]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/kvm_main.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 if (pfn_valid(pfn)) {
106 int reserved;
107 struct page *tail = pfn_to_page(pfn);
108 struct page *head = compound_trans_head(tail);
109 reserved = PageReserved(head);
110 if (head != tail) {
111 /*
112 * "head" is not a dangling pointer
113 * (compound_trans_head takes care of that)
114 * but the hugepage may have been splitted
115 * from under us (and we may not hold a
116 * reference count on the head page so it can
117 * be reused before we run PageReferenced), so
118 * we've to check PageTail before returning
119 * what we just read.
120 */
121 smp_rmb();
122 if (PageTail(tail))
123 return reserved;
124 }
125 return PageReserved(tail);
126 }
127
128 return true;
129 }
130
131 /*
132 * Switches to specified vcpu, until a matching vcpu_put()
133 */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 int cpu;
137
138 if (mutex_lock_killable(&vcpu->mutex))
139 return -EINTR;
140 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141 /* The thread running this VCPU changed. */
142 struct pid *oldpid = vcpu->pid;
143 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144 rcu_assign_pointer(vcpu->pid, newpid);
145 synchronize_rcu();
146 put_pid(oldpid);
147 }
148 cpu = get_cpu();
149 preempt_notifier_register(&vcpu->preempt_notifier);
150 kvm_arch_vcpu_load(vcpu, cpu);
151 put_cpu();
152 return 0;
153 }
154
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157 preempt_disable();
158 kvm_arch_vcpu_put(vcpu);
159 preempt_notifier_unregister(&vcpu->preempt_notifier);
160 preempt_enable();
161 mutex_unlock(&vcpu->mutex);
162 }
163
164 static void ack_flush(void *_completed)
165 {
166 }
167
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170 int i, cpu, me;
171 cpumask_var_t cpus;
172 bool called = true;
173 struct kvm_vcpu *vcpu;
174
175 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176
177 me = get_cpu();
178 kvm_for_each_vcpu(i, vcpu, kvm) {
179 kvm_make_request(req, vcpu);
180 cpu = vcpu->cpu;
181
182 /* Set ->requests bit before we read ->mode */
183 smp_mb();
184
185 if (cpus != NULL && cpu != -1 && cpu != me &&
186 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187 cpumask_set_cpu(cpu, cpus);
188 }
189 if (unlikely(cpus == NULL))
190 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191 else if (!cpumask_empty(cpus))
192 smp_call_function_many(cpus, ack_flush, NULL, 1);
193 else
194 called = false;
195 put_cpu();
196 free_cpumask_var(cpus);
197 return called;
198 }
199
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 long dirty_count = kvm->tlbs_dirty;
203
204 smp_mb();
205 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206 ++kvm->stat.remote_tlb_flush;
207 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214
215 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
216 {
217 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
218 }
219
220 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
221 {
222 struct page *page;
223 int r;
224
225 mutex_init(&vcpu->mutex);
226 vcpu->cpu = -1;
227 vcpu->kvm = kvm;
228 vcpu->vcpu_id = id;
229 vcpu->pid = NULL;
230 init_waitqueue_head(&vcpu->wq);
231 kvm_async_pf_vcpu_init(vcpu);
232
233 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
234 if (!page) {
235 r = -ENOMEM;
236 goto fail;
237 }
238 vcpu->run = page_address(page);
239
240 kvm_vcpu_set_in_spin_loop(vcpu, false);
241 kvm_vcpu_set_dy_eligible(vcpu, false);
242
243 r = kvm_arch_vcpu_init(vcpu);
244 if (r < 0)
245 goto fail_free_run;
246 return 0;
247
248 fail_free_run:
249 free_page((unsigned long)vcpu->run);
250 fail:
251 return r;
252 }
253 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
254
255 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
256 {
257 put_pid(vcpu->pid);
258 kvm_arch_vcpu_uninit(vcpu);
259 free_page((unsigned long)vcpu->run);
260 }
261 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
262
263 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
264 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
265 {
266 return container_of(mn, struct kvm, mmu_notifier);
267 }
268
269 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
270 struct mm_struct *mm,
271 unsigned long address)
272 {
273 struct kvm *kvm = mmu_notifier_to_kvm(mn);
274 int need_tlb_flush, idx;
275
276 /*
277 * When ->invalidate_page runs, the linux pte has been zapped
278 * already but the page is still allocated until
279 * ->invalidate_page returns. So if we increase the sequence
280 * here the kvm page fault will notice if the spte can't be
281 * established because the page is going to be freed. If
282 * instead the kvm page fault establishes the spte before
283 * ->invalidate_page runs, kvm_unmap_hva will release it
284 * before returning.
285 *
286 * The sequence increase only need to be seen at spin_unlock
287 * time, and not at spin_lock time.
288 *
289 * Increasing the sequence after the spin_unlock would be
290 * unsafe because the kvm page fault could then establish the
291 * pte after kvm_unmap_hva returned, without noticing the page
292 * is going to be freed.
293 */
294 idx = srcu_read_lock(&kvm->srcu);
295 spin_lock(&kvm->mmu_lock);
296
297 kvm->mmu_notifier_seq++;
298 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
299 /* we've to flush the tlb before the pages can be freed */
300 if (need_tlb_flush)
301 kvm_flush_remote_tlbs(kvm);
302
303 spin_unlock(&kvm->mmu_lock);
304 srcu_read_unlock(&kvm->srcu, idx);
305 }
306
307 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
308 struct mm_struct *mm,
309 unsigned long address,
310 pte_t pte)
311 {
312 struct kvm *kvm = mmu_notifier_to_kvm(mn);
313 int idx;
314
315 idx = srcu_read_lock(&kvm->srcu);
316 spin_lock(&kvm->mmu_lock);
317 kvm->mmu_notifier_seq++;
318 kvm_set_spte_hva(kvm, address, pte);
319 spin_unlock(&kvm->mmu_lock);
320 srcu_read_unlock(&kvm->srcu, idx);
321 }
322
323 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
324 struct mm_struct *mm,
325 unsigned long start,
326 unsigned long end)
327 {
328 struct kvm *kvm = mmu_notifier_to_kvm(mn);
329 int need_tlb_flush = 0, idx;
330
331 idx = srcu_read_lock(&kvm->srcu);
332 spin_lock(&kvm->mmu_lock);
333 /*
334 * The count increase must become visible at unlock time as no
335 * spte can be established without taking the mmu_lock and
336 * count is also read inside the mmu_lock critical section.
337 */
338 kvm->mmu_notifier_count++;
339 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
340 need_tlb_flush |= kvm->tlbs_dirty;
341 /* we've to flush the tlb before the pages can be freed */
342 if (need_tlb_flush)
343 kvm_flush_remote_tlbs(kvm);
344
345 spin_unlock(&kvm->mmu_lock);
346 srcu_read_unlock(&kvm->srcu, idx);
347 }
348
349 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
350 struct mm_struct *mm,
351 unsigned long start,
352 unsigned long end)
353 {
354 struct kvm *kvm = mmu_notifier_to_kvm(mn);
355
356 spin_lock(&kvm->mmu_lock);
357 /*
358 * This sequence increase will notify the kvm page fault that
359 * the page that is going to be mapped in the spte could have
360 * been freed.
361 */
362 kvm->mmu_notifier_seq++;
363 smp_wmb();
364 /*
365 * The above sequence increase must be visible before the
366 * below count decrease, which is ensured by the smp_wmb above
367 * in conjunction with the smp_rmb in mmu_notifier_retry().
368 */
369 kvm->mmu_notifier_count--;
370 spin_unlock(&kvm->mmu_lock);
371
372 BUG_ON(kvm->mmu_notifier_count < 0);
373 }
374
375 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
376 struct mm_struct *mm,
377 unsigned long address)
378 {
379 struct kvm *kvm = mmu_notifier_to_kvm(mn);
380 int young, idx;
381
382 idx = srcu_read_lock(&kvm->srcu);
383 spin_lock(&kvm->mmu_lock);
384
385 young = kvm_age_hva(kvm, address);
386 if (young)
387 kvm_flush_remote_tlbs(kvm);
388
389 spin_unlock(&kvm->mmu_lock);
390 srcu_read_unlock(&kvm->srcu, idx);
391
392 return young;
393 }
394
395 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
396 struct mm_struct *mm,
397 unsigned long address)
398 {
399 struct kvm *kvm = mmu_notifier_to_kvm(mn);
400 int young, idx;
401
402 idx = srcu_read_lock(&kvm->srcu);
403 spin_lock(&kvm->mmu_lock);
404 young = kvm_test_age_hva(kvm, address);
405 spin_unlock(&kvm->mmu_lock);
406 srcu_read_unlock(&kvm->srcu, idx);
407
408 return young;
409 }
410
411 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
412 struct mm_struct *mm)
413 {
414 struct kvm *kvm = mmu_notifier_to_kvm(mn);
415 int idx;
416
417 idx = srcu_read_lock(&kvm->srcu);
418 kvm_arch_flush_shadow_all(kvm);
419 srcu_read_unlock(&kvm->srcu, idx);
420 }
421
422 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
423 .invalidate_page = kvm_mmu_notifier_invalidate_page,
424 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
425 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
426 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
427 .test_young = kvm_mmu_notifier_test_young,
428 .change_pte = kvm_mmu_notifier_change_pte,
429 .release = kvm_mmu_notifier_release,
430 };
431
432 static int kvm_init_mmu_notifier(struct kvm *kvm)
433 {
434 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
435 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
436 }
437
438 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
439
440 static int kvm_init_mmu_notifier(struct kvm *kvm)
441 {
442 return 0;
443 }
444
445 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
446
447 static void kvm_init_memslots_id(struct kvm *kvm)
448 {
449 int i;
450 struct kvm_memslots *slots = kvm->memslots;
451
452 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
453 slots->id_to_index[i] = slots->memslots[i].id = i;
454 }
455
456 static struct kvm *kvm_create_vm(unsigned long type)
457 {
458 int r, i;
459 struct kvm *kvm = kvm_arch_alloc_vm();
460
461 if (!kvm)
462 return ERR_PTR(-ENOMEM);
463
464 r = kvm_arch_init_vm(kvm, type);
465 if (r)
466 goto out_err_nodisable;
467
468 r = hardware_enable_all();
469 if (r)
470 goto out_err_nodisable;
471
472 #ifdef CONFIG_HAVE_KVM_IRQCHIP
473 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
474 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
475 #endif
476
477 r = -ENOMEM;
478 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
479 if (!kvm->memslots)
480 goto out_err_nosrcu;
481 kvm_init_memslots_id(kvm);
482 if (init_srcu_struct(&kvm->srcu))
483 goto out_err_nosrcu;
484 for (i = 0; i < KVM_NR_BUSES; i++) {
485 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
486 GFP_KERNEL);
487 if (!kvm->buses[i])
488 goto out_err;
489 }
490
491 spin_lock_init(&kvm->mmu_lock);
492 kvm->mm = current->mm;
493 atomic_inc(&kvm->mm->mm_count);
494 kvm_eventfd_init(kvm);
495 mutex_init(&kvm->lock);
496 mutex_init(&kvm->irq_lock);
497 mutex_init(&kvm->slots_lock);
498 atomic_set(&kvm->users_count, 1);
499
500 r = kvm_init_mmu_notifier(kvm);
501 if (r)
502 goto out_err;
503
504 raw_spin_lock(&kvm_lock);
505 list_add(&kvm->vm_list, &vm_list);
506 raw_spin_unlock(&kvm_lock);
507
508 return kvm;
509
510 out_err:
511 cleanup_srcu_struct(&kvm->srcu);
512 out_err_nosrcu:
513 hardware_disable_all();
514 out_err_nodisable:
515 for (i = 0; i < KVM_NR_BUSES; i++)
516 kfree(kvm->buses[i]);
517 kfree(kvm->memslots);
518 kvm_arch_free_vm(kvm);
519 return ERR_PTR(r);
520 }
521
522 /*
523 * Avoid using vmalloc for a small buffer.
