]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - virt/kvm/kvm_main.c
PM / Runtime: Fix loops in pm_runtime_clk_notify()
[mirror_ubuntu-kernels.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50
51 #include <asm/processor.h>
52 #include <asm/io.h>
53 #include <asm/uaccess.h>
54 #include <asm/pgtable.h>
55
56 #include "coalesced_mmio.h"
57 #include "async_pf.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/kvm.h>
61
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64
65 /*
66 * Ordering of locks:
67 *
68 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
69 */
70
71 DEFINE_RAW_SPINLOCK(kvm_lock);
72 LIST_HEAD(vm_list);
73
74 static cpumask_var_t cpus_hardware_enabled;
75 static int kvm_usage_count = 0;
76 static atomic_t hardware_enable_failed;
77
78 struct kmem_cache *kvm_vcpu_cache;
79 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
80
81 static __read_mostly struct preempt_ops kvm_preempt_ops;
82
83 struct dentry *kvm_debugfs_dir;
84
85 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
86 unsigned long arg);
87 static int hardware_enable_all(void);
88 static void hardware_disable_all(void);
89
90 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
91
92 bool kvm_rebooting;
93 EXPORT_SYMBOL_GPL(kvm_rebooting);
94
95 static bool largepages_enabled = true;
96
97 static struct page *hwpoison_page;
98 static pfn_t hwpoison_pfn;
99
100 static struct page *fault_page;
101 static pfn_t fault_pfn;
102
103 inline int kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 if (pfn_valid(pfn)) {
106 int reserved;
107 struct page *tail = pfn_to_page(pfn);
108 struct page *head = compound_trans_head(tail);
109 reserved = PageReserved(head);
110 if (head != tail) {
111 /*
112 * "head" is not a dangling pointer
113 * (compound_trans_head takes care of that)
114 * but the hugepage may have been splitted
115 * from under us (and we may not hold a
116 * reference count on the head page so it can
117 * be reused before we run PageReferenced), so
118 * we've to check PageTail before returning
119 * what we just read.
120 */
121 smp_rmb();
122 if (PageTail(tail))
123 return reserved;
124 }
125 return PageReserved(tail);
126 }
127
128 return true;
129 }
130
131 /*
132 * Switches to specified vcpu, until a matching vcpu_put()
133 */
134 void vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 int cpu;
137
138 mutex_lock(&vcpu->mutex);
139 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
140 /* The thread running this VCPU changed. */
141 struct pid *oldpid = vcpu->pid;
142 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
143 rcu_assign_pointer(vcpu->pid, newpid);
144 synchronize_rcu();
145 put_pid(oldpid);
146 }
147 cpu = get_cpu();
148 preempt_notifier_register(&vcpu->preempt_notifier);
149 kvm_arch_vcpu_load(vcpu, cpu);
150 put_cpu();
151 }
152
153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155 preempt_disable();
156 kvm_arch_vcpu_put(vcpu);
157 preempt_notifier_unregister(&vcpu->preempt_notifier);
158 preempt_enable();
159 mutex_unlock(&vcpu->mutex);
160 }
161
162 static void ack_flush(void *_completed)
163 {
164 }
165
166 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
167 {
168 int i, cpu, me;
169 cpumask_var_t cpus;
170 bool called = true;
171 struct kvm_vcpu *vcpu;
172
173 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
174
175 me = get_cpu();
176 kvm_for_each_vcpu(i, vcpu, kvm) {
177 kvm_make_request(req, vcpu);
178 cpu = vcpu->cpu;
179
180 /* Set ->requests bit before we read ->mode */
181 smp_mb();
182
183 if (cpus != NULL && cpu != -1 && cpu != me &&
184 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
185 cpumask_set_cpu(cpu, cpus);
186 }
187 if (unlikely(cpus == NULL))
188 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
189 else if (!cpumask_empty(cpus))
190 smp_call_function_many(cpus, ack_flush, NULL, 1);
191 else
192 called = false;
193 put_cpu();
194 free_cpumask_var(cpus);
195 return called;
196 }
197
198 void kvm_flush_remote_tlbs(struct kvm *kvm)
199 {
200 int dirty_count = kvm->tlbs_dirty;
201
202 smp_mb();
203 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
204 ++kvm->stat.remote_tlb_flush;
205 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
206 }
207
208 void kvm_reload_remote_mmus(struct kvm *kvm)
209 {
210 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
211 }
212
213 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
214 {
215 struct page *page;
216 int r;
217
218 mutex_init(&vcpu->mutex);
219 vcpu->cpu = -1;
220 vcpu->kvm = kvm;
221 vcpu->vcpu_id = id;
222 vcpu->pid = NULL;
223 init_waitqueue_head(&vcpu->wq);
224 kvm_async_pf_vcpu_init(vcpu);
225
226 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
227 if (!page) {
228 r = -ENOMEM;
229 goto fail;
230 }
231 vcpu->run = page_address(page);
232
233 r = kvm_arch_vcpu_init(vcpu);
234 if (r < 0)
235 goto fail_free_run;
236 return 0;
237
238 fail_free_run:
239 free_page((unsigned long)vcpu->run);
240 fail:
241 return r;
242 }
243 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
244
245 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
246 {
247 put_pid(vcpu->pid);
248 kvm_arch_vcpu_uninit(vcpu);
249 free_page((unsigned long)vcpu->run);
250 }
251 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
252
253 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
254 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
255 {
256 return container_of(mn, struct kvm, mmu_notifier);
257 }
258
259 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
260 struct mm_struct *mm,
261 unsigned long address)
262 {
263 struct kvm *kvm = mmu_notifier_to_kvm(mn);
264 int need_tlb_flush, idx;
265
266 /*
267 * When ->invalidate_page runs, the linux pte has been zapped
268 * already but the page is still allocated until
269 * ->invalidate_page returns. So if we increase the sequence
270 * here the kvm page fault will notice if the spte can't be
271 * established because the page is going to be freed. If
272 * instead the kvm page fault establishes the spte before
273 * ->invalidate_page runs, kvm_unmap_hva will release it
274 * before returning.
275 *
276 * The sequence increase only need to be seen at spin_unlock
277 * time, and not at spin_lock time.
278 *
279 * Increasing the sequence after the spin_unlock would be
280 * unsafe because the kvm page fault could then establish the
281 * pte after kvm_unmap_hva returned, without noticing the page
282 * is going to be freed.
283 */
284 idx = srcu_read_lock(&kvm->srcu);
285 spin_lock(&kvm->mmu_lock);
286 kvm->mmu_notifier_seq++;
287 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
288 spin_unlock(&kvm->mmu_lock);
289 srcu_read_unlock(&kvm->srcu, idx);
290
291 /* we've to flush the tlb before the pages can be freed */
292 if (need_tlb_flush)
293 kvm_flush_remote_tlbs(kvm);
294
295 }
296
297 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
298 struct mm_struct *mm,
299 unsigned long address,
300 pte_t pte)
301 {
302 struct kvm *kvm = mmu_notifier_to_kvm(mn);
303 int idx;
304
305 idx = srcu_read_lock(&kvm->srcu);
306 spin_lock(&kvm->mmu_lock);
307 kvm->mmu_notifier_seq++;
308 kvm_set_spte_hva(kvm, address, pte);
309 spin_unlock(&kvm->mmu_lock);
310 srcu_read_unlock(&kvm->srcu, idx);
311 }
312
313 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
314 struct mm_struct *mm,
315 unsigned long start,
316 unsigned long end)
317 {
318 struct kvm *kvm = mmu_notifier_to_kvm(mn);
319 int need_tlb_flush = 0, idx;
320
321 idx = srcu_read_lock(&kvm->srcu);
322 spin_lock(&kvm->mmu_lock);
323 /*
324 * The count increase must become visible at unlock time as no
325 * spte can be established without taking the mmu_lock and
326 * count is also read inside the mmu_lock critical section.
327 */
328 kvm->mmu_notifier_count++;
329 for (; start < end; start += PAGE_SIZE)
330 need_tlb_flush |= kvm_unmap_hva(kvm, start);
331 need_tlb_flush |= kvm->tlbs_dirty;
332 spin_unlock(&kvm->mmu_lock);
333 srcu_read_unlock(&kvm->srcu, idx);
334
335 /* we've to flush the tlb before the pages can be freed */
336 if (need_tlb_flush)
337 kvm_flush_remote_tlbs(kvm);
338 }
339
340 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
341 struct mm_struct *mm,
342 unsigned long start,
343 unsigned long end)
344 {
345 struct kvm *kvm = mmu_notifier_to_kvm(mn);
346
347 spin_lock(&kvm->mmu_lock);
348 /*
349 * This sequence increase will notify the kvm page fault that
350 * the page that is going to be mapped in the spte could have
351 * been freed.
352 */
353 kvm->mmu_notifier_seq++;
354 /*
355 * The above sequence increase must be visible before the
356 * below count decrease but both values are read by the kvm
357 * page fault under mmu_lock spinlock so we don't need to add
358 * a smb_wmb() here in between the two.
