl == KVM_IRQ_LINE_STATUS) {
3068 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3069 goto out;
3070 }
3071
3072 r = 0;
3073 break;
3074 }
3075 #endif
3076 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3077 case KVM_SET_GSI_ROUTING: {
3078 struct kvm_irq_routing routing;
3079 struct kvm_irq_routing __user *urouting;
3080 struct kvm_irq_routing_entry *entries = NULL;
3081
3082 r = -EFAULT;
3083 if (copy_from_user(&routing, argp, sizeof(routing)))
3084 goto out;
3085 r = -EINVAL;
3086 if (!kvm_arch_can_set_irq_routing(kvm))
3087 goto out;
3088 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3089 goto out;
3090 if (routing.flags)
3091 goto out;
3092 if (routing.nr) {
3093 r = -ENOMEM;
3094 entries = vmalloc(routing.nr * sizeof(*entries));
3095 if (!entries)
3096 goto out;
3097 r = -EFAULT;
3098 urouting = argp;
3099 if (copy_from_user(entries, urouting->entries,
3100 routing.nr * sizeof(*entries)))
3101 goto out_free_irq_routing;
3102 }
3103 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3104 routing.flags);
3105 out_free_irq_routing:
3106 vfree(entries);
3107 break;
3108 }
3109 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3110 case KVM_CREATE_DEVICE: {
3111 struct kvm_create_device cd;
3112
3113 r = -EFAULT;
3114 if (copy_from_user(&cd, argp, sizeof(cd)))
3115 goto out;
3116
3117 r = kvm_ioctl_create_device(kvm, &cd);
3118 if (r)
3119 goto out;
3120
3121 r = -EFAULT;
3122 if (copy_to_user(argp, &cd, sizeof(cd)))
3123 goto out;
3124
3125 r = 0;
3126 break;
3127 }
3128 case KVM_CHECK_EXTENSION:
3129 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3130 break;
3131 default:
3132 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3133 }
3134 out:
3135 return r;
3136 }
3137
3138 #ifdef CONFIG_KVM_COMPAT
3139 struct compat_kvm_dirty_log {
3140 __u32 slot;
3141 __u32 padding1;
3142 union {
3143 compat_uptr_t dirty_bitmap; /* one bit per page */
3144 __u64 padding2;
3145 };
3146 };
3147
3148 static long kvm_vm_compat_ioctl(struct file *filp,
3149 unsigned int ioctl, unsigned long arg)
3150 {
3151 struct kvm *kvm = filp->private_data;
3152 int r;
3153
3154 if (kvm->mm != current->mm)
3155 return -EIO;
3156 switch (ioctl) {
3157 case KVM_GET_DIRTY_LOG: {
3158 struct compat_kvm_dirty_log compat_log;
3159 struct kvm_dirty_log log;
3160
3161 if (copy_from_user(&compat_log, (void __user *)arg,
3162 sizeof(compat_log)))
3163 return -EFAULT;
3164 log.slot = compat_log.slot;
3165 log.padding1 = compat_log.padding1;
3166 log.padding2 = compat_log.padding2;
3167 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3168
3169 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3170 break;
3171 }
3172 default:
3173 r = kvm_vm_ioctl(filp, ioctl, arg);
3174 }
3175 return r;
3176 }
3177 #endif
3178
3179 static struct file_operations kvm_vm_fops = {
3180 .release = kvm_vm_release,
3181 .unlocked_ioctl = kvm_vm_ioctl,
3182 #ifdef CONFIG_KVM_COMPAT
3183 .compat_ioctl = kvm_vm_compat_ioctl,
3184 #endif
3185 .llseek = noop_llseek,
3186 };
3187
3188 static int kvm_dev_ioctl_create_vm(unsigned long type)
3189 {
3190 int r;
3191 struct kvm *kvm;
3192 struct file *file;
3193
3194 kvm = kvm_create_vm(type);
3195 if (IS_ERR(kvm))
3196 return PTR_ERR(kvm);
3197 #ifdef CONFIG_KVM_MMIO
3198 r = kvm_coalesced_mmio_init(kvm);
3199 if (r < 0) {
3200 kvm_put_kvm(kvm);
3201 return r;
3202 }
3203 #endif
3204 r = get_unused_fd_flags(O_CLOEXEC);
3205 if (r < 0) {
3206 kvm_put_kvm(kvm);
3207 return r;
3208 }
3209 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3210 if (IS_ERR(file)) {
3211 put_unused_fd(r);
3212 kvm_put_kvm(kvm);
3213 return PTR_ERR(file);
3214 }
3215
3216 /*
3217 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3218 * already set, with ->release() being kvm_vm_release(). In error
3219 * cases it will be called by the final fput(file) and will take
3220 * care of doing kvm_put_kvm(kvm).
