]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/kvm_main.c
KVM: arm/arm64: VGIC/ITS: Promote irq_lock() in update_affinity
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90 * Ordering of locks:
91 *
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93 */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
126
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
129
130 static bool largepages_enabled = true;
131
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
135 static unsigned long long kvm_createvm_count;
136 static unsigned long long kvm_active_vms;
137
138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
139 unsigned long start, unsigned long end)
140 {
141 }
142
143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
144 {
145 if (pfn_valid(pfn))
146 return PageReserved(pfn_to_page(pfn));
147
148 return true;
149 }
150
151 /*
152 * Switches to specified vcpu, until a matching vcpu_put()
153 */
154 int vcpu_load(struct kvm_vcpu *vcpu)
155 {
156 int cpu;
157
158 if (mutex_lock_killable(&vcpu->mutex))
159 return -EINTR;
160 cpu = get_cpu();
161 preempt_notifier_register(&vcpu->preempt_notifier);
162 kvm_arch_vcpu_load(vcpu, cpu);
163 put_cpu();
164 return 0;
165 }
166 EXPORT_SYMBOL_GPL(vcpu_load);
167
168 void vcpu_put(struct kvm_vcpu *vcpu)
169 {
170 preempt_disable();
171 kvm_arch_vcpu_put(vcpu);
172 preempt_notifier_unregister(&vcpu->preempt_notifier);
173 preempt_enable();
174 mutex_unlock(&vcpu->mutex);
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182
183 /*
184 * We need to wait for the VCPU to reenable interrupts and get out of
185 * READING_SHADOW_PAGE_TABLES mode.
186 */
187 if (req & KVM_REQUEST_WAIT)
188 return mode != OUTSIDE_GUEST_MODE;
189
190 /*
191 * Need to kick a running VCPU, but otherwise there is nothing to do.
192 */
193 return mode == IN_GUEST_MODE;
194 }
195
196 static void ack_flush(void *_completed)
197 {
198 }
199
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202 if (unlikely(!cpus))
203 cpus = cpu_online_mask;
204
205 if (cpumask_empty(cpus))
206 return false;
207
208 smp_call_function_many(cpus, ack_flush, NULL, wait);
209 return true;
210 }
211
212 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
213 {
214 int i, cpu, me;
215 cpumask_var_t cpus;
216 bool called;
217 struct kvm_vcpu *vcpu;
218
219 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
220
221 me = get_cpu();
222 kvm_for_each_vcpu(i, vcpu, kvm) {
223 kvm_make_request(req, vcpu);
224 cpu = vcpu->cpu;
225
226 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
227 continue;
228
229 if (cpus != NULL && cpu != -1 && cpu != me &&
230 kvm_request_needs_ipi(vcpu, req))
231 __cpumask_set_cpu(cpu, cpus);
232 }
233 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
234 put_cpu();
235 free_cpumask_var(cpus);
236 return called;
237 }
238
239 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
240 void kvm_flush_remote_tlbs(struct kvm *kvm)
241 {
242 /*
243 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
244 * kvm_make_all_cpus_request.
245 */
246 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
247
248 /*
249 * We want to publish modifications to the page tables before reading
250 * mode. Pairs with a memory barrier in arch-specific code.
251 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
252 * and smp_mb in walk_shadow_page_lockless_begin/end.
253 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
254 *
255 * There is already an smp_mb__after_atomic() before
256 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
257 * barrier here.
258 */
259 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
260 ++kvm->stat.remote_tlb_flush;
261 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
262 }
263 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
264 #endif
265
266 void kvm_reload_remote_mmus(struct kvm *kvm)
267 {
268 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
269 }
270
271 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
272 {
273 struct page *page;
274 int r;
275
276 mutex_init(&vcpu->mutex);
277 vcpu->cpu = -1;
278 vcpu->kvm = kvm;
279 vcpu->vcpu_id = id;
280 vcpu->pid = NULL;
281 init_swait_queue_head(&vcpu->wq);
282 kvm_async_pf_vcpu_init(vcpu);
283
284 vcpu->pre_pcpu = -1;
285 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
286
287 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
288 if (!page) {
289 r = -ENOMEM;
290 goto fail;
291 }
292 vcpu->run = page_address(page);
293
294 kvm_vcpu_set_in_spin_loop(vcpu, false);
295 kvm_vcpu_set_dy_eligible(vcpu, false);
296 vcpu->preempted = false;
297
298 r = kvm_arch_vcpu_init(vcpu);
299 if (r < 0)
300 goto fail_free_run;
301 return 0;
302
303 fail_free_run:
304 free_page((unsigned long)vcpu->run);
305 fail:
306 return r;
307 }
308 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
309
310 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
311 {
312 /*
313 * no need for rcu_read_lock as VCPU_RUN is the only place that
314 * will change the vcpu->pid pointer and on uninit all file
315 * descriptors are already gone.
316 */
317 put_pid(rcu_dereference_protected(vcpu->pid, 1));
318 kvm_arch_vcpu_uninit(vcpu);
319 free_page((unsigned long)vcpu->run);
320 }
321 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
322
323 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
324 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
325 {
326 return container_of(mn, struct kvm, mmu_notifier);
327 }
328
329 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
330 struct mm_struct *mm,
331 unsigned long address,
332 pte_t pte)
333 {
334 struct kvm *kvm = mmu_notifier_to_kvm(mn);
335 int idx;
336
337 idx = srcu_read_lock(&kvm->srcu);
338 spin_lock(&kvm->mmu_lock);
339 kvm->mmu_notifier_seq++;
340 kvm_set_spte_hva(kvm, address, pte);
341 spin_unlock(&kvm->mmu_lock);
342 srcu_read_unlock(&kvm->srcu, idx);
343 }
344
345 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
346 struct mm_struct *mm,
347 unsigned long start,
348 unsigned long end)
349 {
350 struct kvm *kvm = mmu_notifier_to_kvm(mn);
351 int need_tlb_flush = 0, idx;
352
353 idx = srcu_read_lock(&kvm->srcu);
354 spin_lock(&kvm->mmu_lock);
355 /*
356 * The count increase must become visible at unlock time as no
357 * spte can be established without taking the mmu_lock and
358 * count is also read inside the mmu_lock critical section.
359 */
360 kvm->mmu_notifier_count++;
361 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
362 need_tlb_flush |= kvm->tlbs_dirty;
363 /* we've to flush the tlb before the pages can be freed */
364 if (need_tlb_flush)
365 kvm_flush_remote_tlbs(kvm);
366
367 spin_unlock(&kvm->mmu_lock);
368
369 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
370
371 srcu_read_unlock(&kvm->srcu, idx);
372 }
373
374 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
375 struct mm_struct *mm,
376 unsigned long start,
377 unsigned long end)
378 {
379 struct kvm *kvm = mmu_notifier_to_kvm(mn);
380
381 spin_lock(&kvm->mmu_lock);
382 /*
383 * This sequence increase will notify the kvm page fault that
384 * the page that is going to be mapped in the spte could have
385 * been freed.
386 */
387 kvm->mmu_notifier_seq++;
388 smp_wmb();
389 /*
390 * The above sequence increase must be visible before the
391 * below count decrease, which is ensured by the smp_wmb above
392 * in conjunction with the smp_rmb in mmu_notifier_retry().
393 */
394 kvm->mmu_notifier_count--;
395 spin_unlock(&kvm->mmu_lock);
396
397 BUG_ON(kvm->mmu_notifier_count < 0);
398 }
399
400 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
401 struct mm_struct *mm,
402 unsigned long start,
403 unsigned long end)
404 {
405 struct kvm *kvm = mmu_notifier_to_kvm(mn);
406 int young, idx;
407
408 idx = srcu_read_lock(&kvm->srcu);
409 spin_lock(&kvm->mmu_lock);
410
411 young = kvm_age_hva(kvm, start, end);
412 if (young)
413 kvm_flush_remote_tlbs(kvm);
414
415 spin_unlock(&kvm->mmu_lock);
416 srcu_read_unlock(&kvm->srcu, idx);
417
418 return young;
419 }
420
421 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
422 struct mm_struct *mm,
423 unsigned long start,
424 unsigned long end)
425 {
426 struct kvm *kvm = mmu_notifier_to_kvm(mn);
427 int young, idx;
428
429 idx = srcu_read_lock(&kvm->srcu);
430 spin_lock(&kvm->mmu_lock);
431 /*
432 * Even though we do not flush TLB, this will still adversely
433 * affect performance on pre-Haswell Intel EPT, where there is
434 * no EPT Access Bit to clear so that we have to tear down EPT
435 * tables instead. If we find this unacceptable, we can always
436 * add a parameter to kvm_age_hva so that it effectively doesn't
437 * do anything on clear_young.
438 *
439 * Also note that currently we never issue secondary TLB flushes
440 * from clear_young, leaving this job up to the regular system
441 * cadence. If we find this inaccurate, we might come up with a
442 * more sophisticated heuristic later.
443 */
444 young = kvm_age_hva(kvm, start, end);
445 spin_unlock(&kvm->mmu_lock);
446 srcu_read_unlock(&kvm->srcu, idx);
447
448 return young;
449 }
450
451 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
452 struct mm_struct *mm,
453 unsigned long address)
454 {
455 struct kvm *kvm = mmu_notifier_to_kvm(mn);
456 int young, idx;
457
458 idx = srcu_read_lock(&kvm->srcu);
459 spin_lock(&kvm->mmu_lock);
460 young = kvm_test_age_hva(kvm, address);
461 spin_unlock(&kvm->mmu_lock);
462 srcu_read_unlock(&kvm->srcu, idx);
463
464 return young;
465 }
466
467 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
468 struct mm_struct *mm)
469 {
470 struct kvm *kvm = mmu_notifier_to_kvm(mn);
471 int idx;
472
473 idx = srcu_read_lock(&kvm->srcu);
474 kvm_arch_flush_shadow_all(kvm);
475 srcu_read_unlock(&kvm->srcu, idx);
476 }
477
478 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
479 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
480 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
481 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
482 .clear_young = kvm_mmu_notifier_clear_young,
483 .test_young = kvm_mmu_notifier_test_young,
484 .change_pte = kvm_mmu_notifier_change_pte,
485 .release = kvm_mmu_notifier_release,
486 };
487
488 static int kvm_init_mmu_notifier(struct kvm *kvm)
489 {
490 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
491 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
492 }
493
494 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
495
496 static int kvm_init_mmu_notifier(struct kvm *kvm)
497 {
498 return 0;
499 }
500
501 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
502
503 static struct kvm_memslots *kvm_alloc_memslots(void)
504 {
505 int i;
506 struct kvm_memslots *slots;
507
508 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
509 if (!slots)
510 return NULL;
511
512 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
513 slots->id_to_index[i] = slots->memslots[i].id = i;
514
515 return slots;
516 }
517
518 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
519 {
520 if (!memslot->dirty_bitmap)
521 return;
522
523 kvfree(memslot->dirty_bitmap);
524 memslot->dirty_bitmap = NULL;
525 }
526
527 /*
528 * Free any memory in @free but not in @dont.
529 */
530 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
531 struct kvm_memory_slot *dont)
532 {
533 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
534 kvm_destroy_dirty_bitmap(free);
535
536 kvm_arch_free_memslot(kvm, free, dont);
537
538 free->npages = 0;
539 }
540
541 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
542 {
543 struct kvm_memory_slot *memslot;
544
545 if (!slots)
546 return;
547
548 kvm_for_each_memslot(memslot, slots)
549 kvm_free_memslot(kvm, memslot, NULL);
550
551 kvfree(slots);
552 }
553
554 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
555 {
556 int i;
557
558 if (!kvm->debugfs_dentry)
559 return;
560
561 debugfs_remove_recursive(kvm->debugfs_dentry);
562
563 if (kvm->debugfs_stat_data) {
564 for (i = 0; i < kvm_debugfs_num_entries; i++)
565 kfree(kvm->debugfs_stat_data[i]);
566 kfree(kvm->debugfs_stat_data);
567 }
568 }
569
570 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
571 {
572 char dir_name[ITOA_MAX_LEN * 2];
573 struct kvm_stat_data *stat_data;
574 struct kvm_stats_debugfs_item *p;
575
576 if (!debugfs_initialized())
577 return 0;
578
579 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
580 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
581 kvm_debugfs_dir);
582 if (!kvm->debugfs_dentry)
583 return -ENOMEM;
584
585 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
586 sizeof(*kvm->debugfs_stat_data),
587 GFP_KERNEL);
588 if (!kvm->debugfs_stat_data)
589 return -ENOMEM;
590
591 for (p = debugfs_entries; p->name; p++) {
592 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
593 if (!stat_data)
594 return -ENOMEM;
595
596 stat_data->kvm = kvm;
597 stat_data->offset = p->offset;
598 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
599 if (!debugfs_create_file(p->name, 0644,
600 kvm->debugfs_dentry,
601 stat_data,
602 stat_fops_per_vm[p->kind]))
603 return -ENOMEM;
604 }
605 return 0;
606 }
607
608 static struct kvm *kvm_create_vm(unsigned long type)
609 {
610 int r, i;
611 struct kvm *kvm = kvm_arch_alloc_vm();
612
613 if (!kvm)
614 return ERR_PTR(-ENOMEM);
615
616 spin_lock_init(&kvm->mmu_lock);
617 mmgrab(current->mm);
618 kvm->mm = current->mm;
619 kvm_eventfd_init(kvm);
620 mutex_init(&kvm->lock);
621 mutex_init(&kvm->irq_lock);
622 mutex_init(&kvm->slots_lock);
623 refcount_set(&kvm->users_count, 1);
624 INIT_LIST_HEAD(&kvm->devices);
625
626 r = kvm_arch_init_vm(kvm, type);
627 if (r)
628 goto out_err_no_disable;
629
630 r = hardware_enable_all();
631 if (r)
632 goto out_err_no_disable;
633
634 #ifdef CONFIG_HAVE_KVM_IRQFD
635 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
636 #endif
637
638 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
639
640 r = -ENOMEM;
641 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
642 struct kvm_memslots *slots = kvm_alloc_memslots();
643 if (!slots)
644 goto out_err_no_srcu;
645 /*
646 * Generations must be different for each address space.