524 * Should not be used when the size is statically known.
525 */
526 void *kvm_kvzalloc(unsigned long size)
527 {
528 if (size > PAGE_SIZE)
529 return vzalloc(size);
530 else
531 return kzalloc(size, GFP_KERNEL);
532 }
533
534 void kvm_kvfree(const void *addr)
535 {
536 if (is_vmalloc_addr(addr))
537 vfree(addr);
538 else
539 kfree(addr);
540 }
541
542 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
543 {
544 if (!memslot->dirty_bitmap)
545 return;
546
547 kvm_kvfree(memslot->dirty_bitmap);
548 memslot->dirty_bitmap = NULL;
549 }
550
551 /*
552 * Free any memory in @free but not in @dont.
553 */
554 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
555 struct kvm_memory_slot *dont)
556 {
557 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
558 kvm_destroy_dirty_bitmap(free);
559
560 kvm_arch_free_memslot(free, dont);
561
562 free->npages = 0;
563 }
564
565 void kvm_free_physmem(struct kvm *kvm)
566 {
567 struct kvm_memslots *slots = kvm->memslots;
568 struct kvm_memory_slot *memslot;
569
570 kvm_for_each_memslot(memslot, slots)
571 kvm_free_physmem_slot(memslot, NULL);
572
573 kfree(kvm->memslots);
574 }
575
576 static void kvm_destroy_vm(struct kvm *kvm)
577 {
578 int i;
579 struct mm_struct *mm = kvm->mm;
580
581 kvm_arch_sync_events(kvm);
582 raw_spin_lock(&kvm_lock);
583 list_del(&kvm->vm_list);
584 raw_spin_unlock(&kvm_lock);
585 kvm_free_irq_routing(kvm);
586 for (i = 0; i < KVM_NR_BUSES; i++)
587 kvm_io_bus_destroy(kvm->buses[i]);
588 kvm_coalesced_mmio_free(kvm);
589 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
590 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
591 #else
592 kvm_arch_flush_shadow_all(kvm);
593 #endif
594 kvm_arch_destroy_vm(kvm);
595 kvm_free_physmem(kvm);
596 cleanup_srcu_struct(&kvm->srcu);
597 kvm_arch_free_vm(kvm);
598 hardware_disable_all();
599 mmdrop(mm);
600 }
601
602 void kvm_get_kvm(struct kvm *kvm)
603 {
604 atomic_inc(&kvm->users_count);
605 }
606 EXPORT_SYMBOL_GPL(kvm_get_kvm);
607
608 void kvm_put_kvm(struct kvm *kvm)
609 {
610 if (atomic_dec_and_test(&kvm->users_count))
611 kvm_destroy_vm(kvm);
612 }
613 EXPORT_SYMBOL_GPL(kvm_put_kvm);
614
615
616 static int kvm_vm_release(struct inode *inode, struct file *filp)
617 {
618 struct kvm *kvm = filp->private_data;
619
620 kvm_irqfd_release(kvm);
621
622 kvm_put_kvm(kvm);
623 return 0;
624 }
625
626 /*
627 * Allocation size is twice as large as the actual dirty bitmap size.
628 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
629 */
630 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
631 {
632 #ifndef CONFIG_S390
633 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
634
635 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
636 if (!memslot->dirty_bitmap)
637 return -ENOMEM;
638
639 #endif /* !CONFIG_S390 */
640 return 0;
641 }
642
643 static int cmp_memslot(const void *slot1, const void *slot2)
644 {
645 struct kvm_memory_slot *s1, *s2;
646
647 s1 = (struct kvm_memory_slot *)slot1;
648 s2 = (struct kvm_memory_slot *)slot2;
649
650 if (s1->npages < s2->npages)
651 return 1;
652 if (s1->npages > s2->npages)
653 return -1;
654
655 return 0;
656 }
657
658 /*
659 * Sort the memslots base on its size, so the larger slots
660 * will get better fit.
661 */
662 static void sort_memslots(struct kvm_memslots *slots)
663 {
664 int i;
665
666 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
667 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
668
669 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
670 slots->id_to_index[slots->memslots[i].id] = i;
671 }
672
673 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
674 {
675 if (new) {
676 int id = new->id;
677 struct kvm_memory_slot *old = id_to_memslot(slots, id);
678 unsigned long npages = old->npages;
679
680 *old = *new;
681 if (new->npages != npages)
682 sort_memslots(slots);
683 }
684
685 slots->generation++;
686 }
687
688 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
689 {
690 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
691
692 #ifdef KVM_CAP_READONLY_MEM
693 valid_flags |= KVM_MEM_READONLY;
694 #endif
695
696 if (mem->flags & ~valid_flags)
697 return -EINVAL;
698
699 return 0;
700 }
701
702 /*
703 * Allocate some memory and give it an address in the guest physical address
704 * space.
705 *
706 * Discontiguous memory is allowed, mostly for framebuffers.
707 *
708 * Must be called holding mmap_sem for write.
709 */
710 int __kvm_set_memory_region(struct kvm *kvm,
711 struct kvm_userspace_memory_region *mem,
712 int user_alloc)
713 {
714 int r;
715 gfn_t base_gfn;
716 unsigned long npages;
717 struct kvm_memory_slot *memslot, *slot;
718 struct kvm_memory_slot old, new;
719 struct kvm_memslots *slots, *old_memslots;
720
721 r = check_memory_region_flags(mem);
722 if (r)
723 goto out;
724
725 r = -EINVAL;
726 /* General sanity checks */
727 if (mem->memory_size & (PAGE_SIZE - 1))
728 goto out;
729 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
730 goto out;
731 /* We can read the guest memory with __xxx_user() later on. */
732 if (user_alloc &&
733 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
734 !access_ok(VERIFY_WRITE,
735 (void __user *)(unsigned long)mem->userspace_addr,
736 mem->memory_size)))
737 goto out;
738 if (mem->slot >= KVM_MEM_SLOTS_NUM)
739 goto out;
740 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
741 goto out;
742
743 memslot = id_to_memslot(kvm->memslots, mem->slot);
744 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
745 npages = mem->memory_size >> PAGE_SHIFT;
746
747 r = -EINVAL;
748 if (npages > KVM_MEM_MAX_NR_PAGES)
749 goto out;
750
751 if (!npages)
752 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
753
754 new = old = *memslot;
755
756 new.id = mem->slot;
757 new.base_gfn = base_gfn;
758 new.npages = npages;
759 new.flags = mem->flags;
760
761 /* Disallow changing a memory slot's size. */
762 r = -EINVAL;
763 if (npages && old.npages && npages != old.npages)
764 goto out_free;
765
766 /* Check for overlaps */
767 r = -EEXIST;
768 kvm_for_each_memslot(slot, kvm->memslots) {
769 if (slot->id >= KVM_MEMORY_SLOTS || slot == memslot)
770 continue;
771 if (!((base_gfn + npages <= slot->base_gfn) ||
772 (base_gfn >= slot->base_gfn + slot->npages)))
773 goto out_free;
774 }
775
776 /* Free page dirty bitmap if unneeded */
777 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
778 new.dirty_bitmap = NULL;
779
780 r = -ENOMEM;
781
782 /* Allocate if a slot is being created */
783 if (npages && !old.npages) {
784 new.user_alloc = user_alloc;
785 new.userspace_addr = mem->userspace_addr;
786
787 if (kvm_arch_create_memslot(&new, npages))
788 goto out_free;
789 }
790
791 /* Allocate page dirty bitmap if needed */
792 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
793 if (kvm_create_dirty_bitmap(&new) < 0)
794 goto out_free;
795 /* destroy any largepage mappings for dirty tracking */
796 }
797
798 if (!npages || base_gfn != old.base_gfn) {
799 struct kvm_memory_slot *slot;
800
801 r = -ENOMEM;
802 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
803 GFP_KERNEL);
804 if (!slots)
805 goto out_free;
806 slot = id_to_memslot(slots, mem->slot);
807 slot->flags |= KVM_MEMSLOT_INVALID;
808
809 update_memslots(slots, NULL);
810
811 old_memslots = kvm->memslots;
812 rcu_assign_pointer(kvm->memslots, slots);
813 synchronize_srcu_expedited(&kvm->srcu);
814 /* From this point no new shadow pages pointing to a deleted,
815 * or moved, memslot will be created.