3221 */
3222 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3223 put_unused_fd(r);
3224 fput(file);
3225 return -ENOMEM;
3226 }
3227 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3228
3229 fd_install(r, file);
3230 return r;
3231 }
3232
3233 static long kvm_dev_ioctl(struct file *filp,
3234 unsigned int ioctl, unsigned long arg)
3235 {
3236 long r = -EINVAL;
3237
3238 switch (ioctl) {
3239 case KVM_GET_API_VERSION:
3240 if (arg)
3241 goto out;
3242 r = KVM_API_VERSION;
3243 break;
3244 case KVM_CREATE_VM:
3245 r = kvm_dev_ioctl_create_vm(arg);
3246 break;
3247 case KVM_CHECK_EXTENSION:
3248 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3249 break;
3250 case KVM_GET_VCPU_MMAP_SIZE:
3251 if (arg)
3252 goto out;
3253 r = PAGE_SIZE; /* struct kvm_run */
3254 #ifdef CONFIG_X86
3255 r += PAGE_SIZE; /* pio data page */
3256 #endif
3257 #ifdef CONFIG_KVM_MMIO
3258 r += PAGE_SIZE; /* coalesced mmio ring page */
3259 #endif
3260 break;
3261 case KVM_TRACE_ENABLE:
3262 case KVM_TRACE_PAUSE:
3263 case KVM_TRACE_DISABLE:
3264 r = -EOPNOTSUPP;
3265 break;
3266 default:
3267 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3268 }
3269 out:
3270 return r;
3271 }
3272
3273 static struct file_operations kvm_chardev_ops = {
3274 .unlocked_ioctl = kvm_dev_ioctl,
3275 .compat_ioctl = kvm_dev_ioctl,
3276 .llseek = noop_llseek,
3277 };
3278
3279 static struct miscdevice kvm_dev = {
3280 KVM_MINOR,
3281 "kvm",
3282 &kvm_chardev_ops,
3283 };
3284
3285 static void hardware_enable_nolock(void *junk)
3286 {
3287 int cpu = raw_smp_processor_id();
3288 int r;
3289
3290 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3291 return;
3292
3293 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3294
3295 r = kvm_arch_hardware_enable();
3296
3297 if (r) {
3298 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3299 atomic_inc(&hardware_enable_failed);
3300 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3301 }
3302 }
3303
3304 static int kvm_starting_cpu(unsigned int cpu)
3305 {
3306 raw_spin_lock(&kvm_count_lock);
3307 if (kvm_usage_count)
3308 hardware_enable_nolock(NULL);
3309 raw_spin_unlock(&kvm_count_lock);
3310 return 0;
3311 }
3312
3313 static void hardware_disable_nolock(void *junk)
3314 {
3315 int cpu = raw_smp_processor_id();
3316
3317 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3318 return;
3319 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3320 kvm_arch_hardware_disable();
3321 }
3322
3323 static int kvm_dying_cpu(unsigned int cpu)
3324 {
3325 raw_spin_lock(&kvm_count_lock);
3326 if (kvm_usage_count)
3327 hardware_disable_nolock(NULL);
3328 raw_spin_unlock(&kvm_count_lock);
3329 return 0;
3330 }
3331
3332 static void hardware_disable_all_nolock(void)
3333 {
3334 BUG_ON(!kvm_usage_count);
3335
3336 kvm_usage_count--;
3337 if (!kvm_usage_count)
3338 on_each_cpu(hardware_disable_nolock, NULL, 1);
3339 }
3340
3341 static void hardware_disable_all(void)
3342 {
3343 raw_spin_lock(&kvm_count_lock);
3344 hardware_disable_all_nolock();
3345 raw_spin_unlock(&kvm_count_lock);
3346 }
3347
3348 static int hardware_enable_all(void)
3349 {
3350 int r = 0;
3351
3352 raw_spin_lock(&kvm_count_lock);
3353
3354 kvm_usage_count++;
3355 if (kvm_usage_count == 1) {
3356 atomic_set(&hardware_enable_failed, 0);
3357 on_each_cpu(hardware_enable_nolock, NULL, 1);
3358
3359 if (atomic_read(&hardware_enable_failed)) {
3360 hardware_disable_all_nolock();
3361 r = -EBUSY;
3362 }
3363 }
3364
3365 raw_spin_unlock(&kvm_count_lock);
3366
3367 return r;
3368 }
3369
3370 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3371 void *v)
3372 {
3373 /*
3374 * Some (well, at least mine) BIOSes hang on reboot if
3375 * in vmx root mode.
