]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/kvm_main.c
scsi: cxgb4i: call neigh_event_send() to update MAC address
[mirror_ubuntu-artful-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90 * Ordering of locks:
91 *
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93 */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
134 {
135 if (pfn_valid(pfn))
136 return PageReserved(pfn_to_page(pfn));
137
138 return true;
139 }
140
141 /*
142 * Switches to specified vcpu, until a matching vcpu_put()
143 */
144 int vcpu_load(struct kvm_vcpu *vcpu)
145 {
146 int cpu;
147
148 if (mutex_lock_killable(&vcpu->mutex))
149 return -EINTR;
150 cpu = get_cpu();
151 preempt_notifier_register(&vcpu->preempt_notifier);
152 kvm_arch_vcpu_load(vcpu, cpu);
153 put_cpu();
154 return 0;
155 }
156 EXPORT_SYMBOL_GPL(vcpu_load);
157
158 void vcpu_put(struct kvm_vcpu *vcpu)
159 {
160 preempt_disable();
161 kvm_arch_vcpu_put(vcpu);
162 preempt_notifier_unregister(&vcpu->preempt_notifier);
163 preempt_enable();
164 mutex_unlock(&vcpu->mutex);
165 }
166 EXPORT_SYMBOL_GPL(vcpu_put);
167
168 /* TODO: merge with kvm_arch_vcpu_should_kick */
169 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
170 {
171 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
172
173 /*
174 * We need to wait for the VCPU to reenable interrupts and get out of
175 * READING_SHADOW_PAGE_TABLES mode.
176 */
177 if (req & KVM_REQUEST_WAIT)
178 return mode != OUTSIDE_GUEST_MODE;
179
180 /*
181 * Need to kick a running VCPU, but otherwise there is nothing to do.
182 */
183 return mode == IN_GUEST_MODE;
184 }
185
186 static void ack_flush(void *_completed)
187 {
188 }
189
190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
191 {
192 int i, cpu, me;
193 cpumask_var_t cpus;
194 bool called = true;
195 bool wait = req & KVM_REQUEST_WAIT;
196 struct kvm_vcpu *vcpu;
197
198 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
199
200 me = get_cpu();
201 kvm_for_each_vcpu(i, vcpu, kvm) {
202 kvm_make_request(req, vcpu);
203 cpu = vcpu->cpu;
204
205 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
206 continue;
207
208 if (cpus != NULL && cpu != -1 && cpu != me &&
209 kvm_request_needs_ipi(vcpu, req))
210 cpumask_set_cpu(cpu, cpus);
211 }
212 if (unlikely(cpus == NULL))
213 smp_call_function_many(cpu_online_mask, ack_flush, NULL, wait);
214 else if (!cpumask_empty(cpus))
215 smp_call_function_many(cpus, ack_flush, NULL, wait);
216 else
217 called = false;
218 put_cpu();
219 free_cpumask_var(cpus);
220 return called;
221 }
222
223 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
224 void kvm_flush_remote_tlbs(struct kvm *kvm)
225 {
226 /*
227 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
228 * kvm_make_all_cpus_request.
229 */
230 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
231
232 /*
233 * We want to publish modifications to the page tables before reading
234 * mode. Pairs with a memory barrier in arch-specific code.
235 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
236 * and smp_mb in walk_shadow_page_lockless_begin/end.
237 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
238 *
239 * There is already an smp_mb__after_atomic() before
240 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
241 * barrier here.
242 */
243 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
244 ++kvm->stat.remote_tlb_flush;
245 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
246 }
247 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
248 #endif
249
250 void kvm_reload_remote_mmus(struct kvm *kvm)
251 {
252 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
253 }
254
255 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
256 {
257 struct page *page;
258 int r;
259
260 mutex_init(&vcpu->mutex);
261 vcpu->cpu = -1;
262 vcpu->kvm = kvm;
263 vcpu->vcpu_id = id;
264 vcpu->pid = NULL;
265 init_swait_queue_head(&vcpu->wq);
266 kvm_async_pf_vcpu_init(vcpu);
267
268 vcpu->pre_pcpu = -1;
269 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
270
271 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
272 if (!page) {
273 r = -ENOMEM;
274 goto fail;
275 }
276 vcpu->run = page_address(page);
277
278 kvm_vcpu_set_in_spin_loop(vcpu, false);
279 kvm_vcpu_set_dy_eligible(vcpu, false);
280 vcpu->preempted = false;
281
282 r = kvm_arch_vcpu_init(vcpu);
283 if (r < 0)
284 goto fail_free_run;
285 return 0;
286
287 fail_free_run:
288 free_page((unsigned long)vcpu->run);
289 fail:
290 return r;
291 }
292 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
293
294 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
295 {
296 put_pid(vcpu->pid);
297 kvm_arch_vcpu_uninit(vcpu);
298 free_page((unsigned long)vcpu->run);
299 }
300 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
301
302 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
303 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
304 {
305 return container_of(mn, struct kvm, mmu_notifier);
306 }
307
308 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
309 struct mm_struct *mm,
310 unsigned long address)
311 {
312 struct kvm *kvm = mmu_notifier_to_kvm(mn);
313 int need_tlb_flush, idx;
314
315 /*
316 * When ->invalidate_page runs, the linux pte has been zapped
317 * already but the page is still allocated until
318 * ->invalidate_page returns. So if we increase the sequence
319 * here the kvm page fault will notice if the spte can't be
320 * established because the page is going to be freed. If
321 * instead the kvm page fault establishes the spte before
322 * ->invalidate_page runs, kvm_unmap_hva will release it
323 * before returning.
324 *
325 * The sequence increase only need to be seen at spin_unlock
326 * time, and not at spin_lock time.
327 *
328 * Increasing the sequence after the spin_unlock would be
329 * unsafe because the kvm page fault could then establish the
330 * pte after kvm_unmap_hva returned, without noticing the page
331 * is going to be freed.
332 */
333 idx = srcu_read_lock(&kvm->srcu);
334 spin_lock(&kvm->mmu_lock);
335
336 kvm->mmu_notifier_seq++;
337 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
338 /* we've to flush the tlb before the pages can be freed */
339 if (need_tlb_flush)
340 kvm_flush_remote_tlbs(kvm);
341
342 spin_unlock(&kvm->mmu_lock);
343
344 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
345
346 srcu_read_unlock(&kvm->srcu, idx);
347 }
348
349 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
350 struct mm_struct *mm,
351 unsigned long address,
352 pte_t pte)
353 {
354 struct kvm *kvm = mmu_notifier_to_kvm(mn);
355 int idx;
356
357 idx = srcu_read_lock(&kvm->srcu);
358 spin_lock(&kvm->mmu_lock);
359 kvm->mmu_notifier_seq++;
360 kvm_set_spte_hva(kvm, address, pte);
361 spin_unlock(&kvm->mmu_lock);
362 srcu_read_unlock(&kvm->srcu, idx);
363 }
364
365 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
366 struct mm_struct *mm,
367 unsigned long start,
368 unsigned long end)
369 {
370 struct kvm *kvm = mmu_notifier_to_kvm(mn);
371 int need_tlb_flush = 0, idx;
372
373 idx = srcu_read_lock(&kvm->srcu);
374 spin_lock(&kvm->mmu_lock);
375 /*
376 * The count increase must become visible at unlock time as no
377 * spte can be established without taking the mmu_lock and
378 * count is also read inside the mmu_lock critical section.
379 */
380 kvm->mmu_notifier_count++;
381 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
382 need_tlb_flush |= kvm->tlbs_dirty;
383 /* we've to flush the tlb before the pages can be freed */
384 if (need_tlb_flush)
385 kvm_flush_remote_tlbs(kvm);
386
387 spin_unlock(&kvm->mmu_lock);
388 srcu_read_unlock(&kvm->srcu, idx);
389 }
390
391 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
392 struct mm_struct *mm,
393 unsigned long start,
394 unsigned long end)
395 {
396 struct kvm *kvm = mmu_notifier_to_kvm(mn);
397
398 spin_lock(&kvm->mmu_lock);
399 /*
400 * This sequence increase will notify the kvm page fault that
401 * the page that is going to be mapped in the spte could have
402 * been freed.
403 */
404 kvm->mmu_notifier_seq++;
405 smp_wmb();
406 /*
407 * The above sequence increase must be visible before the
408 * below count decrease, which is ensured by the smp_wmb above
409 * in conjunction with the smp_rmb in mmu_notifier_retry().
410 */
411 kvm->mmu_notifier_count--;
412 spin_unlock(&kvm->mmu_lock);
413
414 BUG_ON(kvm->mmu_notifier_count < 0);
415 }
416
417 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
418 struct mm_struct *mm,
419 unsigned long start,
420 unsigned long end)
421 {
422 struct kvm *kvm = mmu_notifier_to_kvm(mn);
423 int young, idx;
424
425 idx = srcu_read_lock(&kvm->srcu);
426 spin_lock(&kvm->mmu_lock);
427
428 young = kvm_age_hva(kvm, start, end);
429 if (young)
430 kvm_flush_remote_tlbs(kvm);
431
432 spin_unlock(&kvm->mmu_lock);
433 srcu_read_unlock(&kvm->srcu, idx);
434
435 return young;
436 }
437
438 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
439 struct mm_struct *mm,
440 unsigned long start,
441 unsigned long end)
442 {
443 struct kvm *kvm = mmu_notifier_to_kvm(mn);
444 int young, idx;
445
446 idx = srcu_read_lock(&kvm->srcu);
447 spin_lock(&kvm->mmu_lock);
448 /*
449 * Even though we do not flush TLB, this will still adversely
450 * affect performance on pre-Haswell Intel EPT, where there is
451 * no EPT Access Bit to clear so that we have to tear down EPT
452 * tables instead. If we find this unacceptable, we can always
453 * add a parameter to kvm_age_hva so that it effectively doesn't
454 * do anything on clear_young.
455 *
456 * Also note that currently we never issue secondary TLB flushes
457 * from clear_young, leaving this job up to the regular system
458 * cadence. If we find this inaccurate, we might come up with a
459 * more sophisticated heuristic later.
460 */
461 young = kvm_age_hva(kvm, start, end);
462 spin_unlock(&kvm->mmu_lock);
463 srcu_read_unlock(&kvm->srcu, idx);
464
465 return young;
466 }
467
468 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
469 struct mm_struct *mm,
470 unsigned long address)
471 {
472 struct kvm *kvm = mmu_notifier_to_kvm(mn);
473 int young, idx;
474
475 idx = srcu_read_lock(&kvm->srcu);
476 spin_lock(&kvm->mmu_lock);
477 young = kvm_test_age_hva(kvm, address);
478 spin_unlock(&kvm->mmu_lock);
479 srcu_read_unlock(&kvm->srcu, idx);
480
481 return young;
482 }
483
484 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
485 struct mm_struct *mm)
486 {
487 struct kvm *kvm = mmu_notifier_to_kvm(mn);
488 int idx;
489
490 idx = srcu_read_lock(&kvm->srcu);
491 kvm_arch_flush_shadow_all(kvm);
492 srcu_read_unlock(&kvm->srcu, idx);
493 }
494
495 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
496 .invalidate_page = kvm_mmu_notifier_invalidate_page,
497 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
498 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
499 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
500 .clear_young = kvm_mmu_notifier_clear_young,
501 .test_young = kvm_mmu_notifier_test_young,
502 .change_pte = kvm_mmu_notifier_change_pte,
503 .release = kvm_mmu_notifier_release,
504 };
505
506 static int kvm_init_mmu_notifier(struct kvm *kvm)
507 {
508 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
509 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
510 }
511
512 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
513
514 static int kvm_init_mmu_notifier(struct kvm *kvm)
515 {
516 return 0;
517 }
518
519 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
520
521 static struct kvm_memslots *kvm_alloc_memslots(void)
522 {
523 int i;
524 struct kvm_memslots *slots;
525
526 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
527 if (!slots)
528 return NULL;
529
530 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
531 slots->id_to_index[i] = slots->memslots[i].id = i;
532
533 return slots;
534 }
535
536 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
537 {
538 if (!memslot->dirty_bitmap)
539 return;
540
541 kvfree(memslot->dirty_bitmap);
542 memslot->dirty_bitmap = NULL;
543 }
544
545 /*
546 * Free any memory in @free but not in @dont.
