]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/kvm_main.c
Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
79
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
83
84 /*
85 * Ordering of locks:
86 *
87 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
88 */
89
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
93
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
97
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
100
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
102
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
105
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
108
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110 unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113 unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
117
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
119
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
122
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
125
126 static bool largepages_enabled = true;
127
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
129 {
130 if (pfn_valid(pfn))
131 return PageReserved(pfn_to_page(pfn));
132
133 return true;
134 }
135
136 /*
137 * Switches to specified vcpu, until a matching vcpu_put()
138 */
139 int vcpu_load(struct kvm_vcpu *vcpu)
140 {
141 int cpu;
142
143 if (mutex_lock_killable(&vcpu->mutex))
144 return -EINTR;
145 cpu = get_cpu();
146 preempt_notifier_register(&vcpu->preempt_notifier);
147 kvm_arch_vcpu_load(vcpu, cpu);
148 put_cpu();
149 return 0;
150 }
151 EXPORT_SYMBOL_GPL(vcpu_load);
152
153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155 preempt_disable();
156 kvm_arch_vcpu_put(vcpu);
157 preempt_notifier_unregister(&vcpu->preempt_notifier);
158 preempt_enable();
159 mutex_unlock(&vcpu->mutex);
160 }
161 EXPORT_SYMBOL_GPL(vcpu_put);
162
163 static void ack_flush(void *_completed)
164 {
165 }
166
167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
168 {
169 int i, cpu, me;
170 cpumask_var_t cpus;
171 bool called = true;
172 struct kvm_vcpu *vcpu;
173
174 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
175
176 me = get_cpu();
177 kvm_for_each_vcpu(i, vcpu, kvm) {
178 kvm_make_request(req, vcpu);
179 cpu = vcpu->cpu;
180
181 /* Set ->requests bit before we read ->mode. */
182 smp_mb__after_atomic();
183
184 if (cpus != NULL && cpu != -1 && cpu != me &&
185 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
186 cpumask_set_cpu(cpu, cpus);
187 }
188 if (unlikely(cpus == NULL))
189 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
190 else if (!cpumask_empty(cpus))
191 smp_call_function_many(cpus, ack_flush, NULL, 1);
192 else
193 called = false;
194 put_cpu();
195 free_cpumask_var(cpus);
196 return called;
197 }
198
199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 /*
203 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
204 * kvm_make_all_cpus_request.
205 */
206 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
207
208 /*
209 * We want to publish modifications to the page tables before reading
210 * mode. Pairs with a memory barrier in arch-specific code.
211 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
212 * and smp_mb in walk_shadow_page_lockless_begin/end.
213 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
214 *
215 * There is already an smp_mb__after_atomic() before
216 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
217 * barrier here.
218 */
219 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
220 ++kvm->stat.remote_tlb_flush;
221 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
222 }
223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
224 #endif
225
226 void kvm_reload_remote_mmus(struct kvm *kvm)
227 {
228 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
229 }
230
231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
232 {
233 struct page *page;
234 int r;
235
236 mutex_init(&vcpu->mutex);
237 vcpu->cpu = -1;
238 vcpu->kvm = kvm;
239 vcpu->vcpu_id = id;
240 vcpu->pid = NULL;
241 init_swait_queue_head(&vcpu->wq);
242 kvm_async_pf_vcpu_init(vcpu);
243
244 vcpu->pre_pcpu = -1;
245 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
246
247 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
248 if (!page) {
249 r = -ENOMEM;
250 goto fail;
251 }
252 vcpu->run = page_address(page);
253
254 kvm_vcpu_set_in_spin_loop(vcpu, false);
255 kvm_vcpu_set_dy_eligible(vcpu, false);
256 vcpu->preempted = false;
257
258 r = kvm_arch_vcpu_init(vcpu);
259 if (r < 0)
260 goto fail_free_run;
261 return 0;
262
263 fail_free_run:
264 free_page((unsigned long)vcpu->run);
265 fail:
266 return r;
267 }
268 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
269
270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
271 {
272 put_pid(vcpu->pid);
273 kvm_arch_vcpu_uninit(vcpu);
274 free_page((unsigned long)vcpu->run);
275 }
276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
277
278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
280 {
281 return container_of(mn, struct kvm, mmu_notifier);
282 }
283
284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
285 struct mm_struct *mm,
286 unsigned long address)
287 {
288 struct kvm *kvm = mmu_notifier_to_kvm(mn);
289 int need_tlb_flush, idx;
290
291 /*
292 * When ->invalidate_page runs, the linux pte has been zapped
293 * already but the page is still allocated until
294 * ->invalidate_page returns. So if we increase the sequence
295 * here the kvm page fault will notice if the spte can't be
296 * established because the page is going to be freed. If
297 * instead the kvm page fault establishes the spte before
298 * ->invalidate_page runs, kvm_unmap_hva will release it
299 * before returning.