3376 *
3377 * And Intel TXT required VMX off for all cpu when system shutdown.
3378 */
3379 pr_info("kvm: exiting hardware virtualization\n");
3380 kvm_rebooting = true;
3381 on_each_cpu(hardware_disable_nolock, NULL, 1);
3382 return NOTIFY_OK;
3383 }
3384
3385 static struct notifier_block kvm_reboot_notifier = {
3386 .notifier_call = kvm_reboot,
3387 .priority = 0,
3388 };
3389
3390 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3391 {
3392 int i;
3393
3394 for (i = 0; i < bus->dev_count; i++) {
3395 struct kvm_io_device *pos = bus->range[i].dev;
3396
3397 kvm_iodevice_destructor(pos);
3398 }
3399 kfree(bus);
3400 }
3401
3402 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3403 const struct kvm_io_range *r2)
3404 {
3405 gpa_t addr1 = r1->addr;
3406 gpa_t addr2 = r2->addr;
3407
3408 if (addr1 < addr2)
3409 return -1;
3410
3411 /* If r2->len == 0, match the exact address. If r2->len != 0,
3412 * accept any overlapping write. Any order is acceptable for
3413 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3414 * we process all of them.
3415 */
3416 if (r2->len) {
3417 addr1 += r1->len;
3418 addr2 += r2->len;
3419 }
3420
3421 if (addr1 > addr2)
3422 return 1;
3423
3424 return 0;
3425 }
3426
3427 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3428 {
3429 return kvm_io_bus_cmp(p1, p2);
3430 }
3431
3432 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3433 gpa_t addr, int len)
3434 {
3435 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3436 .addr = addr,
3437 .len = len,
3438 .dev = dev,
3439 };
3440
3441 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3442 kvm_io_bus_sort_cmp, NULL);
3443
3444 return 0;
3445 }
3446
3447 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3448 gpa_t addr, int len)
3449 {
3450 struct kvm_io_range *range, key;
3451 int off;
3452
3453 key = (struct kvm_io_range) {
3454 .addr = addr,
3455 .len = len,
3456 };
3457
3458 range = bsearch(&key, bus->range, bus->dev_count,
3459 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3460 if (range == NULL)
3461 return -ENOENT;
3462
3463 off = range - bus->range;
3464
3465 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3466 off--;
3467
3468 return off;
3469 }
3470
3471 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3472 struct kvm_io_range *range, const void *val)
3473 {
3474 int idx;
3475
3476 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3477 if (idx < 0)
3478 return -EOPNOTSUPP;
3479
3480 while (idx < bus->dev_count &&
3481 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3482 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3483 range->len, val))
3484 return idx;
3485 idx++;
3486 }
3487
3488 return -EOPNOTSUPP;
3489 }
3490
3491 /* kvm_io_bus_write - called under kvm->slots_lock */
3492 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3493 int len, const void *val)
3494 {
3495 struct kvm_io_bus *bus;
3496 struct kvm_io_range range;
3497 int r;
3498
3499 range = (struct kvm_io_range) {
3500 .addr = addr,
3501 .len = len,
3502 };
3503
3504 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3505 if (!bus)
3506 return -ENOMEM;
3507 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3508 return r < 0 ? r : 0;
3509 }
3510
3511 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3512 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3513 gpa_t addr, int len, const void *val, long cookie)
3514 {
3515 struct kvm_io_bus *bus;
3516 struct kvm_io_range range;
3517
3518 range = (struct kvm_io_range) {
3519 .addr = addr,
3520 .len = len,
3521 };
3522
3523 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3524 if (!bus)
3525 return -ENOMEM;
3526
3527 /* First try the device referenced by cookie. */
3528 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3529 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3530 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3531 val))
3532 return cookie;
3533
3534 /*
3535 * cookie contained garbage; fall back to search and return the
3536 * correct cookie value.