547 */
548 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
549 struct kvm_memory_slot *dont)
550 {
551 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
552 kvm_destroy_dirty_bitmap(free);
553
554 kvm_arch_free_memslot(kvm, free, dont);
555
556 free->npages = 0;
557 }
558
559 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
560 {
561 struct kvm_memory_slot *memslot;
562
563 if (!slots)
564 return;
565
566 kvm_for_each_memslot(memslot, slots)
567 kvm_free_memslot(kvm, memslot, NULL);
568
569 kvfree(slots);
570 }
571
572 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
573 {
574 int i;
575
576 if (!kvm->debugfs_dentry)
577 return;
578
579 debugfs_remove_recursive(kvm->debugfs_dentry);
580
581 if (kvm->debugfs_stat_data) {
582 for (i = 0; i < kvm_debugfs_num_entries; i++)
583 kfree(kvm->debugfs_stat_data[i]);
584 kfree(kvm->debugfs_stat_data);
585 }
586 }
587
588 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
589 {
590 char dir_name[ITOA_MAX_LEN * 2];
591 struct kvm_stat_data *stat_data;
592 struct kvm_stats_debugfs_item *p;
593
594 if (!debugfs_initialized())
595 return 0;
596
597 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
598 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
599 kvm_debugfs_dir);
600 if (!kvm->debugfs_dentry)
601 return -ENOMEM;
602
603 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
604 sizeof(*kvm->debugfs_stat_data),
605 GFP_KERNEL);
606 if (!kvm->debugfs_stat_data)
607 return -ENOMEM;
608
609 for (p = debugfs_entries; p->name; p++) {
610 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
611 if (!stat_data)
612 return -ENOMEM;
613
614 stat_data->kvm = kvm;
615 stat_data->offset = p->offset;
616 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
617 if (!debugfs_create_file(p->name, 0644,
618 kvm->debugfs_dentry,
619 stat_data,
620 stat_fops_per_vm[p->kind]))
621 return -ENOMEM;
622 }
623 return 0;
624 }
625
626 static struct kvm *kvm_create_vm(unsigned long type)
627 {
628 int r, i;
629 struct kvm *kvm = kvm_arch_alloc_vm();
630
631 if (!kvm)
632 return ERR_PTR(-ENOMEM);
633
634 spin_lock_init(&kvm->mmu_lock);
635 mmgrab(current->mm);
636 kvm->mm = current->mm;
637 kvm_eventfd_init(kvm);
638 mutex_init(&kvm->lock);
639 mutex_init(&kvm->irq_lock);
640 mutex_init(&kvm->slots_lock);
641 refcount_set(&kvm->users_count, 1);
642 INIT_LIST_HEAD(&kvm->devices);
643
644 r = kvm_arch_init_vm(kvm, type);
645 if (r)
646 goto out_err_no_disable;
647
648 r = hardware_enable_all();
649 if (r)
650 goto out_err_no_disable;
651
652 #ifdef CONFIG_HAVE_KVM_IRQFD
653 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
654 #endif
655
656 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
657
658 r = -ENOMEM;
659 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
660 struct kvm_memslots *slots = kvm_alloc_memslots();
661 if (!slots)
662 goto out_err_no_srcu;
663 /*
664 * Generations must be different for each address space.
665 * Init kvm generation close to the maximum to easily test the
666 * code of handling generation number wrap-around.
667 */
668 slots->generation = i * 2 - 150;
669 rcu_assign_pointer(kvm->memslots[i], slots);
670 }
671
672 if (init_srcu_struct(&kvm->srcu))
673 goto out_err_no_srcu;
674 if (init_srcu_struct(&kvm->irq_srcu))
675 goto out_err_no_irq_srcu;
676 for (i = 0; i < KVM_NR_BUSES; i++) {
677 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
678 GFP_KERNEL);
679 if (!kvm->buses[i])
680 goto out_err;
681 }
682
683 r = kvm_init_mmu_notifier(kvm);
684 if (r)
685 goto out_err;
686
687 spin_lock(&kvm_lock);
688 list_add(&kvm->vm_list, &vm_list);
689 spin_unlock(&kvm_lock);
690
691 preempt_notifier_inc();
692
693 return kvm;
694
695 out_err:
696 cleanup_srcu_struct(&kvm->irq_srcu);
697 out_err_no_irq_srcu:
698 cleanup_srcu_struct(&kvm->srcu);
699 out_err_no_srcu:
700 hardware_disable_all();
701 out_err_no_disable:
702 for (i = 0; i < KVM_NR_BUSES; i++)
703 kfree(kvm->buses[i]);
704 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
705 kvm_free_memslots(kvm, kvm->memslots[i]);
706 kvm_arch_free_vm(kvm);
707 mmdrop(current->mm);
708 return ERR_PTR(r);
709 }
710
711 static void kvm_destroy_devices(struct kvm *kvm)
712 {
713 struct kvm_device *dev, *tmp;
714
715 /*
716 * We do not need to take the kvm->lock here, because nobody else
717 * has a reference to the struct kvm at this point and therefore
718 * cannot access the devices list anyhow.
719 */
720 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
721 list_del(&dev->vm_node);
722 dev->ops->destroy(dev);
723 }
724 }
725
726 static void kvm_destroy_vm(struct kvm *kvm)
727 {
728 int i;
729 struct mm_struct *mm = kvm->mm;
730
731 kvm_destroy_vm_debugfs(kvm);
732 kvm_arch_sync_events(kvm);
733 spin_lock(&kvm_lock);
734 list_del(&kvm->vm_list);
735 spin_unlock(&kvm_lock);
736 kvm_free_irq_routing(kvm);
737 for (i = 0; i < KVM_NR_BUSES; i++) {
738 if (kvm->buses[i])
739 kvm_io_bus_destroy(kvm->buses[i]);
740 kvm->buses[i] = NULL;
741 }
742 kvm_coalesced_mmio_free(kvm);
743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
744 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
745 #else
746 kvm_arch_flush_shadow_all(kvm);
747 #endif
748 kvm_arch_destroy_vm(kvm);
749 kvm_destroy_devices(kvm);
750 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
751 kvm_free_memslots(kvm, kvm->memslots[i]);
752 cleanup_srcu_struct(&kvm->irq_srcu);
753 cleanup_srcu_struct(&kvm->srcu);
754 kvm_arch_free_vm(kvm);
755 preempt_notifier_dec();
756 hardware_disable_all();
757 mmdrop(mm);
758 }
759
760 void kvm_get_kvm(struct kvm *kvm)
761 {
762 refcount_inc(&kvm->users_count);
763 }
764 EXPORT_SYMBOL_GPL(kvm_get_kvm);
765
766 void kvm_put_kvm(struct kvm *kvm)
767 {
768 if (refcount_dec_and_test(&kvm->users_count))
769 kvm_destroy_vm(kvm);
770 }
771 EXPORT_SYMBOL_GPL(kvm_put_kvm);
772
773
774 static int kvm_vm_release(struct inode *inode, struct file *filp)
775 {
776 struct kvm *kvm = filp->private_data;
777
778 kvm_irqfd_release(kvm);
779
780 kvm_put_kvm(kvm);
781 return 0;
782 }
783
784 /*
785 * Allocation size is twice as large as the actual dirty bitmap size.
786 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
787 */
788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
789 {
790 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
791
792 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
793 if (!memslot->dirty_bitmap)
794 return -ENOMEM;
795
796 return 0;
797 }
798
799 /*
800 * Insert memslot and re-sort memslots based on their GFN,
801 * so binary search could be used to lookup GFN.
802 * Sorting algorithm takes advantage of having initially
803 * sorted array and known changed memslot position.
804 */
805 static void update_memslots(struct kvm_memslots *slots,
806 struct kvm_memory_slot *new)
807 {
808 int id = new->id;
809 int i = slots->id_to_index[id];
810 struct kvm_memory_slot *mslots = slots->memslots;
811
812 WARN_ON(mslots[i].id != id);
813 if (!new->npages) {
814 WARN_ON(!mslots[i].npages);
815 if (mslots[i].npages)
816 slots->used_slots--;
817 } else {
818 if (!mslots[i].npages)
819 slots->used_slots++;
820 }
821
822 while (i < KVM_MEM_SLOTS_NUM - 1 &&
823 new->base_gfn <= mslots[i + 1].base_gfn) {
824 if (!mslots[i + 1].npages)
825 break;
826 mslots[i] = mslots[i + 1];
827 slots->id_to_index[mslots[i].id] = i;
828 i++;
829 }
830
831 /*
832 * The ">=" is needed when creating a slot with base_gfn == 0,
833 * so that it moves before all those with base_gfn == npages == 0.
834 *
835 * On the other hand, if new->npages is zero, the above loop has
836 * already left i pointing to the beginning of the empty part of
837 * mslots, and the ">=" would move the hole backwards in this
838 * case---which is wrong. So skip the loop when deleting a slot.
839 */
840 if (new->npages) {
841 while (i > 0 &&
842 new->base_gfn >= mslots[i - 1].base_gfn) {
843 mslots[i] = mslots[i - 1];
844 slots->id_to_index[mslots[i].id] = i;
845 i--;
846 }
847 } else
848 WARN_ON_ONCE(i != slots->used_slots);
849
850 mslots[i] = *new;
851 slots->id_to_index[mslots[i].id] = i;
852 }
853
854 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
855 {
856 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
857
858 #ifdef __KVM_HAVE_READONLY_MEM
859 valid_flags |= KVM_MEM_READONLY;
860 #endif
861
862 if (mem->flags & ~valid_flags)
863 return -EINVAL;
864
865 return 0;
866 }
867
868 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
869 int as_id, struct kvm_memslots *slots)
870 {
871 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
872
873 /*
874 * Set the low bit in the generation, which disables SPTE caching
875 * until the end of synchronize_srcu_expedited.
876 */
877 WARN_ON(old_memslots->generation & 1);
878 slots->generation = old_memslots->generation + 1;
879
880 rcu_assign_pointer(kvm->memslots[as_id], slots);
881 synchronize_srcu_expedited(&kvm->srcu);
882
883 /*
884 * Increment the new memslot generation a second time. This prevents
885 * vm exits that race with memslot updates from caching a memslot
886 * generation that will (potentially) be valid forever.
887 *
888 * Generations must be unique even across address spaces. We do not need
889 * a global counter for that, instead the generation space is evenly split
890 * across address spaces. For example, with two address spaces, address
891 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
892 * use generations 2, 6, 10, 14, ...
893 */
894 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
895
896 kvm_arch_memslots_updated(kvm, slots);
897
898 return old_memslots;
899 }
900
901 /*
902 * Allocate some memory and give it an address in the guest physical address
903 * space.
904 *
905 * Discontiguous memory is allowed, mostly for framebuffers.
906 *
907 * Must be called holding kvm->slots_lock for write.
908 */
909 int __kvm_set_memory_region(struct kvm *kvm,
910 const struct kvm_userspace_memory_region *mem)
911 {
912 int r;
913 gfn_t base_gfn;
914 unsigned long npages;
915 struct kvm_memory_slot *slot;
916 struct kvm_memory_slot old, new;
917 struct kvm_memslots *slots = NULL, *old_memslots;
918 int as_id, id;
919 enum kvm_mr_change change;
920
921 r = check_memory_region_flags(mem);
922 if (r)
923 goto out;
924
925 r = -EINVAL;
926 as_id = mem->slot >> 16;
927 id = (u16)mem->slot;
928
929 /* General sanity checks */
930 if (mem->memory_size & (PAGE_SIZE - 1))
931 goto out;
932 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
933 goto out;
934 /* We can read the guest memory with __xxx_user() later on. */
935 if ((id < KVM_USER_MEM_SLOTS) &&
936 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
937 !access_ok(VERIFY_WRITE,
938 (void __user *)(unsigned long)mem->userspace_addr,
939 mem->memory_size)))
940 goto out;
941 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
942 goto out;
943 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
944 goto out;
945
946 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
947 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
948 npages = mem->memory_size >> PAGE_SHIFT;
949
950 if (npages > KVM_MEM_MAX_NR_PAGES)
951 goto out;
952
953 new = old = *slot;
954
955 new.id = id;
956 new.base_gfn = base_gfn;
957 new.npages = npages;
958 new.flags = mem->flags;
959
960 if (npages) {
961 if (!old.npages)
962 change = KVM_MR_CREATE;
963 else { /* Modify an existing slot. */
964 if ((mem->userspace_addr != old.userspace_addr) ||
965 (npages != old.npages) ||
966 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
967 goto out;
968
969 if (base_gfn != old.base_gfn)
970 change = KVM_MR_MOVE;
971 else if (new.flags != old.flags)
972 change = KVM_MR_FLAGS_ONLY;
973 else { /* Nothing to change. */
974 r = 0;
975 goto out;
976 }
977 }
978 } else {
979 if (!old.npages)
980 goto out;
981
982 change = KVM_MR_DELETE;
983 new.base_gfn = 0;
984 new.flags = 0;
985 }
986
987 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
988 /* Check for overlaps */
989 r = -EEXIST;
990 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
991 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
992 (slot->id == id))
993 continue;
994 if (!((base_gfn + npages <= slot->base_gfn) ||
995 (base_gfn >= slot->base_gfn + slot->npages)))
996 goto out;
997 }
998 }
999
1000 /* Free page dirty bitmap if unneeded */
1001 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1002 new.dirty_bitmap = NULL;
1003
1004 r = -ENOMEM;
1005 if (change == KVM_MR_CREATE) {
1006 new.userspace_addr = mem->userspace_addr;
1007
1008 if (kvm_arch_create_memslot(kvm, &new, npages))
1009 goto out_free;
1010 }
1011
1012 /* Allocate page dirty bitmap if needed */
1013 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1014 if (kvm_create_dirty_bitmap(&new) < 0)
1015 goto out_free;
1016 }
1017
1018 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1019 if (!slots)
1020 goto out_free;
1021 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1022
1023 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1024 slot = id_to_memslot(slots, id);
1025 slot->flags |= KVM_MEMSLOT_INVALID;
1026
1027 old_memslots = install_new_memslots(kvm, as_id, slots);
1028
1029 /* From this point no new shadow pages pointing to a deleted,
1030 * or moved, memslot will be created.
1031 *
1032 * validation of sp->gfn happens in:
1033 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1034 * - kvm_is_visible_gfn (mmu_check_roots)
1035 */
1036 kvm_arch_flush_shadow_memslot(kvm, slot);
1037
1038 /*
1039 * We can re-use the old_memslots from above, the only difference
1040 * from the currently installed memslots is the invalid flag. This
1041 * will get overwritten by update_memslots anyway.