647 * Init kvm generation close to the maximum to easily test the
648 * code of handling generation number wrap-around.
649 */
650 slots->generation = i * 2 - 150;
651 rcu_assign_pointer(kvm->memslots[i], slots);
652 }
653
654 if (init_srcu_struct(&kvm->srcu))
655 goto out_err_no_srcu;
656 if (init_srcu_struct(&kvm->irq_srcu))
657 goto out_err_no_irq_srcu;
658 for (i = 0; i < KVM_NR_BUSES; i++) {
659 rcu_assign_pointer(kvm->buses[i],
660 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
661 if (!kvm->buses[i])
662 goto out_err;
663 }
664
665 r = kvm_init_mmu_notifier(kvm);
666 if (r)
667 goto out_err;
668
669 spin_lock(&kvm_lock);
670 list_add(&kvm->vm_list, &vm_list);
671 spin_unlock(&kvm_lock);
672
673 preempt_notifier_inc();
674
675 return kvm;
676
677 out_err:
678 cleanup_srcu_struct(&kvm->irq_srcu);
679 out_err_no_irq_srcu:
680 cleanup_srcu_struct(&kvm->srcu);
681 out_err_no_srcu:
682 hardware_disable_all();
683 out_err_no_disable:
684 refcount_set(&kvm->users_count, 0);
685 for (i = 0; i < KVM_NR_BUSES; i++)
686 kfree(kvm_get_bus(kvm, i));
687 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
688 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
689 kvm_arch_free_vm(kvm);
690 mmdrop(current->mm);
691 return ERR_PTR(r);
692 }
693
694 static void kvm_destroy_devices(struct kvm *kvm)
695 {
696 struct kvm_device *dev, *tmp;
697
698 /*
699 * We do not need to take the kvm->lock here, because nobody else
700 * has a reference to the struct kvm at this point and therefore
701 * cannot access the devices list anyhow.
702 */
703 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
704 list_del(&dev->vm_node);
705 dev->ops->destroy(dev);
706 }
707 }
708
709 static void kvm_destroy_vm(struct kvm *kvm)
710 {
711 int i;
712 struct mm_struct *mm = kvm->mm;
713
714 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
715 kvm_destroy_vm_debugfs(kvm);
716 kvm_arch_sync_events(kvm);
717 spin_lock(&kvm_lock);
718 list_del(&kvm->vm_list);
719 spin_unlock(&kvm_lock);
720 kvm_free_irq_routing(kvm);
721 for (i = 0; i < KVM_NR_BUSES; i++) {
722 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
723
724 if (bus)
725 kvm_io_bus_destroy(bus);
726 kvm->buses[i] = NULL;
727 }
728 kvm_coalesced_mmio_free(kvm);
729 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
730 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
731 #else
732 kvm_arch_flush_shadow_all(kvm);
733 #endif
734 kvm_arch_destroy_vm(kvm);
735 kvm_destroy_devices(kvm);
736 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
737 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
738 cleanup_srcu_struct(&kvm->irq_srcu);
739 cleanup_srcu_struct(&kvm->srcu);
740 kvm_arch_free_vm(kvm);
741 preempt_notifier_dec();
742 hardware_disable_all();
743 mmdrop(mm);
744 }
745
746 void kvm_get_kvm(struct kvm *kvm)
747 {
748 refcount_inc(&kvm->users_count);
749 }
750 EXPORT_SYMBOL_GPL(kvm_get_kvm);
751
752 void kvm_put_kvm(struct kvm *kvm)
753 {
754 if (refcount_dec_and_test(&kvm->users_count))
755 kvm_destroy_vm(kvm);
756 }
757 EXPORT_SYMBOL_GPL(kvm_put_kvm);
758
759
760 static int kvm_vm_release(struct inode *inode, struct file *filp)
761 {
762 struct kvm *kvm = filp->private_data;
763
764 kvm_irqfd_release(kvm);
765
766 kvm_put_kvm(kvm);
767 return 0;
768 }
769
770 /*
771 * Allocation size is twice as large as the actual dirty bitmap size.
772 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
773 */
774 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
775 {
776 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
777
778 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
779 if (!memslot->dirty_bitmap)
780 return -ENOMEM;
781
782 return 0;
783 }
784
785 /*
786 * Insert memslot and re-sort memslots based on their GFN,
787 * so binary search could be used to lookup GFN.
788 * Sorting algorithm takes advantage of having initially
789 * sorted array and known changed memslot position.
790 */
791 static void update_memslots(struct kvm_memslots *slots,
792 struct kvm_memory_slot *new)
793 {
794 int id = new->id;
795 int i = slots->id_to_index[id];
796 struct kvm_memory_slot *mslots = slots->memslots;
797
798 WARN_ON(mslots[i].id != id);
799 if (!new->npages) {
800 WARN_ON(!mslots[i].npages);
801 if (mslots[i].npages)
802 slots->used_slots--;
803 } else {
804 if (!mslots[i].npages)
805 slots->used_slots++;
806 }
807
808 while (i < KVM_MEM_SLOTS_NUM - 1 &&
809 new->base_gfn <= mslots[i + 1].base_gfn) {
810 if (!mslots[i + 1].npages)
811 break;
812 mslots[i] = mslots[i + 1];
813 slots->id_to_index[mslots[i].id] = i;
814 i++;
815 }
816
817 /*
818 * The ">=" is needed when creating a slot with base_gfn == 0,
819 * so that it moves before all those with base_gfn == npages == 0.
820 *
821 * On the other hand, if new->npages is zero, the above loop has
822 * already left i pointing to the beginning of the empty part of
823 * mslots, and the ">=" would move the hole backwards in this
824 * case---which is wrong. So skip the loop when deleting a slot.
825 */
826 if (new->npages) {
827 while (i > 0 &&
828 new->base_gfn >= mslots[i - 1].base_gfn) {
829 mslots[i] = mslots[i - 1];
830 slots->id_to_index[mslots[i].id] = i;
831 i--;
832 }
833 } else
834 WARN_ON_ONCE(i != slots->used_slots);
835
836 mslots[i] = *new;
837 slots->id_to_index[mslots[i].id] = i;
838 }
839
840 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
841 {
842 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
843
844 #ifdef __KVM_HAVE_READONLY_MEM
845 valid_flags |= KVM_MEM_READONLY;
846 #endif
847
848 if (mem->flags & ~valid_flags)
849 return -EINVAL;
850
851 return 0;
852 }
853
854 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
855 int as_id, struct kvm_memslots *slots)
856 {
857 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
858
859 /*
860 * Set the low bit in the generation, which disables SPTE caching
861 * until the end of synchronize_srcu_expedited.
862 */
863 WARN_ON(old_memslots->generation & 1);
864 slots->generation = old_memslots->generation + 1;
865
866 rcu_assign_pointer(kvm->memslots[as_id], slots);
867 synchronize_srcu_expedited(&kvm->srcu);
868
869 /*
870 * Increment the new memslot generation a second time. This prevents
871 * vm exits that race with memslot updates from caching a memslot
872 * generation that will (potentially) be valid forever.
873 *
874 * Generations must be unique even across address spaces. We do not need
875 * a global counter for that, instead the generation space is evenly split
876 * across address spaces. For example, with two address spaces, address
877 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
878 * use generations 2, 6, 10, 14, ...
879 */
880 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
881
882 kvm_arch_memslots_updated(kvm, slots);
883
884 return old_memslots;
885 }
886
887 /*
888 * Allocate some memory and give it an address in the guest physical address
889 * space.
890 *
891 * Discontiguous memory is allowed, mostly for framebuffers.
892 *
893 * Must be called holding kvm->slots_lock for write.
894 */
895 int __kvm_set_memory_region(struct kvm *kvm,
896 const struct kvm_userspace_memory_region *mem)
897 {
898 int r;
899 gfn_t base_gfn;
900 unsigned long npages;
901 struct kvm_memory_slot *slot;
902 struct kvm_memory_slot old, new;
903 struct kvm_memslots *slots = NULL, *old_memslots;
904 int as_id, id;
905 enum kvm_mr_change change;
906
907 r = check_memory_region_flags(mem);
908 if (r)
909 goto out;
910
911 r = -EINVAL;
912 as_id = mem->slot >> 16;
913 id = (u16)mem->slot;
914
915 /* General sanity checks */
916 if (mem->memory_size & (PAGE_SIZE - 1))
917 goto out;
918 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
919 goto out;
920 /* We can read the guest memory with __xxx_user() later on. */
921 if ((id < KVM_USER_MEM_SLOTS) &&
922 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
923 !access_ok(VERIFY_WRITE,
924 (void __user *)(unsigned long)mem->userspace_addr,
925 mem->memory_size)))
926 goto out;
927 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
928 goto out;
929 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
930 goto out;
931
932 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
933 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
934 npages = mem->memory_size >> PAGE_SHIFT;
935
936 if (npages > KVM_MEM_MAX_NR_PAGES)
937 goto out;
938
939 new = old = *slot;
940
941 new.id = id;
942 new.base_gfn = base_gfn;
943 new.npages = npages;
944 new.flags = mem->flags;
945
946 if (npages) {
947 if (!old.npages)
948 change = KVM_MR_CREATE;
949 else { /* Modify an existing slot. */
950 if ((mem->userspace_addr != old.userspace_addr) ||
951 (npages != old.npages) ||
952 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
953 goto out;
954
955 if (base_gfn != old.base_gfn)
956 change = KVM_MR_MOVE;
957 else if (new.flags != old.flags)
958 change = KVM_MR_FLAGS_ONLY;
959 else { /* Nothing to change. */
960 r = 0;
961 goto out;
962 }
963 }
964 } else {
965 if (!old.npages)
966 goto out;
967
968 change = KVM_MR_DELETE;
969 new.base_gfn = 0;
970 new.flags = 0;
971 }
972
973 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
974 /* Check for overlaps */
975 r = -EEXIST;
976 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
977 if (slot->id == id)
978 continue;
979 if (!((base_gfn + npages <= slot->base_gfn) ||
980 (base_gfn >= slot->base_gfn + slot->npages)))
981 goto out;
982 }
983 }
984
985 /* Free page dirty bitmap if unneeded */
986 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
987 new.dirty_bitmap = NULL;
988
989 r = -ENOMEM;
990 if (change == KVM_MR_CREATE) {
991 new.userspace_addr = mem->userspace_addr;
992
993 if (kvm_arch_create_memslot(kvm, &new, npages))
994 goto out_free;
995 }
996
997 /* Allocate page dirty bitmap if needed */
998 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
999 if (kvm_create_dirty_bitmap(&new) < 0)
1000 goto out_free;
1001 }
1002
1003 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1004 if (!slots)
1005 goto out_free;
1006 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1007
1008 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1009 slot = id_to_memslot(slots, id);
1010 slot->flags |= KVM_MEMSLOT_INVALID;
1011
1012 old_memslots = install_new_memslots(kvm, as_id, slots);
1013
1014 /* From this point no new shadow pages pointing to a deleted,
1015 * or moved, memslot will be created.
1016 *
1017 * validation of sp->gfn happens in:
1018 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1019 * - kvm_is_visible_gfn (mmu_check_roots)
1020 */
1021 kvm_arch_flush_shadow_memslot(kvm, slot);
1022
1023 /*
1024 * We can re-use the old_memslots from above, the only difference
1025 * from the currently installed memslots is the invalid flag. This
1026 * will get overwritten by update_memslots anyway.
1027 */
1028 slots = old_memslots;
1029 }
1030
1031 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1032 if (r)
1033 goto out_slots;
1034
1035 /* actual memory is freed via old in kvm_free_memslot below */
1036 if (change == KVM_MR_DELETE) {
1037 new.dirty_bitmap = NULL;
1038 memset(&new.arch, 0, sizeof(new.arch));
1039 }
1040
1041 update_memslots(slots, &new);
1042 old_memslots = install_new_memslots(kvm, as_id, slots);
1043
1044 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1045
1046 kvm_free_memslot(kvm, &old, &new);
1047 kvfree(old_memslots);
1048 return 0;
1049
1050 out_slots:
1051 kvfree(slots);
1052 out_free:
1053 kvm_free_memslot(kvm, &new, &old);
1054 out:
1055 return r;
1056 }
1057 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1058
1059 int kvm_set_memory_region(struct kvm *kvm,
1060 const struct kvm_userspace_memory_region *mem)
1061 {
1062 int r;
1063
1064 mutex_lock(&kvm->slots_lock);
1065 r = __kvm_set_memory_region(kvm, mem);
1066 mutex_unlock(&kvm->slots_lock);
1067 return r;
1068 }
1069 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1070
1071 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1072 struct kvm_userspace_memory_region *mem)
1073 {
1074 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1075 return -EINVAL;
1076
1077 return kvm_set_memory_region(kvm, mem);
1078 }
1079
1080 int kvm_get_dirty_log(struct kvm *kvm,
1081 struct kvm_dirty_log *log, int *is_dirty)
1082 {
1083 struct kvm_memslots *slots;
1084 struct kvm_memory_slot *memslot;
1085 int i, as_id, id;
1086 unsigned long n;
1087 unsigned long any = 0;
1088
1089 as_id = log->slot >> 16;
1090 id = (u16)log->slot;
1091 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1092 return -EINVAL;
1093
1094 slots = __kvm_memslots(kvm, as_id);
1095 memslot = id_to_memslot(slots, id);
1096 if (!memslot->dirty_bitmap)
1097 return -ENOENT;
1098
1099 n = kvm_dirty_bitmap_bytes(memslot);
1100
1101 for (i = 0; !any && i < n/sizeof(long); ++i)
1102 any = memslot->dirty_bitmap[i];
1103
1104 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1105 return -EFAULT;
1106
1107 if (any)
1108 *is_dirty = 1;
1109 return 0;
1110 }
1111 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1112
1113 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1114 /**
1115 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1116 * are dirty write protect them for next write.