3537 */
3538 return __kvm_io_bus_write(vcpu, bus, &range, val);
3539 }
3540
3541 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3542 struct kvm_io_range *range, void *val)
3543 {
3544 int idx;
3545
3546 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3547 if (idx < 0)
3548 return -EOPNOTSUPP;
3549
3550 while (idx < bus->dev_count &&
3551 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3552 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3553 range->len, val))
3554 return idx;
3555 idx++;
3556 }
3557
3558 return -EOPNOTSUPP;
3559 }
3560 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3561
3562 /* kvm_io_bus_read - called under kvm->slots_lock */
3563 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3564 int len, void *val)
3565 {
3566 struct kvm_io_bus *bus;
3567 struct kvm_io_range range;
3568 int r;
3569
3570 range = (struct kvm_io_range) {
3571 .addr = addr,
3572 .len = len,
3573 };
3574
3575 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3576 if (!bus)
3577 return -ENOMEM;
3578 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3579 return r < 0 ? r : 0;
3580 }
3581
3582
3583 /* Caller must hold slots_lock. */
3584 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3585 int len, struct kvm_io_device *dev)
3586 {
3587 struct kvm_io_bus *new_bus, *bus;
3588
3589 bus = kvm_get_bus(kvm, bus_idx);
3590 if (!bus)
3591 return -ENOMEM;
3592
3593 /* exclude ioeventfd which is limited by maximum fd */
3594 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3595 return -ENOSPC;
3596
3597 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3598 sizeof(struct kvm_io_range)), GFP_KERNEL);
3599 if (!new_bus)
3600 return -ENOMEM;
3601 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3602 sizeof(struct kvm_io_range)));
3603 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3604 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3605 synchronize_srcu_expedited(&kvm->srcu);
3606 kfree(bus);
3607
3608 return 0;
3609 }
3610
3611 /* Caller must hold slots_lock. */
3612 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3613 struct kvm_io_device *dev)
3614 {
3615 int i;
3616 struct kvm_io_bus *new_bus, *bus;
3617
3618 bus = kvm_get_bus(kvm, bus_idx);
3619 if (!bus)
3620 return;
3621
3622 for (i = 0; i < bus->dev_count; i++)
3623 if (bus->range[i].dev == dev) {
3624 break;
3625 }
3626
3627 if (i == bus->dev_count)
3628 return;
3629
3630 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3631 sizeof(struct kvm_io_range)), GFP_KERNEL);
3632 if (!new_bus) {
3633 pr_err("kvm: failed to shrink bus, removing it completely\n");
3634 goto broken;
3635 }
3636
3637 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3638 new_bus->dev_count--;
3639 memcpy(new_bus->range + i, bus->range + i + 1,
3640 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3641
3642 broken:
3643 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3644 synchronize_srcu_expedited(&kvm->srcu);
3645 kfree(bus);
3646 return;
3647 }
3648
3649 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3650 gpa_t addr)
3651 {
3652 struct kvm_io_bus *bus;
3653 int dev_idx, srcu_idx;
3654 struct kvm_io_device *iodev = NULL;
3655
3656 srcu_idx = srcu_read_lock(&kvm->srcu);
3657
3658 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3659 if (!bus)
3660 goto out_unlock;
3661
3662 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3663 if (dev_idx < 0)
3664 goto out_unlock;
3665
3666 iodev = bus->range[dev_idx].dev;
3667
3668 out_unlock:
3669 srcu_read_unlock(&kvm->srcu, srcu_idx);
3670
3671 return iodev;
3672 }
3673 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3674
3675 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3676 int (*get)(void *, u64 *), int (*set)(void *, u64),
3677 const char *fmt)
3678 {
3679 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3680 inode->i_private;
3681
3682 /* The debugfs files are a reference to the kvm struct which
3683 * is still valid when kvm_destroy_vm is called.