1042 */
1043 slots = old_memslots;
1044 }
1045
1046 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1047 if (r)
1048 goto out_slots;
1049
1050 /* actual memory is freed via old in kvm_free_memslot below */
1051 if (change == KVM_MR_DELETE) {
1052 new.dirty_bitmap = NULL;
1053 memset(&new.arch, 0, sizeof(new.arch));
1054 }
1055
1056 update_memslots(slots, &new);
1057 old_memslots = install_new_memslots(kvm, as_id, slots);
1058
1059 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1060
1061 kvm_free_memslot(kvm, &old, &new);
1062 kvfree(old_memslots);
1063 return 0;
1064
1065 out_slots:
1066 kvfree(slots);
1067 out_free:
1068 kvm_free_memslot(kvm, &new, &old);
1069 out:
1070 return r;
1071 }
1072 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1073
1074 int kvm_set_memory_region(struct kvm *kvm,
1075 const struct kvm_userspace_memory_region *mem)
1076 {
1077 int r;
1078
1079 mutex_lock(&kvm->slots_lock);
1080 r = __kvm_set_memory_region(kvm, mem);
1081 mutex_unlock(&kvm->slots_lock);
1082 return r;
1083 }
1084 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1085
1086 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1087 struct kvm_userspace_memory_region *mem)
1088 {
1089 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1090 return -EINVAL;
1091
1092 return kvm_set_memory_region(kvm, mem);
1093 }
1094
1095 int kvm_get_dirty_log(struct kvm *kvm,
1096 struct kvm_dirty_log *log, int *is_dirty)
1097 {
1098 struct kvm_memslots *slots;
1099 struct kvm_memory_slot *memslot;
1100 int i, as_id, id;
1101 unsigned long n;
1102 unsigned long any = 0;
1103
1104 as_id = log->slot >> 16;
1105 id = (u16)log->slot;
1106 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1107 return -EINVAL;
1108
1109 slots = __kvm_memslots(kvm, as_id);
1110 memslot = id_to_memslot(slots, id);
1111 if (!memslot->dirty_bitmap)
1112 return -ENOENT;
1113
1114 n = kvm_dirty_bitmap_bytes(memslot);
1115
1116 for (i = 0; !any && i < n/sizeof(long); ++i)
1117 any = memslot->dirty_bitmap[i];
1118
1119 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1120 return -EFAULT;
1121
1122 if (any)
1123 *is_dirty = 1;
1124 return 0;
1125 }
1126 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1127
1128 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1129 /**
1130 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1131 * are dirty write protect them for next write.
1132 * @kvm: pointer to kvm instance
1133 * @log: slot id and address to which we copy the log
1134 * @is_dirty: flag set if any page is dirty
1135 *
1136 * We need to keep it in mind that VCPU threads can write to the bitmap
1137 * concurrently. So, to avoid losing track of dirty pages we keep the
1138 * following order:
1139 *
1140 * 1. Take a snapshot of the bit and clear it if needed.
1141 * 2. Write protect the corresponding page.
1142 * 3. Copy the snapshot to the userspace.
1143 * 4. Upon return caller flushes TLB's if needed.
1144 *
1145 * Between 2 and 4, the guest may write to the page using the remaining TLB
1146 * entry. This is not a problem because the page is reported dirty using
1147 * the snapshot taken before and step 4 ensures that writes done after
1148 * exiting to userspace will be logged for the next call.
1149 *
1150 */
1151 int kvm_get_dirty_log_protect(struct kvm *kvm,
1152 struct kvm_dirty_log *log, bool *is_dirty)
1153 {
1154 struct kvm_memslots *slots;
1155 struct kvm_memory_slot *memslot;
1156 int i, as_id, id;
1157 unsigned long n;
1158 unsigned long *dirty_bitmap;
1159 unsigned long *dirty_bitmap_buffer;
1160
1161 as_id = log->slot >> 16;
1162 id = (u16)log->slot;
1163 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1164 return -EINVAL;
1165
1166 slots = __kvm_memslots(kvm, as_id);
1167 memslot = id_to_memslot(slots, id);
1168
1169 dirty_bitmap = memslot->dirty_bitmap;
1170 if (!dirty_bitmap)
1171 return -ENOENT;
1172
1173 n = kvm_dirty_bitmap_bytes(memslot);
1174
1175 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1176 memset(dirty_bitmap_buffer, 0, n);
1177
1178 spin_lock(&kvm->mmu_lock);
1179 *is_dirty = false;
1180 for (i = 0; i < n / sizeof(long); i++) {
1181 unsigned long mask;
1182 gfn_t offset;
1183
1184 if (!dirty_bitmap[i])
1185 continue;
1186
1187 *is_dirty = true;
1188
1189 mask = xchg(&dirty_bitmap[i], 0);
1190 dirty_bitmap_buffer[i] = mask;
1191
1192 if (mask) {
1193 offset = i * BITS_PER_LONG;
1194 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1195 offset, mask);
1196 }
1197 }
1198
1199 spin_unlock(&kvm->mmu_lock);
1200 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1201 return -EFAULT;
1202 return 0;
1203 }
1204 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1205 #endif
1206
1207 bool kvm_largepages_enabled(void)
1208 {
1209 return largepages_enabled;
1210 }
1211
1212 void kvm_disable_largepages(void)
1213 {
1214 largepages_enabled = false;
1215 }
1216 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1217
1218 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1219 {
1220 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1221 }
1222 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1223
1224 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1225 {
1226 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1227 }
1228
1229 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1230 {
1231 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1232
1233 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1234 memslot->flags & KVM_MEMSLOT_INVALID)
1235 return false;
1236
1237 return true;
1238 }
1239 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1240
1241 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1242 {
1243 struct vm_area_struct *vma;
1244 unsigned long addr, size;
1245
1246 size = PAGE_SIZE;
1247
1248 addr = gfn_to_hva(kvm, gfn);
1249 if (kvm_is_error_hva(addr))
1250 return PAGE_SIZE;
1251
1252 down_read(&current->mm->mmap_sem);
1253 vma = find_vma(current->mm, addr);
1254 if (!vma)
1255 goto out;
1256
1257 size = vma_kernel_pagesize(vma);
1258
1259 out:
1260 up_read(&current->mm->mmap_sem);
1261
1262 return size;
1263 }
1264
1265 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1266 {
1267 return slot->flags & KVM_MEM_READONLY;
1268 }
1269
1270 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1271 gfn_t *nr_pages, bool write)
1272 {
1273 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1274 return KVM_HVA_ERR_BAD;
1275
1276 if (memslot_is_readonly(slot) && write)
1277 return KVM_HVA_ERR_RO_BAD;
1278
1279 if (nr_pages)
1280 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1281
1282 return __gfn_to_hva_memslot(slot, gfn);
1283 }
1284
1285 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1286 gfn_t *nr_pages)
1287 {
1288 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1289 }
1290
1291 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1292 gfn_t gfn)
1293 {
1294 return gfn_to_hva_many(slot, gfn, NULL);
1295 }
1296 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1297
1298 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1299 {
1300 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_hva);
1303
1304 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1305 {
1306 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1307 }
1308 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1309
1310 /*
1311 * If writable is set to false, the hva returned by this function is only
1312 * allowed to be read.
1313 */
1314 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1315 gfn_t gfn, bool *writable)
1316 {
1317 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1318
1319 if (!kvm_is_error_hva(hva) && writable)
1320 *writable = !memslot_is_readonly(slot);
1321
1322 return hva;
1323 }
1324
1325 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1326 {
1327 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1328
1329 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1330 }
1331
1332 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1333 {
1334 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1335
1336 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338
1339 static int get_user_page_nowait(unsigned long start, int write,
1340 struct page **page)
1341 {
1342 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1343
1344 if (write)
1345 flags |= FOLL_WRITE;
1346
1347 return get_user_pages(start, 1, flags, page, NULL);
1348 }
1349
1350 static inline int check_user_page_hwpoison(unsigned long addr)
1351 {
1352 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1353
1354 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1355 return rc == -EHWPOISON;
1356 }
1357
1358 /*
1359 * The atomic path to get the writable pfn which will be stored in @pfn,
1360 * true indicates success, otherwise false is returned.
1361 */
1362 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1363 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1364 {
1365 struct page *page[1];
1366 int npages;
1367
1368 if (!(async || atomic))
1369 return false;
1370
1371 /*
1372 * Fast pin a writable pfn only if it is a write fault request
1373 * or the caller allows to map a writable pfn for a read fault
1374 * request.
1375 */
1376 if (!(write_fault || writable))
1377 return false;
1378
1379 npages = __get_user_pages_fast(addr, 1, 1, page);
1380 if (npages == 1) {
1381 *pfn = page_to_pfn(page[0]);
1382
1383 if (writable)
1384 *writable = true;
1385 return true;
1386 }
1387
1388 return false;
1389 }
1390
1391 /*
1392 * The slow path to get the pfn of the specified host virtual address,
1393 * 1 indicates success, -errno is returned if error is detected.
1394 */
1395 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1396 bool *writable, kvm_pfn_t *pfn)
1397 {
1398 struct page *page[1];
1399 int npages = 0;
1400
1401 might_sleep();
1402
1403 if (writable)
1404 *writable = write_fault;
1405
1406 if (async) {
1407 down_read(&current->mm->mmap_sem);
1408 npages = get_user_page_nowait(addr, write_fault, page);
1409 up_read(&current->mm->mmap_sem);
1410 } else {
1411 unsigned int flags = FOLL_HWPOISON;
1412
1413 if (write_fault)
1414 flags |= FOLL_WRITE;
1415
1416 npages = get_user_pages_unlocked(addr, 1, page, flags);
1417 }
1418 if (npages != 1)
1419 return npages;
1420
1421 /* map read fault as writable if possible */
1422 if (unlikely(!write_fault) && writable) {
1423 struct page *wpage[1];
1424
1425 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1426 if (npages == 1) {
1427 *writable = true;
1428 put_page(page[0]);
1429 page[0] = wpage[0];
1430 }
1431
1432 npages = 1;
1433 }
1434 *pfn = page_to_pfn(page[0]);
1435 return npages;
1436 }
1437
1438 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1439 {
1440 if (unlikely(!(vma->vm_flags & VM_READ)))
1441 return false;
1442
1443 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1444 return false;
1445
1446 return true;
1447 }
1448
1449 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1450 unsigned long addr, bool *async,
1451 bool write_fault, kvm_pfn_t *p_pfn)
1452 {
1453 unsigned long pfn;
1454 int r;
1455
1456 r = follow_pfn(vma, addr, &pfn);
1457 if (r) {
1458 /*
1459 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1460 * not call the fault handler, so do it here.
1461 */
1462 bool unlocked = false;
1463 r = fixup_user_fault(current, current->mm, addr,
1464 (write_fault ? FAULT_FLAG_WRITE : 0),
1465 &unlocked);
1466 if (unlocked)
1467 return -EAGAIN;
1468 if (r)
1469 return r;
1470
1471 r = follow_pfn(vma, addr, &pfn);
1472 if (r)
1473 return r;
1474
1475 }
1476
1477
1478 /*
1479 * Get a reference here because callers of *hva_to_pfn* and
1480 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1481 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1482 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1483 * simply do nothing for reserved pfns.
1484 *
1485 * Whoever called remap_pfn_range is also going to call e.g.
1486 * unmap_mapping_range before the underlying pages are freed,
1487 * causing a call to our MMU notifier.
1488 */
1489 kvm_get_pfn(pfn);
1490
1491 *p_pfn = pfn;
1492 return 0;
1493 }
1494
1495 /*
1496 * Pin guest page in memory and return its pfn.
1497 * @addr: host virtual address which maps memory to the guest
1498 * @atomic: whether this function can sleep
1499 * @async: whether this function need to wait IO complete if the
1500 * host page is not in the memory
1501 * @write_fault: whether we should get a writable host page
1502 * @writable: whether it allows to map a writable host page for !@write_fault
1503 *
1504 * The function will map a writable host page for these two cases:
1505 * 1): @write_fault = true
1506 * 2): @write_fault = false && @writable, @writable will tell the caller
1507 * whether the mapping is writable.