359 */
360 kvm->mmu_notifier_count--;
361 spin_unlock(&kvm->mmu_lock);
362
363 BUG_ON(kvm->mmu_notifier_count < 0);
364 }
365
366 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
367 struct mm_struct *mm,
368 unsigned long address)
369 {
370 struct kvm *kvm = mmu_notifier_to_kvm(mn);
371 int young, idx;
372
373 idx = srcu_read_lock(&kvm->srcu);
374 spin_lock(&kvm->mmu_lock);
375 young = kvm_age_hva(kvm, address);
376 spin_unlock(&kvm->mmu_lock);
377 srcu_read_unlock(&kvm->srcu, idx);
378
379 if (young)
380 kvm_flush_remote_tlbs(kvm);
381
382 return young;
383 }
384
385 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
386 struct mm_struct *mm,
387 unsigned long address)
388 {
389 struct kvm *kvm = mmu_notifier_to_kvm(mn);
390 int young, idx;
391
392 idx = srcu_read_lock(&kvm->srcu);
393 spin_lock(&kvm->mmu_lock);
394 young = kvm_test_age_hva(kvm, address);
395 spin_unlock(&kvm->mmu_lock);
396 srcu_read_unlock(&kvm->srcu, idx);
397
398 return young;
399 }
400
401 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
402 struct mm_struct *mm)
403 {
404 struct kvm *kvm = mmu_notifier_to_kvm(mn);
405 int idx;
406
407 idx = srcu_read_lock(&kvm->srcu);
408 kvm_arch_flush_shadow(kvm);
409 srcu_read_unlock(&kvm->srcu, idx);
410 }
411
412 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
413 .invalidate_page = kvm_mmu_notifier_invalidate_page,
414 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
415 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
416 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
417 .test_young = kvm_mmu_notifier_test_young,
418 .change_pte = kvm_mmu_notifier_change_pte,
419 .release = kvm_mmu_notifier_release,
420 };
421
422 static int kvm_init_mmu_notifier(struct kvm *kvm)
423 {
424 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
425 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
426 }
427
428 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
429
430 static int kvm_init_mmu_notifier(struct kvm *kvm)
431 {
432 return 0;
433 }
434
435 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
436
437 static struct kvm *kvm_create_vm(void)
438 {
439 int r, i;
440 struct kvm *kvm = kvm_arch_alloc_vm();
441
442 if (!kvm)
443 return ERR_PTR(-ENOMEM);
444
445 r = kvm_arch_init_vm(kvm);
446 if (r)
447 goto out_err_nodisable;
448
449 r = hardware_enable_all();
450 if (r)
451 goto out_err_nodisable;
452
453 #ifdef CONFIG_HAVE_KVM_IRQCHIP
454 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
455 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
456 #endif
457
458 r = -ENOMEM;
459 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
460 if (!kvm->memslots)
461 goto out_err_nosrcu;
462 if (init_srcu_struct(&kvm->srcu))
463 goto out_err_nosrcu;
464 for (i = 0; i < KVM_NR_BUSES; i++) {
465 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
466 GFP_KERNEL);
467 if (!kvm->buses[i])
468 goto out_err;
469 }
470 spin_lock_init(&kvm->mmu_lock);
471
472 r = kvm_init_mmu_notifier(kvm);
473 if (r)
474 goto out_err;
475
476 kvm->mm = current->mm;
477 atomic_inc(&kvm->mm->mm_count);
478 kvm_eventfd_init(kvm);
479 mutex_init(&kvm->lock);
480 mutex_init(&kvm->irq_lock);
481 mutex_init(&kvm->slots_lock);
482 atomic_set(&kvm->users_count, 1);
483 raw_spin_lock(&kvm_lock);
484 list_add(&kvm->vm_list, &vm_list);
485 raw_spin_unlock(&kvm_lock);
486
487 return kvm;
488
489 out_err:
490 cleanup_srcu_struct(&kvm->srcu);
491 out_err_nosrcu:
492 hardware_disable_all();
493 out_err_nodisable:
494 for (i = 0; i < KVM_NR_BUSES; i++)
495 kfree(kvm->buses[i]);
496 kfree(kvm->memslots);
497 kvm_arch_free_vm(kvm);
498 return ERR_PTR(r);
499 }
500
501 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
502 {
503 if (!memslot->dirty_bitmap)
504 return;
505
506 if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
507 vfree(memslot->dirty_bitmap_head);
508 else
509 kfree(memslot->dirty_bitmap_head);
510
511 memslot->dirty_bitmap = NULL;
512 memslot->dirty_bitmap_head = NULL;
513 }
514
515 /*
516 * Free any memory in @free but not in @dont.
517 */
518 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
519 struct kvm_memory_slot *dont)
520 {
521 int i;
522
523 if (!dont || free->rmap != dont->rmap)
524 vfree(free->rmap);
525
526 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
527 kvm_destroy_dirty_bitmap(free);
528
529
530 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
531 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
532 vfree(free->lpage_info[i]);
533 free->lpage_info[i] = NULL;
534 }
535 }
536
537 free->npages = 0;
538 free->rmap = NULL;
539 }
540
541 void kvm_free_physmem(struct kvm *kvm)
542 {
543 int i;
544 struct kvm_memslots *slots = kvm->memslots;
545
546 for (i = 0; i < slots->nmemslots; ++i)
547 kvm_free_physmem_slot(&slots->memslots[i], NULL);
548
549 kfree(kvm->memslots);
550 }
551
552 static void kvm_destroy_vm(struct kvm *kvm)
553 {
554 int i;
555 struct mm_struct *mm = kvm->mm;
556
557 kvm_arch_sync_events(kvm);
558 raw_spin_lock(&kvm_lock);
559 list_del(&kvm->vm_list);
560 raw_spin_unlock(&kvm_lock);
561 kvm_free_irq_routing(kvm);
562 for (i = 0; i < KVM_NR_BUSES; i++)
563 kvm_io_bus_destroy(kvm->buses[i]);
564 kvm_coalesced_mmio_free(kvm);
565 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
566 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
567 #else
568 kvm_arch_flush_shadow(kvm);
569 #endif
570 kvm_arch_destroy_vm(kvm);
571 kvm_free_physmem(kvm);
572 cleanup_srcu_struct(&kvm->srcu);
573 kvm_arch_free_vm(kvm);
574 hardware_disable_all();
575 mmdrop(mm);
576 }
577
578 void kvm_get_kvm(struct kvm *kvm)
579 {
580 atomic_inc(&kvm->users_count);
581 }
582 EXPORT_SYMBOL_GPL(kvm_get_kvm);
583
584 void kvm_put_kvm(struct kvm *kvm)
585 {
586 if (atomic_dec_and_test(&kvm->users_count))
587 kvm_destroy_vm(kvm);
588 }
589 EXPORT_SYMBOL_GPL(kvm_put_kvm);
590
591
592 static int kvm_vm_release(struct inode *inode, struct file *filp)
593 {
594 struct kvm *kvm = filp->private_data;
595
596 kvm_irqfd_release(kvm);
597
598 kvm_put_kvm(kvm);
599 return 0;
600 }
601
602 #ifndef CONFIG_S390
603 /*
604 * Allocation size is twice as large as the actual dirty bitmap size.
605 * This makes it possible to do double buffering: see x86's
606 * kvm_vm_ioctl_get_dirty_log().
607 */
608 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
609 {
610 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
611
612 if (dirty_bytes > PAGE_SIZE)
613 memslot->dirty_bitmap = vzalloc(dirty_bytes);
614 else
615 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
616
617 if (!memslot->dirty_bitmap)
618 return -ENOMEM;
619
620 memslot->dirty_bitmap_head = memslot->dirty_bitmap;
621 return 0;
622 }
623 #endif /* !CONFIG_S390 */
624
625 /*
626 * Allocate some memory and give it an address in the guest physical address
627 * space.
628 *
629 * Discontiguous memory is allowed, mostly for framebuffers.
630 *
631 * Must be called holding mmap_sem for write.