3684 * To avoid the race between open and the removal of the debugfs
3685 * directory we test against the users count.
3686 */
3687 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3688 return -ENOENT;
3689
3690 if (simple_attr_open(inode, file, get, set, fmt)) {
3691 kvm_put_kvm(stat_data->kvm);
3692 return -ENOMEM;
3693 }
3694
3695 return 0;
3696 }
3697
3698 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3699 {
3700 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3701 inode->i_private;
3702
3703 simple_attr_release(inode, file);
3704 kvm_put_kvm(stat_data->kvm);
3705
3706 return 0;
3707 }
3708
3709 static int vm_stat_get_per_vm(void *data, u64 *val)
3710 {
3711 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3712
3713 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3714
3715 return 0;
3716 }
3717
3718 static int vm_stat_clear_per_vm(void *data, u64 val)
3719 {
3720 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3721
3722 if (val)
3723 return -EINVAL;
3724
3725 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3726
3727 return 0;
3728 }
3729
3730 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3731 {
3732 __simple_attr_check_format("%llu\n", 0ull);
3733 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3734 vm_stat_clear_per_vm, "%llu\n");
3735 }
3736
3737 static const struct file_operations vm_stat_get_per_vm_fops = {
3738 .owner = THIS_MODULE,
3739 .open = vm_stat_get_per_vm_open,
3740 .release = kvm_debugfs_release,
3741 .read = simple_attr_read,
3742 .write = simple_attr_write,
3743 .llseek = no_llseek,
3744 };
3745
3746 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3747 {
3748 int i;
3749 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3750 struct kvm_vcpu *vcpu;
3751
3752 *val = 0;
3753
3754 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3755 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3756
3757 return 0;
3758 }
3759
3760 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3761 {
3762 int i;
3763 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3764 struct kvm_vcpu *vcpu;
3765
3766 if (val)
3767 return -EINVAL;
3768
3769 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3770 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3771
3772 return 0;
3773 }
3774
3775 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3776 {
3777 __simple_attr_check_format("%llu\n", 0ull);
3778 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3779 vcpu_stat_clear_per_vm, "%llu\n");
3780 }
3781
3782 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3783 .owner = THIS_MODULE,
3784 .open = vcpu_stat_get_per_vm_open,
3785 .release = kvm_debugfs_release,
3786 .read = simple_attr_read,
3787 .write = simple_attr_write,
3788 .llseek = no_llseek,
3789 };
3790
3791 static const struct file_operations *stat_fops_per_vm[] = {
3792 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3793 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3794 };
3795
3796 static int vm_stat_get(void *_offset, u64 *val)
3797 {
3798 unsigned offset = (long)_offset;
3799 struct kvm *kvm;
3800 struct kvm_stat_data stat_tmp = {.offset = offset};
3801 u64 tmp_val;
3802
3803 *val = 0;
3804 spin_lock(&kvm_lock);
3805 list_for_each_entry(kvm, &vm_list, vm_list) {
3806 stat_tmp.kvm = kvm;
3807 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3808 *val += tmp_val;
3809 }
3810 spin_unlock(&kvm_lock);
3811 return 0;
3812 }
3813
3814 static int vm_stat_clear(void *_offset, u64 val)
3815 {
3816 unsigned offset = (long)_offset;
3817 struct kvm *kvm;
3818 struct kvm_stat_data stat_tmp = {.offset = offset};
3819
3820 if (val)
3821 return -EINVAL;
3822
3823 spin_lock(&kvm_lock);
3824 list_for_each_entry(kvm, &vm_list, vm_list) {
3825 stat_tmp.kvm = kvm;
3826 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3827 }
3828 spin_unlock(&kvm_lock);
3829
3830 return 0;
3831 }
3832
3833 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3834
3835 static int vcpu_stat_get(void *_offset, u64 *val)
3836 {
3837 unsigned offset = (long)_offset;
3838 struct kvm *kvm;
3839 struct kvm_stat_data stat_tmp = {.offset = offset};
3840 u64 tmp_val;
3841
3842 *val = 0;
3843 spin_lock(&kvm_lock);
3844 list_for_each_entry(kvm, &vm_list, vm_list) {
3845 stat_tmp.kvm = kvm;
3846 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3847 *val += tmp_val;