1508 */
1509 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1510 bool write_fault, bool *writable)
1511 {
1512 struct vm_area_struct *vma;
1513 kvm_pfn_t pfn = 0;
1514 int npages, r;
1515
1516 /* we can do it either atomically or asynchronously, not both */
1517 BUG_ON(atomic && async);
1518
1519 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1520 return pfn;
1521
1522 if (atomic)
1523 return KVM_PFN_ERR_FAULT;
1524
1525 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1526 if (npages == 1)
1527 return pfn;
1528
1529 down_read(&current->mm->mmap_sem);
1530 if (npages == -EHWPOISON ||
1531 (!async && check_user_page_hwpoison(addr))) {
1532 pfn = KVM_PFN_ERR_HWPOISON;
1533 goto exit;
1534 }
1535
1536 retry:
1537 vma = find_vma_intersection(current->mm, addr, addr + 1);
1538
1539 if (vma == NULL)
1540 pfn = KVM_PFN_ERR_FAULT;
1541 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1542 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1543 if (r == -EAGAIN)
1544 goto retry;
1545 if (r < 0)
1546 pfn = KVM_PFN_ERR_FAULT;
1547 } else {
1548 if (async && vma_is_valid(vma, write_fault))
1549 *async = true;
1550 pfn = KVM_PFN_ERR_FAULT;
1551 }
1552 exit:
1553 up_read(&current->mm->mmap_sem);
1554 return pfn;
1555 }
1556
1557 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1558 bool atomic, bool *async, bool write_fault,
1559 bool *writable)
1560 {
1561 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1562
1563 if (addr == KVM_HVA_ERR_RO_BAD) {
1564 if (writable)
1565 *writable = false;
1566 return KVM_PFN_ERR_RO_FAULT;
1567 }
1568
1569 if (kvm_is_error_hva(addr)) {
1570 if (writable)
1571 *writable = false;
1572 return KVM_PFN_NOSLOT;
1573 }
1574
1575 /* Do not map writable pfn in the readonly memslot. */
1576 if (writable && memslot_is_readonly(slot)) {
1577 *writable = false;
1578 writable = NULL;
1579 }
1580
1581 return hva_to_pfn(addr, atomic, async, write_fault,
1582 writable);
1583 }
1584 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1585
1586 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1587 bool *writable)
1588 {
1589 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1590 write_fault, writable);
1591 }
1592 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1593
1594 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1595 {
1596 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1597 }
1598 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1599
1600 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1601 {
1602 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1603 }
1604 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1605
1606 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1607 {
1608 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1609 }
1610 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1611
1612 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1613 {
1614 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1615 }
1616 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1617
1618 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1619 {
1620 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1621 }
1622 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1623
1624 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1625 {
1626 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1627 }
1628 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1629
1630 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1631 struct page **pages, int nr_pages)
1632 {
1633 unsigned long addr;
1634 gfn_t entry;
1635
1636 addr = gfn_to_hva_many(slot, gfn, &entry);
1637 if (kvm_is_error_hva(addr))
1638 return -1;
1639
1640 if (entry < nr_pages)
1641 return 0;
1642
1643 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1644 }
1645 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1646
1647 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1648 {
1649 if (is_error_noslot_pfn(pfn))
1650 return KVM_ERR_PTR_BAD_PAGE;
1651
1652 if (kvm_is_reserved_pfn(pfn)) {
1653 WARN_ON(1);
1654 return KVM_ERR_PTR_BAD_PAGE;
1655 }
1656
1657 return pfn_to_page(pfn);
1658 }
1659
1660 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1661 {
1662 kvm_pfn_t pfn;
1663
1664 pfn = gfn_to_pfn(kvm, gfn);
1665
1666 return kvm_pfn_to_page(pfn);
1667 }
1668 EXPORT_SYMBOL_GPL(gfn_to_page);
1669
1670 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1671 {
1672 kvm_pfn_t pfn;
1673
1674 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1675
1676 return kvm_pfn_to_page(pfn);
1677 }
1678 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1679
1680 void kvm_release_page_clean(struct page *page)
1681 {
1682 WARN_ON(is_error_page(page));
1683
1684 kvm_release_pfn_clean(page_to_pfn(page));
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1687
1688 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1689 {
1690 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1691 put_page(pfn_to_page(pfn));
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1694
1695 void kvm_release_page_dirty(struct page *page)
1696 {
1697 WARN_ON(is_error_page(page));
1698
1699 kvm_release_pfn_dirty(page_to_pfn(page));
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1702
1703 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1704 {
1705 kvm_set_pfn_dirty(pfn);
1706 kvm_release_pfn_clean(pfn);
1707 }
1708
1709 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1710 {
1711 if (!kvm_is_reserved_pfn(pfn)) {
1712 struct page *page = pfn_to_page(pfn);
1713
1714 if (!PageReserved(page))
1715 SetPageDirty(page);
1716 }
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1719
1720 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1721 {
1722 if (!kvm_is_reserved_pfn(pfn))
1723 mark_page_accessed(pfn_to_page(pfn));
1724 }
1725 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1726
1727 void kvm_get_pfn(kvm_pfn_t pfn)
1728 {
1729 if (!kvm_is_reserved_pfn(pfn))
1730 get_page(pfn_to_page(pfn));
1731 }
1732 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1733
1734 static int next_segment(unsigned long len, int offset)
1735 {
1736 if (len > PAGE_SIZE - offset)
1737 return PAGE_SIZE - offset;
1738 else
1739 return len;
1740 }
1741
1742 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1743 void *data, int offset, int len)
1744 {
1745 int r;
1746 unsigned long addr;
1747
1748 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1749 if (kvm_is_error_hva(addr))
1750 return -EFAULT;
1751 r = __copy_from_user(data, (void __user *)addr + offset, len);
1752 if (r)
1753 return -EFAULT;
1754 return 0;
1755 }
1756
1757 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1758 int len)
1759 {
1760 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1761
1762 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1765
1766 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1767 int offset, int len)
1768 {
1769 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1770
1771 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1772 }
1773 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1774
1775 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1776 {
1777 gfn_t gfn = gpa >> PAGE_SHIFT;
1778 int seg;
1779 int offset = offset_in_page(gpa);
1780 int ret;
1781
1782 while ((seg = next_segment(len, offset)) != 0) {
1783 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1784 if (ret < 0)
1785 return ret;
1786 offset = 0;
1787 len -= seg;
1788 data += seg;
1789 ++gfn;
1790 }
1791 return 0;
1792 }
1793 EXPORT_SYMBOL_GPL(kvm_read_guest);
1794
1795 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1796 {
1797 gfn_t gfn = gpa >> PAGE_SHIFT;
1798 int seg;
1799 int offset = offset_in_page(gpa);
1800 int ret;
1801
1802 while ((seg = next_segment(len, offset)) != 0) {
1803 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1804 if (ret < 0)
1805 return ret;
1806 offset = 0;
1807 len -= seg;
1808 data += seg;
1809 ++gfn;
1810 }
1811 return 0;
1812 }
1813 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1814
1815 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1816 void *data, int offset, unsigned long len)
1817 {
1818 int r;
1819 unsigned long addr;
1820
1821 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1822 if (kvm_is_error_hva(addr))
1823 return -EFAULT;
1824 pagefault_disable();
1825 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1826 pagefault_enable();
1827 if (r)
1828 return -EFAULT;
1829 return 0;
1830 }
1831
1832 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1833 unsigned long len)
1834 {
1835 gfn_t gfn = gpa >> PAGE_SHIFT;
1836 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1837 int offset = offset_in_page(gpa);
1838
1839 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1840 }
1841 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1842
1843 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1844 void *data, unsigned long len)
1845 {
1846 gfn_t gfn = gpa >> PAGE_SHIFT;
1847 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1848 int offset = offset_in_page(gpa);
1849
1850 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1851 }
1852 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1853
1854 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1855 const void *data, int offset, int len)
1856 {
1857 int r;
1858 unsigned long addr;
1859
1860 addr = gfn_to_hva_memslot(memslot, gfn);
1861 if (kvm_is_error_hva(addr))
1862 return -EFAULT;
1863 r = __copy_to_user((void __user *)addr + offset, data, len);
1864 if (r)
1865 return -EFAULT;
1866 mark_page_dirty_in_slot(memslot, gfn);
1867 return 0;
1868 }
1869
1870 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1871 const void *data, int offset, int len)
1872 {
1873 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1874
1875 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1876 }
1877 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1878
1879 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1880 const void *data, int offset, int len)
1881 {
1882 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1883
1884 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1885 }
1886 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1887
1888 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1889 unsigned long len)
1890 {
1891 gfn_t gfn = gpa >> PAGE_SHIFT;
1892 int seg;
1893 int offset = offset_in_page(gpa);
1894 int ret;
1895
1896 while ((seg = next_segment(len, offset)) != 0) {
1897 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1898 if (ret < 0)
1899 return ret;
1900 offset = 0;
1901 len -= seg;
1902 data += seg;
1903 ++gfn;
1904 }
1905 return 0;
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_write_guest);
1908
1909 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1910 unsigned long len)
1911 {
1912 gfn_t gfn = gpa >> PAGE_SHIFT;
1913 int seg;
1914 int offset = offset_in_page(gpa);
1915 int ret;
1916
1917 while ((seg = next_segment(len, offset)) != 0) {
1918 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1919 if (ret < 0)
1920 return ret;
1921 offset = 0;
1922 len -= seg;
1923 data += seg;
1924 ++gfn;
1925 }
1926 return 0;
1927 }
1928 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1929
1930 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1931 struct gfn_to_hva_cache *ghc,
1932 gpa_t gpa, unsigned long len)
1933 {
1934 int offset = offset_in_page(gpa);
1935 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1936 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1937 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1938 gfn_t nr_pages_avail;
1939
1940 ghc->gpa = gpa;
1941 ghc->generation = slots->generation;
1942 ghc->len = len;
1943 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1944 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1945 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1946 ghc->hva += offset;
1947 } else {
1948 /*
1949 * If the requested region crosses two memslots, we still
1950 * verify that the entire region is valid here.
1951 */
1952 while (start_gfn <= end_gfn) {
1953 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1954 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1955 &nr_pages_avail);
1956 if (kvm_is_error_hva(ghc->hva))
1957 return -EFAULT;
1958 start_gfn += nr_pages_avail;
1959 }
1960 /* Use the slow path for cross page reads and writes. */
1961 ghc->memslot = NULL;
1962 }
1963 return 0;
1964 }
1965
1966 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1967 gpa_t gpa, unsigned long len)
1968 {
1969 struct kvm_memslots *slots = kvm_memslots(kvm);
1970 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1971 }
1972 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1973
1974 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1975 void *data, int offset, unsigned long len)
1976 {
1977 struct kvm_memslots *slots = kvm_memslots(kvm);
1978 int r;
1979 gpa_t gpa = ghc->gpa + offset;
1980
1981 BUG_ON(len + offset > ghc->len);
1982
1983 if (slots->generation != ghc->generation)
1984 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1985
1986 if (unlikely(!ghc->memslot))
1987 return kvm_write_guest(kvm, gpa, data, len);
1988
1989 if (kvm_is_error_hva(ghc->hva))
1990 return -EFAULT;
1991
1992 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1993 if (r)
1994 return -EFAULT;
1995 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1996
1997 return 0;
1998 }
1999 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2000
2001 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2002 void *data, unsigned long len)
2003 {
2004 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2005 }
2006 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2007
2008 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2009 void *data, unsigned long len)
2010 {
2011 struct kvm_memslots *slots = kvm_memslots(kvm);
2012 int r;
2013
2014 BUG_ON(len > ghc->len);
2015
2016 if (slots->generation != ghc->generation)
2017 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2018
2019 if (unlikely(!ghc->memslot))
2020 return kvm_read_guest(kvm, ghc->gpa, data, len);
2021
2022 if (kvm_is_error_hva(ghc->hva))
2023 return -EFAULT;
2024
2025 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2026 if (r)
2027 return -EFAULT;
2028
2029 return 0;
2030 }
2031 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2032
2033 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2034 {
2035 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2036
2037 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2038 }
2039 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2040
2041 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2042 {
2043 gfn_t gfn = gpa >> PAGE_SHIFT;
2044 int seg;
2045 int offset = offset_in_page(gpa);
2046 int ret;
2047
2048 while ((seg = next_segment(len, offset)) != 0) {
2049 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2050 if (ret < 0)
2051 return ret;
2052 offset = 0;
2053 len -= seg;
2054 ++gfn;
2055 }
2056 return 0;
2057 }
2058 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2059
2060 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2061 gfn_t gfn)
2062 {
2063 if (memslot && memslot->dirty_bitmap) {
2064 unsigned long rel_gfn = gfn - memslot->base_gfn;
2065
2066 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2067 }
2068 }
2069
2070 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2071 {
2072 struct kvm_memory_slot *memslot;
2073
2074 memslot = gfn_to_memslot(kvm, gfn);
2075 mark_page_dirty_in_slot(memslot, gfn);
2076 }
2077 EXPORT_SYMBOL_GPL(mark_page_dirty);
2078
2079 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2080 {
2081 struct kvm_memory_slot *memslot;
2082
2083 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2084 mark_page_dirty_in_slot(memslot, gfn);
2085 }
2086 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2087
2088 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2089 {
2090 unsigned int old, val, grow;
2091
2092 old = val = vcpu->halt_poll_ns;
2093 grow = READ_ONCE(halt_poll_ns_grow);
2094 /* 10us base */
2095 if (val == 0 && grow)
2096 val = 10000;
2097 else
2098 val *= grow;
2099
2100 if (val > halt_poll_ns)
2101 val = halt_poll_ns;
2102
2103 vcpu->halt_poll_ns = val;
2104 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2105 }
2106
2107 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2108 {
2109 unsigned int old, val, shrink;
2110
2111 old = val = vcpu->halt_poll_ns;
2112 shrink = READ_ONCE(halt_poll_ns_shrink);
2113 if (shrink == 0)
2114 val = 0;
2115 else
2116 val /= shrink;
2117
2118 vcpu->halt_poll_ns = val;
2119 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2120 }
2121
2122 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2123 {
2124 if (kvm_arch_vcpu_runnable(vcpu)) {
2125 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2126 return -EINTR;
2127 }
2128 if (kvm_cpu_has_pending_timer(vcpu))
2129 return -EINTR;
2130 if (signal_pending(current))
2131 return -EINTR;
2132
2133 return 0;
2134 }
2135
2136 /*
2137 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2138 */
2139 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2140 {
2141 ktime_t start, cur;
2142 DECLARE_SWAITQUEUE(wait);
2143 bool waited = false;
2144 u64 block_ns;
2145
2146 start = cur = ktime_get();
2147 if (vcpu->halt_poll_ns) {
2148 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2149
2150 ++vcpu->stat.halt_attempted_poll;
2151 do {
2152 /*
2153 * This sets KVM_REQ_UNHALT if an interrupt
2154 * arrives.