1117 * @kvm: pointer to kvm instance
1118 * @log: slot id and address to which we copy the log
1119 * @is_dirty: flag set if any page is dirty
1120 *
1121 * We need to keep it in mind that VCPU threads can write to the bitmap
1122 * concurrently. So, to avoid losing track of dirty pages we keep the
1123 * following order:
1124 *
1125 * 1. Take a snapshot of the bit and clear it if needed.
1126 * 2. Write protect the corresponding page.
1127 * 3. Copy the snapshot to the userspace.
1128 * 4. Upon return caller flushes TLB's if needed.
1129 *
1130 * Between 2 and 4, the guest may write to the page using the remaining TLB
1131 * entry. This is not a problem because the page is reported dirty using
1132 * the snapshot taken before and step 4 ensures that writes done after
1133 * exiting to userspace will be logged for the next call.
1134 *
1135 */
1136 int kvm_get_dirty_log_protect(struct kvm *kvm,
1137 struct kvm_dirty_log *log, bool *is_dirty)
1138 {
1139 struct kvm_memslots *slots;
1140 struct kvm_memory_slot *memslot;
1141 int i, as_id, id;
1142 unsigned long n;
1143 unsigned long *dirty_bitmap;
1144 unsigned long *dirty_bitmap_buffer;
1145
1146 as_id = log->slot >> 16;
1147 id = (u16)log->slot;
1148 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1149 return -EINVAL;
1150
1151 slots = __kvm_memslots(kvm, as_id);
1152 memslot = id_to_memslot(slots, id);
1153
1154 dirty_bitmap = memslot->dirty_bitmap;
1155 if (!dirty_bitmap)
1156 return -ENOENT;
1157
1158 n = kvm_dirty_bitmap_bytes(memslot);
1159
1160 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1161 memset(dirty_bitmap_buffer, 0, n);
1162
1163 spin_lock(&kvm->mmu_lock);
1164 *is_dirty = false;
1165 for (i = 0; i < n / sizeof(long); i++) {
1166 unsigned long mask;
1167 gfn_t offset;
1168
1169 if (!dirty_bitmap[i])
1170 continue;
1171
1172 *is_dirty = true;
1173
1174 mask = xchg(&dirty_bitmap[i], 0);
1175 dirty_bitmap_buffer[i] = mask;
1176
1177 if (mask) {
1178 offset = i * BITS_PER_LONG;
1179 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1180 offset, mask);
1181 }
1182 }
1183
1184 spin_unlock(&kvm->mmu_lock);
1185 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1186 return -EFAULT;
1187 return 0;
1188 }
1189 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1190 #endif
1191
1192 bool kvm_largepages_enabled(void)
1193 {
1194 return largepages_enabled;
1195 }
1196
1197 void kvm_disable_largepages(void)
1198 {
1199 largepages_enabled = false;
1200 }
1201 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1202
1203 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1204 {
1205 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1206 }
1207 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1208
1209 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1210 {
1211 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1212 }
1213
1214 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1215 {
1216 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1217
1218 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1219 memslot->flags & KVM_MEMSLOT_INVALID)
1220 return false;
1221
1222 return true;
1223 }
1224 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1225
1226 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1227 {
1228 struct vm_area_struct *vma;
1229 unsigned long addr, size;
1230
1231 size = PAGE_SIZE;
1232
1233 addr = gfn_to_hva(kvm, gfn);
1234 if (kvm_is_error_hva(addr))
1235 return PAGE_SIZE;
1236
1237 down_read(&current->mm->mmap_sem);
1238 vma = find_vma(current->mm, addr);
1239 if (!vma)
1240 goto out;
1241
1242 size = vma_kernel_pagesize(vma);
1243
1244 out:
1245 up_read(&current->mm->mmap_sem);
1246
1247 return size;
1248 }
1249
1250 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1251 {
1252 return slot->flags & KVM_MEM_READONLY;
1253 }
1254
1255 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1256 gfn_t *nr_pages, bool write)
1257 {
1258 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1259 return KVM_HVA_ERR_BAD;
1260
1261 if (memslot_is_readonly(slot) && write)
1262 return KVM_HVA_ERR_RO_BAD;
1263
1264 if (nr_pages)
1265 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1266
1267 return __gfn_to_hva_memslot(slot, gfn);
1268 }
1269
1270 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1271 gfn_t *nr_pages)
1272 {
1273 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1274 }
1275
1276 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1277 gfn_t gfn)
1278 {
1279 return gfn_to_hva_many(slot, gfn, NULL);
1280 }
1281 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1282
1283 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1284 {
1285 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1286 }
1287 EXPORT_SYMBOL_GPL(gfn_to_hva);
1288
1289 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1290 {
1291 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1294
1295 /*
1296 * If writable is set to false, the hva returned by this function is only
1297 * allowed to be read.
1298 */
1299 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1300 gfn_t gfn, bool *writable)
1301 {
1302 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1303
1304 if (!kvm_is_error_hva(hva) && writable)
1305 *writable = !memslot_is_readonly(slot);
1306
1307 return hva;
1308 }
1309
1310 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1311 {
1312 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1313
1314 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1315 }
1316
1317 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1318 {
1319 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1320
1321 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1322 }
1323
1324 static int get_user_page_nowait(unsigned long start, int write,
1325 struct page **page)
1326 {
1327 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1328
1329 if (write)
1330 flags |= FOLL_WRITE;
1331
1332 return get_user_pages(start, 1, flags, page, NULL);
1333 }
1334
1335 static inline int check_user_page_hwpoison(unsigned long addr)
1336 {
1337 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1338
1339 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1340 return rc == -EHWPOISON;
1341 }
1342
1343 /*
1344 * The atomic path to get the writable pfn which will be stored in @pfn,
1345 * true indicates success, otherwise false is returned.
1346 */
1347 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1348 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1349 {
1350 struct page *page[1];
1351 int npages;
1352
1353 if (!(async || atomic))
1354 return false;
1355
1356 /*
1357 * Fast pin a writable pfn only if it is a write fault request
1358 * or the caller allows to map a writable pfn for a read fault
1359 * request.
1360 */
1361 if (!(write_fault || writable))
1362 return false;
1363
1364 npages = __get_user_pages_fast(addr, 1, 1, page);
1365 if (npages == 1) {
1366 *pfn = page_to_pfn(page[0]);
1367
1368 if (writable)
1369 *writable = true;
1370 return true;
1371 }
1372
1373 return false;
1374 }
1375
1376 /*
1377 * The slow path to get the pfn of the specified host virtual address,
1378 * 1 indicates success, -errno is returned if error is detected.
1379 */
1380 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1381 bool *writable, kvm_pfn_t *pfn)
1382 {
1383 struct page *page[1];
1384 int npages = 0;
1385
1386 might_sleep();
1387
1388 if (writable)
1389 *writable = write_fault;
1390
1391 if (async) {
1392 down_read(&current->mm->mmap_sem);
1393 npages = get_user_page_nowait(addr, write_fault, page);
1394 up_read(&current->mm->mmap_sem);
1395 } else {
1396 unsigned int flags = FOLL_HWPOISON;
1397
1398 if (write_fault)
1399 flags |= FOLL_WRITE;
1400
1401 npages = get_user_pages_unlocked(addr, 1, page, flags);
1402 }
1403 if (npages != 1)
1404 return npages;
1405
1406 /* map read fault as writable if possible */
1407 if (unlikely(!write_fault) && writable) {
1408 struct page *wpage[1];
1409
1410 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1411 if (npages == 1) {
1412 *writable = true;
1413 put_page(page[0]);
1414 page[0] = wpage[0];
1415 }
1416
1417 npages = 1;
1418 }
1419 *pfn = page_to_pfn(page[0]);
1420 return npages;
1421 }
1422
1423 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1424 {
1425 if (unlikely(!(vma->vm_flags & VM_READ)))
1426 return false;
1427
1428 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1429 return false;
1430
1431 return true;
1432 }
1433
1434 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1435 unsigned long addr, bool *async,
1436 bool write_fault, bool *writable,
1437 kvm_pfn_t *p_pfn)
1438 {
1439 unsigned long pfn;
1440 int r;
1441
1442 r = follow_pfn(vma, addr, &pfn);
1443 if (r) {
1444 /*
1445 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1446 * not call the fault handler, so do it here.
1447 */
1448 bool unlocked = false;
1449 r = fixup_user_fault(current, current->mm, addr,
1450 (write_fault ? FAULT_FLAG_WRITE : 0),
1451 &unlocked);
1452 if (unlocked)
1453 return -EAGAIN;
1454 if (r)
1455 return r;
1456
1457 r = follow_pfn(vma, addr, &pfn);
1458 if (r)
1459 return r;
1460
1461 }
1462
1463 if (writable)
1464 *writable = true;
1465
1466 /*
1467 * Get a reference here because callers of *hva_to_pfn* and
1468 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1469 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1470 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1471 * simply do nothing for reserved pfns.
1472 *
1473 * Whoever called remap_pfn_range is also going to call e.g.
1474 * unmap_mapping_range before the underlying pages are freed,
1475 * causing a call to our MMU notifier.
1476 */
1477 kvm_get_pfn(pfn);
1478
1479 *p_pfn = pfn;
1480 return 0;
1481 }
1482
1483 /*
1484 * Pin guest page in memory and return its pfn.
1485 * @addr: host virtual address which maps memory to the guest
1486 * @atomic: whether this function can sleep
1487 * @async: whether this function need to wait IO complete if the
1488 * host page is not in the memory
1489 * @write_fault: whether we should get a writable host page
1490 * @writable: whether it allows to map a writable host page for !@write_fault
1491 *
1492 * The function will map a writable host page for these two cases:
1493 * 1): @write_fault = true
1494 * 2): @write_fault = false && @writable, @writable will tell the caller
1495 * whether the mapping is writable.