632 */
633 int __kvm_set_memory_region(struct kvm *kvm,
634 struct kvm_userspace_memory_region *mem,
635 int user_alloc)
636 {
637 int r;
638 gfn_t base_gfn;
639 unsigned long npages;
640 unsigned long i;
641 struct kvm_memory_slot *memslot;
642 struct kvm_memory_slot old, new;
643 struct kvm_memslots *slots, *old_memslots;
644
645 r = -EINVAL;
646 /* General sanity checks */
647 if (mem->memory_size & (PAGE_SIZE - 1))
648 goto out;
649 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
650 goto out;
651 /* We can read the guest memory with __xxx_user() later on. */
652 if (user_alloc &&
653 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
654 !access_ok(VERIFY_WRITE, mem->userspace_addr, mem->memory_size)))
655 goto out;
656 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
657 goto out;
658 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
659 goto out;
660
661 memslot = &kvm->memslots->memslots[mem->slot];
662 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
663 npages = mem->memory_size >> PAGE_SHIFT;
664
665 r = -EINVAL;
666 if (npages > KVM_MEM_MAX_NR_PAGES)
667 goto out;
668
669 if (!npages)
670 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
671
672 new = old = *memslot;
673
674 new.id = mem->slot;
675 new.base_gfn = base_gfn;
676 new.npages = npages;
677 new.flags = mem->flags;
678
679 /* Disallow changing a memory slot's size. */
680 r = -EINVAL;
681 if (npages && old.npages && npages != old.npages)
682 goto out_free;
683
684 /* Check for overlaps */
685 r = -EEXIST;
686 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
687 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
688
689 if (s == memslot || !s->npages)
690 continue;
691 if (!((base_gfn + npages <= s->base_gfn) ||
692 (base_gfn >= s->base_gfn + s->npages)))
693 goto out_free;
694 }
695
696 /* Free page dirty bitmap if unneeded */
697 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
698 new.dirty_bitmap = NULL;
699
700 r = -ENOMEM;
701
702 /* Allocate if a slot is being created */
703 #ifndef CONFIG_S390
704 if (npages && !new.rmap) {
705 new.rmap = vzalloc(npages * sizeof(*new.rmap));
706
707 if (!new.rmap)
708 goto out_free;
709
710 new.user_alloc = user_alloc;
711 new.userspace_addr = mem->userspace_addr;
712 }
713 if (!npages)
714 goto skip_lpage;
715
716 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
717 unsigned long ugfn;
718 unsigned long j;
719 int lpages;
720 int level = i + 2;
721
722 /* Avoid unused variable warning if no large pages */
723 (void)level;
724
725 if (new.lpage_info[i])
726 continue;
727
728 lpages = 1 + ((base_gfn + npages - 1)
729 >> KVM_HPAGE_GFN_SHIFT(level));
730 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
731
732 new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
733
734 if (!new.lpage_info[i])
735 goto out_free;
736
737 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
738 new.lpage_info[i][0].write_count = 1;
739 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
740 new.lpage_info[i][lpages - 1].write_count = 1;
741 ugfn = new.userspace_addr >> PAGE_SHIFT;
742 /*
743 * If the gfn and userspace address are not aligned wrt each
744 * other, or if explicitly asked to, disable large page
745 * support for this slot
746 */
747 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
748 !largepages_enabled)
749 for (j = 0; j < lpages; ++j)
750 new.lpage_info[i][j].write_count = 1;
751 }
752
753 skip_lpage:
754
755 /* Allocate page dirty bitmap if needed */
756 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
757 if (kvm_create_dirty_bitmap(&new) < 0)
758 goto out_free;
759 /* destroy any largepage mappings for dirty tracking */
760 }
761 #else /* not defined CONFIG_S390 */
762 new.user_alloc = user_alloc;
763 if (user_alloc)
764 new.userspace_addr = mem->userspace_addr;
765 #endif /* not defined CONFIG_S390 */
766
767 if (!npages) {
768 r = -ENOMEM;
769 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
770 if (!slots)
771 goto out_free;
772 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
773 if (mem->slot >= slots->nmemslots)
774 slots->nmemslots = mem->slot + 1;
775 slots->generation++;
776 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
777
778 old_memslots = kvm->memslots;
779 rcu_assign_pointer(kvm->memslots, slots);
780 synchronize_srcu_expedited(&kvm->srcu);
781 /* From this point no new shadow pages pointing to a deleted
782 * memslot will be created.
783 *
784 * validation of sp->gfn happens in:
785 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
786 * - kvm_is_visible_gfn (mmu_check_roots)
787 */
788 kvm_arch_flush_shadow(kvm);
789 kfree(old_memslots);
790 }
791
792 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
793 if (r)
794 goto out_free;
795
796 /* map the pages in iommu page table */
797 if (npages) {
798 r = kvm_iommu_map_pages(kvm, &new);
799 if (r)
800 goto out_free;
801 }
802
803 r = -ENOMEM;
804 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
805 if (!slots)
806 goto out_free;
807 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
808 if (mem->slot >= slots->nmemslots)
809 slots->nmemslots = mem->slot + 1;
810 slots->generation++;
811
812 /* actual memory is freed via old in kvm_free_physmem_slot below */
813 if (!npages) {
814 new.rmap = NULL;
815 new.dirty_bitmap = NULL;
816 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
817 new.lpage_info[i] = NULL;
818 }
819
820 slots->memslots[mem->slot] = new;
821 old_memslots = kvm->memslots;
822 rcu_assign_pointer(kvm->memslots, slots);
823 synchronize_srcu_expedited(&kvm->srcu);
824
825 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
826
827 kvm_free_physmem_slot(&old, &new);
828 kfree(old_memslots);
829
830 return 0;
831
832 out_free:
833 kvm_free_physmem_slot(&new, &old);
834 out:
835 return r;
836
837 }
838 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
839
840 int kvm_set_memory_region(struct kvm *kvm,
841 struct kvm_userspace_memory_region *mem,
842 int user_alloc)
843 {
844 int r;
845
846 mutex_lock(&kvm->slots_lock);
847 r = __kvm_set_memory_region(kvm, mem, user_alloc);
848 mutex_unlock(&kvm->slots_lock);
849 return r;
850 }
851 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
852
853 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
854 struct
855 kvm_userspace_memory_region *mem,
856 int user_alloc)
857 {
858 if (mem->slot >= KVM_MEMORY_SLOTS)
859 return -EINVAL;
860 return kvm_set_memory_region(kvm, mem, user_alloc);
861 }
862
863 int kvm_get_dirty_log(struct kvm *kvm,
864 struct kvm_dirty_log *log, int *is_dirty)
865 {
866 struct kvm_memory_slot *memslot;
867 int r, i;
868 unsigned long n;
869 unsigned long any = 0;
870
871 r = -EINVAL;
872 if (log->slot >= KVM_MEMORY_SLOTS)
873 goto out;
874
875 memslot = &kvm->memslots->memslots[log->slot];
876 r = -ENOENT;
877 if (!memslot->dirty_bitmap)
878 goto out;
879
880 n = kvm_dirty_bitmap_bytes(memslot);
881
882 for (i = 0; !any && i < n/sizeof(long); ++i)
883 any = memslot->dirty_bitmap[i];
884
885 r = -EFAULT;
886 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
887 goto out;
888
889 if (any)
890 *is_dirty = 1;
891
892 r = 0;
893 out:
894 return r;
895 }
896
897 void kvm_disable_largepages(void)
898 {
899 largepages_enabled = false;
900 }
901 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
902
903 int is_error_page(struct page *page)
904 {
905 return page == bad_page || page == hwpoison_page || page == fault_page;
906 }
907 EXPORT_SYMBOL_GPL(is_error_page);
908
909 int is_error_pfn(pfn_t pfn)
910 {
911 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
912 }
913 EXPORT_SYMBOL_GPL(is_error_pfn);
914
915 int is_hwpoison_pfn(pfn_t pfn)
916 {
917 return pfn == hwpoison_pfn;
918 }
919 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
920
921 int is_fault_pfn(pfn_t pfn)
922 {
923 return pfn == fault_pfn;
924 }
925 EXPORT_SYMBOL_GPL(is_fault_pfn);
926
927 static inline unsigned long bad_hva(void)
928 {
929 return PAGE_OFFSET;
930 }
931
932 int kvm_is_error_hva(unsigned long addr)
933 {
934 return addr == bad_hva();
935 }
936 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
937
938 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
939 gfn_t gfn)
940 {
941 int i;
942
943 for (i = 0; i < slots->nmemslots; ++i) {
944 struct kvm_memory_slot *memslot = &slots->memslots[i];
945
946 if (gfn >= memslot->base_gfn
947 && gfn < memslot->base_gfn + memslot->npages)
948 return memslot;
949 }
950 return NULL;
951 }
952
953 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
954 {
955 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
956 }
957 EXPORT_SYMBOL_GPL(gfn_to_memslot);
958
959 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
960 {
961 int i;
962 struct kvm_memslots *slots = kvm_memslots(kvm);
963
964 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
965 struct kvm_memory_slot *memslot = &slots->memslots[i];
966
967 if (memslot->flags & KVM_MEMSLOT_INVALID)
968 continue;
969
970 if (gfn >= memslot->base_gfn
971 && gfn < memslot->base_gfn + memslot->npages)
972 return 1;
973 }
974 return 0;
975 }