816 *
817 * validation of sp->gfn happens in:
818 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
819 * - kvm_is_visible_gfn (mmu_check_roots)
820 */
821 kvm_arch_flush_shadow_memslot(kvm, slot);
822 kfree(old_memslots);
823 }
824
825 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
826 if (r)
827 goto out_free;
828
829 /* map/unmap the pages in iommu page table */
830 if (npages) {
831 r = kvm_iommu_map_pages(kvm, &new);
832 if (r)
833 goto out_free;
834 } else
835 kvm_iommu_unmap_pages(kvm, &old);
836
837 r = -ENOMEM;
838 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
839 GFP_KERNEL);
840 if (!slots)
841 goto out_free;
842
843 /* actual memory is freed via old in kvm_free_physmem_slot below */
844 if (!npages) {
845 new.dirty_bitmap = NULL;
846 memset(&new.arch, 0, sizeof(new.arch));
847 }
848
849 update_memslots(slots, &new);
850 old_memslots = kvm->memslots;
851 rcu_assign_pointer(kvm->memslots, slots);
852 synchronize_srcu_expedited(&kvm->srcu);
853
854 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
855
856 kvm_free_physmem_slot(&old, &new);
857 kfree(old_memslots);
858
859 return 0;
860
861 out_free:
862 kvm_free_physmem_slot(&new, &old);
863 out:
864 return r;
865
866 }
867 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
868
869 int kvm_set_memory_region(struct kvm *kvm,
870 struct kvm_userspace_memory_region *mem,
871 int user_alloc)
872 {
873 int r;
874
875 mutex_lock(&kvm->slots_lock);
876 r = __kvm_set_memory_region(kvm, mem, user_alloc);
877 mutex_unlock(&kvm->slots_lock);
878 return r;
879 }
880 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
881
882 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
883 struct
884 kvm_userspace_memory_region *mem,
885 int user_alloc)
886 {
887 if (mem->slot >= KVM_MEMORY_SLOTS)
888 return -EINVAL;
889 return kvm_set_memory_region(kvm, mem, user_alloc);
890 }
891
892 int kvm_get_dirty_log(struct kvm *kvm,
893 struct kvm_dirty_log *log, int *is_dirty)
894 {
895 struct kvm_memory_slot *memslot;
896 int r, i;
897 unsigned long n;
898 unsigned long any = 0;
899
900 r = -EINVAL;
901 if (log->slot >= KVM_MEMORY_SLOTS)
902 goto out;
903
904 memslot = id_to_memslot(kvm->memslots, log->slot);
905 r = -ENOENT;
906 if (!memslot->dirty_bitmap)
907 goto out;
908
909 n = kvm_dirty_bitmap_bytes(memslot);
910
911 for (i = 0; !any && i < n/sizeof(long); ++i)
912 any = memslot->dirty_bitmap[i];
913
914 r = -EFAULT;
915 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
916 goto out;
917
918 if (any)
919 *is_dirty = 1;
920
921 r = 0;
922 out:
923 return r;
924 }
925
926 bool kvm_largepages_enabled(void)
927 {
928 return largepages_enabled;
929 }
930
931 void kvm_disable_largepages(void)
932 {
933 largepages_enabled = false;
934 }
935 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
936
937 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
938 {
939 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
940 }
941 EXPORT_SYMBOL_GPL(gfn_to_memslot);
942
943 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
944 {
945 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
946
947 if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
948 memslot->flags & KVM_MEMSLOT_INVALID)
949 return 0;
950
951 return 1;
952 }
953 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
954
955 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
956 {
957 struct vm_area_struct *vma;
958 unsigned long addr, size;
959
960 size = PAGE_SIZE;
961
962 addr = gfn_to_hva(kvm, gfn);
963 if (kvm_is_error_hva(addr))
964 return PAGE_SIZE;
965
966 down_read(&current->mm->mmap_sem);
967 vma = find_vma(current->mm, addr);
968 if (!vma)
969 goto out;
970
971 size = vma_kernel_pagesize(vma);
972
973 out:
974 up_read(&current->mm->mmap_sem);
975
976 return size;
977 }
978
979 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
980 {
981 return slot->flags & KVM_MEM_READONLY;
982 }
983
984 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
985 gfn_t *nr_pages, bool write)
986 {
987 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
988 return KVM_HVA_ERR_BAD;
989
990 if (memslot_is_readonly(slot) && write)
991 return KVM_HVA_ERR_RO_BAD;
992
993 if (nr_pages)
994 *nr_pages = slot->npages - (gfn - slot->base_gfn);
995
996 return __gfn_to_hva_memslot(slot, gfn);
997 }
998
999 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1000 gfn_t *nr_pages)
1001 {
1002 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1003 }
1004
1005 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1006 gfn_t gfn)
1007 {
1008 return gfn_to_hva_many(slot, gfn, NULL);
1009 }
1010 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1011
1012 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1013 {
1014 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1015 }
1016 EXPORT_SYMBOL_GPL(gfn_to_hva);
1017
1018 /*
1019 * The hva returned by this function is only allowed to be read.
1020 * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1021 */
1022 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1023 {
1024 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1025 }
1026
1027 static int kvm_read_hva(void *data, void __user *hva, int len)
1028 {
1029 return __copy_from_user(data, hva, len);
1030 }
1031
1032 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1033 {
1034 return __copy_from_user_inatomic(data, hva, len);
1035 }
1036
1037 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1038 unsigned long start, int write, struct page **page)
1039 {
1040 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1041
1042 if (write)
1043 flags |= FOLL_WRITE;
1044
1045 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1046 }
1047
1048 static inline int check_user_page_hwpoison(unsigned long addr)
1049 {
1050 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1051
1052 rc = __get_user_pages(current, current->mm, addr, 1,
1053 flags, NULL, NULL, NULL);
1054 return rc == -EHWPOISON;
1055 }
1056
1057 /*
1058 * The atomic path to get the writable pfn which will be stored in @pfn,
1059 * true indicates success, otherwise false is returned.
1060 */
1061 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1062 bool write_fault, bool *writable, pfn_t *pfn)
1063 {
1064 struct page *page[1];
1065 int npages;
1066
1067 if (!(async || atomic))
1068 return false;
1069
1070 /*
1071 * Fast pin a writable pfn only if it is a write fault request
1072 * or the caller allows to map a writable pfn for a read fault
1073 * request.
1074 */
1075 if (!(write_fault || writable))
1076 return false;
1077
1078 npages = __get_user_pages_fast(addr, 1, 1, page);
1079 if (npages == 1) {
1080 *pfn = page_to_pfn(page[0]);
1081
1082 if (writable)
1083 *writable = true;
1084 return true;
1085 }
1086
1087 return false;
1088 }
1089
1090 /*
1091 * The slow path to get the pfn of the specified host virtual address,
1092 * 1 indicates success, -errno is returned if error is detected.
1093 */
1094 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1095 bool *writable, pfn_t *pfn)
1096 {
1097 struct page *page[1];
1098 int npages = 0;
1099
1100 might_sleep();
1101
1102 if (writable)
1103 *writable = write_fault;
1104
1105 if (async) {
1106 down_read(&current->mm->mmap_sem);
1107 npages = get_user_page_nowait(current, current->mm,
1108 addr, write_fault, page);
1109 up_read(&current->mm->mmap_sem);
1110 } else
1111 npages = get_user_pages_fast(addr, 1, write_fault,
1112 page);
1113 if (npages != 1)
1114 return npages;
1115
1116 /* map read fault as writable if possible */
1117 if (unlikely(!write_fault) && writable) {
1118 struct page *wpage[1];
1119
1120 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1121 if (npages == 1) {
1122 *writable = true;
1123 put_page(page[0]);
1124 page[0] = wpage[0];
1125 }
1126
1127 npages = 1;
1128 }
1129 *pfn = page_to_pfn(page[0]);
1130 return npages;
1131 }
1132
1133 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1134 {
1135 if (unlikely(!(vma->vm_flags & VM_READ)))
1136 return false;
1137
1138 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1139 return false;
1140
1141 return true;
1142 }
1143
1144 /*
1145 * Pin guest page in memory and return its pfn.
1146 * @addr: host virtual address which maps memory to the guest
1147 * @atomic: whether this function can sleep
1148 * @async: whether this function need to wait IO complete if the
1149 * host page is not in the memory
1150 * @write_fault: whether we should get a writable host page
1151 * @writable: whether it allows to map a writable host page for !@write_fault
1152 *
1153 * The function will map a writable host page for these two cases:
1154 * 1): @write_fault = true
1155 * 2): @write_fault = false && @writable, @writable will tell the caller
1156 * whether the mapping is writable.