1496 */
1497 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1498 bool write_fault, bool *writable)
1499 {
1500 struct vm_area_struct *vma;
1501 kvm_pfn_t pfn = 0;
1502 int npages, r;
1503
1504 /* we can do it either atomically or asynchronously, not both */
1505 BUG_ON(atomic && async);
1506
1507 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1508 return pfn;
1509
1510 if (atomic)
1511 return KVM_PFN_ERR_FAULT;
1512
1513 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1514 if (npages == 1)
1515 return pfn;
1516
1517 down_read(&current->mm->mmap_sem);
1518 if (npages == -EHWPOISON ||
1519 (!async && check_user_page_hwpoison(addr))) {
1520 pfn = KVM_PFN_ERR_HWPOISON;
1521 goto exit;
1522 }
1523
1524 retry:
1525 vma = find_vma_intersection(current->mm, addr, addr + 1);
1526
1527 if (vma == NULL)
1528 pfn = KVM_PFN_ERR_FAULT;
1529 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1530 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1531 if (r == -EAGAIN)
1532 goto retry;
1533 if (r < 0)
1534 pfn = KVM_PFN_ERR_FAULT;
1535 } else {
1536 if (async && vma_is_valid(vma, write_fault))
1537 *async = true;
1538 pfn = KVM_PFN_ERR_FAULT;
1539 }
1540 exit:
1541 up_read(&current->mm->mmap_sem);
1542 return pfn;
1543 }
1544
1545 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1546 bool atomic, bool *async, bool write_fault,
1547 bool *writable)
1548 {
1549 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1550
1551 if (addr == KVM_HVA_ERR_RO_BAD) {
1552 if (writable)
1553 *writable = false;
1554 return KVM_PFN_ERR_RO_FAULT;
1555 }
1556
1557 if (kvm_is_error_hva(addr)) {
1558 if (writable)
1559 *writable = false;
1560 return KVM_PFN_NOSLOT;
1561 }
1562
1563 /* Do not map writable pfn in the readonly memslot. */
1564 if (writable && memslot_is_readonly(slot)) {
1565 *writable = false;
1566 writable = NULL;
1567 }
1568
1569 return hva_to_pfn(addr, atomic, async, write_fault,
1570 writable);
1571 }
1572 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1573
1574 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1575 bool *writable)
1576 {
1577 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1578 write_fault, writable);
1579 }
1580 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1581
1582 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1583 {
1584 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1585 }
1586 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1587
1588 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1589 {
1590 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1591 }
1592 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1593
1594 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1595 {
1596 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1597 }
1598 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1599
1600 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1601 {
1602 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1603 }
1604 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1605
1606 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1607 {
1608 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1609 }
1610 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1611
1612 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1613 {
1614 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1615 }
1616 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1617
1618 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1619 struct page **pages, int nr_pages)
1620 {
1621 unsigned long addr;
1622 gfn_t entry = 0;
1623
1624 addr = gfn_to_hva_many(slot, gfn, &entry);
1625 if (kvm_is_error_hva(addr))
1626 return -1;
1627
1628 if (entry < nr_pages)
1629 return 0;
1630
1631 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1632 }
1633 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1634
1635 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1636 {
1637 if (is_error_noslot_pfn(pfn))
1638 return KVM_ERR_PTR_BAD_PAGE;
1639
1640 if (kvm_is_reserved_pfn(pfn)) {
1641 WARN_ON(1);
1642 return KVM_ERR_PTR_BAD_PAGE;
1643 }
1644
1645 return pfn_to_page(pfn);
1646 }
1647
1648 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1649 {
1650 kvm_pfn_t pfn;
1651
1652 pfn = gfn_to_pfn(kvm, gfn);
1653
1654 return kvm_pfn_to_page(pfn);
1655 }
1656 EXPORT_SYMBOL_GPL(gfn_to_page);
1657
1658 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1659 {
1660 kvm_pfn_t pfn;
1661
1662 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1663
1664 return kvm_pfn_to_page(pfn);
1665 }
1666 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1667
1668 void kvm_release_page_clean(struct page *page)
1669 {
1670 WARN_ON(is_error_page(page));
1671
1672 kvm_release_pfn_clean(page_to_pfn(page));
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1675
1676 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1677 {
1678 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1679 put_page(pfn_to_page(pfn));
1680 }
1681 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1682
1683 void kvm_release_page_dirty(struct page *page)
1684 {
1685 WARN_ON(is_error_page(page));
1686
1687 kvm_release_pfn_dirty(page_to_pfn(page));
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1690
1691 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1692 {
1693 kvm_set_pfn_dirty(pfn);
1694 kvm_release_pfn_clean(pfn);
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1697
1698 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1699 {
1700 if (!kvm_is_reserved_pfn(pfn)) {
1701 struct page *page = pfn_to_page(pfn);
1702
1703 if (!PageReserved(page))
1704 SetPageDirty(page);
1705 }
1706 }
1707 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1708
1709 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1710 {
1711 if (!kvm_is_reserved_pfn(pfn))
1712 mark_page_accessed(pfn_to_page(pfn));
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1715
1716 void kvm_get_pfn(kvm_pfn_t pfn)
1717 {
1718 if (!kvm_is_reserved_pfn(pfn))
1719 get_page(pfn_to_page(pfn));
1720 }
1721 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1722
1723 static int next_segment(unsigned long len, int offset)
1724 {
1725 if (len > PAGE_SIZE - offset)
1726 return PAGE_SIZE - offset;
1727 else
1728 return len;
1729 }
1730
1731 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1732 void *data, int offset, int len)
1733 {
1734 int r;
1735 unsigned long addr;
1736
1737 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1738 if (kvm_is_error_hva(addr))
1739 return -EFAULT;
1740 r = __copy_from_user(data, (void __user *)addr + offset, len);
1741 if (r)
1742 return -EFAULT;
1743 return 0;
1744 }
1745
1746 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1747 int len)
1748 {
1749 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1750
1751 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1754
1755 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1756 int offset, int len)
1757 {
1758 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1759
1760 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1761 }
1762 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1763
1764 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1765 {
1766 gfn_t gfn = gpa >> PAGE_SHIFT;
1767 int seg;
1768 int offset = offset_in_page(gpa);
1769 int ret;
1770
1771 while ((seg = next_segment(len, offset)) != 0) {
1772 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1773 if (ret < 0)
1774 return ret;
1775 offset = 0;
1776 len -= seg;
1777 data += seg;
1778 ++gfn;
1779 }
1780 return 0;
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_read_guest);
1783
1784 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1785 {
1786 gfn_t gfn = gpa >> PAGE_SHIFT;
1787 int seg;
1788 int offset = offset_in_page(gpa);
1789 int ret;
1790
1791 while ((seg = next_segment(len, offset)) != 0) {
1792 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1793 if (ret < 0)
1794 return ret;
1795 offset = 0;
1796 len -= seg;
1797 data += seg;
1798 ++gfn;
1799 }
1800 return 0;
1801 }
1802 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1803
1804 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1805 void *data, int offset, unsigned long len)
1806 {
1807 int r;
1808 unsigned long addr;
1809
1810 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1811 if (kvm_is_error_hva(addr))
1812 return -EFAULT;
1813 pagefault_disable();
1814 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1815 pagefault_enable();
1816 if (r)
1817 return -EFAULT;
1818 return 0;
1819 }
1820
1821 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1822 unsigned long len)
1823 {
1824 gfn_t gfn = gpa >> PAGE_SHIFT;
1825 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1826 int offset = offset_in_page(gpa);
1827
1828 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1829 }
1830 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1831
1832 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1833 void *data, unsigned long len)
1834 {
1835 gfn_t gfn = gpa >> PAGE_SHIFT;
1836 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1837 int offset = offset_in_page(gpa);
1838
1839 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1840 }
1841 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1842
1843 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1844 const void *data, int offset, int len)
1845 {
1846 int r;
1847 unsigned long addr;
1848
1849 addr = gfn_to_hva_memslot(memslot, gfn);
1850 if (kvm_is_error_hva(addr))
1851 return -EFAULT;
1852 r = __copy_to_user((void __user *)addr + offset, data, len);
1853 if (r)
1854 return -EFAULT;
1855 mark_page_dirty_in_slot(memslot, gfn);
1856 return 0;
1857 }
1858
1859 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1860 const void *data, int offset, int len)
1861 {
1862 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1863
1864 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1865 }
1866 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1867
1868 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1869 const void *data, int offset, int len)
1870 {
1871 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1872
1873 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1874 }
1875 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1876
1877 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1878 unsigned long len)
1879 {
1880 gfn_t gfn = gpa >> PAGE_SHIFT;
1881 int seg;
1882 int offset = offset_in_page(gpa);
1883 int ret;
1884
1885 while ((seg = next_segment(len, offset)) != 0) {
1886 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1887 if (ret < 0)
1888 return ret;
1889 offset = 0;
1890 len -= seg;
1891 data += seg;
1892 ++gfn;
1893 }
1894 return 0;
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_write_guest);
1897
1898 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1899 unsigned long len)
1900 {
1901 gfn_t gfn = gpa >> PAGE_SHIFT;
1902 int seg;
1903 int offset = offset_in_page(gpa);
1904 int ret;
1905
1906 while ((seg = next_segment(len, offset)) != 0) {
1907 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1908 if (ret < 0)
1909 return ret;
1910 offset = 0;
1911 len -= seg;
1912 data += seg;
1913 ++gfn;
1914 }
1915 return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1918
1919 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1920 struct gfn_to_hva_cache *ghc,
1921 gpa_t gpa, unsigned long len)
1922 {
1923 int offset = offset_in_page(gpa);
1924 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1925 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1926 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1927 gfn_t nr_pages_avail;
1928
1929 ghc->gpa = gpa;
1930 ghc->generation = slots->generation;
1931 ghc->len = len;
1932 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1933 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1934 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1935 ghc->hva += offset;
1936 } else {
1937 /*
1938 * If the requested region crosses two memslots, we still
1939 * verify that the entire region is valid here.
1940 */
1941 while (start_gfn <= end_gfn) {
1942 nr_pages_avail = 0;
1943 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1944 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1945 &nr_pages_avail);
1946 if (kvm_is_error_hva(ghc->hva))
1947 return -EFAULT;
1948 start_gfn += nr_pages_avail;
1949 }
1950 /* Use the slow path for cross page reads and writes. */
1951 ghc->memslot = NULL;
1952 }
1953 return 0;
1954 }
1955
1956 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1957 gpa_t gpa, unsigned long len)
1958 {
1959 struct kvm_memslots *slots = kvm_memslots(kvm);
1960 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1961 }
1962 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1963
1964 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1965 void *data, int offset, unsigned long len)
1966 {
1967 struct kvm_memslots *slots = kvm_memslots(kvm);
1968 int r;
1969 gpa_t gpa = ghc->gpa + offset;
1970
1971 BUG_ON(len + offset > ghc->len);
1972
1973 if (slots->generation != ghc->generation)
1974 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1975
1976 if (unlikely(!ghc->memslot))
1977 return kvm_write_guest(kvm, gpa, data, len);
1978
1979 if (kvm_is_error_hva(ghc->hva))
1980 return -EFAULT;
1981
1982 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1983 if (r)
1984 return -EFAULT;
1985 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1986
1987 return 0;
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1990
1991 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1992 void *data, unsigned long len)
1993 {
1994 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1995 }
1996 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1997
1998 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1999 void *data, unsigned long len)
2000 {
2001 struct kvm_memslots *slots = kvm_memslots(kvm);
2002 int r;
2003
2004 BUG_ON(len > ghc->len);
2005
2006 if (slots->generation != ghc->generation)
2007 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2008
2009 if (unlikely(!ghc->memslot))
2010 return kvm_read_guest(kvm, ghc->gpa, data, len);
2011
2012 if (kvm_is_error_hva(ghc->hva))
2013 return -EFAULT;
2014
2015 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2016 if (r)
2017 return -EFAULT;
2018
2019 return 0;
2020 }
2021 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2022
2023 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2024 {
2025 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2026
2027 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2028 }
2029 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2030
2031 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2032 {
2033 gfn_t gfn = gpa >> PAGE_SHIFT;
2034 int seg;
2035 int offset = offset_in_page(gpa);
2036 int ret;
2037
2038 while ((seg = next_segment(len, offset)) != 0) {
2039 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2040 if (ret < 0)
2041 return ret;
2042 offset = 0;
2043 len -= seg;
2044 ++gfn;
2045 }
2046 return 0;
2047 }
2048 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2049
2050 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2051 gfn_t gfn)
2052 {
2053 if (memslot && memslot->dirty_bitmap) {
2054 unsigned long rel_gfn = gfn - memslot->base_gfn;
2055
2056 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2057 }
2058 }
2059
2060 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2061 {
2062 struct kvm_memory_slot *memslot;
2063
2064 memslot = gfn_to_memslot(kvm, gfn);
2065 mark_page_dirty_in_slot(memslot, gfn);
2066 }
2067 EXPORT_SYMBOL_GPL(mark_page_dirty);
2068
2069 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2070 {
2071 struct kvm_memory_slot *memslot;
2072
2073 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2074 mark_page_dirty_in_slot(memslot, gfn);
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2077
2078 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2079 {
2080 if (!vcpu->sigset_active)
2081 return;
2082
2083 /*
2084 * This does a lockless modification of ->real_blocked, which is fine
2085 * because, only current can change ->real_blocked and all readers of
2086 * ->real_blocked don't care as long ->real_blocked is always a subset
2087 * of ->blocked.
2088 */
2089 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2090 }
2091
2092 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2093 {
2094 if (!vcpu->sigset_active)
2095 return;
2096
2097 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2098 sigemptyset(&current->real_blocked);
2099 }
2100
2101 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2102 {
2103 unsigned int old, val, grow;
2104
2105 old = val = vcpu->halt_poll_ns;
2106 grow = READ_ONCE(halt_poll_ns_grow);
2107 /* 10us base */
2108 if (val == 0 && grow)
2109 val = 10000;
2110 else
2111 val *= grow;
2112
2113 if (val > halt_poll_ns)
2114 val = halt_poll_ns;
2115
2116 vcpu->halt_poll_ns = val;
2117 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2118 }
2119
2120 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2121 {
2122 unsigned int old, val, shrink;
2123
2124 old = val = vcpu->halt_poll_ns;
2125 shrink = READ_ONCE(halt_poll_ns_shrink);
2126 if (shrink == 0)
2127 val = 0;
2128 else
2129 val /= shrink;
2130
2131 vcpu->halt_poll_ns = val;
2132 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2133 }
2134
2135 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2136 {
2137 if (kvm_arch_vcpu_runnable(vcpu)) {
2138 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2139 return -EINTR;
2140 }
2141 if (kvm_cpu_has_pending_timer(vcpu))
2142 return -EINTR;
2143 if (signal_pending(current))
2144 return -EINTR;
2145
2146 return 0;
2147 }
2148
2149 /*
2150 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2151 */
2152 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2153 {
2154 ktime_t start, cur;
2155 DECLARE_SWAITQUEUE(wait);
2156 bool waited = false;
2157 u64 block_ns;
2158
2159 start = cur = ktime_get();
2160 if (vcpu->halt_poll_ns) {
2161 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2162
2163 ++vcpu->stat.halt_attempted_poll;
2164 do {
2165 /*
2166 * This sets KVM_REQ_UNHALT if an interrupt
2167 * arrives.