976 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
977
978 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
979 {
980 struct vm_area_struct *vma;
981 unsigned long addr, size;
982
983 size = PAGE_SIZE;
984
985 addr = gfn_to_hva(kvm, gfn);
986 if (kvm_is_error_hva(addr))
987 return PAGE_SIZE;
988
989 down_read(&current->mm->mmap_sem);
990 vma = find_vma(current->mm, addr);
991 if (!vma)
992 goto out;
993
994 size = vma_kernel_pagesize(vma);
995
996 out:
997 up_read(&current->mm->mmap_sem);
998
999 return size;
1000 }
1001
1002 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1003 gfn_t *nr_pages)
1004 {
1005 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1006 return bad_hva();
1007
1008 if (nr_pages)
1009 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1010
1011 return gfn_to_hva_memslot(slot, gfn);
1012 }
1013
1014 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1015 {
1016 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1017 }
1018 EXPORT_SYMBOL_GPL(gfn_to_hva);
1019
1020 static pfn_t get_fault_pfn(void)
1021 {
1022 get_page(fault_page);
1023 return fault_pfn;
1024 }
1025
1026 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1027 unsigned long start, int write, struct page **page)
1028 {
1029 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1030
1031 if (write)
1032 flags |= FOLL_WRITE;
1033
1034 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1035 }
1036
1037 static inline int check_user_page_hwpoison(unsigned long addr)
1038 {
1039 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1040
1041 rc = __get_user_pages(current, current->mm, addr, 1,
1042 flags, NULL, NULL, NULL);
1043 return rc == -EHWPOISON;
1044 }
1045
1046 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1047 bool *async, bool write_fault, bool *writable)
1048 {
1049 struct page *page[1];
1050 int npages = 0;
1051 pfn_t pfn;
1052
1053 /* we can do it either atomically or asynchronously, not both */
1054 BUG_ON(atomic && async);
1055
1056 BUG_ON(!write_fault && !writable);
1057
1058 if (writable)
1059 *writable = true;
1060
1061 if (atomic || async)
1062 npages = __get_user_pages_fast(addr, 1, 1, page);
1063
1064 if (unlikely(npages != 1) && !atomic) {
1065 might_sleep();
1066
1067 if (writable)
1068 *writable = write_fault;
1069
1070 if (async) {
1071 down_read(&current->mm->mmap_sem);
1072 npages = get_user_page_nowait(current, current->mm,
1073 addr, write_fault, page);
1074 up_read(&current->mm->mmap_sem);
1075 } else
1076 npages = get_user_pages_fast(addr, 1, write_fault,
1077 page);
1078
1079 /* map read fault as writable if possible */
1080 if (unlikely(!write_fault) && npages == 1) {
1081 struct page *wpage[1];
1082
1083 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1084 if (npages == 1) {
1085 *writable = true;
1086 put_page(page[0]);
1087 page[0] = wpage[0];
1088 }
1089 npages = 1;
1090 }
1091 }
1092
1093 if (unlikely(npages != 1)) {
1094 struct vm_area_struct *vma;
1095
1096 if (atomic)
1097 return get_fault_pfn();
1098
1099 down_read(&current->mm->mmap_sem);
1100 if (npages == -EHWPOISON ||
1101 (!async && check_user_page_hwpoison(addr))) {
1102 up_read(&current->mm->mmap_sem);
1103 get_page(hwpoison_page);
1104 return page_to_pfn(hwpoison_page);
1105 }
1106
1107 vma = find_vma_intersection(current->mm, addr, addr+1);
1108
1109 if (vma == NULL)
1110 pfn = get_fault_pfn();
1111 else if ((vma->vm_flags & VM_PFNMAP)) {
1112 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1113 vma->vm_pgoff;
1114 BUG_ON(!kvm_is_mmio_pfn(pfn));
1115 } else {
1116 if (async && (vma->vm_flags & VM_WRITE))
1117 *async = true;
1118 pfn = get_fault_pfn();
1119 }
1120 up_read(&current->mm->mmap_sem);
1121 } else
1122 pfn = page_to_pfn(page[0]);
1123
1124 return pfn;
1125 }
1126
1127 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1128 {
1129 return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1130 }
1131 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1132
1133 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1134 bool write_fault, bool *writable)
1135 {
1136 unsigned long addr;
1137
1138 if (async)
1139 *async = false;
1140
1141 addr = gfn_to_hva(kvm, gfn);
1142 if (kvm_is_error_hva(addr)) {
1143 get_page(bad_page);
1144 return page_to_pfn(bad_page);
1145 }
1146
1147 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1148 }
1149
1150 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1151 {
1152 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1153 }
1154 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1155
1156 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1157 bool write_fault, bool *writable)
1158 {
1159 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1160 }
1161 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1162
1163 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1164 {
1165 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1166 }
1167 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1168
1169 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1170 bool *writable)
1171 {
1172 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1173 }
1174 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1175
1176 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1177 struct kvm_memory_slot *slot, gfn_t gfn)
1178 {
1179 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1180 return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1181 }
1182
1183 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1184 int nr_pages)
1185 {
1186 unsigned long addr;
1187 gfn_t entry;
1188
1189 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1190 if (kvm_is_error_hva(addr))
1191 return -1;
1192
1193 if (entry < nr_pages)
1194 return 0;
1195
1196 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1197 }
1198 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1199
1200 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1201 {
1202 pfn_t pfn;
1203
1204 pfn = gfn_to_pfn(kvm, gfn);
1205 if (!kvm_is_mmio_pfn(pfn))
1206 return pfn_to_page(pfn);
1207
1208 WARN_ON(kvm_is_mmio_pfn(pfn));
1209
1210 get_page(bad_page);
1211 return bad_page;
1212 }
1213
1214 EXPORT_SYMBOL_GPL(gfn_to_page);
1215
1216 void kvm_release_page_clean(struct page *page)
1217 {
1218 kvm_release_pfn_clean(page_to_pfn(page));
1219 }
1220 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1221
1222 void kvm_release_pfn_clean(pfn_t pfn)
1223 {
1224 if (!kvm_is_mmio_pfn(pfn))
1225 put_page(pfn_to_page(pfn));
1226 }
1227 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1228
1229 void kvm_release_page_dirty(struct page *page)
1230 {
1231 kvm_release_pfn_dirty(page_to_pfn(page));
1232 }
1233 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1234
1235 void kvm_release_pfn_dirty(pfn_t pfn)
1236 {
1237 kvm_set_pfn_dirty(pfn);
1238 kvm_release_pfn_clean(pfn);
1239 }
1240 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1241
1242 void kvm_set_page_dirty(struct page *page)
1243 {
1244 kvm_set_pfn_dirty(page_to_pfn(page));
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1247
1248 void kvm_set_pfn_dirty(pfn_t pfn)
1249 {
1250 if (!kvm_is_mmio_pfn(pfn)) {
1251 struct page *page = pfn_to_page(pfn);
1252 if (!PageReserved(page))
1253 SetPageDirty(page);
1254 }
1255 }
1256 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1257
1258 void kvm_set_pfn_accessed(pfn_t pfn)
1259 {
1260 if (!kvm_is_mmio_pfn(pfn))
1261 mark_page_accessed(pfn_to_page(pfn));
1262 }
1263 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1264
1265 void kvm_get_pfn(pfn_t pfn)
1266 {
1267 if (!kvm_is_mmio_pfn(pfn))
1268 get_page(pfn_to_page(pfn));
1269 }
1270 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1271
1272 static int next_segment(unsigned long len, int offset)
1273 {
1274 if (len > PAGE_SIZE - offset)
1275 return PAGE_SIZE - offset;
1276 else
1277 return len;
1278 }
1279
1280 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1281 int len)
1282 {
1283 int r;
1284 unsigned long addr;
1285
1286 addr = gfn_to_hva(kvm, gfn);
1287 if (kvm_is_error_hva(addr))
1288 return -EFAULT;
1289 r = __copy_from_user(data, (void __user *)addr + offset, len);
1290 if (r)
1291 return -EFAULT;
1292 return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1295
1296 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1297 {
1298 gfn_t gfn = gpa >> PAGE_SHIFT;
1299 int seg;
1300 int offset = offset_in_page(gpa);
1301 int ret;
1302
1303 while ((seg = next_segment(len, offset)) != 0) {
1304 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1305 if (ret < 0)
1306 return ret;
1307 offset = 0;
1308 len -= seg;
1309 data += seg;
1310 ++gfn;
1311 }
1312 return 0;
1313 }
1314 EXPORT_SYMBOL_GPL(kvm_read_guest);
1315
1316 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1317 unsigned long len)
1318 {
1319 int r;
1320 unsigned long addr;
1321 gfn_t gfn = gpa >> PAGE_SHIFT;
1322 int offset = offset_in_page(gpa);
1323
1324 addr = gfn_to_hva(kvm, gfn);
1325 if (kvm_is_error_hva(addr))
1326 return -EFAULT;
1327 pagefault_disable();
1328 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1329 pagefault_enable();