1157 */
1158 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1159 bool write_fault, bool *writable)
1160 {
1161 struct vm_area_struct *vma;
1162 pfn_t pfn = 0;
1163 int npages;
1164
1165 /* we can do it either atomically or asynchronously, not both */
1166 BUG_ON(atomic && async);
1167
1168 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1169 return pfn;
1170
1171 if (atomic)
1172 return KVM_PFN_ERR_FAULT;
1173
1174 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1175 if (npages == 1)
1176 return pfn;
1177
1178 down_read(&current->mm->mmap_sem);
1179 if (npages == -EHWPOISON ||
1180 (!async && check_user_page_hwpoison(addr))) {
1181 pfn = KVM_PFN_ERR_HWPOISON;
1182 goto exit;
1183 }
1184
1185 vma = find_vma_intersection(current->mm, addr, addr + 1);
1186
1187 if (vma == NULL)
1188 pfn = KVM_PFN_ERR_FAULT;
1189 else if ((vma->vm_flags & VM_PFNMAP)) {
1190 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1191 vma->vm_pgoff;
1192 BUG_ON(!kvm_is_mmio_pfn(pfn));
1193 } else {
1194 if (async && vma_is_valid(vma, write_fault))
1195 *async = true;
1196 pfn = KVM_PFN_ERR_FAULT;
1197 }
1198 exit:
1199 up_read(&current->mm->mmap_sem);
1200 return pfn;
1201 }
1202
1203 static pfn_t
1204 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1205 bool *async, bool write_fault, bool *writable)
1206 {
1207 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1208
1209 if (addr == KVM_HVA_ERR_RO_BAD)
1210 return KVM_PFN_ERR_RO_FAULT;
1211
1212 if (kvm_is_error_hva(addr))
1213 return KVM_PFN_NOSLOT;
1214
1215 /* Do not map writable pfn in the readonly memslot. */
1216 if (writable && memslot_is_readonly(slot)) {
1217 *writable = false;
1218 writable = NULL;
1219 }
1220
1221 return hva_to_pfn(addr, atomic, async, write_fault,
1222 writable);
1223 }
1224
1225 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1226 bool write_fault, bool *writable)
1227 {
1228 struct kvm_memory_slot *slot;
1229
1230 if (async)
1231 *async = false;
1232
1233 slot = gfn_to_memslot(kvm, gfn);
1234
1235 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1236 writable);
1237 }
1238
1239 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1240 {
1241 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1242 }
1243 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1244
1245 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1246 bool write_fault, bool *writable)
1247 {
1248 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1249 }
1250 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1251
1252 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1253 {
1254 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1255 }
1256 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1257
1258 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1259 bool *writable)
1260 {
1261 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1262 }
1263 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1264
1265 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1266 {
1267 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1268 }
1269
1270 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1271 {
1272 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1273 }
1274 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1275
1276 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1277 int nr_pages)
1278 {
1279 unsigned long addr;
1280 gfn_t entry;
1281
1282 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1283 if (kvm_is_error_hva(addr))
1284 return -1;
1285
1286 if (entry < nr_pages)
1287 return 0;
1288
1289 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1290 }
1291 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1292
1293 static struct page *kvm_pfn_to_page(pfn_t pfn)
1294 {
1295 if (is_error_noslot_pfn(pfn))
1296 return KVM_ERR_PTR_BAD_PAGE;
1297
1298 if (kvm_is_mmio_pfn(pfn)) {
1299 WARN_ON(1);
1300 return KVM_ERR_PTR_BAD_PAGE;
1301 }
1302
1303 return pfn_to_page(pfn);
1304 }
1305
1306 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1307 {
1308 pfn_t pfn;
1309
1310 pfn = gfn_to_pfn(kvm, gfn);
1311
1312 return kvm_pfn_to_page(pfn);
1313 }
1314
1315 EXPORT_SYMBOL_GPL(gfn_to_page);
1316
1317 void kvm_release_page_clean(struct page *page)
1318 {
1319 WARN_ON(is_error_page(page));
1320
1321 kvm_release_pfn_clean(page_to_pfn(page));
1322 }
1323 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1324
1325 void kvm_release_pfn_clean(pfn_t pfn)
1326 {
1327 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1328 put_page(pfn_to_page(pfn));
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1331
1332 void kvm_release_page_dirty(struct page *page)
1333 {
1334 WARN_ON(is_error_page(page));
1335
1336 kvm_release_pfn_dirty(page_to_pfn(page));
1337 }
1338 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1339
1340 void kvm_release_pfn_dirty(pfn_t pfn)
1341 {
1342 kvm_set_pfn_dirty(pfn);
1343 kvm_release_pfn_clean(pfn);
1344 }
1345 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1346
1347 void kvm_set_page_dirty(struct page *page)
1348 {
1349 kvm_set_pfn_dirty(page_to_pfn(page));
1350 }
1351 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1352
1353 void kvm_set_pfn_dirty(pfn_t pfn)
1354 {
1355 if (!kvm_is_mmio_pfn(pfn)) {
1356 struct page *page = pfn_to_page(pfn);
1357 if (!PageReserved(page))
1358 SetPageDirty(page);
1359 }
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1362
1363 void kvm_set_pfn_accessed(pfn_t pfn)
1364 {
1365 if (!kvm_is_mmio_pfn(pfn))
1366 mark_page_accessed(pfn_to_page(pfn));
1367 }
1368 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1369
1370 void kvm_get_pfn(pfn_t pfn)
1371 {
1372 if (!kvm_is_mmio_pfn(pfn))
1373 get_page(pfn_to_page(pfn));
1374 }
1375 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1376
1377 static int next_segment(unsigned long len, int offset)
1378 {
1379 if (len > PAGE_SIZE - offset)
1380 return PAGE_SIZE - offset;
1381 else
1382 return len;
1383 }
1384
1385 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1386 int len)
1387 {
1388 int r;
1389 unsigned long addr;
1390
1391 addr = gfn_to_hva_read(kvm, gfn);
1392 if (kvm_is_error_hva(addr))
1393 return -EFAULT;
1394 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1395 if (r)
1396 return -EFAULT;
1397 return 0;
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1400
1401 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1402 {
1403 gfn_t gfn = gpa >> PAGE_SHIFT;
1404 int seg;
1405 int offset = offset_in_page(gpa);
1406 int ret;
1407
1408 while ((seg = next_segment(len, offset)) != 0) {
1409 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1410 if (ret < 0)
1411 return ret;
1412 offset = 0;
1413 len -= seg;
1414 data += seg;
1415 ++gfn;
1416 }
1417 return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(kvm_read_guest);
1420
1421 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1422 unsigned long len)
1423 {
1424 int r;
1425 unsigned long addr;
1426 gfn_t gfn = gpa >> PAGE_SHIFT;
1427 int offset = offset_in_page(gpa);
1428
1429 addr = gfn_to_hva_read(kvm, gfn);
1430 if (kvm_is_error_hva(addr))
1431 return -EFAULT;
1432 pagefault_disable();
1433 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1434 pagefault_enable();
1435 if (r)
1436 return -EFAULT;
1437 return 0;
1438 }
1439 EXPORT_SYMBOL(kvm_read_guest_atomic);
1440
1441 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1442 int offset, int len)
1443 {
1444 int r;
1445 unsigned long addr;
1446
1447 addr = gfn_to_hva(kvm, gfn);
1448 if (kvm_is_error_hva(addr))
1449 return -EFAULT;
1450 r = __copy_to_user((void __user *)addr + offset, data, len);
1451 if (r)
1452 return -EFAULT;
1453 mark_page_dirty(kvm, gfn);
1454 return 0;
1455 }
1456 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1457
1458 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1459 unsigned long len)
1460 {
1461 gfn_t gfn = gpa >> PAGE_SHIFT;
1462 int seg;
1463 int offset = offset_in_page(gpa);
1464 int ret;
1465
1466 while ((seg = next_segment(len, offset)) != 0) {
1467 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1468 if (ret < 0)
1469 return ret;
1470 offset = 0;
1471 len -= seg;
1472 data += seg;
1473 ++gfn;
1474 }
1475 return 0;
1476 }
1477
1478 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1479 gpa_t gpa)
1480 {
1481 struct kvm_memslots *slots = kvm_memslots(kvm);
1482 int offset = offset_in_page(gpa);
1483 gfn_t gfn = gpa >> PAGE_SHIFT;
1484
1485 ghc->gpa = gpa;
1486 ghc->generation = slots->generation;
1487 ghc->memslot = gfn_to_memslot(kvm, gfn);
1488 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1489 if (!kvm_is_error_hva(ghc->hva))
1490 ghc->hva += offset;
1491 else
1492 return -EFAULT;
1493
1494 return 0;
1495 }
1496 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1497
1498 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1499 void *data, unsigned long len)
1500 {
1501 struct kvm_memslots *slots = kvm_memslots(kvm);
1502 int r;
1503
1504 if (slots->generation != ghc->generation)
1505 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1506
1507 if (kvm_is_error_hva(ghc->hva))
1508 return -EFAULT;
1509
1510 r = __copy_to_user((void __user *)ghc->hva, data, len);
1511 if (r)
1512 return -EFAULT;
1513 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1514
1515 return 0;
1516 }
1517 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1518
1519 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1520 void *data, unsigned long len)
1521 {
1522 struct kvm_memslots *slots = kvm_memslots(kvm);
1523 int r;
1524
1525 if (slots->generation != ghc->generation)
1526 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1527
1528 if (kvm_is_error_hva(ghc->hva))
1529 return -EFAULT;
1530
1531 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1532 if (r)
1533 return -EFAULT;
1534
1535 return 0;
1536 }
1537 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1538
1539 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1540 {
1541 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1542 offset, len);
1543 }
1544 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1545
1546 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1547 {
1548 gfn_t gfn = gpa >> PAGE_SHIFT;
1549 int seg;
1550 int offset = offset_in_page(gpa);
1551 int ret;
1552
1553 while ((seg = next_segment(len, offset)) != 0) {
1554 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1555 if (ret < 0)
1556 return ret;
1557 offset = 0;
1558 len -= seg;
1559 ++gfn;
1560 }
1561 return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1564
1565 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1566 gfn_t gfn)
1567 {
1568 if (memslot && memslot->dirty_bitmap) {
1569 unsigned long rel_gfn = gfn - memslot->base_gfn;
1570
1571 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1572 }
1573 }
1574
1575 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1576 {
1577 struct kvm_memory_slot *memslot;
1578
1579 memslot = gfn_to_memslot(kvm, gfn);
1580 mark_page_dirty_in_slot(kvm, memslot, gfn);
1581 }
1582
1583 /*
1584 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1585 */
1586 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1587 {
1588 DEFINE_WAIT(wait);
1589
1590 for (;;) {
1591 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1592
1593 if (kvm_arch_vcpu_runnable(vcpu)) {
1594 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1595 break;
1596 }
1597 if (kvm_cpu_has_pending_timer(vcpu))
1598 break;
1599 if (signal_pending(current))
1600 break;
1601
1602 schedule();
1603 }
1604
1605 finish_wait(&vcpu->wq, &wait);
1606 }
1607
1608 #ifndef CONFIG_S390
1609 /*
1610 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1611 */
1612 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1613 {
1614 int me;
1615 int cpu = vcpu->cpu;
1616 wait_queue_head_t *wqp;
1617
1618 wqp = kvm_arch_vcpu_wq(vcpu);
1619 if (waitqueue_active(wqp)) {
1620 wake_up_interruptible(wqp);
1621 ++vcpu->stat.halt_wakeup;
1622 }
1623
1624 me = get_cpu();
1625 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1626 if (kvm_arch_vcpu_should_kick(vcpu))
1627 smp_send_reschedule(cpu);
1628 put_cpu();
1629 }
1630 #endif /* !CONFIG_S390 */
1631
1632 void kvm_resched(struct kvm_vcpu *vcpu)
1633 {
1634 if (!need_resched())
1635 return;
1636 cond_resched();
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_resched);
1639
1640 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1641 {
1642 struct pid *pid;
1643 struct task_struct *task = NULL;
1644
1645 rcu_read_lock();
1646 pid = rcu_dereference(target->pid);
1647 if (pid)
1648 task = get_pid_task(target->pid, PIDTYPE_PID);
1649 rcu_read_unlock();
1650 if (!task)
1651 return false;
1652 if (task->flags & PF_VCPU) {
1653 put_task_struct(task);
1654 return false;
1655 }
1656 if (yield_to(task, 1)) {
1657 put_task_struct(task);
1658 return true;
1659 }
1660 put_task_struct(task);
1661 return false;
1662 }
1663 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1664
1665 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1666 /*
1667 * Helper that checks whether a VCPU is eligible for directed yield.