2168 */
2169 if (kvm_vcpu_check_block(vcpu) < 0) {
2170 ++vcpu->stat.halt_successful_poll;
2171 if (!vcpu_valid_wakeup(vcpu))
2172 ++vcpu->stat.halt_poll_invalid;
2173 goto out;
2174 }
2175 cur = ktime_get();
2176 } while (single_task_running() && ktime_before(cur, stop));
2177 }
2178
2179 kvm_arch_vcpu_blocking(vcpu);
2180
2181 for (;;) {
2182 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2183
2184 if (kvm_vcpu_check_block(vcpu) < 0)
2185 break;
2186
2187 waited = true;
2188 schedule();
2189 }
2190
2191 finish_swait(&vcpu->wq, &wait);
2192 cur = ktime_get();
2193
2194 kvm_arch_vcpu_unblocking(vcpu);
2195 out:
2196 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2197
2198 if (!vcpu_valid_wakeup(vcpu))
2199 shrink_halt_poll_ns(vcpu);
2200 else if (halt_poll_ns) {
2201 if (block_ns <= vcpu->halt_poll_ns)
2202 ;
2203 /* we had a long block, shrink polling */
2204 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2205 shrink_halt_poll_ns(vcpu);
2206 /* we had a short halt and our poll time is too small */
2207 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2208 block_ns < halt_poll_ns)
2209 grow_halt_poll_ns(vcpu);
2210 } else
2211 vcpu->halt_poll_ns = 0;
2212
2213 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2214 kvm_arch_vcpu_block_finish(vcpu);
2215 }
2216 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2217
2218 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2219 {
2220 struct swait_queue_head *wqp;
2221
2222 wqp = kvm_arch_vcpu_wq(vcpu);
2223 if (swq_has_sleeper(wqp)) {
2224 swake_up(wqp);
2225 ++vcpu->stat.halt_wakeup;
2226 return true;
2227 }
2228
2229 return false;
2230 }
2231 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2232
2233 #ifndef CONFIG_S390
2234 /*
2235 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2236 */
2237 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2238 {
2239 int me;
2240 int cpu = vcpu->cpu;
2241
2242 if (kvm_vcpu_wake_up(vcpu))
2243 return;
2244
2245 me = get_cpu();
2246 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2247 if (kvm_arch_vcpu_should_kick(vcpu))
2248 smp_send_reschedule(cpu);
2249 put_cpu();
2250 }
2251 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2252 #endif /* !CONFIG_S390 */
2253
2254 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2255 {
2256 struct pid *pid;
2257 struct task_struct *task = NULL;
2258 int ret = 0;
2259
2260 rcu_read_lock();
2261 pid = rcu_dereference(target->pid);
2262 if (pid)
2263 task = get_pid_task(pid, PIDTYPE_PID);
2264 rcu_read_unlock();
2265 if (!task)
2266 return ret;
2267 ret = yield_to(task, 1);
2268 put_task_struct(task);
2269
2270 return ret;
2271 }
2272 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2273
2274 /*
2275 * Helper that checks whether a VCPU is eligible for directed yield.
2276 * Most eligible candidate to yield is decided by following heuristics:
2277 *
2278 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2279 * (preempted lock holder), indicated by @in_spin_loop.
2280 * Set at the beiginning and cleared at the end of interception/PLE handler.
2281 *
2282 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2283 * chance last time (mostly it has become eligible now since we have probably
2284 * yielded to lockholder in last iteration. This is done by toggling
2285 * @dy_eligible each time a VCPU checked for eligibility.)
2286 *
2287 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2288 * to preempted lock-holder could result in wrong VCPU selection and CPU
2289 * burning. Giving priority for a potential lock-holder increases lock
2290 * progress.
2291 *
2292 * Since algorithm is based on heuristics, accessing another VCPU data without
2293 * locking does not harm. It may result in trying to yield to same VCPU, fail
2294 * and continue with next VCPU and so on.
2295 */
2296 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2297 {
2298 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2299 bool eligible;
2300
2301 eligible = !vcpu->spin_loop.in_spin_loop ||
2302 vcpu->spin_loop.dy_eligible;
2303
2304 if (vcpu->spin_loop.in_spin_loop)
2305 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2306
2307 return eligible;
2308 #else
2309 return true;
2310 #endif
2311 }
2312
2313 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2314 {
2315 struct kvm *kvm = me->kvm;
2316 struct kvm_vcpu *vcpu;
2317 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2318 int yielded = 0;
2319 int try = 3;
2320 int pass;
2321 int i;
2322
2323 kvm_vcpu_set_in_spin_loop(me, true);
2324 /*
2325 * We boost the priority of a VCPU that is runnable but not
2326 * currently running, because it got preempted by something
2327 * else and called schedule in __vcpu_run. Hopefully that
2328 * VCPU is holding the lock that we need and will release it.
2329 * We approximate round-robin by starting at the last boosted VCPU.
2330 */
2331 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2332 kvm_for_each_vcpu(i, vcpu, kvm) {
2333 if (!pass && i <= last_boosted_vcpu) {
2334 i = last_boosted_vcpu;
2335 continue;
2336 } else if (pass && i > last_boosted_vcpu)
2337 break;
2338 if (!READ_ONCE(vcpu->preempted))
2339 continue;
2340 if (vcpu == me)
2341 continue;
2342 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2343 continue;
2344 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2345 continue;
2346 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2347 continue;
2348
2349 yielded = kvm_vcpu_yield_to(vcpu);
2350 if (yielded > 0) {
2351 kvm->last_boosted_vcpu = i;
2352 break;
2353 } else if (yielded < 0) {
2354 try--;
2355 if (!try)
2356 break;
2357 }
2358 }
2359 }
2360 kvm_vcpu_set_in_spin_loop(me, false);
2361
2362 /* Ensure vcpu is not eligible during next spinloop */
2363 kvm_vcpu_set_dy_eligible(me, false);
2364 }
2365 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2366
2367 static int kvm_vcpu_fault(struct vm_fault *vmf)
2368 {
2369 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2370 struct page *page;
2371
2372 if (vmf->pgoff == 0)
2373 page = virt_to_page(vcpu->run);
2374 #ifdef CONFIG_X86
2375 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2376 page = virt_to_page(vcpu->arch.pio_data);
2377 #endif
2378 #ifdef CONFIG_KVM_MMIO
2379 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2380 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2381 #endif
2382 else
2383 return kvm_arch_vcpu_fault(vcpu, vmf);
2384 get_page(page);
2385 vmf->page = page;
2386 return 0;
2387 }
2388
2389 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2390 .fault = kvm_vcpu_fault,
2391 };
2392
2393 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2394 {
2395 vma->vm_ops = &kvm_vcpu_vm_ops;
2396 return 0;
2397 }
2398
2399 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2400 {
2401 struct kvm_vcpu *vcpu = filp->private_data;
2402
2403 debugfs_remove_recursive(vcpu->debugfs_dentry);
2404 kvm_put_kvm(vcpu->kvm);
2405 return 0;
2406 }
2407
2408 static struct file_operations kvm_vcpu_fops = {
2409 .release = kvm_vcpu_release,
2410 .unlocked_ioctl = kvm_vcpu_ioctl,
2411 #ifdef CONFIG_KVM_COMPAT
2412 .compat_ioctl = kvm_vcpu_compat_ioctl,
2413 #endif
2414 .mmap = kvm_vcpu_mmap,
2415 .llseek = noop_llseek,
2416 };
2417
2418 /*
2419 * Allocates an inode for the vcpu.
2420 */
2421 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2422 {
2423 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2424 }
2425
2426 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2427 {
2428 char dir_name[ITOA_MAX_LEN * 2];
2429 int ret;
2430
2431 if (!kvm_arch_has_vcpu_debugfs())
2432 return 0;
2433
2434 if (!debugfs_initialized())
2435 return 0;
2436
2437 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2438 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2439 vcpu->kvm->debugfs_dentry);
2440 if (!vcpu->debugfs_dentry)
2441 return -ENOMEM;
2442
2443 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2444 if (ret < 0) {
2445 debugfs_remove_recursive(vcpu->debugfs_dentry);
2446 return ret;
2447 }
2448
2449 return 0;
2450 }
2451
2452 /*
2453 * Creates some virtual cpus. Good luck creating more than one.
2454 */
2455 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2456 {
2457 int r;
2458 struct kvm_vcpu *vcpu;
2459
2460 if (id >= KVM_MAX_VCPU_ID)
2461 return -EINVAL;
2462
2463 mutex_lock(&kvm->lock);
2464 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2465 mutex_unlock(&kvm->lock);
2466 return -EINVAL;
2467 }
2468
2469 kvm->created_vcpus++;
2470 mutex_unlock(&kvm->lock);
2471
2472 vcpu = kvm_arch_vcpu_create(kvm, id);
2473 if (IS_ERR(vcpu)) {
2474 r = PTR_ERR(vcpu);
2475 goto vcpu_decrement;
2476 }
2477
2478 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2479
2480 r = kvm_arch_vcpu_setup(vcpu);
2481 if (r)
2482 goto vcpu_destroy;
2483
2484 r = kvm_create_vcpu_debugfs(vcpu);
2485 if (r)
2486 goto vcpu_destroy;
2487
2488 mutex_lock(&kvm->lock);
2489 if (kvm_get_vcpu_by_id(kvm, id)) {
2490 r = -EEXIST;
2491 goto unlock_vcpu_destroy;
2492 }
2493
2494 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2495
2496 /* Now it's all set up, let userspace reach it */
2497 kvm_get_kvm(kvm);
2498 r = create_vcpu_fd(vcpu);
2499 if (r < 0) {
2500 kvm_put_kvm(kvm);
2501 goto unlock_vcpu_destroy;
2502 }
2503
2504 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2505
2506 /*
2507 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2508 * before kvm->online_vcpu's incremented value.
2509 */
2510 smp_wmb();
2511 atomic_inc(&kvm->online_vcpus);
2512
2513 mutex_unlock(&kvm->lock);
2514 kvm_arch_vcpu_postcreate(vcpu);
2515 return r;
2516
2517 unlock_vcpu_destroy:
2518 mutex_unlock(&kvm->lock);
2519 debugfs_remove_recursive(vcpu->debugfs_dentry);
2520 vcpu_destroy:
2521 kvm_arch_vcpu_destroy(vcpu);
2522 vcpu_decrement:
2523 mutex_lock(&kvm->lock);
2524 kvm->created_vcpus--;
2525 mutex_unlock(&kvm->lock);
2526 return r;
2527 }
2528
2529 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2530 {
2531 if (sigset) {
2532 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2533 vcpu->sigset_active = 1;
2534 vcpu->sigset = *sigset;
2535 } else
2536 vcpu->sigset_active = 0;
2537 return 0;
2538 }
2539
2540 static long kvm_vcpu_ioctl(struct file *filp,
2541 unsigned int ioctl, unsigned long arg)
2542 {
2543 struct kvm_vcpu *vcpu = filp->private_data;
2544 void __user *argp = (void __user *)arg;
2545 int r;
2546 struct kvm_fpu *fpu = NULL;
2547 struct kvm_sregs *kvm_sregs = NULL;
2548
2549 if (vcpu->kvm->mm != current->mm)
2550 return -EIO;
2551
2552 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2553 return -EINVAL;
2554
2555 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2556 /*
2557 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2558 * so vcpu_load() would break it.