1330 if (r)
1331 return -EFAULT;
1332 return 0;
1333 }
1334 EXPORT_SYMBOL(kvm_read_guest_atomic);
1335
1336 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1337 int offset, int len)
1338 {
1339 int r;
1340 unsigned long addr;
1341
1342 addr = gfn_to_hva(kvm, gfn);
1343 if (kvm_is_error_hva(addr))
1344 return -EFAULT;
1345 r = copy_to_user((void __user *)addr + offset, data, len);
1346 if (r)
1347 return -EFAULT;
1348 mark_page_dirty(kvm, gfn);
1349 return 0;
1350 }
1351 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1352
1353 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1354 unsigned long len)
1355 {
1356 gfn_t gfn = gpa >> PAGE_SHIFT;
1357 int seg;
1358 int offset = offset_in_page(gpa);
1359 int ret;
1360
1361 while ((seg = next_segment(len, offset)) != 0) {
1362 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1363 if (ret < 0)
1364 return ret;
1365 offset = 0;
1366 len -= seg;
1367 data += seg;
1368 ++gfn;
1369 }
1370 return 0;
1371 }
1372
1373 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1374 gpa_t gpa)
1375 {
1376 struct kvm_memslots *slots = kvm_memslots(kvm);
1377 int offset = offset_in_page(gpa);
1378 gfn_t gfn = gpa >> PAGE_SHIFT;
1379
1380 ghc->gpa = gpa;
1381 ghc->generation = slots->generation;
1382 ghc->memslot = __gfn_to_memslot(slots, gfn);
1383 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1384 if (!kvm_is_error_hva(ghc->hva))
1385 ghc->hva += offset;
1386 else
1387 return -EFAULT;
1388
1389 return 0;
1390 }
1391 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1392
1393 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1394 void *data, unsigned long len)
1395 {
1396 struct kvm_memslots *slots = kvm_memslots(kvm);
1397 int r;
1398
1399 if (slots->generation != ghc->generation)
1400 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1401
1402 if (kvm_is_error_hva(ghc->hva))
1403 return -EFAULT;
1404
1405 r = copy_to_user((void __user *)ghc->hva, data, len);
1406 if (r)
1407 return -EFAULT;
1408 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1409
1410 return 0;
1411 }
1412 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1413
1414 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1415 {
1416 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1417 offset, len);
1418 }
1419 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1420
1421 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1422 {
1423 gfn_t gfn = gpa >> PAGE_SHIFT;
1424 int seg;
1425 int offset = offset_in_page(gpa);
1426 int ret;
1427
1428 while ((seg = next_segment(len, offset)) != 0) {
1429 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1430 if (ret < 0)
1431 return ret;
1432 offset = 0;
1433 len -= seg;
1434 ++gfn;
1435 }
1436 return 0;
1437 }
1438 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1439
1440 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1441 gfn_t gfn)
1442 {
1443 if (memslot && memslot->dirty_bitmap) {
1444 unsigned long rel_gfn = gfn - memslot->base_gfn;
1445
1446 __set_bit_le(rel_gfn, memslot->dirty_bitmap);
1447 }
1448 }
1449
1450 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1451 {
1452 struct kvm_memory_slot *memslot;
1453
1454 memslot = gfn_to_memslot(kvm, gfn);
1455 mark_page_dirty_in_slot(kvm, memslot, gfn);
1456 }
1457
1458 /*
1459 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1460 */
1461 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1462 {
1463 DEFINE_WAIT(wait);
1464
1465 for (;;) {
1466 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1467
1468 if (kvm_arch_vcpu_runnable(vcpu)) {
1469 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1470 break;
1471 }
1472 if (kvm_cpu_has_pending_timer(vcpu))
1473 break;
1474 if (signal_pending(current))
1475 break;
1476
1477 schedule();
1478 }
1479
1480 finish_wait(&vcpu->wq, &wait);
1481 }
1482
1483 void kvm_resched(struct kvm_vcpu *vcpu)
1484 {
1485 if (!need_resched())
1486 return;
1487 cond_resched();
1488 }
1489 EXPORT_SYMBOL_GPL(kvm_resched);
1490
1491 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1492 {
1493 struct kvm *kvm = me->kvm;
1494 struct kvm_vcpu *vcpu;
1495 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1496 int yielded = 0;
1497 int pass;
1498 int i;
1499
1500 /*
1501 * We boost the priority of a VCPU that is runnable but not
1502 * currently running, because it got preempted by something
1503 * else and called schedule in __vcpu_run. Hopefully that
1504 * VCPU is holding the lock that we need and will release it.
1505 * We approximate round-robin by starting at the last boosted VCPU.
1506 */
1507 for (pass = 0; pass < 2 && !yielded; pass++) {
1508 kvm_for_each_vcpu(i, vcpu, kvm) {
1509 struct task_struct *task = NULL;
1510 struct pid *pid;
1511 if (!pass && i < last_boosted_vcpu) {
1512 i = last_boosted_vcpu;
1513 continue;
1514 } else if (pass && i > last_boosted_vcpu)
1515 break;
1516 if (vcpu == me)
1517 continue;
1518 if (waitqueue_active(&vcpu->wq))
1519 continue;
1520 rcu_read_lock();
1521 pid = rcu_dereference(vcpu->pid);
1522 if (pid)
1523 task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1524 rcu_read_unlock();
1525 if (!task)
1526 continue;
1527 if (task->flags & PF_VCPU) {
1528 put_task_struct(task);
1529 continue;
1530 }
1531 if (yield_to(task, 1)) {
1532 put_task_struct(task);
1533 kvm->last_boosted_vcpu = i;
1534 yielded = 1;
1535 break;
1536 }
1537 put_task_struct(task);
1538 }
1539 }
1540 }
1541 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1542
1543 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1544 {
1545 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1546 struct page *page;
1547
1548 if (vmf->pgoff == 0)
1549 page = virt_to_page(vcpu->run);
1550 #ifdef CONFIG_X86
1551 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1552 page = virt_to_page(vcpu->arch.pio_data);
1553 #endif
1554 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1555 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1556 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1557 #endif
1558 else
1559 return VM_FAULT_SIGBUS;
1560 get_page(page);
1561 vmf->page = page;
1562 return 0;
1563 }
1564
1565 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1566 .fault = kvm_vcpu_fault,
1567 };
1568
1569 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1570 {
1571 vma->vm_ops = &kvm_vcpu_vm_ops;
1572 return 0;
1573 }
1574
1575 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1576 {
1577 struct kvm_vcpu *vcpu = filp->private_data;
1578
1579 kvm_put_kvm(vcpu->kvm);
1580 return 0;
1581 }
1582
1583 static struct file_operations kvm_vcpu_fops = {
1584 .release = kvm_vcpu_release,
1585 .unlocked_ioctl = kvm_vcpu_ioctl,
1586 .compat_ioctl = kvm_vcpu_ioctl,
1587 .mmap = kvm_vcpu_mmap,
1588 .llseek = noop_llseek,
1589 };
1590
1591 /*
1592 * Allocates an inode for the vcpu.
1593 */
1594 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1595 {
1596 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1597 }
1598
1599 /*
1600 * Creates some virtual cpus. Good luck creating more than one.
1601 */
1602 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1603 {
1604 int r;
1605 struct kvm_vcpu *vcpu, *v;
1606
1607 vcpu = kvm_arch_vcpu_create(kvm, id);
1608 if (IS_ERR(vcpu))
1609 return PTR_ERR(vcpu);
1610
1611 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1612
1613 r = kvm_arch_vcpu_setup(vcpu);
1614 if (r)
1615 return r;
1616
1617 mutex_lock(&kvm->lock);
1618 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1619 r = -EINVAL;
1620 goto vcpu_destroy;
1621 }
1622
1623 kvm_for_each_vcpu(r, v, kvm)
1624 if (v->vcpu_id == id) {
1625 r = -EEXIST;
1626 goto vcpu_destroy;
1627 }
1628
1629 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1630
1631 /* Now it's all set up, let userspace reach it */
1632 kvm_get_kvm(kvm);
1633 r = create_vcpu_fd(vcpu);
1634 if (r < 0) {
1635 kvm_put_kvm(kvm);
1636 goto vcpu_destroy;
1637 }
1638
1639 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1640 smp_wmb();
1641 atomic_inc(&kvm->online_vcpus);
1642
1643 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1644 if (kvm->bsp_vcpu_id == id)
1645 kvm->bsp_vcpu = vcpu;
1646 #endif
1647 mutex_unlock(&kvm->lock);
1648 return r;
1649
1650 vcpu_destroy:
1651 mutex_unlock(&kvm->lock);
1652 kvm_arch_vcpu_destroy(vcpu);
1653 return r;
1654 }
1655
1656 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1657 {
1658 if (sigset) {
1659 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1660 vcpu->sigset_active = 1;
1661 vcpu->sigset = *sigset;
1662 } else
1663 vcpu->sigset_active = 0;
1664 return 0;
1665 }
1666
1667 static long kvm_vcpu_ioctl(struct file *filp,
1668 unsigned int ioctl, unsigned long arg)
1669 {
1670 struct kvm_vcpu *vcpu = filp->private_data;
1671 void __user *argp = (void __user *)arg;
1672 int r;
1673 struct kvm_fpu *fpu = NULL;
1674 struct kvm_sregs *kvm_sregs = NULL;
1675
1676 if (vcpu->kvm->mm != current->mm)
1677 return -EIO;
1678
1679 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1680 /*
1681 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1682 * so vcpu_load() would break it.