300 *
301 * The sequence increase only need to be seen at spin_unlock
302 * time, and not at spin_lock time.
303 *
304 * Increasing the sequence after the spin_unlock would be
305 * unsafe because the kvm page fault could then establish the
306 * pte after kvm_unmap_hva returned, without noticing the page
307 * is going to be freed.
308 */
309 idx = srcu_read_lock(&kvm->srcu);
310 spin_lock(&kvm->mmu_lock);
311
312 kvm->mmu_notifier_seq++;
313 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
314 /* we've to flush the tlb before the pages can be freed */
315 if (need_tlb_flush)
316 kvm_flush_remote_tlbs(kvm);
317
318 spin_unlock(&kvm->mmu_lock);
319
320 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
321
322 srcu_read_unlock(&kvm->srcu, idx);
323 }
324
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326 struct mm_struct *mm,
327 unsigned long address,
328 pte_t pte)
329 {
330 struct kvm *kvm = mmu_notifier_to_kvm(mn);
331 int idx;
332
333 idx = srcu_read_lock(&kvm->srcu);
334 spin_lock(&kvm->mmu_lock);
335 kvm->mmu_notifier_seq++;
336 kvm_set_spte_hva(kvm, address, pte);
337 spin_unlock(&kvm->mmu_lock);
338 srcu_read_unlock(&kvm->srcu, idx);
339 }
340
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342 struct mm_struct *mm,
343 unsigned long start,
344 unsigned long end)
345 {
346 struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 int need_tlb_flush = 0, idx;
348
349 idx = srcu_read_lock(&kvm->srcu);
350 spin_lock(&kvm->mmu_lock);
351 /*
352 * The count increase must become visible at unlock time as no
353 * spte can be established without taking the mmu_lock and
354 * count is also read inside the mmu_lock critical section.
355 */
356 kvm->mmu_notifier_count++;
357 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358 need_tlb_flush |= kvm->tlbs_dirty;
359 /* we've to flush the tlb before the pages can be freed */
360 if (need_tlb_flush)
361 kvm_flush_remote_tlbs(kvm);
362
363 spin_unlock(&kvm->mmu_lock);
364 srcu_read_unlock(&kvm->srcu, idx);
365 }
366
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368 struct mm_struct *mm,
369 unsigned long start,
370 unsigned long end)
371 {
372 struct kvm *kvm = mmu_notifier_to_kvm(mn);
373
374 spin_lock(&kvm->mmu_lock);
375 /*
376 * This sequence increase will notify the kvm page fault that
377 * the page that is going to be mapped in the spte could have
378 * been freed.
379 */
380 kvm->mmu_notifier_seq++;
381 smp_wmb();
382 /*
383 * The above sequence increase must be visible before the
384 * below count decrease, which is ensured by the smp_wmb above
385 * in conjunction with the smp_rmb in mmu_notifier_retry().
386 */
387 kvm->mmu_notifier_count--;
388 spin_unlock(&kvm->mmu_lock);
389
390 BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394 struct mm_struct *mm,
395 unsigned long start,
396 unsigned long end)
397 {
398 struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 int young, idx;
400
401 idx = srcu_read_lock(&kvm->srcu);
402 spin_lock(&kvm->mmu_lock);
403
404 young = kvm_age_hva(kvm, start, end);
405 if (young)
406 kvm_flush_remote_tlbs(kvm);
407
408 spin_unlock(&kvm->mmu_lock);
409 srcu_read_unlock(&kvm->srcu, idx);
410
411 return young;
412 }
413
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415 struct mm_struct *mm,
416 unsigned long start,
417 unsigned long end)
418 {
419 struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 int young, idx;
421
422 idx = srcu_read_lock(&kvm->srcu);
423 spin_lock(&kvm->mmu_lock);
424 /*
425 * Even though we do not flush TLB, this will still adversely
426 * affect performance on pre-Haswell Intel EPT, where there is
427 * no EPT Access Bit to clear so that we have to tear down EPT
428 * tables instead. If we find this unacceptable, we can always
429 * add a parameter to kvm_age_hva so that it effectively doesn't
430 * do anything on clear_young.