2559 */
2560 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2561 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2562 #endif
2563
2564
2565 r = vcpu_load(vcpu);
2566 if (r)
2567 return r;
2568 switch (ioctl) {
2569 case KVM_RUN: {
2570 struct pid *oldpid;
2571 r = -EINVAL;
2572 if (arg)
2573 goto out;
2574 oldpid = rcu_access_pointer(vcpu->pid);
2575 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2576 /* The thread running this VCPU changed. */
2577 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2578
2579 rcu_assign_pointer(vcpu->pid, newpid);
2580 if (oldpid)
2581 synchronize_rcu();
2582 put_pid(oldpid);
2583 }
2584 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2585 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2586 break;
2587 }
2588 case KVM_GET_REGS: {
2589 struct kvm_regs *kvm_regs;
2590
2591 r = -ENOMEM;
2592 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2593 if (!kvm_regs)
2594 goto out;
2595 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2596 if (r)
2597 goto out_free1;
2598 r = -EFAULT;
2599 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2600 goto out_free1;
2601 r = 0;
2602 out_free1:
2603 kfree(kvm_regs);
2604 break;
2605 }
2606 case KVM_SET_REGS: {
2607 struct kvm_regs *kvm_regs;
2608
2609 r = -ENOMEM;
2610 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2611 if (IS_ERR(kvm_regs)) {
2612 r = PTR_ERR(kvm_regs);
2613 goto out;
2614 }
2615 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2616 kfree(kvm_regs);
2617 break;
2618 }
2619 case KVM_GET_SREGS: {
2620 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2621 r = -ENOMEM;
2622 if (!kvm_sregs)
2623 goto out;
2624 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2625 if (r)
2626 goto out;
2627 r = -EFAULT;
2628 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2629 goto out;
2630 r = 0;
2631 break;
2632 }
2633 case KVM_SET_SREGS: {
2634 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2635 if (IS_ERR(kvm_sregs)) {
2636 r = PTR_ERR(kvm_sregs);
2637 kvm_sregs = NULL;
2638 goto out;
2639 }
2640 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2641 break;
2642 }
2643 case KVM_GET_MP_STATE: {
2644 struct kvm_mp_state mp_state;
2645
2646 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2647 if (r)
2648 goto out;
2649 r = -EFAULT;
2650 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2651 goto out;
2652 r = 0;
2653 break;
2654 }
2655 case KVM_SET_MP_STATE: {
2656 struct kvm_mp_state mp_state;
2657
2658 r = -EFAULT;
2659 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2660 goto out;
2661 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2662 break;
2663 }
2664 case KVM_TRANSLATE: {
2665 struct kvm_translation tr;
2666
2667 r = -EFAULT;
2668 if (copy_from_user(&tr, argp, sizeof(tr)))
2669 goto out;
2670 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2671 if (r)
2672 goto out;
2673 r = -EFAULT;
2674 if (copy_to_user(argp, &tr, sizeof(tr)))
2675 goto out;
2676 r = 0;
2677 break;
2678 }
2679 case KVM_SET_GUEST_DEBUG: {
2680 struct kvm_guest_debug dbg;
2681
2682 r = -EFAULT;
2683 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2684 goto out;
2685 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2686 break;
2687 }
2688 case KVM_SET_SIGNAL_MASK: {
2689 struct kvm_signal_mask __user *sigmask_arg = argp;
2690 struct kvm_signal_mask kvm_sigmask;
2691 sigset_t sigset, *p;
2692
2693 p = NULL;
2694 if (argp) {
2695 r = -EFAULT;
2696 if (copy_from_user(&kvm_sigmask, argp,
2697 sizeof(kvm_sigmask)))
2698 goto out;
2699 r = -EINVAL;
2700 if (kvm_sigmask.len != sizeof(sigset))
2701 goto out;
2702 r = -EFAULT;
2703 if (copy_from_user(&sigset, sigmask_arg->sigset,
2704 sizeof(sigset)))
2705 goto out;
2706 p = &sigset;
2707 }
2708 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2709 break;
2710 }
2711 case KVM_GET_FPU: {
2712 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2713 r = -ENOMEM;
2714 if (!fpu)
2715 goto out;
2716 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2717 if (r)
2718 goto out;
2719 r = -EFAULT;
2720 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2721 goto out;
2722 r = 0;
2723 break;
2724 }
2725 case KVM_SET_FPU: {
2726 fpu = memdup_user(argp, sizeof(*fpu));
2727 if (IS_ERR(fpu)) {
2728 r = PTR_ERR(fpu);
2729 fpu = NULL;
2730 goto out;
2731 }
2732 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2733 break;
2734 }
2735 default:
2736 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2737 }
2738 out:
2739 vcpu_put(vcpu);
2740 kfree(fpu);
2741 kfree(kvm_sregs);
2742 return r;
2743 }
2744
2745 #ifdef CONFIG_KVM_COMPAT
2746 static long kvm_vcpu_compat_ioctl(struct file *filp,
2747 unsigned int ioctl, unsigned long arg)
2748 {
2749 struct kvm_vcpu *vcpu = filp->private_data;
2750 void __user *argp = compat_ptr(arg);
2751 int r;
2752
2753 if (vcpu->kvm->mm != current->mm)
2754 return -EIO;
2755
2756 switch (ioctl) {
2757 case KVM_SET_SIGNAL_MASK: {
2758 struct kvm_signal_mask __user *sigmask_arg = argp;
2759 struct kvm_signal_mask kvm_sigmask;
2760 sigset_t sigset;
2761
2762 if (argp) {
2763 r = -EFAULT;
2764 if (copy_from_user(&kvm_sigmask, argp,
2765 sizeof(kvm_sigmask)))
2766 goto out;
2767 r = -EINVAL;
2768 if (kvm_sigmask.len != sizeof(compat_sigset_t))
2769 goto out;
2770 r = -EFAULT;
2771 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2772 goto out;
2773 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2774 } else
2775 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2776 break;
2777 }
2778 default:
2779 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2780 }
2781
2782 out:
2783 return r;
2784 }
2785 #endif
2786
2787 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2788 int (*accessor)(struct kvm_device *dev,
2789 struct kvm_device_attr *attr),
2790 unsigned long arg)
2791 {
2792 struct kvm_device_attr attr;
2793
2794 if (!accessor)
2795 return -EPERM;
2796
2797 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2798 return -EFAULT;
2799
2800 return accessor(dev, &attr);
2801 }
2802
2803 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2804 unsigned long arg)
2805 {
2806 struct kvm_device *dev = filp->private_data;
2807
2808 switch (ioctl) {
2809 case KVM_SET_DEVICE_ATTR:
2810 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2811 case KVM_GET_DEVICE_ATTR:
2812 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2813 case KVM_HAS_DEVICE_ATTR:
2814 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2815 default:
2816 if (dev->ops->ioctl)
2817 return dev->ops->ioctl(dev, ioctl, arg);
2818
2819 return -ENOTTY;
2820 }
2821 }
2822
2823 static int kvm_device_release(struct inode *inode, struct file *filp)
2824 {
2825 struct kvm_device *dev = filp->private_data;
2826 struct kvm *kvm = dev->kvm;
2827
2828 kvm_put_kvm(kvm);
2829 return 0;
2830 }
2831
2832 static const struct file_operations kvm_device_fops = {
2833 .unlocked_ioctl = kvm_device_ioctl,
2834 #ifdef CONFIG_KVM_COMPAT
2835 .compat_ioctl = kvm_device_ioctl,
2836 #endif
2837 .release = kvm_device_release,
2838 };
2839
2840 struct kvm_device *kvm_device_from_filp(struct file *filp)
2841 {
2842 if (filp->f_op != &kvm_device_fops)
2843 return NULL;
2844
2845 return filp->private_data;
2846 }
2847
2848 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2849 #ifdef CONFIG_KVM_MPIC
2850 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2851 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2852 #endif
2853 };
2854
2855 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2856 {
2857 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2858 return -ENOSPC;
2859
2860 if (kvm_device_ops_table[type] != NULL)
2861 return -EEXIST;
2862
2863 kvm_device_ops_table[type] = ops;
2864 return 0;
2865 }
2866
2867 void kvm_unregister_device_ops(u32 type)
2868 {
2869 if (kvm_device_ops_table[type] != NULL)
2870 kvm_device_ops_table[type] = NULL;
2871 }
2872
2873 static int kvm_ioctl_create_device(struct kvm *kvm,
2874 struct kvm_create_device *cd)
2875 {
2876 struct kvm_device_ops *ops = NULL;
2877 struct kvm_device *dev;
2878 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2879 int ret;
2880
2881 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2882 return -ENODEV;
2883
2884 ops = kvm_device_ops_table[cd->type];
2885 if (ops == NULL)
2886 return -ENODEV;
2887
2888 if (test)
2889 return 0;
2890
2891 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2892 if (!dev)
2893 return -ENOMEM;
2894
2895 dev->ops = ops;
2896 dev->kvm = kvm;
2897
2898 mutex_lock(&kvm->lock);
2899 ret = ops->create(dev, cd->type);
2900 if (ret < 0) {
2901 mutex_unlock(&kvm->lock);
2902 kfree(dev);
2903 return ret;
2904 }
2905 list_add(&dev->vm_node, &kvm->devices);
2906 mutex_unlock(&kvm->lock);
2907
2908 if (ops->init)
2909 ops->init(dev);
2910
2911 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2912 if (ret < 0) {
2913 mutex_lock(&kvm->lock);
2914 list_del(&dev->vm_node);
2915 mutex_unlock(&kvm->lock);
2916 ops->destroy(dev);
2917 return ret;
2918 }
2919
2920 kvm_get_kvm(kvm);
2921 cd->fd = ret;
2922 return 0;
2923 }
2924
2925 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2926 {
2927 switch (arg) {
2928 case KVM_CAP_USER_MEMORY:
2929 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2930 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2931 case KVM_CAP_INTERNAL_ERROR_DATA:
2932 #ifdef CONFIG_HAVE_KVM_MSI
2933 case KVM_CAP_SIGNAL_MSI:
2934 #endif
2935 #ifdef CONFIG_HAVE_KVM_IRQFD
2936 case KVM_CAP_IRQFD:
2937 case KVM_CAP_IRQFD_RESAMPLE:
2938 #endif
2939 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2940 case KVM_CAP_CHECK_EXTENSION_VM:
2941 return 1;
2942 #ifdef CONFIG_KVM_MMIO
2943 case KVM_CAP_COALESCED_MMIO:
2944 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2945 #endif
2946 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2947 case KVM_CAP_IRQ_ROUTING:
2948 return KVM_MAX_IRQ_ROUTES;
2949 #endif
2950 #if KVM_ADDRESS_SPACE_NUM > 1
2951 case KVM_CAP_MULTI_ADDRESS_SPACE:
2952 return KVM_ADDRESS_SPACE_NUM;
2953 #endif
2954 case KVM_CAP_MAX_VCPU_ID:
2955 return KVM_MAX_VCPU_ID;
2956 default:
2957 break;
2958 }
2959 return kvm_vm_ioctl_check_extension(kvm, arg);
2960 }
2961
2962 static long kvm_vm_ioctl(struct file *filp,
2963 unsigned int ioctl, unsigned long arg)
2964 {
2965 struct kvm *kvm = filp->private_data;
2966 void __user *argp = (void __user *)arg;
2967 int r;
2968
2969 if (kvm->mm != current->mm)
2970 return -EIO;
2971 switch (ioctl) {
2972 case KVM_CREATE_VCPU:
2973 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2974 break;
2975 case KVM_SET_USER_MEMORY_REGION: {
2976 struct kvm_userspace_memory_region kvm_userspace_mem;
2977
2978 r = -EFAULT;
2979 if (copy_from_user(&kvm_userspace_mem, argp,
2980 sizeof(kvm_userspace_mem)))
2981 goto out;
2982
2983 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2984 break;
2985 }
2986 case KVM_GET_DIRTY_LOG: {
2987 struct kvm_dirty_log log;
2988
2989 r = -EFAULT;
2990 if (copy_from_user(&log, argp, sizeof(log)))
2991 goto out;
2992 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2993 break;
2994 }
2995 #ifdef CONFIG_KVM_MMIO
2996 case KVM_REGISTER_COALESCED_MMIO: {
2997 struct kvm_coalesced_mmio_zone zone;
2998
2999 r = -EFAULT;
3000 if (copy_from_user(&zone, argp, sizeof(zone)))
3001 goto out;
3002 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3003 break;
3004 }
3005 case KVM_UNREGISTER_COALESCED_MMIO: {
3006 struct kvm_coalesced_mmio_zone zone;
3007
3008 r = -EFAULT;
3009 if (copy_from_user(&zone, argp, sizeof(zone)))
3010 goto out;
3011 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3012 break;
3013 }
3014 #endif
3015 case KVM_IRQFD: {
3016 struct kvm_irqfd data;
3017
3018 r = -EFAULT;
3019 if (copy_from_user(&data, argp, sizeof(data)))
3020 goto out;
3021 r = kvm_irqfd(kvm, &data);
3022 break;
3023 }
3024 case KVM_IOEVENTFD: {
3025 struct kvm_ioeventfd data;
3026
3027 r = -EFAULT;
3028 if (copy_from_user(&data, argp, sizeof(data)))
3029 goto out;
3030 r = kvm_ioeventfd(kvm, &data);
3031 break;
3032 }
3033 #ifdef CONFIG_HAVE_KVM_MSI
3034 case KVM_SIGNAL_MSI: {
3035 struct kvm_msi msi;
3036
3037 r = -EFAULT;
3038 if (copy_from_user(&msi, argp, sizeof(msi)))
3039 goto out;
3040 r = kvm_send_userspace_msi(kvm, &msi);
3041 break;
3042 }
3043 #endif
3044 #ifdef __KVM_HAVE_IRQ_LINE
3045 case KVM_IRQ_LINE_STATUS:
3046 case KVM_IRQ_LINE: {
3047 struct kvm_irq_level irq_event;
3048
3049 r = -EFAULT;
3050 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3051 goto out;
3052
3053 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3054 ioctl == KVM_IRQ_LINE_STATUS);
3055 if (r)
3056 goto out;
3057
3058 r = -EFAULT;
3059 if (ioctl == KVM_IRQ_LINE_STATUS) {
3060 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3061 goto out;
3062 }
3063
3064 r = 0;
3065 break;
3066 }
3067 #endif
3068 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3069 case KVM_SET_GSI_ROUTING: {
3070 struct kvm_irq_routing routing;
3071 struct kvm_irq_routing __user *urouting;
3072 struct kvm_irq_routing_entry *entries = NULL;
3073
3074 r = -EFAULT;
3075 if (copy_from_user(&routing, argp, sizeof(routing)))
3076 goto out;
3077 r = -EINVAL;
3078 if (!kvm_arch_can_set_irq_routing(kvm))
3079 goto out;
3080 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3081 goto out;
3082 if (routing.flags)
3083 goto out;
3084 if (routing.nr) {
3085 r = -ENOMEM;
3086 entries = vmalloc(routing.nr * sizeof(*entries));
3087 if (!entries)
3088 goto out;
3089 r = -EFAULT;
3090 urouting = argp;
3091 if (copy_from_user(entries, urouting->entries,
3092 routing.nr * sizeof(*entries)))
3093 goto out_free_irq_routing;
3094 }
3095 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3096 routing.flags);
3097 out_free_irq_routing:
3098 vfree(entries);
3099 break;
3100 }
3101 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3102 case KVM_CREATE_DEVICE: {
3103 struct kvm_create_device cd;
3104
3105 r = -EFAULT;
3106 if (copy_from_user(&cd, argp, sizeof(cd)))
3107 goto out;
3108
3109 r = kvm_ioctl_create_device(kvm, &cd);
3110 if (r)
3111 goto out;
3112
3113 r = -EFAULT;
3114 if (copy_to_user(argp, &cd, sizeof(cd)))
3115 goto out;
3116
3117 r = 0;
3118 break;
3119 }
3120 case KVM_CHECK_EXTENSION:
3121 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3122 break;
3123 default:
3124 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3125 }
3126 out:
3127 return r;
3128 }
3129
3130 #ifdef CONFIG_KVM_COMPAT
3131 struct compat_kvm_dirty_log {
3132 __u32 slot;
3133 __u32 padding1;
3134 union {
3135 compat_uptr_t dirty_bitmap; /* one bit per page */
3136 __u64 padding2;
3137 };
3138 };
3139
3140 static long kvm_vm_compat_ioctl(struct file *filp,
3141 unsigned int ioctl, unsigned long arg)
3142 {
3143 struct kvm *kvm = filp->private_data;
3144 int r;
3145
3146 if (kvm->mm != current->mm)
3147 return -EIO;
3148 switch (ioctl) {
3149 case KVM_GET_DIRTY_LOG: {
3150 struct compat_kvm_dirty_log compat_log;
3151 struct kvm_dirty_log log;
3152
3153 if (copy_from_user(&compat_log, (void __user *)arg,
3154 sizeof(compat_log)))
3155 return -EFAULT;
3156 log.slot = compat_log.slot;
3157 log.padding1 = compat_log.padding1;
3158 log.padding2 = compat_log.padding2;
3159 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3160
3161 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3162 break;
3163 }
3164 default:
3165 r = kvm_vm_ioctl(filp, ioctl, arg);
3166 }
3167 return r;
3168 }
3169 #endif
3170
3171 static struct file_operations kvm_vm_fops = {
3172 .release = kvm_vm_release,
3173 .unlocked_ioctl = kvm_vm_ioctl,
3174 #ifdef CONFIG_KVM_COMPAT
3175 .compat_ioctl = kvm_vm_compat_ioctl,
3176 #endif
3177 .llseek = noop_llseek,
3178 };
3179
3180 static int kvm_dev_ioctl_create_vm(unsigned long type)
3181 {
3182 int r;
3183 struct kvm *kvm;
3184 struct file *file;
3185
3186 kvm = kvm_create_vm(type);
3187 if (IS_ERR(kvm))
3188 return PTR_ERR(kvm);
3189 #ifdef CONFIG_KVM_MMIO
3190 r = kvm_coalesced_mmio_init(kvm);
3191 if (r < 0) {
3192 kvm_put_kvm(kvm);
3193 return r;
3194 }
3195 #endif
3196 r = get_unused_fd_flags(O_CLOEXEC);
3197 if (r < 0) {
3198 kvm_put_kvm(kvm);
3199 return r;
3200 }
3201 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3202 if (IS_ERR(file)) {
3203 put_unused_fd(r);
3204 kvm_put_kvm(kvm);
3205 return PTR_ERR(file);
3206 }
3207
3208 /*
3209 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3210 * already set, with ->release() being kvm_vm_release(). In error
3211 * cases it will be called by the final fput(file) and will take
3212 * care of doing kvm_put_kvm(kvm).