1668 * Most eligible candidate to yield is decided by following heuristics:
1669 *
1670 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1671 * (preempted lock holder), indicated by @in_spin_loop.
1672 * Set at the beiginning and cleared at the end of interception/PLE handler.
1673 *
1674 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1675 * chance last time (mostly it has become eligible now since we have probably
1676 * yielded to lockholder in last iteration. This is done by toggling
1677 * @dy_eligible each time a VCPU checked for eligibility.)
1678 *
1679 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1680 * to preempted lock-holder could result in wrong VCPU selection and CPU
1681 * burning. Giving priority for a potential lock-holder increases lock
1682 * progress.
1683 *
1684 * Since algorithm is based on heuristics, accessing another VCPU data without
1685 * locking does not harm. It may result in trying to yield to same VCPU, fail
1686 * and continue with next VCPU and so on.
1687 */
1688 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1689 {
1690 bool eligible;
1691
1692 eligible = !vcpu->spin_loop.in_spin_loop ||
1693 (vcpu->spin_loop.in_spin_loop &&
1694 vcpu->spin_loop.dy_eligible);
1695
1696 if (vcpu->spin_loop.in_spin_loop)
1697 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1698
1699 return eligible;
1700 }
1701 #endif
1702 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1703 {
1704 struct kvm *kvm = me->kvm;
1705 struct kvm_vcpu *vcpu;
1706 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1707 int yielded = 0;
1708 int pass;
1709 int i;
1710
1711 kvm_vcpu_set_in_spin_loop(me, true);
1712 /*
1713 * We boost the priority of a VCPU that is runnable but not
1714 * currently running, because it got preempted by something
1715 * else and called schedule in __vcpu_run. Hopefully that
1716 * VCPU is holding the lock that we need and will release it.
1717 * We approximate round-robin by starting at the last boosted VCPU.
1718 */
1719 for (pass = 0; pass < 2 && !yielded; pass++) {
1720 kvm_for_each_vcpu(i, vcpu, kvm) {
1721 if (!pass && i <= last_boosted_vcpu) {
1722 i = last_boosted_vcpu;
1723 continue;
1724 } else if (pass && i > last_boosted_vcpu)
1725 break;
1726 if (vcpu == me)
1727 continue;
1728 if (waitqueue_active(&vcpu->wq))
1729 continue;
1730 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1731 continue;
1732 if (kvm_vcpu_yield_to(vcpu)) {
1733 kvm->last_boosted_vcpu = i;
1734 yielded = 1;
1735 break;
1736 }
1737 }
1738 }
1739 kvm_vcpu_set_in_spin_loop(me, false);
1740
1741 /* Ensure vcpu is not eligible during next spinloop */
1742 kvm_vcpu_set_dy_eligible(me, false);
1743 }
1744 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1745
1746 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1747 {
1748 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1749 struct page *page;
1750
1751 if (vmf->pgoff == 0)
1752 page = virt_to_page(vcpu->run);
1753 #ifdef CONFIG_X86
1754 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1755 page = virt_to_page(vcpu->arch.pio_data);
1756 #endif
1757 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1758 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1759 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1760 #endif
1761 else
1762 return kvm_arch_vcpu_fault(vcpu, vmf);
1763 get_page(page);
1764 vmf->page = page;
1765 return 0;
1766 }
1767
1768 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1769 .fault = kvm_vcpu_fault,
1770 };
1771
1772 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1773 {
1774 vma->vm_ops = &kvm_vcpu_vm_ops;
1775 return 0;
1776 }
1777
1778 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1779 {
1780 struct kvm_vcpu *vcpu = filp->private_data;
1781
1782 kvm_put_kvm(vcpu->kvm);
1783 return 0;
1784 }
1785
1786 static struct file_operations kvm_vcpu_fops = {
1787 .release = kvm_vcpu_release,
1788 .unlocked_ioctl = kvm_vcpu_ioctl,
1789 #ifdef CONFIG_COMPAT
1790 .compat_ioctl = kvm_vcpu_compat_ioctl,
1791 #endif
1792 .mmap = kvm_vcpu_mmap,
1793 .llseek = noop_llseek,
1794 };
1795
1796 /*
1797 * Allocates an inode for the vcpu.
1798 */
1799 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1800 {
1801 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1802 }
1803
1804 /*
1805 * Creates some virtual cpus. Good luck creating more than one.
1806 */
1807 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1808 {
1809 int r;
1810 struct kvm_vcpu *vcpu, *v;
1811
1812 vcpu = kvm_arch_vcpu_create(kvm, id);
1813 if (IS_ERR(vcpu))
1814 return PTR_ERR(vcpu);
1815
1816 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1817
1818 r = kvm_arch_vcpu_setup(vcpu);
1819 if (r)
1820 goto vcpu_destroy;
1821
1822 mutex_lock(&kvm->lock);
1823 if (!kvm_vcpu_compatible(vcpu)) {
1824 r = -EINVAL;
1825 goto unlock_vcpu_destroy;
1826 }
1827 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1828 r = -EINVAL;
1829 goto unlock_vcpu_destroy;
1830 }
1831
1832 kvm_for_each_vcpu(r, v, kvm)
1833 if (v->vcpu_id == id) {
1834 r = -EEXIST;
1835 goto unlock_vcpu_destroy;
1836 }
1837
1838 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1839
1840 /* Now it's all set up, let userspace reach it */
1841 kvm_get_kvm(kvm);
1842 r = create_vcpu_fd(vcpu);
1843 if (r < 0) {
1844 kvm_put_kvm(kvm);
1845 goto unlock_vcpu_destroy;
1846 }
1847
1848 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1849 smp_wmb();
1850 atomic_inc(&kvm->online_vcpus);
1851
1852 mutex_unlock(&kvm->lock);
1853 kvm_arch_vcpu_postcreate(vcpu);
1854 return r;
1855
1856 unlock_vcpu_destroy:
1857 mutex_unlock(&kvm->lock);
1858 vcpu_destroy:
1859 kvm_arch_vcpu_destroy(vcpu);
1860 return r;
1861 }
1862
1863 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1864 {
1865 if (sigset) {
1866 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1867 vcpu->sigset_active = 1;
1868 vcpu->sigset = *sigset;
1869 } else
1870 vcpu->sigset_active = 0;
1871 return 0;
1872 }
1873
1874 static long kvm_vcpu_ioctl(struct file *filp,
1875 unsigned int ioctl, unsigned long arg)
1876 {
1877 struct kvm_vcpu *vcpu = filp->private_data;
1878 void __user *argp = (void __user *)arg;
1879 int r;
1880 struct kvm_fpu *fpu = NULL;
1881 struct kvm_sregs *kvm_sregs = NULL;
1882
1883 if (vcpu->kvm->mm != current->mm)
1884 return -EIO;
1885
1886 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1887 /*
1888 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1889 * so vcpu_load() would break it.