2155 */
2156 if (kvm_vcpu_check_block(vcpu) < 0) {
2157 ++vcpu->stat.halt_successful_poll;
2158 if (!vcpu_valid_wakeup(vcpu))
2159 ++vcpu->stat.halt_poll_invalid;
2160 goto out;
2161 }
2162 cur = ktime_get();
2163 } while (single_task_running() && ktime_before(cur, stop));
2164 }
2165
2166 kvm_arch_vcpu_blocking(vcpu);
2167
2168 for (;;) {
2169 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2170
2171 if (kvm_vcpu_check_block(vcpu) < 0)
2172 break;
2173
2174 waited = true;
2175 schedule();
2176 }
2177
2178 finish_swait(&vcpu->wq, &wait);
2179 cur = ktime_get();
2180
2181 kvm_arch_vcpu_unblocking(vcpu);
2182 out:
2183 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2184
2185 if (!vcpu_valid_wakeup(vcpu))
2186 shrink_halt_poll_ns(vcpu);
2187 else if (halt_poll_ns) {
2188 if (block_ns <= vcpu->halt_poll_ns)
2189 ;
2190 /* we had a long block, shrink polling */
2191 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2192 shrink_halt_poll_ns(vcpu);
2193 /* we had a short halt and our poll time is too small */
2194 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2195 block_ns < halt_poll_ns)
2196 grow_halt_poll_ns(vcpu);
2197 } else
2198 vcpu->halt_poll_ns = 0;
2199
2200 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2201 kvm_arch_vcpu_block_finish(vcpu);
2202 }
2203 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2204
2205 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2206 {
2207 struct swait_queue_head *wqp;
2208
2209 wqp = kvm_arch_vcpu_wq(vcpu);
2210 if (swait_active(wqp)) {
2211 swake_up(wqp);
2212 ++vcpu->stat.halt_wakeup;
2213 return true;
2214 }
2215
2216 return false;
2217 }
2218 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2219
2220 #ifndef CONFIG_S390
2221 /*
2222 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2223 */
2224 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2225 {
2226 int me;
2227 int cpu = vcpu->cpu;
2228
2229 if (kvm_vcpu_wake_up(vcpu))
2230 return;
2231
2232 me = get_cpu();
2233 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2234 if (kvm_arch_vcpu_should_kick(vcpu))
2235 smp_send_reschedule(cpu);
2236 put_cpu();
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2239 #endif /* !CONFIG_S390 */
2240
2241 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2242 {
2243 struct pid *pid;
2244 struct task_struct *task = NULL;
2245 int ret = 0;
2246
2247 rcu_read_lock();
2248 pid = rcu_dereference(target->pid);
2249 if (pid)
2250 task = get_pid_task(pid, PIDTYPE_PID);
2251 rcu_read_unlock();
2252 if (!task)
2253 return ret;
2254 ret = yield_to(task, 1);
2255 put_task_struct(task);
2256
2257 return ret;
2258 }
2259 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2260
2261 /*
2262 * Helper that checks whether a VCPU is eligible for directed yield.
2263 * Most eligible candidate to yield is decided by following heuristics:
2264 *
2265 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2266 * (preempted lock holder), indicated by @in_spin_loop.
2267 * Set at the beiginning and cleared at the end of interception/PLE handler.
2268 *
2269 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2270 * chance last time (mostly it has become eligible now since we have probably
2271 * yielded to lockholder in last iteration. This is done by toggling
2272 * @dy_eligible each time a VCPU checked for eligibility.)
2273 *
2274 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2275 * to preempted lock-holder could result in wrong VCPU selection and CPU
2276 * burning. Giving priority for a potential lock-holder increases lock
2277 * progress.
2278 *
2279 * Since algorithm is based on heuristics, accessing another VCPU data without
2280 * locking does not harm. It may result in trying to yield to same VCPU, fail
2281 * and continue with next VCPU and so on.
2282 */
2283 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2284 {
2285 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2286 bool eligible;
2287
2288 eligible = !vcpu->spin_loop.in_spin_loop ||
2289 vcpu->spin_loop.dy_eligible;
2290
2291 if (vcpu->spin_loop.in_spin_loop)
2292 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2293
2294 return eligible;
2295 #else
2296 return true;
2297 #endif
2298 }
2299
2300 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2301 {
2302 struct kvm *kvm = me->kvm;
2303 struct kvm_vcpu *vcpu;
2304 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2305 int yielded = 0;
2306 int try = 3;
2307 int pass;
2308 int i;
2309
2310 kvm_vcpu_set_in_spin_loop(me, true);
2311 /*
2312 * We boost the priority of a VCPU that is runnable but not
2313 * currently running, because it got preempted by something
2314 * else and called schedule in __vcpu_run. Hopefully that
2315 * VCPU is holding the lock that we need and will release it.
2316 * We approximate round-robin by starting at the last boosted VCPU.
2317 */
2318 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2319 kvm_for_each_vcpu(i, vcpu, kvm) {
2320 if (!pass && i <= last_boosted_vcpu) {
2321 i = last_boosted_vcpu;
2322 continue;
2323 } else if (pass && i > last_boosted_vcpu)
2324 break;
2325 if (!ACCESS_ONCE(vcpu->preempted))
2326 continue;
2327 if (vcpu == me)
2328 continue;
2329 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2330 continue;
2331 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2332 continue;
2333
2334 yielded = kvm_vcpu_yield_to(vcpu);
2335 if (yielded > 0) {
2336 kvm->last_boosted_vcpu = i;
2337 break;
2338 } else if (yielded < 0) {
2339 try--;
2340 if (!try)
2341 break;
2342 }
2343 }
2344 }
2345 kvm_vcpu_set_in_spin_loop(me, false);
2346
2347 /* Ensure vcpu is not eligible during next spinloop */
2348 kvm_vcpu_set_dy_eligible(me, false);
2349 }
2350 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2351
2352 static int kvm_vcpu_fault(struct vm_fault *vmf)
2353 {
2354 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2355 struct page *page;
2356
2357 if (vmf->pgoff == 0)
2358 page = virt_to_page(vcpu->run);
2359 #ifdef CONFIG_X86
2360 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2361 page = virt_to_page(vcpu->arch.pio_data);
2362 #endif
2363 #ifdef CONFIG_KVM_MMIO
2364 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2365 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2366 #endif
2367 else
2368 return kvm_arch_vcpu_fault(vcpu, vmf);
2369 get_page(page);
2370 vmf->page = page;
2371 return 0;
2372 }
2373
2374 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2375 .fault = kvm_vcpu_fault,
2376 };
2377
2378 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2379 {
2380 vma->vm_ops = &kvm_vcpu_vm_ops;
2381 return 0;
2382 }
2383
2384 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2385 {
2386 struct kvm_vcpu *vcpu = filp->private_data;
2387
2388 debugfs_remove_recursive(vcpu->debugfs_dentry);
2389 kvm_put_kvm(vcpu->kvm);
2390 return 0;
2391 }
2392
2393 static struct file_operations kvm_vcpu_fops = {
2394 .release = kvm_vcpu_release,
2395 .unlocked_ioctl = kvm_vcpu_ioctl,
2396 #ifdef CONFIG_KVM_COMPAT
2397 .compat_ioctl = kvm_vcpu_compat_ioctl,
2398 #endif
2399 .mmap = kvm_vcpu_mmap,
2400 .llseek = noop_llseek,
2401 };
2402
2403 /*
2404 * Allocates an inode for the vcpu.
2405 */
2406 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2407 {
2408 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2409 }
2410
2411 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2412 {
2413 char dir_name[ITOA_MAX_LEN * 2];
2414 int ret;
2415
2416 if (!kvm_arch_has_vcpu_debugfs())
2417 return 0;
2418
2419 if (!debugfs_initialized())
2420 return 0;
2421
2422 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2423 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2424 vcpu->kvm->debugfs_dentry);
2425 if (!vcpu->debugfs_dentry)
2426 return -ENOMEM;
2427
2428 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2429 if (ret < 0) {
2430 debugfs_remove_recursive(vcpu->debugfs_dentry);
2431 return ret;
2432 }
2433
2434 return 0;
2435 }
2436
2437 /*
2438 * Creates some virtual cpus. Good luck creating more than one.
2439 */
2440 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2441 {
2442 int r;
2443 struct kvm_vcpu *vcpu;
2444
2445 if (id >= KVM_MAX_VCPU_ID)
2446 return -EINVAL;
2447
2448 mutex_lock(&kvm->lock);
2449 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2450 mutex_unlock(&kvm->lock);
2451 return -EINVAL;
2452 }
2453
2454 kvm->created_vcpus++;
2455 mutex_unlock(&kvm->lock);
2456
2457 vcpu = kvm_arch_vcpu_create(kvm, id);
2458 if (IS_ERR(vcpu)) {
2459 r = PTR_ERR(vcpu);
2460 goto vcpu_decrement;
2461 }
2462
2463 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2464
2465 r = kvm_arch_vcpu_setup(vcpu);
2466 if (r)
2467 goto vcpu_destroy;
2468
2469 r = kvm_create_vcpu_debugfs(vcpu);
2470 if (r)
2471 goto vcpu_destroy;
2472
2473 mutex_lock(&kvm->lock);
2474 if (kvm_get_vcpu_by_id(kvm, id)) {
2475 r = -EEXIST;
2476 goto unlock_vcpu_destroy;
2477 }
2478
2479 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2480
2481 /* Now it's all set up, let userspace reach it */
2482 kvm_get_kvm(kvm);
2483 r = create_vcpu_fd(vcpu);
2484 if (r < 0) {
2485 kvm_put_kvm(kvm);
2486 goto unlock_vcpu_destroy;
2487 }
2488
2489 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2490
2491 /*
2492 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2493 * before kvm->online_vcpu's incremented value.
2494 */
2495 smp_wmb();
2496 atomic_inc(&kvm->online_vcpus);
2497
2498 mutex_unlock(&kvm->lock);
2499 kvm_arch_vcpu_postcreate(vcpu);
2500 return r;
2501
2502 unlock_vcpu_destroy:
2503 mutex_unlock(&kvm->lock);
2504 debugfs_remove_recursive(vcpu->debugfs_dentry);
2505 vcpu_destroy:
2506 kvm_arch_vcpu_destroy(vcpu);
2507 vcpu_decrement:
2508 mutex_lock(&kvm->lock);
2509 kvm->created_vcpus--;
2510 mutex_unlock(&kvm->lock);
2511 return r;
2512 }
2513
2514 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2515 {
2516 if (sigset) {
2517 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2518 vcpu->sigset_active = 1;
2519 vcpu->sigset = *sigset;
2520 } else
2521 vcpu->sigset_active = 0;
2522 return 0;
2523 }
2524
2525 static long kvm_vcpu_ioctl(struct file *filp,
2526 unsigned int ioctl, unsigned long arg)
2527 {
2528 struct kvm_vcpu *vcpu = filp->private_data;
2529 void __user *argp = (void __user *)arg;
2530 int r;
2531 struct kvm_fpu *fpu = NULL;
2532 struct kvm_sregs *kvm_sregs = NULL;
2533
2534 if (vcpu->kvm->mm != current->mm)
2535 return -EIO;
2536
2537 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2538 return -EINVAL;
2539
2540 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2541 /*
2542 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2543 * so vcpu_load() would break it.