3213 */
3214 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3215 put_unused_fd(r);
3216 fput(file);
3217 return -ENOMEM;
3218 }
3219 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3220
3221 fd_install(r, file);
3222 return r;
3223 }
3224
3225 static long kvm_dev_ioctl(struct file *filp,
3226 unsigned int ioctl, unsigned long arg)
3227 {
3228 long r = -EINVAL;
3229
3230 switch (ioctl) {
3231 case KVM_GET_API_VERSION:
3232 if (arg)
3233 goto out;
3234 r = KVM_API_VERSION;
3235 break;
3236 case KVM_CREATE_VM:
3237 r = kvm_dev_ioctl_create_vm(arg);
3238 break;
3239 case KVM_CHECK_EXTENSION:
3240 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3241 break;
3242 case KVM_GET_VCPU_MMAP_SIZE:
3243 if (arg)
3244 goto out;
3245 r = PAGE_SIZE; /* struct kvm_run */
3246 #ifdef CONFIG_X86
3247 r += PAGE_SIZE; /* pio data page */
3248 #endif
3249 #ifdef CONFIG_KVM_MMIO
3250 r += PAGE_SIZE; /* coalesced mmio ring page */
3251 #endif
3252 break;
3253 case KVM_TRACE_ENABLE:
3254 case KVM_TRACE_PAUSE:
3255 case KVM_TRACE_DISABLE:
3256 r = -EOPNOTSUPP;
3257 break;
3258 default:
3259 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3260 }
3261 out:
3262 return r;
3263 }
3264
3265 static struct file_operations kvm_chardev_ops = {
3266 .unlocked_ioctl = kvm_dev_ioctl,
3267 .compat_ioctl = kvm_dev_ioctl,
3268 .llseek = noop_llseek,
3269 };
3270
3271 static struct miscdevice kvm_dev = {
3272 KVM_MINOR,
3273 "kvm",
3274 &kvm_chardev_ops,
3275 };
3276
3277 static void hardware_enable_nolock(void *junk)
3278 {
3279 int cpu = raw_smp_processor_id();
3280 int r;
3281
3282 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3283 return;
3284
3285 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3286
3287 r = kvm_arch_hardware_enable();
3288
3289 if (r) {
3290 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3291 atomic_inc(&hardware_enable_failed);
3292 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3293 }
3294 }
3295
3296 static int kvm_starting_cpu(unsigned int cpu)
3297 {
3298 raw_spin_lock(&kvm_count_lock);
3299 if (kvm_usage_count)
3300 hardware_enable_nolock(NULL);
3301 raw_spin_unlock(&kvm_count_lock);
3302 return 0;
3303 }
3304
3305 static void hardware_disable_nolock(void *junk)
3306 {
3307 int cpu = raw_smp_processor_id();
3308
3309 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3310 return;
3311 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3312 kvm_arch_hardware_disable();
3313 }
3314
3315 static int kvm_dying_cpu(unsigned int cpu)
3316 {
3317 raw_spin_lock(&kvm_count_lock);
3318 if (kvm_usage_count)
3319 hardware_disable_nolock(NULL);
3320 raw_spin_unlock(&kvm_count_lock);
3321 return 0;
3322 }
3323
3324 static void hardware_disable_all_nolock(void)
3325 {
3326 BUG_ON(!kvm_usage_count);
3327
3328 kvm_usage_count--;
3329 if (!kvm_usage_count)
3330 on_each_cpu(hardware_disable_nolock, NULL, 1);
3331 }
3332
3333 static void hardware_disable_all(void)
3334 {
3335 raw_spin_lock(&kvm_count_lock);
3336 hardware_disable_all_nolock();
3337 raw_spin_unlock(&kvm_count_lock);
3338 }
3339
3340 static int hardware_enable_all(void)
3341 {
3342 int r = 0;
3343
3344 raw_spin_lock(&kvm_count_lock);
3345
3346 kvm_usage_count++;
3347 if (kvm_usage_count == 1) {
3348 atomic_set(&hardware_enable_failed, 0);
3349 on_each_cpu(hardware_enable_nolock, NULL, 1);
3350
3351 if (atomic_read(&hardware_enable_failed)) {
3352 hardware_disable_all_nolock();
3353 r = -EBUSY;
3354 }
3355 }
3356
3357 raw_spin_unlock(&kvm_count_lock);
3358
3359 return r;
3360 }
3361
3362 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3363 void *v)
3364 {
3365 /*
3366 * Some (well, at least mine) BIOSes hang on reboot if
3367 * in vmx root mode.
3368 *
3369 * And Intel TXT required VMX off for all cpu when system shutdown.
3370 */
3371 pr_info("kvm: exiting hardware virtualization\n");
3372 kvm_rebooting = true;
3373 on_each_cpu(hardware_disable_nolock, NULL, 1);
3374 return NOTIFY_OK;
3375 }
3376
3377 static struct notifier_block kvm_reboot_notifier = {
3378 .notifier_call = kvm_reboot,
3379 .priority = 0,
3380 };
3381
3382 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3383 {
3384 int i;
3385
3386 for (i = 0; i < bus->dev_count; i++) {
3387 struct kvm_io_device *pos = bus->range[i].dev;
3388
3389 kvm_iodevice_destructor(pos);
3390 }
3391 kfree(bus);
3392 }
3393
3394 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3395 const struct kvm_io_range *r2)
3396 {
3397 gpa_t addr1 = r1->addr;
3398 gpa_t addr2 = r2->addr;
3399
3400 if (addr1 < addr2)
3401 return -1;
3402
3403 /* If r2->len == 0, match the exact address. If r2->len != 0,
3404 * accept any overlapping write. Any order is acceptable for
3405 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3406 * we process all of them.
3407 */
3408 if (r2->len) {
3409 addr1 += r1->len;
3410 addr2 += r2->len;
3411 }
3412
3413 if (addr1 > addr2)
3414 return 1;
3415
3416 return 0;
3417 }
3418
3419 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3420 {
3421 return kvm_io_bus_cmp(p1, p2);
3422 }
3423
3424 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3425 gpa_t addr, int len)
3426 {
3427 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3428 .addr = addr,
3429 .len = len,
3430 .dev = dev,
3431 };
3432
3433 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3434 kvm_io_bus_sort_cmp, NULL);
3435
3436 return 0;
3437 }
3438
3439 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3440 gpa_t addr, int len)
3441 {
3442 struct kvm_io_range *range, key;
3443 int off;
3444
3445 key = (struct kvm_io_range) {
3446 .addr = addr,
3447 .len = len,
3448 };
3449
3450 range = bsearch(&key, bus->range, bus->dev_count,
3451 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3452 if (range == NULL)
3453 return -ENOENT;
3454
3455 off = range - bus->range;
3456
3457 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3458 off--;
3459
3460 return off;
3461 }
3462
3463 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3464 struct kvm_io_range *range, const void *val)
3465 {
3466 int idx;
3467
3468 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3469 if (idx < 0)
3470 return -EOPNOTSUPP;
3471
3472 while (idx < bus->dev_count &&
3473 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3474 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3475 range->len, val))
3476 return idx;
3477 idx++;
3478 }
3479
3480 return -EOPNOTSUPP;
3481 }
3482
3483 /* kvm_io_bus_write - called under kvm->slots_lock */
3484 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3485 int len, const void *val)
3486 {
3487 struct kvm_io_bus *bus;
3488 struct kvm_io_range range;
3489 int r;
3490
3491 range = (struct kvm_io_range) {
3492 .addr = addr,
3493 .len = len,
3494 };
3495
3496 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3497 if (!bus)
3498 return -ENOMEM;
3499 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3500 return r < 0 ? r : 0;
3501 }
3502
3503 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3504 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3505 gpa_t addr, int len, const void *val, long cookie)
3506 {
3507 struct kvm_io_bus *bus;
3508 struct kvm_io_range range;
3509
3510 range = (struct kvm_io_range) {
3511 .addr = addr,
3512 .len = len,
3513 };
3514
3515 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3516 if (!bus)
3517 return -ENOMEM;
3518
3519 /* First try the device referenced by cookie. */
3520 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3521 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3522 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3523 val))
3524 return cookie;
3525
3526 /*
3527 * cookie contained garbage; fall back to search and return the
3528 * correct cookie value.
3529 */
3530 return __kvm_io_bus_write(vcpu, bus, &range, val);
3531 }
3532
3533 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3534 struct kvm_io_range *range, void *val)
3535 {
3536 int idx;
3537
3538 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3539 if (idx < 0)
3540 return -EOPNOTSUPP;
3541
3542 while (idx < bus->dev_count &&
3543 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3544 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3545 range->len, val))
3546 return idx;
3547 idx++;
3548 }
3549
3550 return -EOPNOTSUPP;
3551 }
3552 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3553
3554 /* kvm_io_bus_read - called under kvm->slots_lock */
3555 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3556 int len, void *val)
3557 {
3558 struct kvm_io_bus *bus;
3559 struct kvm_io_range range;
3560 int r;
3561
3562 range = (struct kvm_io_range) {
3563 .addr = addr,
3564 .len = len,
3565 };
3566
3567 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3568 if (!bus)
3569 return -ENOMEM;
3570 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3571 return r < 0 ? r : 0;
3572 }
3573
3574
3575 /* Caller must hold slots_lock. */
3576 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3577 int len, struct kvm_io_device *dev)
3578 {
3579 struct kvm_io_bus *new_bus, *bus;
3580
3581 bus = kvm_get_bus(kvm, bus_idx);
3582 if (!bus)
3583 return -ENOMEM;
3584
3585 /* exclude ioeventfd which is limited by maximum fd */
3586 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3587 return -ENOSPC;
3588
3589 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3590 sizeof(struct kvm_io_range)), GFP_KERNEL);
3591 if (!new_bus)
3592 return -ENOMEM;
3593 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3594 sizeof(struct kvm_io_range)));
3595 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3596 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3597 synchronize_srcu_expedited(&kvm->srcu);
3598 kfree(bus);
3599
3600 return 0;
3601 }
3602
3603 /* Caller must hold slots_lock. */
3604 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3605 struct kvm_io_device *dev)
3606 {
3607 int i;
3608 struct kvm_io_bus *new_bus, *bus;
3609
3610 bus = kvm_get_bus(kvm, bus_idx);
3611 if (!bus)
3612 return;
3613
3614 for (i = 0; i < bus->dev_count; i++)
3615 if (bus->range[i].dev == dev) {
3616 break;
3617 }
3618
3619 if (i == bus->dev_count)
3620 return;
3621
3622 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3623 sizeof(struct kvm_io_range)), GFP_KERNEL);
3624 if (!new_bus) {
3625 pr_err("kvm: failed to shrink bus, removing it completely\n");
3626 goto broken;
3627 }
3628
3629 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3630 new_bus->dev_count--;
3631 memcpy(new_bus->range + i, bus->range + i + 1,
3632 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3633
3634 broken:
3635 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3636 synchronize_srcu_expedited(&kvm->srcu);
3637 kfree(bus);
3638 return;
3639 }
3640
3641 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3642 gpa_t addr)
3643 {
3644 struct kvm_io_bus *bus;
3645 int dev_idx, srcu_idx;
3646 struct kvm_io_device *iodev = NULL;
3647
3648 srcu_idx = srcu_read_lock(&kvm->srcu);
3649
3650 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3651 if (!bus)
3652 goto out_unlock;
3653
3654 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3655 if (dev_idx < 0)
3656 goto out_unlock;
3657
3658 iodev = bus->range[dev_idx].dev;
3659
3660 out_unlock:
3661 srcu_read_unlock(&kvm->srcu, srcu_idx);
3662
3663 return iodev;
3664 }
3665 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3666
3667 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3668 int (*get)(void *, u64 *), int (*set)(void *, u64),
3669 const char *fmt)
3670 {
3671 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3672 inode->i_private;
3673
3674 /* The debugfs files are a reference to the kvm struct which
3675 * is still valid when kvm_destroy_vm is called.