1683 */
1684 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1685 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1686 #endif
1687
1688
1689 vcpu_load(vcpu);
1690 switch (ioctl) {
1691 case KVM_RUN:
1692 r = -EINVAL;
1693 if (arg)
1694 goto out;
1695 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1696 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1697 break;
1698 case KVM_GET_REGS: {
1699 struct kvm_regs *kvm_regs;
1700
1701 r = -ENOMEM;
1702 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1703 if (!kvm_regs)
1704 goto out;
1705 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1706 if (r)
1707 goto out_free1;
1708 r = -EFAULT;
1709 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1710 goto out_free1;
1711 r = 0;
1712 out_free1:
1713 kfree(kvm_regs);
1714 break;
1715 }
1716 case KVM_SET_REGS: {
1717 struct kvm_regs *kvm_regs;
1718
1719 r = -ENOMEM;
1720 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1721 if (!kvm_regs)
1722 goto out;
1723 r = -EFAULT;
1724 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1725 goto out_free2;
1726 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1727 if (r)
1728 goto out_free2;
1729 r = 0;
1730 out_free2:
1731 kfree(kvm_regs);
1732 break;
1733 }
1734 case KVM_GET_SREGS: {
1735 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1736 r = -ENOMEM;
1737 if (!kvm_sregs)
1738 goto out;
1739 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1740 if (r)
1741 goto out;
1742 r = -EFAULT;
1743 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1744 goto out;
1745 r = 0;
1746 break;
1747 }
1748 case KVM_SET_SREGS: {
1749 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1750 r = -ENOMEM;
1751 if (!kvm_sregs)
1752 goto out;
1753 r = -EFAULT;
1754 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1755 goto out;
1756 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1757 if (r)
1758 goto out;
1759 r = 0;
1760 break;
1761 }
1762 case KVM_GET_MP_STATE: {
1763 struct kvm_mp_state mp_state;
1764
1765 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1766 if (r)
1767 goto out;
1768 r = -EFAULT;
1769 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1770 goto out;
1771 r = 0;
1772 break;
1773 }
1774 case KVM_SET_MP_STATE: {
1775 struct kvm_mp_state mp_state;
1776
1777 r = -EFAULT;
1778 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1779 goto out;
1780 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1781 if (r)
1782 goto out;
1783 r = 0;
1784 break;
1785 }
1786 case KVM_TRANSLATE: {
1787 struct kvm_translation tr;
1788
1789 r = -EFAULT;
1790 if (copy_from_user(&tr, argp, sizeof tr))
1791 goto out;
1792 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1793 if (r)
1794 goto out;
1795 r = -EFAULT;
1796 if (copy_to_user(argp, &tr, sizeof tr))
1797 goto out;
1798 r = 0;
1799 break;
1800 }
1801 case KVM_SET_GUEST_DEBUG: {
1802 struct kvm_guest_debug dbg;
1803
1804 r = -EFAULT;
1805 if (copy_from_user(&dbg, argp, sizeof dbg))
1806 goto out;
1807 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1808 if (r)
1809 goto out;
1810 r = 0;
1811 break;
1812 }
1813 case KVM_SET_SIGNAL_MASK: {
1814 struct kvm_signal_mask __user *sigmask_arg = argp;
1815 struct kvm_signal_mask kvm_sigmask;
1816 sigset_t sigset, *p;
1817
1818 p = NULL;
1819 if (argp) {
1820 r = -EFAULT;
1821 if (copy_from_user(&kvm_sigmask, argp,
1822 sizeof kvm_sigmask))
1823 goto out;
1824 r = -EINVAL;
1825 if (kvm_sigmask.len != sizeof sigset)
1826 goto out;
1827 r = -EFAULT;
1828 if (copy_from_user(&sigset, sigmask_arg->sigset,
1829 sizeof sigset))
1830 goto out;
1831 p = &sigset;
1832 }
1833 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1834 break;
1835 }
1836 case KVM_GET_FPU: {
1837 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1838 r = -ENOMEM;
1839 if (!fpu)
1840 goto out;
1841 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1842 if (r)
1843 goto out;
1844 r = -EFAULT;
1845 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1846 goto out;
1847 r = 0;
1848 break;
1849 }
1850 case KVM_SET_FPU: {
1851 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1852 r = -ENOMEM;
1853 if (!fpu)
1854 goto out;
1855 r = -EFAULT;
1856 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1857 goto out;
1858 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1859 if (r)
1860 goto out;
1861 r = 0;
1862 break;
1863 }
1864 default:
1865 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1866 }
1867 out:
1868 vcpu_put(vcpu);
1869 kfree(fpu);
1870 kfree(kvm_sregs);
1871 return r;
1872 }
1873
1874 static long kvm_vm_ioctl(struct file *filp,
1875 unsigned int ioctl, unsigned long arg)
1876 {
1877 struct kvm *kvm = filp->private_data;
1878 void __user *argp = (void __user *)arg;
1879 int r;
1880
1881 if (kvm->mm != current->mm)
1882 return -EIO;
1883 switch (ioctl) {
1884 case KVM_CREATE_VCPU:
1885 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1886 if (r < 0)
1887 goto out;
1888 break;
1889 case KVM_SET_USER_MEMORY_REGION: {
1890 struct kvm_userspace_memory_region kvm_userspace_mem;
1891
1892 r = -EFAULT;
1893 if (copy_from_user(&kvm_userspace_mem, argp,
1894 sizeof kvm_userspace_mem))
1895 goto out;
1896
1897 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1898 if (r)
1899 goto out;
1900 break;
1901 }
1902 case KVM_GET_DIRTY_LOG: {
1903 struct kvm_dirty_log log;
1904
1905 r = -EFAULT;
1906 if (copy_from_user(&log, argp, sizeof log))
1907 goto out;
1908 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1909 if (r)
1910 goto out;
1911 break;
1912 }
1913 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1914 case KVM_REGISTER_COALESCED_MMIO: {
1915 struct kvm_coalesced_mmio_zone zone;
1916 r = -EFAULT;
1917 if (copy_from_user(&zone, argp, sizeof zone))
1918 goto out;
1919 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1920 if (r)
1921 goto out;
1922 r = 0;
1923 break;
1924 }
1925 case KVM_UNREGISTER_COALESCED_MMIO: {
1926 struct kvm_coalesced_mmio_zone zone;
1927 r = -EFAULT;
1928 if (copy_from_user(&zone, argp, sizeof zone))
1929 goto out;
1930 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1931 if (r)
1932 goto out;
1933 r = 0;
1934 break;
1935 }
1936 #endif
1937 case KVM_IRQFD: {
1938 struct kvm_irqfd data;
1939
1940 r = -EFAULT;
1941 if (copy_from_user(&data, argp, sizeof data))
1942 goto out;
1943 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1944 break;
1945 }
1946 case KVM_IOEVENTFD: {
1947 struct kvm_ioeventfd data;
1948
1949 r = -EFAULT;
1950 if (copy_from_user(&data, argp, sizeof data))
1951 goto out;
1952 r = kvm_ioeventfd(kvm, &data);
1953 break;
1954 }
1955 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1956 case KVM_SET_BOOT_CPU_ID:
1957 r = 0;
1958 mutex_lock(&kvm->lock);
1959 if (atomic_read(&kvm->online_vcpus) != 0)
1960 r = -EBUSY;
1961 else
1962 kvm->bsp_vcpu_id = arg;
1963 mutex_unlock(&kvm->lock);
1964 break;
1965 #endif
1966 default:
1967 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1968 if (r == -ENOTTY)
1969 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1970 }
1971 out:
1972 return r;
1973 }
1974
1975 #ifdef CONFIG_COMPAT
1976 struct compat_kvm_dirty_log {
1977 __u32 slot;
1978 __u32 padding1;
1979 union {
1980 compat_uptr_t dirty_bitmap; /* one bit per page */