2544 */
2545 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2546 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2547 #endif
2548
2549
2550 r = vcpu_load(vcpu);
2551 if (r)
2552 return r;
2553 switch (ioctl) {
2554 case KVM_RUN:
2555 r = -EINVAL;
2556 if (arg)
2557 goto out;
2558 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2559 /* The thread running this VCPU changed. */
2560 struct pid *oldpid = vcpu->pid;
2561 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2562
2563 rcu_assign_pointer(vcpu->pid, newpid);
2564 if (oldpid)
2565 synchronize_rcu();
2566 put_pid(oldpid);
2567 }
2568 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2569 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2570 break;
2571 case KVM_GET_REGS: {
2572 struct kvm_regs *kvm_regs;
2573
2574 r = -ENOMEM;
2575 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2576 if (!kvm_regs)
2577 goto out;
2578 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2579 if (r)
2580 goto out_free1;
2581 r = -EFAULT;
2582 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2583 goto out_free1;
2584 r = 0;
2585 out_free1:
2586 kfree(kvm_regs);
2587 break;
2588 }
2589 case KVM_SET_REGS: {
2590 struct kvm_regs *kvm_regs;
2591
2592 r = -ENOMEM;
2593 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2594 if (IS_ERR(kvm_regs)) {
2595 r = PTR_ERR(kvm_regs);
2596 goto out;
2597 }
2598 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2599 kfree(kvm_regs);
2600 break;
2601 }
2602 case KVM_GET_SREGS: {
2603 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2604 r = -ENOMEM;
2605 if (!kvm_sregs)
2606 goto out;
2607 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2608 if (r)
2609 goto out;
2610 r = -EFAULT;
2611 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2612 goto out;
2613 r = 0;
2614 break;
2615 }
2616 case KVM_SET_SREGS: {
2617 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2618 if (IS_ERR(kvm_sregs)) {
2619 r = PTR_ERR(kvm_sregs);
2620 kvm_sregs = NULL;
2621 goto out;
2622 }
2623 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2624 break;
2625 }
2626 case KVM_GET_MP_STATE: {
2627 struct kvm_mp_state mp_state;
2628
2629 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2630 if (r)
2631 goto out;
2632 r = -EFAULT;
2633 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2634 goto out;
2635 r = 0;
2636 break;
2637 }
2638 case KVM_SET_MP_STATE: {
2639 struct kvm_mp_state mp_state;
2640
2641 r = -EFAULT;
2642 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2643 goto out;
2644 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2645 break;
2646 }
2647 case KVM_TRANSLATE: {
2648 struct kvm_translation tr;
2649
2650 r = -EFAULT;
2651 if (copy_from_user(&tr, argp, sizeof(tr)))
2652 goto out;
2653 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2654 if (r)
2655 goto out;
2656 r = -EFAULT;
2657 if (copy_to_user(argp, &tr, sizeof(tr)))
2658 goto out;
2659 r = 0;
2660 break;
2661 }
2662 case KVM_SET_GUEST_DEBUG: {
2663 struct kvm_guest_debug dbg;
2664
2665 r = -EFAULT;
2666 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2667 goto out;
2668 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2669 break;
2670 }
2671 case KVM_SET_SIGNAL_MASK: {
2672 struct kvm_signal_mask __user *sigmask_arg = argp;
2673 struct kvm_signal_mask kvm_sigmask;
2674 sigset_t sigset, *p;
2675
2676 p = NULL;
2677 if (argp) {
2678 r = -EFAULT;
2679 if (copy_from_user(&kvm_sigmask, argp,
2680 sizeof(kvm_sigmask)))
2681 goto out;
2682 r = -EINVAL;
2683 if (kvm_sigmask.len != sizeof(sigset))
2684 goto out;
2685 r = -EFAULT;
2686 if (copy_from_user(&sigset, sigmask_arg->sigset,
2687 sizeof(sigset)))
2688 goto out;
2689 p = &sigset;
2690 }
2691 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2692 break;
2693 }
2694 case KVM_GET_FPU: {
2695 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2696 r = -ENOMEM;
2697 if (!fpu)
2698 goto out;
2699 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2700 if (r)
2701 goto out;
2702 r = -EFAULT;
2703 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2704 goto out;
2705 r = 0;
2706 break;
2707 }
2708 case KVM_SET_FPU: {
2709 fpu = memdup_user(argp, sizeof(*fpu));
2710 if (IS_ERR(fpu)) {
2711 r = PTR_ERR(fpu);
2712 fpu = NULL;
2713 goto out;
2714 }
2715 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2716 break;
2717 }
2718 default:
2719 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2720 }
2721 out:
2722 vcpu_put(vcpu);
2723 kfree(fpu);
2724 kfree(kvm_sregs);
2725 return r;
2726 }
2727
2728 #ifdef CONFIG_KVM_COMPAT
2729 static long kvm_vcpu_compat_ioctl(struct file *filp,
2730 unsigned int ioctl, unsigned long arg)
2731 {
2732 struct kvm_vcpu *vcpu = filp->private_data;
2733 void __user *argp = compat_ptr(arg);
2734 int r;
2735
2736 if (vcpu->kvm->mm != current->mm)
2737 return -EIO;
2738
2739 switch (ioctl) {
2740 case KVM_SET_SIGNAL_MASK: {
2741 struct kvm_signal_mask __user *sigmask_arg = argp;
2742 struct kvm_signal_mask kvm_sigmask;
2743 compat_sigset_t csigset;
2744 sigset_t sigset;
2745
2746 if (argp) {
2747 r = -EFAULT;
2748 if (copy_from_user(&kvm_sigmask, argp,
2749 sizeof(kvm_sigmask)))
2750 goto out;
2751 r = -EINVAL;
2752 if (kvm_sigmask.len != sizeof(csigset))
2753 goto out;
2754 r = -EFAULT;
2755 if (copy_from_user(&csigset, sigmask_arg->sigset,
2756 sizeof(csigset)))
2757 goto out;
2758 sigset_from_compat(&sigset, &csigset);
2759 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2760 } else
2761 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2762 break;
2763 }
2764 default:
2765 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2766 }
2767
2768 out:
2769 return r;
2770 }
2771 #endif
2772
2773 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2774 int (*accessor)(struct kvm_device *dev,
2775 struct kvm_device_attr *attr),
2776 unsigned long arg)
2777 {
2778 struct kvm_device_attr attr;
2779
2780 if (!accessor)
2781 return -EPERM;
2782
2783 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2784 return -EFAULT;
2785
2786 return accessor(dev, &attr);
2787 }
2788
2789 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2790 unsigned long arg)
2791 {
2792 struct kvm_device *dev = filp->private_data;
2793
2794 switch (ioctl) {
2795 case KVM_SET_DEVICE_ATTR:
2796 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2797 case KVM_GET_DEVICE_ATTR:
2798 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2799 case KVM_HAS_DEVICE_ATTR:
2800 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2801 default:
2802 if (dev->ops->ioctl)
2803 return dev->ops->ioctl(dev, ioctl, arg);
2804
2805 return -ENOTTY;
2806 }
2807 }
2808
2809 static int kvm_device_release(struct inode *inode, struct file *filp)
2810 {
2811 struct kvm_device *dev = filp->private_data;
2812 struct kvm *kvm = dev->kvm;
2813
2814 kvm_put_kvm(kvm);
2815 return 0;
2816 }
2817
2818 static const struct file_operations kvm_device_fops = {
2819 .unlocked_ioctl = kvm_device_ioctl,
2820 #ifdef CONFIG_KVM_COMPAT
2821 .compat_ioctl = kvm_device_ioctl,
2822 #endif
2823 .release = kvm_device_release,
2824 };
2825
2826 struct kvm_device *kvm_device_from_filp(struct file *filp)
2827 {
2828 if (filp->f_op != &kvm_device_fops)
2829 return NULL;
2830
2831 return filp->private_data;
2832 }
2833
2834 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2835 #ifdef CONFIG_KVM_MPIC
2836 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2837 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2838 #endif
2839 };
2840
2841 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2842 {
2843 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2844 return -ENOSPC;
2845
2846 if (kvm_device_ops_table[type] != NULL)
2847 return -EEXIST;
2848
2849 kvm_device_ops_table[type] = ops;
2850 return 0;
2851 }
2852
2853 void kvm_unregister_device_ops(u32 type)
2854 {
2855 if (kvm_device_ops_table[type] != NULL)
2856 kvm_device_ops_table[type] = NULL;
2857 }
2858
2859 static int kvm_ioctl_create_device(struct kvm *kvm,
2860 struct kvm_create_device *cd)
2861 {
2862 struct kvm_device_ops *ops = NULL;
2863 struct kvm_device *dev;
2864 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2865 int ret;
2866
2867 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2868 return -ENODEV;
2869
2870 ops = kvm_device_ops_table[cd->type];
2871 if (ops == NULL)
2872 return -ENODEV;
2873
2874 if (test)
2875 return 0;
2876
2877 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2878 if (!dev)
2879 return -ENOMEM;
2880
2881 dev->ops = ops;
2882 dev->kvm = kvm;
2883
2884 mutex_lock(&kvm->lock);
2885 ret = ops->create(dev, cd->type);
2886 if (ret < 0) {
2887 mutex_unlock(&kvm->lock);
2888 kfree(dev);
2889 return ret;
2890 }
2891 list_add(&dev->vm_node, &kvm->devices);
2892 mutex_unlock(&kvm->lock);
2893
2894 if (ops->init)
2895 ops->init(dev);
2896
2897 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2898 if (ret < 0) {
2899 mutex_lock(&kvm->lock);
2900 list_del(&dev->vm_node);
2901 mutex_unlock(&kvm->lock);
2902 ops->destroy(dev);
2903 return ret;
2904 }
2905
2906 kvm_get_kvm(kvm);
2907 cd->fd = ret;
2908 return 0;
2909 }
2910
2911 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2912 {
2913 switch (arg) {
2914 case KVM_CAP_USER_MEMORY:
2915 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2916 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2917 case KVM_CAP_INTERNAL_ERROR_DATA:
2918 #ifdef CONFIG_HAVE_KVM_MSI
2919 case KVM_CAP_SIGNAL_MSI:
2920 #endif
2921 #ifdef CONFIG_HAVE_KVM_IRQFD
2922 case KVM_CAP_IRQFD:
2923 case KVM_CAP_IRQFD_RESAMPLE:
2924 #endif
2925 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2926 case KVM_CAP_CHECK_EXTENSION_VM:
2927 return 1;
2928 #ifdef CONFIG_KVM_MMIO
2929 case KVM_CAP_COALESCED_MMIO:
2930 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2931 #endif
2932 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2933 case KVM_CAP_IRQ_ROUTING:
2934 return KVM_MAX_IRQ_ROUTES;
2935 #endif
2936 #if KVM_ADDRESS_SPACE_NUM > 1
2937 case KVM_CAP_MULTI_ADDRESS_SPACE:
2938 return KVM_ADDRESS_SPACE_NUM;
2939 #endif
2940 case KVM_CAP_MAX_VCPU_ID:
2941 return KVM_MAX_VCPU_ID;
2942 default:
2943 break;
2944 }
2945 return kvm_vm_ioctl_check_extension(kvm, arg);
2946 }
2947
2948 static long kvm_vm_ioctl(struct file *filp,
2949 unsigned int ioctl, unsigned long arg)
2950 {
2951 struct kvm *kvm = filp->private_data;
2952 void __user *argp = (void __user *)arg;
2953 int r;
2954
2955 if (kvm->mm != current->mm)
2956 return -EIO;
2957 switch (ioctl) {
2958 case KVM_CREATE_VCPU:
2959 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2960 break;
2961 case KVM_SET_USER_MEMORY_REGION: {
2962 struct kvm_userspace_memory_region kvm_userspace_mem;
2963
2964 r = -EFAULT;
2965 if (copy_from_user(&kvm_userspace_mem, argp,
2966 sizeof(kvm_userspace_mem)))
2967 goto out;
2968
2969 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2970 break;
2971 }
2972 case KVM_GET_DIRTY_LOG: {
2973 struct kvm_dirty_log log;
2974
2975 r = -EFAULT;
2976 if (copy_from_user(&log, argp, sizeof(log)))
2977 goto out;
2978 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2979 break;
2980 }
2981 #ifdef CONFIG_KVM_MMIO
2982 case KVM_REGISTER_COALESCED_MMIO: {
2983 struct kvm_coalesced_mmio_zone zone;
2984
2985 r = -EFAULT;
2986 if (copy_from_user(&zone, argp, sizeof(zone)))
2987 goto out;
2988 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2989 break;
2990 }
2991 case KVM_UNREGISTER_COALESCED_MMIO: {
2992 struct kvm_coalesced_mmio_zone zone;
2993
2994 r = -EFAULT;
2995 if (copy_from_user(&zone, argp, sizeof(zone)))
2996 goto out;
2997 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2998 break;
2999 }
3000 #endif
3001 case KVM_IRQFD: {
3002 struct kvm_irqfd data;
3003
3004 r = -EFAULT;
3005 if (copy_from_user(&data, argp, sizeof(data)))
3006 goto out;
3007 r = kvm_irqfd(kvm, &data);
3008 break;
3009 }
3010 case KVM_IOEVENTFD: {
3011 struct kvm_ioeventfd data;
3012
3013 r = -EFAULT;
3014 if (copy_from_user(&data, argp, sizeof(data)))
3015 goto out;
3016 r = kvm_ioeventfd(kvm, &data);
3017 break;
3018 }
3019 #ifdef CONFIG_HAVE_KVM_MSI
3020 case KVM_SIGNAL_MSI: {