3676 * To avoid the race between open and the removal of the debugfs
3677 * directory we test against the users count.
3678 */
3679 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3680 return -ENOENT;
3681
3682 if (simple_attr_open(inode, file, get, set, fmt)) {
3683 kvm_put_kvm(stat_data->kvm);
3684 return -ENOMEM;
3685 }
3686
3687 return 0;
3688 }
3689
3690 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3691 {
3692 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3693 inode->i_private;
3694
3695 simple_attr_release(inode, file);
3696 kvm_put_kvm(stat_data->kvm);
3697
3698 return 0;
3699 }
3700
3701 static int vm_stat_get_per_vm(void *data, u64 *val)
3702 {
3703 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3704
3705 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3706
3707 return 0;
3708 }
3709
3710 static int vm_stat_clear_per_vm(void *data, u64 val)
3711 {
3712 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3713
3714 if (val)
3715 return -EINVAL;
3716
3717 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3718
3719 return 0;
3720 }
3721
3722 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3723 {
3724 __simple_attr_check_format("%llu\n", 0ull);
3725 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3726 vm_stat_clear_per_vm, "%llu\n");
3727 }
3728
3729 static const struct file_operations vm_stat_get_per_vm_fops = {
3730 .owner = THIS_MODULE,
3731 .open = vm_stat_get_per_vm_open,
3732 .release = kvm_debugfs_release,
3733 .read = simple_attr_read,
3734 .write = simple_attr_write,
3735 .llseek = no_llseek,
3736 };
3737
3738 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3739 {
3740 int i;
3741 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3742 struct kvm_vcpu *vcpu;
3743
3744 *val = 0;
3745
3746 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3747 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3748
3749 return 0;
3750 }
3751
3752 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3753 {
3754 int i;
3755 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3756 struct kvm_vcpu *vcpu;
3757
3758 if (val)
3759 return -EINVAL;
3760
3761 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3762 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3763
3764 return 0;
3765 }
3766
3767 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3768 {
3769 __simple_attr_check_format("%llu\n", 0ull);
3770 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3771 vcpu_stat_clear_per_vm, "%llu\n");
3772 }
3773
3774 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3775 .owner = THIS_MODULE,
3776 .open = vcpu_stat_get_per_vm_open,
3777 .release = kvm_debugfs_release,
3778 .read = simple_attr_read,
3779 .write = simple_attr_write,
3780 .llseek = no_llseek,
3781 };
3782
3783 static const struct file_operations *stat_fops_per_vm[] = {
3784 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3785 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3786 };
3787
3788 static int vm_stat_get(void *_offset, u64 *val)
3789 {
3790 unsigned offset = (long)_offset;
3791 struct kvm *kvm;
3792 struct kvm_stat_data stat_tmp = {.offset = offset};
3793 u64 tmp_val;
3794
3795 *val = 0;
3796 spin_lock(&kvm_lock);
3797 list_for_each_entry(kvm, &vm_list, vm_list) {
3798 stat_tmp.kvm = kvm;
3799 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3800 *val += tmp_val;
3801 }
3802 spin_unlock(&kvm_lock);
3803 return 0;
3804 }
3805
3806 static int vm_stat_clear(void *_offset, u64 val)
3807 {
3808 unsigned offset = (long)_offset;
3809 struct kvm *kvm;
3810 struct kvm_stat_data stat_tmp = {.offset = offset};
3811
3812 if (val)
3813 return -EINVAL;
3814
3815 spin_lock(&kvm_lock);
3816 list_for_each_entry(kvm, &vm_list, vm_list) {
3817 stat_tmp.kvm = kvm;
3818 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3819 }
3820 spin_unlock(&kvm_lock);
3821
3822 return 0;
3823 }
3824
3825 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3826
3827 static int vcpu_stat_get(void *_offset, u64 *val)
3828 {
3829 unsigned offset = (long)_offset;
3830 struct kvm *kvm;
3831 struct kvm_stat_data stat_tmp = {.offset = offset};
3832 u64 tmp_val;
3833
3834 *val = 0;
3835 spin_lock(&kvm_lock);
3836 list_for_each_entry(kvm, &vm_list, vm_list) {
3837 stat_tmp.kvm = kvm;
3838 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3839 *val += tmp_val;
3840 }
3841 spin_unlock(&kvm_lock);
3842 return 0;
3843 }
3844
3845 static int vcpu_stat_clear(void *_offset, u64 val)
3846 {
3847 unsigned offset = (long)_offset;
3848 struct kvm *kvm;
3849 struct kvm_stat_data stat_tmp = {.offset = offset};
3850
3851 if (val)
3852 return -EINVAL;
3853
3854 spin_lock(&kvm_lock);
3855 list_for_each_entry(kvm, &vm_list, vm_list) {
3856 stat_tmp.kvm = kvm;
3857 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3858 }
3859 spin_unlock(&kvm_lock);
3860
3861 return 0;
3862 }
3863
3864 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3865 "%llu\n");
3866
3867 static const struct file_operations *stat_fops[] = {
3868 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3869 [KVM_STAT_VM] = &vm_stat_fops,
3870 };
3871
3872 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3873 {
3874 struct kobj_uevent_env *env;
3875 unsigned long long created, active;
3876
3877 if (!kvm_dev.this_device || !kvm)
3878 return;
3879
3880 spin_lock(&kvm_lock);
3881 if (type == KVM_EVENT_CREATE_VM) {
3882 kvm_createvm_count++;
3883 kvm_active_vms++;
3884 } else if (type == KVM_EVENT_DESTROY_VM) {
3885 kvm_active_vms--;
3886 }
3887 created = kvm_createvm_count;
3888 active = kvm_active_vms;
3889 spin_unlock(&kvm_lock);
3890
3891 env = kzalloc(sizeof(*env), GFP_KERNEL);
3892 if (!env)
3893 return;
3894
3895 add_uevent_var(env, "CREATED=%llu", created);
3896 add_uevent_var(env, "COUNT=%llu", active);
3897
3898 if (type == KVM_EVENT_CREATE_VM) {
3899 add_uevent_var(env, "EVENT=create");
3900 kvm->userspace_pid = task_pid_nr(current);
3901 } else if (type == KVM_EVENT_DESTROY_VM) {
3902 add_uevent_var(env, "EVENT=destroy");
3903 }
3904 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3905
3906 if (kvm->debugfs_dentry) {
3907 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3908
3909 if (p) {
3910 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3911 if (!IS_ERR(tmp))
3912 add_uevent_var(env, "STATS_PATH=%s", tmp);
3913 kfree(p);
3914 }
3915 }
3916 /* no need for checks, since we are adding at most only 5 keys */
3917 env->envp[env->envp_idx++] = NULL;
3918 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3919 kfree(env);
3920 }
3921
3922 static int kvm_init_debug(void)
3923 {
3924 int r = -EEXIST;
3925 struct kvm_stats_debugfs_item *p;
3926
3927 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3928 if (kvm_debugfs_dir == NULL)
3929 goto out;
3930
3931 kvm_debugfs_num_entries = 0;
3932 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3933 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3934 (void *)(long)p->offset,
3935 stat_fops[p->kind]))
3936 goto out_dir;
3937 }
3938
3939 return 0;
3940
3941 out_dir:
3942 debugfs_remove_recursive(kvm_debugfs_dir);
3943 out:
3944 return r;
3945 }
3946
3947 static int kvm_suspend(void)
3948 {
3949 if (kvm_usage_count)
3950 hardware_disable_nolock(NULL);
3951 return 0;
3952 }
3953
3954 static void kvm_resume(void)
3955 {
3956 if (kvm_usage_count) {
3957 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3958 hardware_enable_nolock(NULL);
3959 }
3960 }
3961
3962 static struct syscore_ops kvm_syscore_ops = {
3963 .suspend = kvm_suspend,
3964 .resume = kvm_resume,
3965 };
3966
3967 static inline
3968 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3969 {
3970 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3971 }
3972
3973 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3974 {
3975 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3976
3977 if (vcpu->preempted)
3978 vcpu->preempted = false;
3979
3980 kvm_arch_sched_in(vcpu, cpu);
3981
3982 kvm_arch_vcpu_load(vcpu, cpu);
3983 }
3984
3985 static void kvm_sched_out(struct preempt_notifier *pn,
3986 struct task_struct *next)
3987 {
3988 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3989
3990 if (current->state == TASK_RUNNING)
3991 vcpu->preempted = true;
3992 kvm_arch_vcpu_put(vcpu);
3993 }
3994
3995 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3996 struct module *module)
3997 {
3998 int r;
3999 int cpu;
4000
4001 r = kvm_arch_init(opaque);
4002 if (r)
4003 goto out_fail;
4004
4005 /*
4006 * kvm_arch_init makes sure there's at most one caller
4007 * for architectures that support multiple implementations,
4008 * like intel and amd on x86.
4009 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4010 * conflicts in case kvm is already setup for another implementation.
4011 */
4012 r = kvm_irqfd_init();
4013 if (r)
4014 goto out_irqfd;
4015
4016 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4017 r = -ENOMEM;
4018 goto out_free_0;
4019 }
4020
4021 r = kvm_arch_hardware_setup();
4022 if (r < 0)
4023 goto out_free_0a;
4024
4025 for_each_online_cpu(cpu) {
4026 smp_call_function_single(cpu,
4027 kvm_arch_check_processor_compat,
4028 &r, 1);
4029 if (r < 0)
4030 goto out_free_1;
4031 }
4032
4033 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4034 kvm_starting_cpu, kvm_dying_cpu);
4035 if (r)
4036 goto out_free_2;
4037 register_reboot_notifier(&kvm_reboot_notifier);
4038
4039 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4040 if (!vcpu_align)
4041 vcpu_align = __alignof__(struct kvm_vcpu);
4042 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4043 SLAB_ACCOUNT, NULL);
4044 if (!kvm_vcpu_cache) {
4045 r = -ENOMEM;
4046 goto out_free_3;
4047 }
4048
4049 r = kvm_async_pf_init();
4050 if (r)
4051 goto out_free;
4052
4053 kvm_chardev_ops.owner = module;
4054 kvm_vm_fops.owner = module;
4055 kvm_vcpu_fops.owner = module;
4056
4057 r = misc_register(&kvm_dev);
4058 if (r) {
4059 pr_err("kvm: misc device register failed\n");
4060 goto out_unreg;
4061 }
4062
4063 register_syscore_ops(&kvm_syscore_ops);
4064
4065 kvm_preempt_ops.sched_in = kvm_sched_in;
4066 kvm_preempt_ops.sched_out = kvm_sched_out;
4067
4068 r = kvm_init_debug();
4069 if (r) {
4070 pr_err("kvm: create debugfs files failed\n");
4071 goto out_undebugfs;
4072 }
4073
4074 r = kvm_vfio_ops_init();
4075 WARN_ON(r);
4076
4077 return 0;
4078
4079 out_undebugfs:
4080 unregister_syscore_ops(&kvm_syscore_ops);
4081 misc_deregister(&kvm_dev);
4082 out_unreg:
4083 kvm_async_pf_deinit();
4084 out_free:
4085 kmem_cache_destroy(kvm_vcpu_cache);
4086 out_free_3:
4087 unregister_reboot_notifier(&kvm_reboot_notifier);
4088 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4089 out_free_2:
4090 out_free_1:
4091 kvm_arch_hardware_unsetup();
4092 out_free_0a:
4093 free_cpumask_var(cpus_hardware_enabled);
4094 out_free_0:
4095 kvm_irqfd_exit();
4096 out_irqfd:
4097 kvm_arch_exit();
4098 out_fail:
4099 return r;
4100 }
4101 EXPORT_SYMBOL_GPL(kvm_init);
4102
4103 void kvm_exit(void)
4104 {
4105 debugfs_remove_recursive(kvm_debugfs_dir);
4106 misc_deregister(&kvm_dev);
4107 kmem_cache_destroy(kvm_vcpu_cache);
4108 kvm_async_pf_deinit();
4109 unregister_syscore_ops(&kvm_syscore_ops);
4110 unregister_reboot_notifier(&kvm_reboot_notifier);
4111 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4112 on_each_cpu(hardware_disable_nolock, NULL, 1);
4113 kvm_arch_hardware_unsetup();
4114 kvm_arch_exit();
4115 kvm_irqfd_exit();
4116 free_cpumask_var(cpus_hardware_enabled);
4117 kvm_vfio_ops_exit();
4118 }
4119 EXPORT_SYMBOL_GPL(kvm_exit);