431 *
432 * Also note that currently we never issue secondary TLB flushes
433 * from clear_young, leaving this job up to the regular system
434 * cadence. If we find this inaccurate, we might come up with a
435 * more sophisticated heuristic later.
436 */
437 young = kvm_age_hva(kvm, start, end);
438 spin_unlock(&kvm->mmu_lock);
439 srcu_read_unlock(&kvm->srcu, idx);
440
441 return young;
442 }
443
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445 struct mm_struct *mm,
446 unsigned long address)
447 {
448 struct kvm *kvm = mmu_notifier_to_kvm(mn);
449 int young, idx;
450
451 idx = srcu_read_lock(&kvm->srcu);
452 spin_lock(&kvm->mmu_lock);
453 young = kvm_test_age_hva(kvm, address);
454 spin_unlock(&kvm->mmu_lock);
455 srcu_read_unlock(&kvm->srcu, idx);
456
457 return young;
458 }
459
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461 struct mm_struct *mm)
462 {
463 struct kvm *kvm = mmu_notifier_to_kvm(mn);
464 int idx;
465
466 idx = srcu_read_lock(&kvm->srcu);
467 kvm_arch_flush_shadow_all(kvm);
468 srcu_read_unlock(&kvm->srcu, idx);
469 }
470
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472 .invalidate_page = kvm_mmu_notifier_invalidate_page,
473 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
474 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
475 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
476 .clear_young = kvm_mmu_notifier_clear_young,
477 .test_young = kvm_mmu_notifier_test_young,
478 .change_pte = kvm_mmu_notifier_change_pte,
479 .release = kvm_mmu_notifier_release,
480 };
481
482 static int kvm_init_mmu_notifier(struct kvm *kvm)
483 {
484 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
485 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
486 }
487
488 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
489
490 static int kvm_init_mmu_notifier(struct kvm *kvm)
491 {
492 return 0;
493 }
494
495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
496
497 static struct kvm_memslots *kvm_alloc_memslots(void)
498 {
499 int i;
500 struct kvm_memslots *slots;
501
502 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
503 if (!slots)
504 return NULL;
505
506 /*
507 * Init kvm generation close to the maximum to easily test the
508 * code of handling generation number wrap-around.
509 */
510 slots->generation = -150;
511 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512 slots->id_to_index[i] = slots->memslots[i].id = i;
513
514 return slots;
515 }
516
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519 if (!memslot->dirty_bitmap)
520 return;
521
522 kvfree(memslot->dirty_bitmap);
523 memslot->dirty_bitmap = NULL;
524 }
525
526 /*
527 * Free any memory in @free but not in @dont.