3021 struct kvm_msi msi;
3022
3023 r = -EFAULT;
3024 if (copy_from_user(&msi, argp, sizeof(msi)))
3025 goto out;
3026 r = kvm_send_userspace_msi(kvm, &msi);
3027 break;
3028 }
3029 #endif
3030 #ifdef __KVM_HAVE_IRQ_LINE
3031 case KVM_IRQ_LINE_STATUS:
3032 case KVM_IRQ_LINE: {
3033 struct kvm_irq_level irq_event;
3034
3035 r = -EFAULT;
3036 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3037 goto out;
3038
3039 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3040 ioctl == KVM_IRQ_LINE_STATUS);
3041 if (r)
3042 goto out;
3043
3044 r = -EFAULT;
3045 if (ioctl == KVM_IRQ_LINE_STATUS) {
3046 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3047 goto out;
3048 }
3049
3050 r = 0;
3051 break;
3052 }
3053 #endif
3054 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3055 case KVM_SET_GSI_ROUTING: {
3056 struct kvm_irq_routing routing;
3057 struct kvm_irq_routing __user *urouting;
3058 struct kvm_irq_routing_entry *entries = NULL;
3059
3060 r = -EFAULT;
3061 if (copy_from_user(&routing, argp, sizeof(routing)))
3062 goto out;
3063 r = -EINVAL;
3064 if (!kvm_arch_can_set_irq_routing(kvm))
3065 goto out;
3066 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3067 goto out;
3068 if (routing.flags)
3069 goto out;
3070 if (routing.nr) {
3071 r = -ENOMEM;
3072 entries = vmalloc(routing.nr * sizeof(*entries));
3073 if (!entries)
3074 goto out;
3075 r = -EFAULT;
3076 urouting = argp;
3077 if (copy_from_user(entries, urouting->entries,
3078 routing.nr * sizeof(*entries)))
3079 goto out_free_irq_routing;
3080 }
3081 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3082 routing.flags);
3083 out_free_irq_routing:
3084 vfree(entries);
3085 break;
3086 }
3087 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3088 case KVM_CREATE_DEVICE: {
3089 struct kvm_create_device cd;
3090
3091 r = -EFAULT;
3092 if (copy_from_user(&cd, argp, sizeof(cd)))
3093 goto out;
3094
3095 r = kvm_ioctl_create_device(kvm, &cd);
3096 if (r)
3097 goto out;
3098
3099 r = -EFAULT;
3100 if (copy_to_user(argp, &cd, sizeof(cd)))
3101 goto out;
3102
3103 r = 0;
3104 break;
3105 }
3106 case KVM_CHECK_EXTENSION:
3107 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3108 break;
3109 default:
3110 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3111 }
3112 out:
3113 return r;
3114 }
3115
3116 #ifdef CONFIG_KVM_COMPAT
3117 struct compat_kvm_dirty_log {
3118 __u32 slot;
3119 __u32 padding1;
3120 union {
3121 compat_uptr_t dirty_bitmap; /* one bit per page */
3122 __u64 padding2;
3123 };
3124 };
3125
3126 static long kvm_vm_compat_ioctl(struct file *filp,
3127 unsigned int ioctl, unsigned long arg)
3128 {
3129 struct kvm *kvm = filp->private_data;
3130 int r;
3131
3132 if (kvm->mm != current->mm)
3133 return -EIO;
3134 switch (ioctl) {
3135 case KVM_GET_DIRTY_LOG: {
3136 struct compat_kvm_dirty_log compat_log;
3137 struct kvm_dirty_log log;
3138
3139 if (copy_from_user(&compat_log, (void __user *)arg,
3140 sizeof(compat_log)))
3141 return -EFAULT;
3142 log.slot = compat_log.slot;
3143 log.padding1 = compat_log.padding1;
3144 log.padding2 = compat_log.padding2;
3145 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3146
3147 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3148 break;
3149 }
3150 default:
3151 r = kvm_vm_ioctl(filp, ioctl, arg);
3152 }
3153 return r;
3154 }
3155 #endif
3156
3157 static struct file_operations kvm_vm_fops = {
3158 .release = kvm_vm_release,
3159 .unlocked_ioctl = kvm_vm_ioctl,
3160 #ifdef CONFIG_KVM_COMPAT
3161 .compat_ioctl = kvm_vm_compat_ioctl,
3162 #endif
3163 .llseek = noop_llseek,
3164 };
3165
3166 static int kvm_dev_ioctl_create_vm(unsigned long type)
3167 {
3168 int r;
3169 struct kvm *kvm;
3170 struct file *file;
3171
3172 kvm = kvm_create_vm(type);
3173 if (IS_ERR(kvm))
3174 return PTR_ERR(kvm);
3175 #ifdef CONFIG_KVM_MMIO
3176 r = kvm_coalesced_mmio_init(kvm);
3177 if (r < 0) {
3178 kvm_put_kvm(kvm);
3179 return r;
3180 }
3181 #endif
3182 r = get_unused_fd_flags(O_CLOEXEC);
3183 if (r < 0) {
3184 kvm_put_kvm(kvm);
3185 return r;
3186 }
3187 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3188 if (IS_ERR(file)) {
3189 put_unused_fd(r);
3190 kvm_put_kvm(kvm);
3191 return PTR_ERR(file);
3192 }
3193
3194 /*
3195 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3196 * already set, with ->release() being kvm_vm_release(). In error
3197 * cases it will be called by the final fput(file) and will take
3198 * care of doing kvm_put_kvm(kvm).
3199 */
3200 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3201 put_unused_fd(r);
3202 fput(file);
3203 return -ENOMEM;
3204 }
3205
3206 fd_install(r, file);
3207 return r;
3208 }
3209
3210 static long kvm_dev_ioctl(struct file *filp,
3211 unsigned int ioctl, unsigned long arg)
3212 {
3213 long r = -EINVAL;
3214
3215 switch (ioctl) {
3216 case KVM_GET_API_VERSION:
3217 if (arg)
3218 goto out;
3219 r = KVM_API_VERSION;
3220 break;
3221 case KVM_CREATE_VM:
3222 r = kvm_dev_ioctl_create_vm(arg);
3223 break;
3224 case KVM_CHECK_EXTENSION:
3225 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3226 break;
3227 case KVM_GET_VCPU_MMAP_SIZE:
3228 if (arg)
3229 goto out;
3230 r = PAGE_SIZE; /* struct kvm_run */
3231 #ifdef CONFIG_X86
3232 r += PAGE_SIZE; /* pio data page */
3233 #endif
3234 #ifdef CONFIG_KVM_MMIO
3235 r += PAGE_SIZE; /* coalesced mmio ring page */
3236 #endif
3237 break;
3238 case KVM_TRACE_ENABLE:
3239 case KVM_TRACE_PAUSE:
3240 case KVM_TRACE_DISABLE:
3241 r = -EOPNOTSUPP;
3242 break;
3243 default:
3244 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3245 }
3246 out:
3247 return r;
3248 }
3249
3250 static struct file_operations kvm_chardev_ops = {
3251 .unlocked_ioctl = kvm_dev_ioctl,
3252 .compat_ioctl = kvm_dev_ioctl,
3253 .llseek = noop_llseek,
3254 };
3255
3256 static struct miscdevice kvm_dev = {
3257 KVM_MINOR,
3258 "kvm",
3259 &kvm_chardev_ops,
3260 };
3261
3262 static void hardware_enable_nolock(void *junk)
3263 {
3264 int cpu = raw_smp_processor_id();
3265 int r;
3266
3267 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3268 return;
3269
3270 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3271
3272 r = kvm_arch_hardware_enable();
3273
3274 if (r) {
3275 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3276 atomic_inc(&hardware_enable_failed);
3277 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3278 }
3279 }
3280
3281 static int kvm_starting_cpu(unsigned int cpu)
3282 {
3283 raw_spin_lock(&kvm_count_lock);
3284 if (kvm_usage_count)
3285 hardware_enable_nolock(NULL);
3286 raw_spin_unlock(&kvm_count_lock);
3287 return 0;
3288 }
3289
3290 static void hardware_disable_nolock(void *junk)
3291 {
3292 int cpu = raw_smp_processor_id();
3293
3294 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3295 return;
3296 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3297 kvm_arch_hardware_disable();
3298 }
3299
3300 static int kvm_dying_cpu(unsigned int cpu)
3301 {
3302 raw_spin_lock(&kvm_count_lock);
3303 if (kvm_usage_count)
3304 hardware_disable_nolock(NULL);
3305 raw_spin_unlock(&kvm_count_lock);
3306 return 0;
3307 }
3308
3309 static void hardware_disable_all_nolock(void)
3310 {
3311 BUG_ON(!kvm_usage_count);
3312
3313 kvm_usage_count--;
3314 if (!kvm_usage_count)
3315 on_each_cpu(hardware_disable_nolock, NULL, 1);
3316 }
3317
3318 static void hardware_disable_all(void)
3319 {
3320 raw_spin_lock(&kvm_count_lock);
3321 hardware_disable_all_nolock();
3322 raw_spin_unlock(&kvm_count_lock);
3323 }
3324
3325 static int hardware_enable_all(void)
3326 {
3327 int r = 0;
3328
3329 raw_spin_lock(&kvm_count_lock);
3330
3331 kvm_usage_count++;
3332 if (kvm_usage_count == 1) {
3333 atomic_set(&hardware_enable_failed, 0);
3334 on_each_cpu(hardware_enable_nolock, NULL, 1);
3335
3336 if (atomic_read(&hardware_enable_failed)) {
3337 hardware_disable_all_nolock();
3338 r = -EBUSY;
3339 }
3340 }
3341
3342 raw_spin_unlock(&kvm_count_lock);
3343
3344 return r;
3345 }
3346
3347 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3348 void *v)
3349 {
3350 /*
3351 * Some (well, at least mine) BIOSes hang on reboot if
3352 * in vmx root mode.
3353 *
3354 * And Intel TXT required VMX off for all cpu when system shutdown.
3355 */
3356 pr_info("kvm: exiting hardware virtualization\n");
3357 kvm_rebooting = true;
3358 on_each_cpu(hardware_disable_nolock, NULL, 1);
3359 return NOTIFY_OK;
3360 }
3361
3362 static struct notifier_block kvm_reboot_notifier = {
3363 .notifier_call = kvm_reboot,
3364 .priority = 0,
3365 };
3366
3367 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3368 {
3369 int i;
3370
3371 for (i = 0; i < bus->dev_count; i++) {
3372 struct kvm_io_device *pos = bus->range[i].dev;
3373
3374 kvm_iodevice_destructor(pos);
3375 }
3376 kfree(bus);
3377 }
3378
3379 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3380 const struct kvm_io_range *r2)
3381 {
3382 gpa_t addr1 = r1->addr;
3383 gpa_t addr2 = r2->addr;
3384
3385 if (addr1 < addr2)
3386 return -1;
3387
3388 /* If r2->len == 0, match the exact address. If r2->len != 0,
3389 * accept any overlapping write. Any order is acceptable for
3390 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3391 * we process all of them.
3392 */
3393 if (r2->len) {
3394 addr1 += r1->len;
3395 addr2 += r2->len;
3396 }
3397
3398 if (addr1 > addr2)
3399 return 1;
3400
3401 return 0;
3402 }
3403
3404 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3405 {
3406 return kvm_io_bus_cmp(p1, p2);
3407 }
3408
3409 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3410 gpa_t addr, int len)
3411 {
3412 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3413 .addr = addr,
3414 .len = len,
3415 .dev = dev,
3416 };
3417
3418 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3419 kvm_io_bus_sort_cmp, NULL);
3420
3421 return 0;
3422 }
3423
3424 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3425 gpa_t addr, int len)
3426 {
3427 struct kvm_io_range *range, key;
3428 int off;
3429
3430 key = (struct kvm_io_range) {
3431 .addr = addr,
3432 .len = len,
3433 };
3434
3435 range = bsearch(&key, bus->range, bus->dev_count,
3436 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3437 if (range == NULL)
3438 return -ENOENT;
3439
3440 off = range - bus->range;
3441
3442 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3443 off--;
3444
3445 return off;
3446 }
3447
3448 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3449 struct kvm_io_range *range, const void *val)
3450 {
3451 int idx;
3452
3453 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3454 if (idx < 0)
3455 return -EOPNOTSUPP;
3456
3457 while (idx < bus->dev_count &&
3458 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3459 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3460 range->len, val))
3461 return idx;
3462 idx++;
3463 }
3464
3465 return -EOPNOTSUPP;
3466 }
3467
3468 /* kvm_io_bus_write - called under kvm->slots_lock */
3469 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3470 int len, const void *val)
3471 {
3472 struct kvm_io_bus *bus;
3473 struct kvm_io_range range;
3474 int r;
3475
3476 range = (struct kvm_io_range) {
3477 .addr = addr,
3478 .len = len,
3479 };
3480
3481 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3482 if (!bus)
3483 return -ENOMEM;
3484 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3485 return r < 0 ? r : 0;
3486 }
3487
3488 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3489 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3490 gpa_t addr, int len, const void *val, long cookie)
3491 {
3492 struct kvm_io_bus *bus;
3493 struct kvm_io_range range;
3494
3495 range = (struct kvm_io_range) {
3496 .addr = addr,
3497 .len = len,
3498 };
3499
3500 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3501 if (!bus)
3502 return -ENOMEM;
3503
3504 /* First try the device referenced by cookie. */
3505 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3506 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3507 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3508 val))
3509 return cookie;
3510
3511 /*
3512 * cookie contained garbage; fall back to search and return the
3513 * correct cookie value.