3848 }
3849 spin_unlock(&kvm_lock);
3850 return 0;
3851 }
3852
3853 static int vcpu_stat_clear(void *_offset, u64 val)
3854 {
3855 unsigned offset = (long)_offset;
3856 struct kvm *kvm;
3857 struct kvm_stat_data stat_tmp = {.offset = offset};
3858
3859 if (val)
3860 return -EINVAL;
3861
3862 spin_lock(&kvm_lock);
3863 list_for_each_entry(kvm, &vm_list, vm_list) {
3864 stat_tmp.kvm = kvm;
3865 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3866 }
3867 spin_unlock(&kvm_lock);
3868
3869 return 0;
3870 }
3871
3872 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3873 "%llu\n");
3874
3875 static const struct file_operations *stat_fops[] = {
3876 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3877 [KVM_STAT_VM] = &vm_stat_fops,
3878 };
3879
3880 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3881 {
3882 struct kobj_uevent_env *env;
3883 unsigned long long created, active;
3884
3885 if (!kvm_dev.this_device || !kvm)
3886 return;
3887
3888 spin_lock(&kvm_lock);
3889 if (type == KVM_EVENT_CREATE_VM) {
3890 kvm_createvm_count++;
3891 kvm_active_vms++;
3892 } else if (type == KVM_EVENT_DESTROY_VM) {
3893 kvm_active_vms--;
3894 }
3895 created = kvm_createvm_count;
3896 active = kvm_active_vms;
3897 spin_unlock(&kvm_lock);
3898
3899 env = kzalloc(sizeof(*env), GFP_KERNEL);
3900 if (!env)
3901 return;
3902
3903 add_uevent_var(env, "CREATED=%llu", created);
3904 add_uevent_var(env, "COUNT=%llu", active);
3905
3906 if (type == KVM_EVENT_CREATE_VM) {
3907 add_uevent_var(env, "EVENT=create");
3908 kvm->userspace_pid = task_pid_nr(current);
3909 } else if (type == KVM_EVENT_DESTROY_VM) {
3910 add_uevent_var(env, "EVENT=destroy");
3911 }
3912 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3913
3914 if (kvm->debugfs_dentry) {
3915 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3916
3917 if (p) {
3918 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3919 if (!IS_ERR(tmp))
3920 add_uevent_var(env, "STATS_PATH=%s", tmp);
3921 kfree(p);
3922 }
3923 }
3924 /* no need for checks, since we are adding at most only 5 keys */
3925 env->envp[env->envp_idx++] = NULL;
3926 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3927 kfree(env);
3928 }
3929
3930 static int kvm_init_debug(void)
3931 {
3932 int r = -EEXIST;
3933 struct kvm_stats_debugfs_item *p;
3934
3935 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3936 if (kvm_debugfs_dir == NULL)
3937 goto out;
3938
3939 kvm_debugfs_num_entries = 0;
3940 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3941 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3942 (void *)(long)p->offset,
3943 stat_fops[p->kind]))
3944 goto out_dir;
3945 }
3946
3947 return 0;
3948
3949 out_dir:
3950 debugfs_remove_recursive(kvm_debugfs_dir);
3951 out:
3952 return r;
3953 }
3954
3955 static int kvm_suspend(void)
3956 {
3957 if (kvm_usage_count)
3958 hardware_disable_nolock(NULL);
3959 return 0;
3960 }
3961
3962 static void kvm_resume(void)
3963 {
3964 if (kvm_usage_count) {
3965 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3966 hardware_enable_nolock(NULL);
3967 }
3968 }
3969
3970 static struct syscore_ops kvm_syscore_ops = {
3971 .suspend = kvm_suspend,
3972 .resume = kvm_resume,
3973 };
3974
3975 static inline
3976 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3977 {
3978 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3979 }
3980
3981 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3982 {
3983 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3984
3985 if (vcpu->preempted)
3986 vcpu->preempted = false;
3987
3988 kvm_arch_sched_in(vcpu, cpu);
3989
3990 kvm_arch_vcpu_load(vcpu, cpu);
3991 }
3992
3993 static void kvm_sched_out(struct preempt_notifier *pn,
3994 struct task_struct *next)
3995 {
3996 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3997
3998 if (current->state == TASK_RUNNING)
3999 vcpu->preempted = true;
4000 kvm_arch_vcpu_put(vcpu);
4001 }
4002
4003 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4004 struct module *module)
4005 {
4006 int r;
4007 int cpu;
4008
4009 r = kvm_arch_init(opaque);
4010 if (r)
4011 goto out_fail;
4012
4013 /*
4014 * kvm_arch_init makes sure there's at most one caller
4015 * for architectures that support multiple implementations,
4016 * like intel and amd on x86.