528 */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530 struct kvm_memory_slot *dont)
531 {
532 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533 kvm_destroy_dirty_bitmap(free);
534
535 kvm_arch_free_memslot(kvm, free, dont);
536
537 free->npages = 0;
538 }
539
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542 struct kvm_memory_slot *memslot;
543
544 if (!slots)
545 return;
546
547 kvm_for_each_memslot(memslot, slots)
548 kvm_free_memslot(kvm, memslot, NULL);
549
550 kvfree(slots);
551 }
552
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555 int i;
556
557 if (!kvm->debugfs_dentry)
558 return;
559
560 debugfs_remove_recursive(kvm->debugfs_dentry);
561
562 for (i = 0; i < kvm_debugfs_num_entries; i++)
563 kfree(kvm->debugfs_stat_data[i]);
564 kfree(kvm->debugfs_stat_data);
565 }
566
567 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
568 {
569 char dir_name[ITOA_MAX_LEN * 2];
570 struct kvm_stat_data *stat_data;
571 struct kvm_stats_debugfs_item *p;
572
573 if (!debugfs_initialized())
574 return 0;
575
576 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
577 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
578 kvm_debugfs_dir);
579 if (!kvm->debugfs_dentry)
580 return -ENOMEM;
581
582 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
583 sizeof(*kvm->debugfs_stat_data),
584 GFP_KERNEL);
585 if (!kvm->debugfs_stat_data)
586 return -ENOMEM;
587
588 for (p = debugfs_entries; p->name; p++) {
589 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
590 if (!stat_data)
591 return -ENOMEM;
592
593 stat_data->kvm = kvm;
594 stat_data->offset = p->offset;
595 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
596 if (!debugfs_create_file(p->name, 0444,
597 kvm->debugfs_dentry,
598 stat_data,
599 stat_fops_per_vm[p->kind]))
600 return -ENOMEM;
601 }
602 return 0;
603 }
604
605 static struct kvm *kvm_create_vm(unsigned long type)
606 {
607 int r, i;
608 struct kvm *kvm = kvm_arch_alloc_vm();
609
610 if (!kvm)
611 return ERR_PTR(-ENOMEM);
612
613 spin_lock_init(&kvm->mmu_lock);
614 atomic_inc(&current->mm->mm_count);
615 kvm->mm = current->mm;
616 kvm_eventfd_init(kvm);
617 mutex_init(&kvm->lock);
618 mutex_init(&kvm->irq_lock);
619 mutex_init(&kvm->slots_lock);
620 atomic_set(&kvm->users_count, 1);
621 INIT_LIST_HEAD(&kvm->devices);
622
623 r = kvm_arch_init_vm(kvm, type);
624 if (r)
625 goto out_err_no_disable;
626
627 r = hardware_enable_all();
628 if (r)
629 goto out_err_no_disable;
630
631 #ifdef CONFIG_HAVE_KVM_IRQFD
632 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
633 #endif
634
635 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
636
637 r = -ENOMEM;
638 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
639 kvm->memslots[i] = kvm_alloc_memslots();
640 if (!kvm->memslots[i])
641 goto out_err_no_srcu;
642 }
643
644 if (init_srcu_struct(&kvm->srcu))
645 goto out_err_no_srcu;
646 if (init_srcu_struct(&kvm->irq_srcu))
647 goto out_err_no_irq_srcu;
648 for (i = 0; i < KVM_NR_BUSES; i++) {
649 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
650 GFP_KERNEL);
651 if (!kvm->buses[i])
652 goto out_err;
653 }
654
655 r = kvm_init_mmu_notifier(kvm);
656 if (r)
657 goto out_err;
658
659 spin_lock(&kvm_lock);
660 list_add(&kvm->vm_list, &vm_list);
661 spin_unlock(&kvm_lock);
662
663 preempt_notifier_inc();
664
665 return kvm;
666
667 out_err:
668 cleanup_srcu_struct(&kvm->irq_srcu);
669 out_err_no_irq_srcu:
670 cleanup_srcu_struct(&kvm->srcu);
671 out_err_no_srcu:
672 hardware_disable_all();
673 out_err_no_disable:
674 for (i = 0; i < KVM_NR_BUSES; i++)
675 kfree(kvm->buses[i]);
676 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
677 kvm_free_memslots(kvm, kvm->memslots[i]);
678 kvm_arch_free_vm(kvm);
679 mmdrop(current->mm);
680 return ERR_PTR(r);
681 }
682
683 /*
684 * Avoid using vmalloc for a small buffer.
685 * Should not be used when the size is statically known.