3514 */
3515 return __kvm_io_bus_write(vcpu, bus, &range, val);
3516 }
3517
3518 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3519 struct kvm_io_range *range, void *val)
3520 {
3521 int idx;
3522
3523 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3524 if (idx < 0)
3525 return -EOPNOTSUPP;
3526
3527 while (idx < bus->dev_count &&
3528 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3529 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3530 range->len, val))
3531 return idx;
3532 idx++;
3533 }
3534
3535 return -EOPNOTSUPP;
3536 }
3537 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3538
3539 /* kvm_io_bus_read - called under kvm->slots_lock */
3540 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3541 int len, void *val)
3542 {
3543 struct kvm_io_bus *bus;
3544 struct kvm_io_range range;
3545 int r;
3546
3547 range = (struct kvm_io_range) {
3548 .addr = addr,
3549 .len = len,
3550 };
3551
3552 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3553 if (!bus)
3554 return -ENOMEM;
3555 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3556 return r < 0 ? r : 0;
3557 }
3558
3559
3560 /* Caller must hold slots_lock. */
3561 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3562 int len, struct kvm_io_device *dev)
3563 {
3564 struct kvm_io_bus *new_bus, *bus;
3565
3566 bus = kvm->buses[bus_idx];
3567 if (!bus)
3568 return -ENOMEM;
3569
3570 /* exclude ioeventfd which is limited by maximum fd */
3571 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3572 return -ENOSPC;
3573
3574 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3575 sizeof(struct kvm_io_range)), GFP_KERNEL);
3576 if (!new_bus)
3577 return -ENOMEM;
3578 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3579 sizeof(struct kvm_io_range)));
3580 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3581 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3582 synchronize_srcu_expedited(&kvm->srcu);
3583 kfree(bus);
3584
3585 return 0;
3586 }
3587
3588 /* Caller must hold slots_lock. */
3589 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3590 struct kvm_io_device *dev)
3591 {
3592 int i;
3593 struct kvm_io_bus *new_bus, *bus;
3594
3595 bus = kvm->buses[bus_idx];
3596 if (!bus)
3597 return;
3598
3599 for (i = 0; i < bus->dev_count; i++)
3600 if (bus->range[i].dev == dev) {
3601 break;
3602 }
3603
3604 if (i == bus->dev_count)
3605 return;
3606
3607 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3608 sizeof(struct kvm_io_range)), GFP_KERNEL);
3609 if (!new_bus) {
3610 pr_err("kvm: failed to shrink bus, removing it completely\n");
3611 goto broken;
3612 }
3613
3614 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3615 new_bus->dev_count--;
3616 memcpy(new_bus->range + i, bus->range + i + 1,
3617 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3618
3619 broken:
3620 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3621 synchronize_srcu_expedited(&kvm->srcu);
3622 kfree(bus);
3623 return;
3624 }
3625
3626 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3627 gpa_t addr)
3628 {
3629 struct kvm_io_bus *bus;
3630 int dev_idx, srcu_idx;
3631 struct kvm_io_device *iodev = NULL;
3632
3633 srcu_idx = srcu_read_lock(&kvm->srcu);
3634
3635 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3636 if (!bus)
3637 goto out_unlock;
3638
3639 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3640 if (dev_idx < 0)
3641 goto out_unlock;
3642
3643 iodev = bus->range[dev_idx].dev;
3644
3645 out_unlock:
3646 srcu_read_unlock(&kvm->srcu, srcu_idx);
3647
3648 return iodev;
3649 }
3650 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3651
3652 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3653 int (*get)(void *, u64 *), int (*set)(void *, u64),
3654 const char *fmt)
3655 {
3656 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3657 inode->i_private;
3658
3659 /* The debugfs files are a reference to the kvm struct which
3660 * is still valid when kvm_destroy_vm is called.
3661 * To avoid the race between open and the removal of the debugfs
3662 * directory we test against the users count.
3663 */
3664 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3665 return -ENOENT;
3666
3667 if (simple_attr_open(inode, file, get, set, fmt)) {
3668 kvm_put_kvm(stat_data->kvm);
3669 return -ENOMEM;
3670 }
3671
3672 return 0;
3673 }
3674
3675 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3676 {
3677 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3678 inode->i_private;
3679
3680 simple_attr_release(inode, file);
3681 kvm_put_kvm(stat_data->kvm);
3682
3683 return 0;
3684 }
3685
3686 static int vm_stat_get_per_vm(void *data, u64 *val)
3687 {
3688 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3689
3690 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3691
3692 return 0;
3693 }
3694
3695 static int vm_stat_clear_per_vm(void *data, u64 val)
3696 {
3697 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3698
3699 if (val)
3700 return -EINVAL;
3701
3702 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3703
3704 return 0;
3705 }
3706
3707 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3708 {
3709 __simple_attr_check_format("%llu\n", 0ull);
3710 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3711 vm_stat_clear_per_vm, "%llu\n");
3712 }
3713
3714 static const struct file_operations vm_stat_get_per_vm_fops = {
3715 .owner = THIS_MODULE,
3716 .open = vm_stat_get_per_vm_open,
3717 .release = kvm_debugfs_release,
3718 .read = simple_attr_read,
3719 .write = simple_attr_write,
3720 .llseek = no_llseek,
3721 };
3722
3723 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3724 {
3725 int i;
3726 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3727 struct kvm_vcpu *vcpu;
3728
3729 *val = 0;
3730
3731 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3732 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3733
3734 return 0;
3735 }
3736
3737 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3738 {
3739 int i;
3740 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3741 struct kvm_vcpu *vcpu;
3742
3743 if (val)
3744 return -EINVAL;
3745
3746 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3747 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3748
3749 return 0;
3750 }
3751
3752 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3753 {
3754 __simple_attr_check_format("%llu\n", 0ull);
3755 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3756 vcpu_stat_clear_per_vm, "%llu\n");
3757 }
3758
3759 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3760 .owner = THIS_MODULE,
3761 .open = vcpu_stat_get_per_vm_open,
3762 .release = kvm_debugfs_release,
3763 .read = simple_attr_read,
3764 .write = simple_attr_write,
3765 .llseek = no_llseek,
3766 };
3767
3768 static const struct file_operations *stat_fops_per_vm[] = {
3769 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3770 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3771 };
3772
3773 static int vm_stat_get(void *_offset, u64 *val)
3774 {
3775 unsigned offset = (long)_offset;
3776 struct kvm *kvm;
3777 struct kvm_stat_data stat_tmp = {.offset = offset};
3778 u64 tmp_val;
3779
3780 *val = 0;
3781 spin_lock(&kvm_lock);
3782 list_for_each_entry(kvm, &vm_list, vm_list) {
3783 stat_tmp.kvm = kvm;
3784 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3785 *val += tmp_val;
3786 }
3787 spin_unlock(&kvm_lock);
3788 return 0;
3789 }
3790
3791 static int vm_stat_clear(void *_offset, u64 val)
3792 {
3793 unsigned offset = (long)_offset;
3794 struct kvm *kvm;
3795 struct kvm_stat_data stat_tmp = {.offset = offset};
3796
3797 if (val)
3798 return -EINVAL;
3799
3800 spin_lock(&kvm_lock);
3801 list_for_each_entry(kvm, &vm_list, vm_list) {
3802 stat_tmp.kvm = kvm;
3803 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3804 }
3805 spin_unlock(&kvm_lock);
3806
3807 return 0;
3808 }
3809
3810 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3811
3812 static int vcpu_stat_get(void *_offset, u64 *val)
3813 {
3814 unsigned offset = (long)_offset;
3815 struct kvm *kvm;
3816 struct kvm_stat_data stat_tmp = {.offset = offset};
3817 u64 tmp_val;
3818
3819 *val = 0;
3820 spin_lock(&kvm_lock);
3821 list_for_each_entry(kvm, &vm_list, vm_list) {
3822 stat_tmp.kvm = kvm;
3823 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3824 *val += tmp_val;
3825 }
3826 spin_unlock(&kvm_lock);
3827 return 0;
3828 }
3829
3830 static int vcpu_stat_clear(void *_offset, u64 val)
3831 {
3832 unsigned offset = (long)_offset;
3833 struct kvm *kvm;
3834 struct kvm_stat_data stat_tmp = {.offset = offset};
3835
3836 if (val)
3837 return -EINVAL;
3838
3839 spin_lock(&kvm_lock);
3840 list_for_each_entry(kvm, &vm_list, vm_list) {
3841 stat_tmp.kvm = kvm;
3842 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3843 }
3844 spin_unlock(&kvm_lock);
3845
3846 return 0;
3847 }
3848
3849 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3850 "%llu\n");
3851
3852 static const struct file_operations *stat_fops[] = {
3853 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3854 [KVM_STAT_VM] = &vm_stat_fops,
3855 };
3856
3857 static int kvm_init_debug(void)
3858 {
3859 int r = -EEXIST;
3860 struct kvm_stats_debugfs_item *p;
3861
3862 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3863 if (kvm_debugfs_dir == NULL)
3864 goto out;
3865
3866 kvm_debugfs_num_entries = 0;
3867 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3868 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3869 (void *)(long)p->offset,
3870 stat_fops[p->kind]))
3871 goto out_dir;
3872 }
3873
3874 return 0;
3875
3876 out_dir:
3877 debugfs_remove_recursive(kvm_debugfs_dir);
3878 out:
3879 return r;
3880 }
3881
3882 static int kvm_suspend(void)
3883 {
3884 if (kvm_usage_count)
3885 hardware_disable_nolock(NULL);
3886 return 0;
3887 }
3888
3889 static void kvm_resume(void)
3890 {
3891 if (kvm_usage_count) {
3892 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3893 hardware_enable_nolock(NULL);
3894 }
3895 }
3896
3897 static struct syscore_ops kvm_syscore_ops = {
3898 .suspend = kvm_suspend,
3899 .resume = kvm_resume,
3900 };
3901
3902 static inline
3903 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3904 {
3905 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3906 }
3907
3908 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3909 {
3910 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3911
3912 if (vcpu->preempted)
3913 vcpu->preempted = false;
3914
3915 kvm_arch_sched_in(vcpu, cpu);
3916
3917 kvm_arch_vcpu_load(vcpu, cpu);
3918 }
3919
3920 static void kvm_sched_out(struct preempt_notifier *pn,
3921 struct task_struct *next)
3922 {
3923 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3924
3925 if (current->state == TASK_RUNNING)
3926 vcpu->preempted = true;
3927 kvm_arch_vcpu_put(vcpu);
3928 }
3929
3930 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3931 struct module *module)
3932 {
3933 int r;
3934 int cpu;
3935
3936 r = kvm_arch_init(opaque);
3937 if (r)
3938 goto out_fail;
3939
3940 /*
3941 * kvm_arch_init makes sure there's at most one caller
3942 * for architectures that support multiple implementations,
3943 * like intel and amd on x86.
3944 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3945 * conflicts in case kvm is already setup for another implementation.
3946 */
3947 r = kvm_irqfd_init();
3948 if (r)
3949 goto out_irqfd;
3950
3951 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3952 r = -ENOMEM;
3953 goto out_free_0;
3954 }
3955
3956 r = kvm_arch_hardware_setup();
3957 if (r < 0)
3958 goto out_free_0a;
3959
3960 for_each_online_cpu(cpu) {
3961 smp_call_function_single(cpu,
3962 kvm_arch_check_processor_compat,
3963 &r, 1);
3964 if (r < 0)
3965 goto out_free_1;
3966 }
3967
3968 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3969 kvm_starting_cpu, kvm_dying_cpu);
3970 if (r)
3971 goto out_free_2;
3972 register_reboot_notifier(&kvm_reboot_notifier);
3973
3974 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3975 if (!vcpu_align)
3976 vcpu_align = __alignof__(struct kvm_vcpu);
3977 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3978 0, NULL);
3979 if (!kvm_vcpu_cache) {
3980 r = -ENOMEM;
3981 goto out_free_3;
3982 }
3983
3984 r = kvm_async_pf_init();
3985 if (r)
3986 goto out_free;
3987
3988 kvm_chardev_ops.owner = module;
3989 kvm_vm_fops.owner = module;
3990 kvm_vcpu_fops.owner = module;
3991
3992 r = misc_register(&kvm_dev);
3993 if (r) {
3994 pr_err("kvm: misc device register failed\n");
3995 goto out_unreg;
3996 }
3997
3998 register_syscore_ops(&kvm_syscore_ops);
3999
4000 kvm_preempt_ops.sched_in = kvm_sched_in;
4001 kvm_preempt_ops.sched_out = kvm_sched_out;
4002
4003 r = kvm_init_debug();
4004 if (r) {
4005 pr_err("kvm: create debugfs files failed\n");
4006 goto out_undebugfs;
4007 }
4008
4009 r = kvm_vfio_ops_init();
4010 WARN_ON(r);
4011
4012 return 0;
4013
4014 out_undebugfs:
4015 unregister_syscore_ops(&kvm_syscore_ops);
4016 misc_deregister(&kvm_dev);
4017 out_unreg:
4018 kvm_async_pf_deinit();
4019 out_free:
4020 kmem_cache_destroy(kvm_vcpu_cache);
4021 out_free_3:
4022 unregister_reboot_notifier(&kvm_reboot_notifier);
4023 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4024 out_free_2:
4025 out_free_1:
4026 kvm_arch_hardware_unsetup();
4027 out_free_0a:
4028 free_cpumask_var(cpus_hardware_enabled);
4029 out_free_0:
4030 kvm_irqfd_exit();
4031 out_irqfd:
4032 kvm_arch_exit();
4033 out_fail:
4034 return r;
4035 }
4036 EXPORT_SYMBOL_GPL(kvm_init);
4037
4038 void kvm_exit(void)
4039 {
4040 debugfs_remove_recursive(kvm_debugfs_dir);
4041 misc_deregister(&kvm_dev);
4042 kmem_cache_destroy(kvm_vcpu_cache);
4043 kvm_async_pf_deinit();
4044 unregister_syscore_ops(&kvm_syscore_ops);
4045 unregister_reboot_notifier(&kvm_reboot_notifier);
4046 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4047 on_each_cpu(hardware_disable_nolock, NULL, 1);
4048 kvm_arch_hardware_unsetup();
4049 kvm_arch_exit();
4050 kvm_irqfd_exit();
4051 free_cpumask_var(cpus_hardware_enabled);
4052 kvm_vfio_ops_exit();
4053 }
4054 EXPORT_SYMBOL_GPL(kvm_exit);