1890 */
1891 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1892 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1893 #endif
1894
1895
1896 r = vcpu_load(vcpu);
1897 if (r)
1898 return r;
1899 switch (ioctl) {
1900 case KVM_RUN:
1901 r = -EINVAL;
1902 if (arg)
1903 goto out;
1904 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1905 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1906 break;
1907 case KVM_GET_REGS: {
1908 struct kvm_regs *kvm_regs;
1909
1910 r = -ENOMEM;
1911 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1912 if (!kvm_regs)
1913 goto out;
1914 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1915 if (r)
1916 goto out_free1;
1917 r = -EFAULT;
1918 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1919 goto out_free1;
1920 r = 0;
1921 out_free1:
1922 kfree(kvm_regs);
1923 break;
1924 }
1925 case KVM_SET_REGS: {
1926 struct kvm_regs *kvm_regs;
1927
1928 r = -ENOMEM;
1929 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1930 if (IS_ERR(kvm_regs)) {
1931 r = PTR_ERR(kvm_regs);
1932 goto out;
1933 }
1934 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1935 kfree(kvm_regs);
1936 break;
1937 }
1938 case KVM_GET_SREGS: {
1939 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1940 r = -ENOMEM;
1941 if (!kvm_sregs)
1942 goto out;
1943 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1944 if (r)
1945 goto out;
1946 r = -EFAULT;
1947 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1948 goto out;
1949 r = 0;
1950 break;
1951 }
1952 case KVM_SET_SREGS: {
1953 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1954 if (IS_ERR(kvm_sregs)) {
1955 r = PTR_ERR(kvm_sregs);
1956 kvm_sregs = NULL;
1957 goto out;
1958 }
1959 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1960 break;
1961 }
1962 case KVM_GET_MP_STATE: {
1963 struct kvm_mp_state mp_state;
1964
1965 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1966 if (r)
1967 goto out;
1968 r = -EFAULT;
1969 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1970 goto out;
1971 r = 0;
1972 break;
1973 }
1974 case KVM_SET_MP_STATE: {
1975 struct kvm_mp_state mp_state;
1976
1977 r = -EFAULT;
1978 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1979 goto out;
1980 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1981 break;
1982 }
1983 case KVM_TRANSLATE: {
1984 struct kvm_translation tr;
1985
1986 r = -EFAULT;
1987 if (copy_from_user(&tr, argp, sizeof tr))
1988 goto out;
1989 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1990 if (r)
1991 goto out;
1992 r = -EFAULT;
1993 if (copy_to_user(argp, &tr, sizeof tr))
1994 goto out;
1995 r = 0;
1996 break;
1997 }
1998 case KVM_SET_GUEST_DEBUG: {
1999 struct kvm_guest_debug dbg;
2000
2001 r = -EFAULT;
2002 if (copy_from_user(&dbg, argp, sizeof dbg))
2003 goto out;
2004 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2005 break;
2006 }
2007 case KVM_SET_SIGNAL_MASK: {
2008 struct kvm_signal_mask __user *sigmask_arg = argp;
2009 struct kvm_signal_mask kvm_sigmask;
2010 sigset_t sigset, *p;
2011
2012 p = NULL;
2013 if (argp) {
2014 r = -EFAULT;
2015 if (copy_from_user(&kvm_sigmask, argp,
2016 sizeof kvm_sigmask))
2017 goto out;
2018 r = -EINVAL;
2019 if (kvm_sigmask.len != sizeof sigset)
2020 goto out;
2021 r = -EFAULT;
2022 if (copy_from_user(&sigset, sigmask_arg->sigset,
2023 sizeof sigset))
2024 goto out;
2025 p = &sigset;
2026 }
2027 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2028 break;
2029 }
2030 case KVM_GET_FPU: {
2031 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2032 r = -ENOMEM;
2033 if (!fpu)
2034 goto out;
2035 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2036 if (r)
2037 goto out;
2038 r = -EFAULT;
2039 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2040 goto out;
2041 r = 0;
2042 break;
2043 }
2044 case KVM_SET_FPU: {
2045 fpu = memdup_user(argp, sizeof(*fpu));
2046 if (IS_ERR(fpu)) {
2047 r = PTR_ERR(fpu);
2048 fpu = NULL;
2049 goto out;
2050 }
2051 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2052 break;
2053 }
2054 default:
2055 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2056 }
2057 out:
2058 vcpu_put(vcpu);
2059 kfree(fpu);
2060 kfree(kvm_sregs);
2061 return r;
2062 }
2063
2064 #ifdef CONFIG_COMPAT
2065 static long kvm_vcpu_compat_ioctl(struct file *filp,
2066 unsigned int ioctl, unsigned long arg)
2067 {
2068 struct kvm_vcpu *vcpu = filp->private_data;
2069 void __user *argp = compat_ptr(arg);
2070 int r;
2071
2072 if (vcpu->kvm->mm != current->mm)
2073 return -EIO;
2074
2075 switch (ioctl) {
2076 case KVM_SET_SIGNAL_MASK: {
2077 struct kvm_signal_mask __user *sigmask_arg = argp;
2078 struct kvm_signal_mask kvm_sigmask;
2079 compat_sigset_t csigset;
2080 sigset_t sigset;
2081
2082 if (argp) {
2083 r = -EFAULT;
2084 if (copy_from_user(&kvm_sigmask, argp,
2085 sizeof kvm_sigmask))
2086 goto out;
2087 r = -EINVAL;
2088 if (kvm_sigmask.len != sizeof csigset)
2089 goto out;
2090 r = -EFAULT;
2091 if (copy_from_user(&csigset, sigmask_arg->sigset,
2092 sizeof csigset))
2093 goto out;
2094 sigset_from_compat(&sigset, &csigset);
2095 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2096 } else
2097 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2098 break;
2099 }
2100 default:
2101 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2102 }
2103
2104 out:
2105 return r;
2106 }
2107 #endif
2108
2109 static long kvm_vm_ioctl(struct file *filp,
2110 unsigned int ioctl, unsigned long arg)
2111 {
2112 struct kvm *kvm = filp->private_data;
2113 void __user *argp = (void __user *)arg;
2114 int r;
2115
2116 if (kvm->mm != current->mm)
2117 return -EIO;
2118 switch (ioctl) {
2119 case KVM_CREATE_VCPU:
2120 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2121 break;
2122 case KVM_SET_USER_MEMORY_REGION: {
2123 struct kvm_userspace_memory_region kvm_userspace_mem;
2124
2125 r = -EFAULT;
2126 if (copy_from_user(&kvm_userspace_mem, argp,
2127 sizeof kvm_userspace_mem))
2128 goto out;
2129
2130 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2131 break;
2132 }
2133 case KVM_GET_DIRTY_LOG: {
2134 struct kvm_dirty_log log;
2135
2136 r = -EFAULT;
2137 if (copy_from_user(&log, argp, sizeof log))
2138 goto out;
2139 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2140 break;
2141 }
2142 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2143 case KVM_REGISTER_COALESCED_MMIO: {
2144 struct kvm_coalesced_mmio_zone zone;
2145 r = -EFAULT;
2146 if (copy_from_user(&zone, argp, sizeof zone))
2147 goto out;
2148 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2149 break;
2150 }
2151 case KVM_UNREGISTER_COALESCED_MMIO: {
2152 struct kvm_coalesced_mmio_zone zone;
2153 r = -EFAULT;
2154 if (copy_from_user(&zone, argp, sizeof zone))
2155 goto out;
2156 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2157 break;
2158 }
2159 #endif
2160 case KVM_IRQFD: {
2161 struct kvm_irqfd data;
2162
2163 r = -EFAULT;
2164 if (copy_from_user(&data, argp, sizeof data))
2165 goto out;
2166 r = kvm_irqfd(kvm, &data);
2167 break;
2168 }
2169 case KVM_IOEVENTFD: {
2170 struct kvm_ioeventfd data;
2171
2172 r = -EFAULT;
2173 if (copy_from_user(&data, argp, sizeof data))
2174 goto out;
2175 r = kvm_ioeventfd(kvm, &data);
2176 break;
2177 }
2178 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2179 case KVM_SET_BOOT_CPU_ID:
2180 r = 0;
2181 mutex_lock(&kvm->lock);
2182 if (atomic_read(&kvm->online_vcpus) != 0)
2183 r = -EBUSY;
2184 else
2185 kvm->bsp_vcpu_id = arg;
2186 mutex_unlock(&kvm->lock);
2187 break;
2188 #endif
2189 #ifdef CONFIG_HAVE_KVM_MSI
2190 case KVM_SIGNAL_MSI: {
2191 struct kvm_msi msi;
2192
2193 r = -EFAULT;
2194 if (copy_from_user(&msi, argp, sizeof msi))
2195 goto out;
2196 r = kvm_send_userspace_msi(kvm, &msi);
2197 break;
2198 }
2199 #endif
2200 #ifdef __KVM_HAVE_IRQ_LINE
2201 case KVM_IRQ_LINE_STATUS:
2202 case KVM_IRQ_LINE: {
2203 struct kvm_irq_level irq_event;
2204
2205 r = -EFAULT;
2206 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2207 goto out;