4017 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4018 * conflicts in case kvm is already setup for another implementation.
4019 */
4020 r = kvm_irqfd_init();
4021 if (r)
4022 goto out_irqfd;
4023
4024 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4025 r = -ENOMEM;
4026 goto out_free_0;
4027 }
4028
4029 r = kvm_arch_hardware_setup();
4030 if (r < 0)
4031 goto out_free_0a;
4032
4033 for_each_online_cpu(cpu) {
4034 smp_call_function_single(cpu,
4035 kvm_arch_check_processor_compat,
4036 &r, 1);
4037 if (r < 0)
4038 goto out_free_1;
4039 }
4040
4041 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4042 kvm_starting_cpu, kvm_dying_cpu);
4043 if (r)
4044 goto out_free_2;
4045 register_reboot_notifier(&kvm_reboot_notifier);
4046
4047 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4048 if (!vcpu_align)
4049 vcpu_align = __alignof__(struct kvm_vcpu);
4050 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4051 0, NULL);
4052 if (!kvm_vcpu_cache) {
4053 r = -ENOMEM;
4054 goto out_free_3;
4055 }
4056
4057 r = kvm_async_pf_init();
4058 if (r)
4059 goto out_free;
4060
4061 kvm_chardev_ops.owner = module;
4062 kvm_vm_fops.owner = module;
4063 kvm_vcpu_fops.owner = module;
4064
4065 r = misc_register(&kvm_dev);
4066 if (r) {
4067 pr_err("kvm: misc device register failed\n");
4068 goto out_unreg;
4069 }
4070
4071 register_syscore_ops(&kvm_syscore_ops);
4072
4073 kvm_preempt_ops.sched_in = kvm_sched_in;
4074 kvm_preempt_ops.sched_out = kvm_sched_out;
4075
4076 r = kvm_init_debug();
4077 if (r) {
4078 pr_err("kvm: create debugfs files failed\n");
4079 goto out_undebugfs;
4080 }
4081
4082 r = kvm_vfio_ops_init();
4083 WARN_ON(r);
4084
4085 return 0;
4086
4087 out_undebugfs:
4088 unregister_syscore_ops(&kvm_syscore_ops);
4089 misc_deregister(&kvm_dev);
4090 out_unreg:
4091 kvm_async_pf_deinit();
4092 out_free:
4093 kmem_cache_destroy(kvm_vcpu_cache);
4094 out_free_3:
4095 unregister_reboot_notifier(&kvm_reboot_notifier);
4096 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4097 out_free_2:
4098 out_free_1:
4099 kvm_arch_hardware_unsetup();
4100 out_free_0a:
4101 free_cpumask_var(cpus_hardware_enabled);
4102 out_free_0:
4103 kvm_irqfd_exit();
4104 out_irqfd:
4105 kvm_arch_exit();
4106 out_fail:
4107 return r;
4108 }
4109 EXPORT_SYMBOL_GPL(kvm_init);
4110
4111 void kvm_exit(void)
4112 {
4113 debugfs_remove_recursive(kvm_debugfs_dir);
4114 misc_deregister(&kvm_dev);
4115 kmem_cache_destroy(kvm_vcpu_cache);
4116 kvm_async_pf_deinit();
4117 unregister_syscore_ops(&kvm_syscore_ops);
4118 unregister_reboot_notifier(&kvm_reboot_notifier);
4119 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4120 on_each_cpu(hardware_disable_nolock, NULL, 1);
4121 kvm_arch_hardware_unsetup();
4122 kvm_arch_exit();
4123 kvm_irqfd_exit();
4124 free_cpumask_var(cpus_hardware_enabled);
4125 kvm_vfio_ops_exit();
4126 }
4127 EXPORT_SYMBOL_GPL(kvm_exit);