686 */
687 void *kvm_kvzalloc(unsigned long size)
688 {
689 if (size > PAGE_SIZE)
690 return vzalloc(size);
691 else
692 return kzalloc(size, GFP_KERNEL);
693 }
694
695 static void kvm_destroy_devices(struct kvm *kvm)
696 {
697 struct kvm_device *dev, *tmp;
698
699 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
700 list_del(&dev->vm_node);
701 dev->ops->destroy(dev);
702 }
703 }
704
705 static void kvm_destroy_vm(struct kvm *kvm)
706 {
707 int i;
708 struct mm_struct *mm = kvm->mm;
709
710 kvm_destroy_vm_debugfs(kvm);
711 kvm_arch_sync_events(kvm);
712 spin_lock(&kvm_lock);
713 list_del(&kvm->vm_list);
714 spin_unlock(&kvm_lock);
715 kvm_free_irq_routing(kvm);
716 for (i = 0; i < KVM_NR_BUSES; i++)
717 kvm_io_bus_destroy(kvm->buses[i]);
718 kvm_coalesced_mmio_free(kvm);
719 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
720 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
721 #else
722 kvm_arch_flush_shadow_all(kvm);
723 #endif
724 kvm_arch_destroy_vm(kvm);
725 kvm_destroy_devices(kvm);
726 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
727 kvm_free_memslots(kvm, kvm->memslots[i]);
728 cleanup_srcu_struct(&kvm->irq_srcu);
729 cleanup_srcu_struct(&kvm->srcu);
730 kvm_arch_free_vm(kvm);
731 preempt_notifier_dec();
732 hardware_disable_all();
733 mmdrop(mm);
734 }
735
736 void kvm_get_kvm(struct kvm *kvm)
737 {
738 atomic_inc(&kvm->users_count);
739 }
740 EXPORT_SYMBOL_GPL(kvm_get_kvm);
741
742 void kvm_put_kvm(struct kvm *kvm)
743 {
744 if (atomic_dec_and_test(&kvm->users_count))
745 kvm_destroy_vm(kvm);
746 }
747 EXPORT_SYMBOL_GPL(kvm_put_kvm);
748
749
750 static int kvm_vm_release(struct inode *inode, struct file *filp)
751 {
752 struct kvm *kvm = filp->private_data;
753
754 kvm_irqfd_release(kvm);
755
756 kvm_put_kvm(kvm);
757 return 0;
758 }
759
760 /*
761 * Allocation size is twice as large as the actual dirty bitmap size.
762 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
763 */
764 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
765 {
766 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
767
768 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
769 if (!memslot->dirty_bitmap)
770 return -ENOMEM;
771
772 return 0;
773 }
774
775 /*
776 * Insert memslot and re-sort memslots based on their GFN,
777 * so binary search could be used to lookup GFN.
778 * Sorting algorithm takes advantage of having initially
779 * sorted array and known changed memslot position.
780 */
781 static void update_memslots(struct kvm_memslots *slots,
782 struct kvm_memory_slot *new)
783 {
784 int id = new->id;
785 int i = slots->id_to_index[id];
786 struct kvm_memory_slot *mslots = slots->memslots;
787
788 WARN_ON(mslots[i].id != id);
789 if (!new->npages) {
790 WARN_ON(!mslots[i].npages);
791 if (mslots[i].npages)
792 slots->used_slots--;
793 } else {
794 if (!mslots[i].npages)
795 slots->used_slots++;
796 }
797
798 while (i < KVM_MEM_SLOTS_NUM - 1 &&
799 new->base_gfn <= mslots[i + 1].base_gfn) {
800 if (!mslots[i + 1].npages)
801 break;
802 mslots[i] = mslots[i + 1];
803 slots->id_to_index[mslots[i].id] = i;
804 i++;
805 }
806
807 /*
808 * The ">=" is needed when creating a slot with base_gfn == 0,
809 * so that it moves before all those with base_gfn == npages == 0.
810 *
811 * On the other hand, if new->npages is zero, the above loop has
812 * already left i pointing to the beginning of the empty part of
813 * mslots, and the ">=" would move the hole backwards in this
814 * case---which is wrong. So skip the loop when deleting a slot.
815 */
816 if (new->npages) {
817 while (i > 0 &&
818 new->base_gfn >= mslots[i - 1].base_gfn) {
819 mslots[i] = mslots[i - 1];
820 slots->id_to_index[mslots[i].id] = i;
821 i--;
822 }
823 } else
824 WARN_ON_ONCE(i != slots->used_slots);
825
826 mslots[i] = *new;
827 slots->id_to_index[mslots[i].id] = i;
828 }
829
830 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
831 {
832 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
833
834 #ifdef __KVM_HAVE_READONLY_MEM
835 valid_flags |= KVM_MEM_READONLY;
836 #endif
837
838 if (mem->flags & ~valid_flags)
839 return -EINVAL;
840
841 return 0;
842 }
843
844 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
845 int as_id, struct kvm_memslots *slots)
846 {
847 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
848
849 /*
850 * Set the low bit in the generation, which disables SPTE caching
851 * until the end of synchronize_srcu_expedited.