2208
2209 r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
2210 if (r)
2211 goto out;
2212
2213 r = -EFAULT;
2214 if (ioctl == KVM_IRQ_LINE_STATUS) {
2215 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2216 goto out;
2217 }
2218
2219 r = 0;
2220 break;
2221 }
2222 #endif
2223 default:
2224 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2225 if (r == -ENOTTY)
2226 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2227 }
2228 out:
2229 return r;
2230 }
2231
2232 #ifdef CONFIG_COMPAT
2233 struct compat_kvm_dirty_log {
2234 __u32 slot;
2235 __u32 padding1;
2236 union {
2237 compat_uptr_t dirty_bitmap; /* one bit per page */
2238 __u64 padding2;
2239 };
2240 };
2241
2242 static long kvm_vm_compat_ioctl(struct file *filp,
2243 unsigned int ioctl, unsigned long arg)
2244 {
2245 struct kvm *kvm = filp->private_data;
2246 int r;
2247
2248 if (kvm->mm != current->mm)
2249 return -EIO;
2250 switch (ioctl) {
2251 case KVM_GET_DIRTY_LOG: {
2252 struct compat_kvm_dirty_log compat_log;
2253 struct kvm_dirty_log log;
2254
2255 r = -EFAULT;
2256 if (copy_from_user(&compat_log, (void __user *)arg,
2257 sizeof(compat_log)))
2258 goto out;
2259 log.slot = compat_log.slot;
2260 log.padding1 = compat_log.padding1;
2261 log.padding2 = compat_log.padding2;
2262 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2263
2264 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2265 break;
2266 }
2267 default:
2268 r = kvm_vm_ioctl(filp, ioctl, arg);
2269 }
2270
2271 out:
2272 return r;
2273 }
2274 #endif
2275
2276 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2277 {
2278 struct page *page[1];
2279 unsigned long addr;
2280 int npages;
2281 gfn_t gfn = vmf->pgoff;
2282 struct kvm *kvm = vma->vm_file->private_data;
2283
2284 addr = gfn_to_hva(kvm, gfn);
2285 if (kvm_is_error_hva(addr))
2286 return VM_FAULT_SIGBUS;
2287
2288 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2289 NULL);
2290 if (unlikely(npages != 1))
2291 return VM_FAULT_SIGBUS;
2292
2293 vmf->page = page[0];
2294 return 0;
2295 }
2296
2297 static const struct vm_operations_struct kvm_vm_vm_ops = {
2298 .fault = kvm_vm_fault,
2299 };
2300
2301 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2302 {
2303 vma->vm_ops = &kvm_vm_vm_ops;
2304 return 0;
2305 }
2306
2307 static struct file_operations kvm_vm_fops = {
2308 .release = kvm_vm_release,
2309 .unlocked_ioctl = kvm_vm_ioctl,
2310 #ifdef CONFIG_COMPAT
2311 .compat_ioctl = kvm_vm_compat_ioctl,
2312 #endif
2313 .mmap = kvm_vm_mmap,
2314 .llseek = noop_llseek,
2315 };
2316
2317 static int kvm_dev_ioctl_create_vm(unsigned long type)
2318 {
2319 int r;
2320 struct kvm *kvm;
2321
2322 kvm = kvm_create_vm(type);
2323 if (IS_ERR(kvm))
2324 return PTR_ERR(kvm);
2325 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2326 r = kvm_coalesced_mmio_init(kvm);
2327 if (r < 0) {
2328 kvm_put_kvm(kvm);
2329 return r;
2330 }
2331 #endif
2332 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2333 if (r < 0)
2334 kvm_put_kvm(kvm);
2335
2336 return r;
2337 }
2338
2339 static long kvm_dev_ioctl_check_extension_generic(long arg)
2340 {
2341 switch (arg) {
2342 case KVM_CAP_USER_MEMORY:
2343 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2344 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2345 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2346 case KVM_CAP_SET_BOOT_CPU_ID:
2347 #endif
2348 case KVM_CAP_INTERNAL_ERROR_DATA:
2349 #ifdef CONFIG_HAVE_KVM_MSI
2350 case KVM_CAP_SIGNAL_MSI:
2351 #endif
2352 return 1;
2353 #ifdef KVM_CAP_IRQ_ROUTING
2354 case KVM_CAP_IRQ_ROUTING:
2355 return KVM_MAX_IRQ_ROUTES;
2356 #endif
2357 default:
2358 break;
2359 }
2360 return kvm_dev_ioctl_check_extension(arg);
2361 }
2362
2363 static long kvm_dev_ioctl(struct file *filp,
2364 unsigned int ioctl, unsigned long arg)
2365 {
2366 long r = -EINVAL;
2367
2368 switch (ioctl) {
2369 case KVM_GET_API_VERSION:
2370 r = -EINVAL;
2371 if (arg)
2372 goto out;
2373 r = KVM_API_VERSION;
2374 break;
2375 case KVM_CREATE_VM:
2376 r = kvm_dev_ioctl_create_vm(arg);
2377 break;
2378 case KVM_CHECK_EXTENSION:
2379 r = kvm_dev_ioctl_check_extension_generic(arg);
2380 break;
2381 case KVM_GET_VCPU_MMAP_SIZE:
2382 r = -EINVAL;
2383 if (arg)
2384 goto out;
2385 r = PAGE_SIZE; /* struct kvm_run */
2386 #ifdef CONFIG_X86
2387 r += PAGE_SIZE; /* pio data page */
2388 #endif
2389 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2390 r += PAGE_SIZE; /* coalesced mmio ring page */
2391 #endif
2392 break;
2393 case KVM_TRACE_ENABLE:
2394 case KVM_TRACE_PAUSE:
2395 case KVM_TRACE_DISABLE:
2396 r = -EOPNOTSUPP;
2397 break;
2398 default:
2399 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2400 }
2401 out:
2402 return r;
2403 }
2404
2405 static struct file_operations kvm_chardev_ops = {
2406 .unlocked_ioctl = kvm_dev_ioctl,
2407 .compat_ioctl = kvm_dev_ioctl,
2408 .llseek = noop_llseek,
2409 };
2410
2411 static struct miscdevice kvm_dev = {
2412 KVM_MINOR,
2413 "kvm",
2414 &kvm_chardev_ops,
2415 };
2416
2417 static void hardware_enable_nolock(void *junk)
2418 {
2419 int cpu = raw_smp_processor_id();
2420 int r;
2421
2422 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2423 return;
2424
2425 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2426
2427 r = kvm_arch_hardware_enable(NULL);
2428
2429 if (r) {
2430 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2431 atomic_inc(&hardware_enable_failed);
2432 printk(KERN_INFO "kvm: enabling virtualization on "
2433 "CPU%d failed\n", cpu);
2434 }
2435 }
2436
2437 static void hardware_enable(void *junk)
2438 {
2439 raw_spin_lock(&kvm_lock);
2440 hardware_enable_nolock(junk);
2441 raw_spin_unlock(&kvm_lock);
2442 }
2443
2444 static void hardware_disable_nolock(void *junk)
2445 {
2446 int cpu = raw_smp_processor_id();
2447
2448 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2449 return;
2450 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2451 kvm_arch_hardware_disable(NULL);
2452 }
2453
2454 static void hardware_disable(void *junk)
2455 {
2456 raw_spin_lock(&kvm_lock);
2457 hardware_disable_nolock(junk);
2458 raw_spin_unlock(&kvm_lock);
2459 }
2460
2461 static void hardware_disable_all_nolock(void)
2462 {
2463 BUG_ON(!kvm_usage_count);
2464
2465 kvm_usage_count--;
2466 if (!kvm_usage_count)
2467 on_each_cpu(hardware_disable_nolock, NULL, 1);
2468 }
2469
2470 static void hardware_disable_all(void)
2471 {
2472 raw_spin_lock(&kvm_lock);
2473 hardware_disable_all_nolock();
2474 raw_spin_unlock(&kvm_lock);
2475 }
2476
2477 static int hardware_enable_all(void)
2478 {
2479 int r = 0;
2480
2481 raw_spin_lock(&kvm_lock);
2482
2483 kvm_usage_count++;
2484 if (kvm_usage_count == 1) {
2485 atomic_set(&hardware_enable_failed, 0);
2486 on_each_cpu(hardware_enable_nolock, NULL, 1);
2487
2488 if (atomic_read(&hardware_enable_failed)) {
2489 hardware_disable_all_nolock();
2490 r = -EBUSY;
2491 }
2492 }
2493
2494 raw_spin_unlock(&kvm_lock);
2495
2496 return r;
2497 }
2498
2499 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2500 void *v)
2501 {
2502 int cpu = (long)v;
2503
2504 if (!kvm_usage_count)
2505 return NOTIFY_OK;
2506
2507 val &= ~CPU_TASKS_FROZEN;
2508 switch (val) {
2509 case CPU_DYING:
2510 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2511 cpu);
2512 hardware_disable(NULL);
2513 break;
2514 case CPU_STARTING:
2515 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2516 cpu);
2517 hardware_enable(NULL);
2518 break;
2519 }
2520 return NOTIFY_OK;
2521 }
2522
2523
2524 asmlinkage void kvm_spurious_fault(void)
2525 {
2526 /* Fault while not rebooting. We want the trace. */
2527 BUG();
2528 }
2529 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2530
2531 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2532 void *v)
2533 {
2534 /*
2535 * Some (well, at least mine) BIOSes hang on reboot if
2536 * in vmx root mode.
2537 *
2538 * And Intel TXT required VMX off for all cpu when system shutdown.