1981 __u64 padding2;
1982 };
1983 };
1984
1985 static long kvm_vm_compat_ioctl(struct file *filp,
1986 unsigned int ioctl, unsigned long arg)
1987 {
1988 struct kvm *kvm = filp->private_data;
1989 int r;
1990
1991 if (kvm->mm != current->mm)
1992 return -EIO;
1993 switch (ioctl) {
1994 case KVM_GET_DIRTY_LOG: {
1995 struct compat_kvm_dirty_log compat_log;
1996 struct kvm_dirty_log log;
1997
1998 r = -EFAULT;
1999 if (copy_from_user(&compat_log, (void __user *)arg,
2000 sizeof(compat_log)))
2001 goto out;
2002 log.slot = compat_log.slot;
2003 log.padding1 = compat_log.padding1;
2004 log.padding2 = compat_log.padding2;
2005 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2006
2007 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2008 if (r)
2009 goto out;
2010 break;
2011 }
2012 default:
2013 r = kvm_vm_ioctl(filp, ioctl, arg);
2014 }
2015
2016 out:
2017 return r;
2018 }
2019 #endif
2020
2021 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2022 {
2023 struct page *page[1];
2024 unsigned long addr;
2025 int npages;
2026 gfn_t gfn = vmf->pgoff;
2027 struct kvm *kvm = vma->vm_file->private_data;
2028
2029 addr = gfn_to_hva(kvm, gfn);
2030 if (kvm_is_error_hva(addr))
2031 return VM_FAULT_SIGBUS;
2032
2033 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2034 NULL);
2035 if (unlikely(npages != 1))
2036 return VM_FAULT_SIGBUS;
2037
2038 vmf->page = page[0];
2039 return 0;
2040 }
2041
2042 static const struct vm_operations_struct kvm_vm_vm_ops = {
2043 .fault = kvm_vm_fault,
2044 };
2045
2046 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2047 {
2048 vma->vm_ops = &kvm_vm_vm_ops;
2049 return 0;
2050 }
2051
2052 static struct file_operations kvm_vm_fops = {
2053 .release = kvm_vm_release,
2054 .unlocked_ioctl = kvm_vm_ioctl,
2055 #ifdef CONFIG_COMPAT
2056 .compat_ioctl = kvm_vm_compat_ioctl,
2057 #endif
2058 .mmap = kvm_vm_mmap,
2059 .llseek = noop_llseek,
2060 };
2061
2062 static int kvm_dev_ioctl_create_vm(void)
2063 {
2064 int r;
2065 struct kvm *kvm;
2066
2067 kvm = kvm_create_vm();
2068 if (IS_ERR(kvm))
2069 return PTR_ERR(kvm);
2070 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2071 r = kvm_coalesced_mmio_init(kvm);
2072 if (r < 0) {
2073 kvm_put_kvm(kvm);
2074 return r;
2075 }
2076 #endif
2077 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2078 if (r < 0)
2079 kvm_put_kvm(kvm);
2080
2081 return r;
2082 }
2083
2084 static long kvm_dev_ioctl_check_extension_generic(long arg)
2085 {
2086 switch (arg) {
2087 case KVM_CAP_USER_MEMORY:
2088 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2089 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2090 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2091 case KVM_CAP_SET_BOOT_CPU_ID:
2092 #endif
2093 case KVM_CAP_INTERNAL_ERROR_DATA:
2094 return 1;
2095 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2096 case KVM_CAP_IRQ_ROUTING:
2097 return KVM_MAX_IRQ_ROUTES;
2098 #endif
2099 default:
2100 break;
2101 }
2102 return kvm_dev_ioctl_check_extension(arg);
2103 }
2104
2105 static long kvm_dev_ioctl(struct file *filp,
2106 unsigned int ioctl, unsigned long arg)
2107 {
2108 long r = -EINVAL;
2109
2110 switch (ioctl) {
2111 case KVM_GET_API_VERSION:
2112 r = -EINVAL;
2113 if (arg)
2114 goto out;
2115 r = KVM_API_VERSION;
2116 break;
2117 case KVM_CREATE_VM:
2118 r = -EINVAL;
2119 if (arg)
2120 goto out;
2121 r = kvm_dev_ioctl_create_vm();
2122 break;
2123 case KVM_CHECK_EXTENSION:
2124 r = kvm_dev_ioctl_check_extension_generic(arg);
2125 break;
2126 case KVM_GET_VCPU_MMAP_SIZE:
2127 r = -EINVAL;
2128 if (arg)
2129 goto out;
2130 r = PAGE_SIZE; /* struct kvm_run */
2131 #ifdef CONFIG_X86
2132 r += PAGE_SIZE; /* pio data page */
2133 #endif
2134 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2135 r += PAGE_SIZE; /* coalesced mmio ring page */
2136 #endif
2137 break;
2138 case KVM_TRACE_ENABLE:
2139 case KVM_TRACE_PAUSE:
2140 case KVM_TRACE_DISABLE:
2141 r = -EOPNOTSUPP;
2142 break;
2143 default:
2144 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2145 }
2146 out:
2147 return r;
2148 }
2149
2150 static struct file_operations kvm_chardev_ops = {
2151 .unlocked_ioctl = kvm_dev_ioctl,
2152 .compat_ioctl = kvm_dev_ioctl,
2153 .llseek = noop_llseek,
2154 };
2155
2156 static struct miscdevice kvm_dev = {
2157 KVM_MINOR,
2158 "kvm",
2159 &kvm_chardev_ops,
2160 };
2161
2162 static void hardware_enable_nolock(void *junk)
2163 {
2164 int cpu = raw_smp_processor_id();
2165 int r;
2166
2167 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2168 return;
2169
2170 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2171
2172 r = kvm_arch_hardware_enable(NULL);
2173
2174 if (r) {
2175 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2176 atomic_inc(&hardware_enable_failed);
2177 printk(KERN_INFO "kvm: enabling virtualization on "
2178 "CPU%d failed\n", cpu);
2179 }
2180 }
2181
2182 static void hardware_enable(void *junk)
2183 {
2184 raw_spin_lock(&kvm_lock);
2185 hardware_enable_nolock(junk);
2186 raw_spin_unlock(&kvm_lock);
2187 }
2188
2189 static void hardware_disable_nolock(void *junk)
2190 {
2191 int cpu = raw_smp_processor_id();
2192
2193 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2194 return;
2195 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2196 kvm_arch_hardware_disable(NULL);
2197 }
2198
2199 static void hardware_disable(void *junk)
2200 {
2201 raw_spin_lock(&kvm_lock);
2202 hardware_disable_nolock(junk);
2203 raw_spin_unlock(&kvm_lock);
2204 }
2205
2206 static void hardware_disable_all_nolock(void)
2207 {
2208 BUG_ON(!kvm_usage_count);
2209
2210 kvm_usage_count--;
2211 if (!kvm_usage_count)
2212 on_each_cpu(hardware_disable_nolock, NULL, 1);
2213 }
2214
2215 static void hardware_disable_all(void)
2216 {
2217 raw_spin_lock(&kvm_lock);
2218 hardware_disable_all_nolock();
2219 raw_spin_unlock(&kvm_lock);
2220 }
2221
2222 static int hardware_enable_all(void)
2223 {
2224 int r = 0;
2225
2226 raw_spin_lock(&kvm_lock);
2227
2228 kvm_usage_count++;
2229 if (kvm_usage_count == 1) {
2230 atomic_set(&hardware_enable_failed, 0);
2231 on_each_cpu(hardware_enable_nolock, NULL, 1);
2232
2233 if (atomic_read(&hardware_enable_failed)) {
2234 hardware_disable_all_nolock();
2235 r = -EBUSY;
2236 }
2237 }
2238
2239 raw_spin_unlock(&kvm_lock);
2240
2241 return r;
2242 }
2243
2244 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2245 void *v)
2246 {
2247 int cpu = (long)v;
2248
2249 if (!kvm_usage_count)
2250 return NOTIFY_OK;
2251
2252 val &= ~CPU_TASKS_FROZEN;
2253 switch (val) {
2254 case CPU_DYING:
2255 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2256 cpu);
2257 hardware_disable(NULL);
2258 break;
2259 case CPU_STARTING:
2260 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2261 cpu);
2262 hardware_enable(NULL);
2263 break;
2264 }
2265 return NOTIFY_OK;
2266 }
2267
2268
2269 asmlinkage void kvm_spurious_fault(void)
2270 {
2271 /* Fault while not rebooting. We want the trace. */
2272 BUG();
2273 }
2274 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2275
2276 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2277 void *v)
2278 {
2279 /*
2280 * Some (well, at least mine) BIOSes hang on reboot if
2281 * in vmx root mode.
2282 *
2283 * And Intel TXT required VMX off for all cpu when system shutdown.