852 */
853 WARN_ON(old_memslots->generation & 1);
854 slots->generation = old_memslots->generation + 1;
855
856 rcu_assign_pointer(kvm->memslots[as_id], slots);
857 synchronize_srcu_expedited(&kvm->srcu);
858
859 /*
860 * Increment the new memslot generation a second time. This prevents
861 * vm exits that race with memslot updates from caching a memslot
862 * generation that will (potentially) be valid forever.
863 */
864 slots->generation++;
865
866 kvm_arch_memslots_updated(kvm, slots);
867
868 return old_memslots;
869 }
870
871 /*
872 * Allocate some memory and give it an address in the guest physical address
873 * space.
874 *
875 * Discontiguous memory is allowed, mostly for framebuffers.
876 *
877 * Must be called holding kvm->slots_lock for write.
878 */
879 int __kvm_set_memory_region(struct kvm *kvm,
880 const struct kvm_userspace_memory_region *mem)
881 {
882 int r;
883 gfn_t base_gfn;
884 unsigned long npages;
885 struct kvm_memory_slot *slot;
886 struct kvm_memory_slot old, new;
887 struct kvm_memslots *slots = NULL, *old_memslots;
888 int as_id, id;
889 enum kvm_mr_change change;
890
891 r = check_memory_region_flags(mem);
892 if (r)
893 goto out;
894
895 r = -EINVAL;
896 as_id = mem->slot >> 16;
897 id = (u16)mem->slot;
898
899 /* General sanity checks */
900 if (mem->memory_size & (PAGE_SIZE - 1))
901 goto out;
902 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
903 goto out;
904 /* We can read the guest memory with __xxx_user() later on. */
905 if ((id < KVM_USER_MEM_SLOTS) &&
906 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
907 !access_ok(VERIFY_WRITE,
908 (void __user *)(unsigned long)mem->userspace_addr,
909 mem->memory_size)))
910 goto out;
911 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
912 goto out;
913 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
914 goto out;
915
916 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
917 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
918 npages = mem->memory_size >> PAGE_SHIFT;
919
920 if (npages > KVM_MEM_MAX_NR_PAGES)
921 goto out;
922
923 new = old = *slot;
924
925 new.id = id;
926 new.base_gfn = base_gfn;
927 new.npages = npages;
928 new.flags = mem->flags;
929
930 if (npages) {
931 if (!old.npages)
932 change = KVM_MR_CREATE;
933 else { /* Modify an existing slot. */
934 if ((mem->userspace_addr != old.userspace_addr) ||
935 (npages != old.npages) ||
936 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
937 goto out;
938
939 if (base_gfn != old.base_gfn)
940 change = KVM_MR_MOVE;
941 else if (new.flags != old.flags)
942 change = KVM_MR_FLAGS_ONLY;
943 else { /* Nothing to change. */
944 r = 0;
945 goto out;
946 }
947 }
948 } else {
949 if (!old.npages)
950 goto out;
951
952 change = KVM_MR_DELETE;
953 new.base_gfn = 0;
954 new.flags = 0;
955 }
956
957 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
958 /* Check for overlaps */
959 r = -EEXIST;
960 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
961 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
962 (slot->id == id))
963 continue;
964 if (!((base_gfn + npages <= slot->base_gfn) ||
965 (base_gfn >= slot->base_gfn + slot->npages)))
966 goto out;
967 }
968 }
969
970 /* Free page dirty bitmap if unneeded */
971 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
972 new.dirty_bitmap = NULL;
973
974 r = -ENOMEM;
975 if (change == KVM_MR_CREATE) {
976 new.userspace_addr = mem->userspace_addr;
977
978 if (kvm_arch_create_memslot(kvm, &new, npages))
979 goto out_free;
980 }
981
982 /* Allocate page dirty bitmap if needed */
983 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
984 if (kvm_create_dirty_bitmap(&new) < 0)
985 goto out_free;
986 }
987
988 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
989 if (!slots)
990 goto out_free;
991 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
992
993 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
994 slot = id_to_memslot(slots, id);
995 slot->flags |= KVM_MEMSLOT_INVALID;
996
997 old_memslots = install_new_memslots(kvm, as_id, slots);
998
999 /* slot was deleted or moved, clear iommu mapping */
1000 kvm_iommu_unmap_pages(kvm, &old);
1001 /* From this point no new shadow pages pointing to a deleted,
1002 * or moved, memslot will be created.