2539 */
2540 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2541 kvm_rebooting = true;
2542 on_each_cpu(hardware_disable_nolock, NULL, 1);
2543 return NOTIFY_OK;
2544 }
2545
2546 static struct notifier_block kvm_reboot_notifier = {
2547 .notifier_call = kvm_reboot,
2548 .priority = 0,
2549 };
2550
2551 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2552 {
2553 int i;
2554
2555 for (i = 0; i < bus->dev_count; i++) {
2556 struct kvm_io_device *pos = bus->range[i].dev;
2557
2558 kvm_iodevice_destructor(pos);
2559 }
2560 kfree(bus);
2561 }
2562
2563 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2564 {
2565 const struct kvm_io_range *r1 = p1;
2566 const struct kvm_io_range *r2 = p2;
2567
2568 if (r1->addr < r2->addr)
2569 return -1;
2570 if (r1->addr + r1->len > r2->addr + r2->len)
2571 return 1;
2572 return 0;
2573 }
2574
2575 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2576 gpa_t addr, int len)
2577 {
2578 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2579 .addr = addr,
2580 .len = len,
2581 .dev = dev,
2582 };
2583
2584 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2585 kvm_io_bus_sort_cmp, NULL);
2586
2587 return 0;
2588 }
2589
2590 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2591 gpa_t addr, int len)
2592 {
2593 struct kvm_io_range *range, key;
2594 int off;
2595
2596 key = (struct kvm_io_range) {
2597 .addr = addr,
2598 .len = len,
2599 };
2600
2601 range = bsearch(&key, bus->range, bus->dev_count,
2602 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2603 if (range == NULL)
2604 return -ENOENT;
2605
2606 off = range - bus->range;
2607
2608 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2609 off--;
2610
2611 return off;
2612 }
2613
2614 /* kvm_io_bus_write - called under kvm->slots_lock */
2615 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2616 int len, const void *val)
2617 {
2618 int idx;
2619 struct kvm_io_bus *bus;
2620 struct kvm_io_range range;
2621
2622 range = (struct kvm_io_range) {
2623 .addr = addr,
2624 .len = len,
2625 };
2626
2627 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2628 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2629 if (idx < 0)
2630 return -EOPNOTSUPP;
2631
2632 while (idx < bus->dev_count &&
2633 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2634 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2635 return 0;
2636 idx++;
2637 }
2638
2639 return -EOPNOTSUPP;
2640 }
2641
2642 /* kvm_io_bus_read - called under kvm->slots_lock */
2643 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2644 int len, void *val)
2645 {
2646 int idx;
2647 struct kvm_io_bus *bus;
2648 struct kvm_io_range range;
2649
2650 range = (struct kvm_io_range) {
2651 .addr = addr,
2652 .len = len,
2653 };
2654
2655 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2656 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2657 if (idx < 0)
2658 return -EOPNOTSUPP;
2659
2660 while (idx < bus->dev_count &&
2661 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2662 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2663 return 0;
2664 idx++;
2665 }
2666
2667 return -EOPNOTSUPP;
2668 }
2669
2670 /* Caller must hold slots_lock. */
2671 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2672 int len, struct kvm_io_device *dev)
2673 {
2674 struct kvm_io_bus *new_bus, *bus;
2675
2676 bus = kvm->buses[bus_idx];
2677 if (bus->dev_count > NR_IOBUS_DEVS - 1)
2678 return -ENOSPC;
2679
2680 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2681 sizeof(struct kvm_io_range)), GFP_KERNEL);
2682 if (!new_bus)
2683 return -ENOMEM;
2684 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2685 sizeof(struct kvm_io_range)));
2686 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2687 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2688 synchronize_srcu_expedited(&kvm->srcu);
2689 kfree(bus);
2690
2691 return 0;
2692 }
2693
2694 /* Caller must hold slots_lock. */
2695 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2696 struct kvm_io_device *dev)
2697 {
2698 int i, r;
2699 struct kvm_io_bus *new_bus, *bus;
2700
2701 bus = kvm->buses[bus_idx];
2702 r = -ENOENT;
2703 for (i = 0; i < bus->dev_count; i++)
2704 if (bus->range[i].dev == dev) {
2705 r = 0;
2706 break;
2707 }
2708
2709 if (r)
2710 return r;
2711
2712 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2713 sizeof(struct kvm_io_range)), GFP_KERNEL);
2714 if (!new_bus)
2715 return -ENOMEM;
2716
2717 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2718 new_bus->dev_count--;
2719 memcpy(new_bus->range + i, bus->range + i + 1,
2720 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2721
2722 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2723 synchronize_srcu_expedited(&kvm->srcu);
2724 kfree(bus);
2725 return r;
2726 }
2727
2728 static struct notifier_block kvm_cpu_notifier = {
2729 .notifier_call = kvm_cpu_hotplug,
2730 };
2731
2732 static int vm_stat_get(void *_offset, u64 *val)
2733 {
2734 unsigned offset = (long)_offset;
2735 struct kvm *kvm;
2736
2737 *val = 0;
2738 raw_spin_lock(&kvm_lock);
2739 list_for_each_entry(kvm, &vm_list, vm_list)
2740 *val += *(u32 *)((void *)kvm + offset);
2741 raw_spin_unlock(&kvm_lock);
2742 return 0;
2743 }
2744
2745 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2746
2747 static int vcpu_stat_get(void *_offset, u64 *val)
2748 {
2749 unsigned offset = (long)_offset;
2750 struct kvm *kvm;
2751 struct kvm_vcpu *vcpu;
2752 int i;
2753
2754 *val = 0;
2755 raw_spin_lock(&kvm_lock);
2756 list_for_each_entry(kvm, &vm_list, vm_list)
2757 kvm_for_each_vcpu(i, vcpu, kvm)
2758 *val += *(u32 *)((void *)vcpu + offset);
2759
2760 raw_spin_unlock(&kvm_lock);
2761 return 0;
2762 }
2763
2764 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2765
2766 static const struct file_operations *stat_fops[] = {
2767 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2768 [KVM_STAT_VM] = &vm_stat_fops,
2769 };
2770
2771 static int kvm_init_debug(void)
2772 {
2773 int r = -EFAULT;
2774 struct kvm_stats_debugfs_item *p;
2775
2776 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2777 if (kvm_debugfs_dir == NULL)
2778 goto out;
2779
2780 for (p = debugfs_entries; p->name; ++p) {
2781 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2782 (void *)(long)p->offset,
2783 stat_fops[p->kind]);
2784 if (p->dentry == NULL)
2785 goto out_dir;
2786 }
2787
2788 return 0;
2789
2790 out_dir:
2791 debugfs_remove_recursive(kvm_debugfs_dir);
2792 out:
2793 return r;
2794 }
2795
2796 static void kvm_exit_debug(void)
2797 {
2798 struct kvm_stats_debugfs_item *p;
2799
2800 for (p = debugfs_entries; p->name; ++p)
2801 debugfs_remove(p->dentry);
2802 debugfs_remove(kvm_debugfs_dir);
2803 }
2804
2805 static int kvm_suspend(void)
2806 {
2807 if (kvm_usage_count)
2808 hardware_disable_nolock(NULL);
2809 return 0;
2810 }
2811
2812 static void kvm_resume(void)
2813 {
2814 if (kvm_usage_count) {
2815 WARN_ON(raw_spin_is_locked(&kvm_lock));
2816 hardware_enable_nolock(NULL);
2817 }
2818 }
2819
2820 static struct syscore_ops kvm_syscore_ops = {
2821 .suspend = kvm_suspend,
2822 .resume = kvm_resume,
2823 };
2824
2825 static inline
2826 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2827 {
2828 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2829 }
2830
2831 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2832 {
2833 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2834
2835 kvm_arch_vcpu_load(vcpu, cpu);
2836 }
2837
2838 static void kvm_sched_out(struct preempt_notifier *pn,
2839 struct task_struct *next)
2840 {
2841 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2842
2843 kvm_arch_vcpu_put(vcpu);
2844 }
2845
2846 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2847 struct module *module)
2848 {
2849 int r;
2850 int cpu;
2851
2852 r = kvm_arch_init(opaque);
2853 if (r)
2854 goto out_fail;
2855
2856 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2857 r = -ENOMEM;
2858 goto out_free_0;
2859 }
2860
2861 r = kvm_arch_hardware_setup();
2862 if (r < 0)
2863 goto out_free_0a;
2864
2865 for_each_online_cpu(cpu) {
2866 smp_call_function_single(cpu,
2867 kvm_arch_check_processor_compat,
2868 &r, 1);
2869 if (r < 0)
2870 goto out_free_1;
2871 }
2872
2873 r = register_cpu_notifier(&kvm_cpu_notifier);
2874 if (r)
2875 goto out_free_2;
2876 register_reboot_notifier(&kvm_reboot_notifier);
2877
2878 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2879 if (!vcpu_align)
2880 vcpu_align = __alignof__(struct kvm_vcpu);
2881 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2882 0, NULL);
2883 if (!kvm_vcpu_cache) {
2884 r = -ENOMEM;
2885 goto out_free_3;
2886 }
2887
2888 r = kvm_async_pf_init();
2889 if (r)
2890 goto out_free;
2891
2892 kvm_chardev_ops.owner = module;
2893 kvm_vm_fops.owner = module;
2894 kvm_vcpu_fops.owner = module;
2895
2896 r = misc_register(&kvm_dev);
2897 if (r) {
2898 printk(KERN_ERR "kvm: misc device register failed\n");
2899 goto out_unreg;
2900 }
2901
2902 register_syscore_ops(&kvm_syscore_ops);
2903
2904 kvm_preempt_ops.sched_in = kvm_sched_in;
2905 kvm_preempt_ops.sched_out = kvm_sched_out;
2906
2907 r = kvm_init_debug();
2908 if (r) {
2909 printk(KERN_ERR "kvm: create debugfs files failed\n");
2910 goto out_undebugfs;
2911 }
2912
2913 return 0;
2914
2915 out_undebugfs:
2916 unregister_syscore_ops(&kvm_syscore_ops);
2917 out_unreg:
2918 kvm_async_pf_deinit();
2919 out_free:
2920 kmem_cache_destroy(kvm_vcpu_cache);
2921 out_free_3:
2922 unregister_reboot_notifier(&kvm_reboot_notifier);
2923 unregister_cpu_notifier(&kvm_cpu_notifier);
2924 out_free_2:
2925 out_free_1:
2926 kvm_arch_hardware_unsetup();
2927 out_free_0a:
2928 free_cpumask_var(cpus_hardware_enabled);
2929 out_free_0:
2930 kvm_arch_exit();
2931 out_fail:
2932 return r;
2933 }
2934 EXPORT_SYMBOL_GPL(kvm_init);
2935
2936 void kvm_exit(void)
2937 {
2938 kvm_exit_debug();
2939 misc_deregister(&kvm_dev);
2940 kmem_cache_destroy(kvm_vcpu_cache);
2941 kvm_async_pf_deinit();
2942 unregister_syscore_ops(&kvm_syscore_ops);
2943 unregister_reboot_notifier(&kvm_reboot_notifier);
2944 unregister_cpu_notifier(&kvm_cpu_notifier);
2945 on_each_cpu(hardware_disable_nolock, NULL, 1);
2946 kvm_arch_hardware_unsetup();
2947 kvm_arch_exit();
2948 free_cpumask_var(cpus_hardware_enabled);
2949 }
2950 EXPORT_SYMBOL_GPL(kvm_exit);