2284 */
2285 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2286 kvm_rebooting = true;
2287 on_each_cpu(hardware_disable_nolock, NULL, 1);
2288 return NOTIFY_OK;
2289 }
2290
2291 static struct notifier_block kvm_reboot_notifier = {
2292 .notifier_call = kvm_reboot,
2293 .priority = 0,
2294 };
2295
2296 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2297 {
2298 int i;
2299
2300 for (i = 0; i < bus->dev_count; i++) {
2301 struct kvm_io_device *pos = bus->devs[i];
2302
2303 kvm_iodevice_destructor(pos);
2304 }
2305 kfree(bus);
2306 }
2307
2308 /* kvm_io_bus_write - called under kvm->slots_lock */
2309 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2310 int len, const void *val)
2311 {
2312 int i;
2313 struct kvm_io_bus *bus;
2314
2315 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2316 for (i = 0; i < bus->dev_count; i++)
2317 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2318 return 0;
2319 return -EOPNOTSUPP;
2320 }
2321
2322 /* kvm_io_bus_read - called under kvm->slots_lock */
2323 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2324 int len, void *val)
2325 {
2326 int i;
2327 struct kvm_io_bus *bus;
2328
2329 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2330 for (i = 0; i < bus->dev_count; i++)
2331 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2332 return 0;
2333 return -EOPNOTSUPP;
2334 }
2335
2336 /* Caller must hold slots_lock. */
2337 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2338 struct kvm_io_device *dev)
2339 {
2340 struct kvm_io_bus *new_bus, *bus;
2341
2342 bus = kvm->buses[bus_idx];
2343 if (bus->dev_count > NR_IOBUS_DEVS-1)
2344 return -ENOSPC;
2345
2346 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2347 if (!new_bus)
2348 return -ENOMEM;
2349 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2350 new_bus->devs[new_bus->dev_count++] = dev;
2351 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2352 synchronize_srcu_expedited(&kvm->srcu);
2353 kfree(bus);
2354
2355 return 0;
2356 }
2357
2358 /* Caller must hold slots_lock. */
2359 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2360 struct kvm_io_device *dev)
2361 {
2362 int i, r;
2363 struct kvm_io_bus *new_bus, *bus;
2364
2365 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2366 if (!new_bus)
2367 return -ENOMEM;
2368
2369 bus = kvm->buses[bus_idx];
2370 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2371
2372 r = -ENOENT;
2373 for (i = 0; i < new_bus->dev_count; i++)
2374 if (new_bus->devs[i] == dev) {
2375 r = 0;
2376 new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2377 break;
2378 }
2379
2380 if (r) {
2381 kfree(new_bus);
2382 return r;
2383 }
2384
2385 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2386 synchronize_srcu_expedited(&kvm->srcu);
2387 kfree(bus);
2388 return r;
2389 }
2390
2391 static struct notifier_block kvm_cpu_notifier = {
2392 .notifier_call = kvm_cpu_hotplug,
2393 };
2394
2395 static int vm_stat_get(void *_offset, u64 *val)
2396 {
2397 unsigned offset = (long)_offset;
2398 struct kvm *kvm;
2399
2400 *val = 0;
2401 raw_spin_lock(&kvm_lock);
2402 list_for_each_entry(kvm, &vm_list, vm_list)
2403 *val += *(u32 *)((void *)kvm + offset);
2404 raw_spin_unlock(&kvm_lock);
2405 return 0;
2406 }
2407
2408 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2409
2410 static int vcpu_stat_get(void *_offset, u64 *val)
2411 {
2412 unsigned offset = (long)_offset;
2413 struct kvm *kvm;
2414 struct kvm_vcpu *vcpu;
2415 int i;
2416
2417 *val = 0;
2418 raw_spin_lock(&kvm_lock);
2419 list_for_each_entry(kvm, &vm_list, vm_list)
2420 kvm_for_each_vcpu(i, vcpu, kvm)
2421 *val += *(u32 *)((void *)vcpu + offset);
2422
2423 raw_spin_unlock(&kvm_lock);
2424 return 0;
2425 }
2426
2427 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2428
2429 static const struct file_operations *stat_fops[] = {
2430 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2431 [KVM_STAT_VM] = &vm_stat_fops,
2432 };
2433
2434 static void kvm_init_debug(void)
2435 {
2436 struct kvm_stats_debugfs_item *p;
2437
2438 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2439 for (p = debugfs_entries; p->name; ++p)
2440 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2441 (void *)(long)p->offset,
2442 stat_fops[p->kind]);
2443 }
2444
2445 static void kvm_exit_debug(void)
2446 {
2447 struct kvm_stats_debugfs_item *p;
2448
2449 for (p = debugfs_entries; p->name; ++p)
2450 debugfs_remove(p->dentry);
2451 debugfs_remove(kvm_debugfs_dir);
2452 }
2453
2454 static int kvm_suspend(void)
2455 {
2456 if (kvm_usage_count)
2457 hardware_disable_nolock(NULL);
2458 return 0;
2459 }
2460
2461 static void kvm_resume(void)
2462 {
2463 if (kvm_usage_count) {
2464 WARN_ON(raw_spin_is_locked(&kvm_lock));
2465 hardware_enable_nolock(NULL);
2466 }
2467 }
2468
2469 static struct syscore_ops kvm_syscore_ops = {
2470 .suspend = kvm_suspend,
2471 .resume = kvm_resume,
2472 };
2473
2474 struct page *bad_page;
2475 pfn_t bad_pfn;
2476
2477 static inline
2478 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2479 {
2480 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2481 }
2482
2483 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2484 {
2485 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2486
2487 kvm_arch_vcpu_load(vcpu, cpu);
2488 }
2489
2490 static void kvm_sched_out(struct preempt_notifier *pn,
2491 struct task_struct *next)
2492 {
2493 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2494
2495 kvm_arch_vcpu_put(vcpu);
2496 }
2497
2498 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2499 struct module *module)
2500 {
2501 int r;
2502 int cpu;
2503
2504 r = kvm_arch_init(opaque);
2505 if (r)
2506 goto out_fail;
2507
2508 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2509
2510 if (bad_page == NULL) {
2511 r = -ENOMEM;
2512 goto out;
2513 }
2514
2515 bad_pfn = page_to_pfn(bad_page);
2516
2517 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2518
2519 if (hwpoison_page == NULL) {
2520 r = -ENOMEM;
2521 goto out_free_0;
2522 }
2523
2524 hwpoison_pfn = page_to_pfn(hwpoison_page);
2525
2526 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2527
2528 if (fault_page == NULL) {
2529 r = -ENOMEM;
2530 goto out_free_0;
2531 }
2532
2533 fault_pfn = page_to_pfn(fault_page);
2534
2535 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2536 r = -ENOMEM;
2537 goto out_free_0;
2538 }
2539
2540 r = kvm_arch_hardware_setup();
2541 if (r < 0)
2542 goto out_free_0a;
2543
2544 for_each_online_cpu(cpu) {
2545 smp_call_function_single(cpu,
2546 kvm_arch_check_processor_compat,
2547 &r, 1);
2548 if (r < 0)
2549 goto out_free_1;
2550 }
2551
2552 r = register_cpu_notifier(&kvm_cpu_notifier);
2553 if (r)
2554 goto out_free_2;
2555 register_reboot_notifier(&kvm_reboot_notifier);
2556
2557 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2558 if (!vcpu_align)
2559 vcpu_align = __alignof__(struct kvm_vcpu);
2560 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2561 0, NULL);
2562 if (!kvm_vcpu_cache) {
2563 r = -ENOMEM;
2564 goto out_free_3;
2565 }
2566
2567 r = kvm_async_pf_init();
2568 if (r)
2569 goto out_free;
2570
2571 kvm_chardev_ops.owner = module;
2572 kvm_vm_fops.owner = module;
2573 kvm_vcpu_fops.owner = module;
2574
2575 r = misc_register(&kvm_dev);
2576 if (r) {
2577 printk(KERN_ERR "kvm: misc device register failed\n");
2578 goto out_unreg;
2579 }
2580
2581 register_syscore_ops(&kvm_syscore_ops);
2582
2583 kvm_preempt_ops.sched_in = kvm_sched_in;
2584 kvm_preempt_ops.sched_out = kvm_sched_out;
2585
2586 kvm_init_debug();
2587
2588 return 0;
2589
2590 out_unreg:
2591 kvm_async_pf_deinit();
2592 out_free:
2593 kmem_cache_destroy(kvm_vcpu_cache);
2594 out_free_3:
2595 unregister_reboot_notifier(&kvm_reboot_notifier);
2596 unregister_cpu_notifier(&kvm_cpu_notifier);
2597 out_free_2:
2598 out_free_1:
2599 kvm_arch_hardware_unsetup();
2600 out_free_0a:
2601 free_cpumask_var(cpus_hardware_enabled);
2602 out_free_0:
2603 if (fault_page)
2604 __free_page(fault_page);
2605 if (hwpoison_page)
2606 __free_page(hwpoison_page);
2607 __free_page(bad_page);
2608 out:
2609 kvm_arch_exit();
2610 out_fail:
2611 return r;
2612 }
2613 EXPORT_SYMBOL_GPL(kvm_init);
2614
2615 void kvm_exit(void)
2616 {
2617 kvm_exit_debug();
2618 misc_deregister(&kvm_dev);
2619 kmem_cache_destroy(kvm_vcpu_cache);
2620 kvm_async_pf_deinit();
2621 unregister_syscore_ops(&kvm_syscore_ops);
2622 unregister_reboot_notifier(&kvm_reboot_notifier);
2623 unregister_cpu_notifier(&kvm_cpu_notifier);
2624 on_each_cpu(hardware_disable_nolock, NULL, 1);
2625 kvm_arch_hardware_unsetup();
2626 kvm_arch_exit();
2627 free_cpumask_var(cpus_hardware_enabled);
2628 __free_page(hwpoison_page);
2629 __free_page(bad_page);
2630 }
2631 EXPORT_SYMBOL_GPL(kvm_exit);