1003 *
1004 * validation of sp->gfn happens in:
1005 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1006 * - kvm_is_visible_gfn (mmu_check_roots)
1007 */
1008 kvm_arch_flush_shadow_memslot(kvm, slot);
1009
1010 /*
1011 * We can re-use the old_memslots from above, the only difference
1012 * from the currently installed memslots is the invalid flag. This
1013 * will get overwritten by update_memslots anyway.
1014 */
1015 slots = old_memslots;
1016 }
1017
1018 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1019 if (r)
1020 goto out_slots;
1021
1022 /* actual memory is freed via old in kvm_free_memslot below */
1023 if (change == KVM_MR_DELETE) {
1024 new.dirty_bitmap = NULL;
1025 memset(&new.arch, 0, sizeof(new.arch));
1026 }
1027
1028 update_memslots(slots, &new);
1029 old_memslots = install_new_memslots(kvm, as_id, slots);
1030
1031 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1032
1033 kvm_free_memslot(kvm, &old, &new);
1034 kvfree(old_memslots);
1035
1036 /*
1037 * IOMMU mapping: New slots need to be mapped. Old slots need to be
1038 * un-mapped and re-mapped if their base changes. Since base change
1039 * unmapping is handled above with slot deletion, mapping alone is
1040 * needed here. Anything else the iommu might care about for existing
1041 * slots (size changes, userspace addr changes and read-only flag
1042 * changes) is disallowed above, so any other attribute changes getting
1043 * here can be skipped.
1044 */
1045 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1046 r = kvm_iommu_map_pages(kvm, &new);
1047 return r;
1048 }
1049
1050 return 0;
1051
1052 out_slots:
1053 kvfree(slots);
1054 out_free:
1055 kvm_free_memslot(kvm, &new, &old);
1056 out:
1057 return r;
1058 }
1059 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1060
1061 int kvm_set_memory_region(struct kvm *kvm,
1062 const struct kvm_userspace_memory_region *mem)
1063 {
1064 int r;
1065
1066 mutex_lock(&kvm->slots_lock);
1067 r = __kvm_set_memory_region(kvm, mem);
1068 mutex_unlock(&kvm->slots_lock);
1069 return r;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1072
1073 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1074 struct kvm_userspace_memory_region *mem)
1075 {
1076 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1077 return -EINVAL;
1078
1079 return kvm_set_memory_region(kvm, mem);
1080 }
1081
1082 int kvm_get_dirty_log(struct kvm *kvm,
1083 struct kvm_dirty_log *log, int *is_dirty)
1084 {
1085 struct kvm_memslots *slots;
1086 struct kvm_memory_slot *memslot;
1087 int r, i, as_id, id;
1088 unsigned long n;
1089 unsigned long any = 0;
1090
1091 r = -EINVAL;
1092 as_id = log->slot >> 16;
1093 id = (u16)log->slot;
1094 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1095 goto out;
1096
1097 slots = __kvm_memslots(kvm, as_id);
1098 memslot = id_to_memslot(slots, id);
1099 r = -ENOENT;
1100 if (!memslot->dirty_bitmap)
1101 goto out;
1102
1103 n = kvm_dirty_bitmap_bytes(memslot);
1104
1105 for (i = 0; !any && i < n/sizeof(long); ++i)
1106 any = memslot->dirty_bitmap[i];
1107
1108 r = -EFAULT;
1109 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1110 goto out;
1111
1112 if (any)
1113 *is_dirty = 1;
1114
1115 r = 0;
1116 out:
1117 return r;
1118 }
1119 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1120
1121 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1122 /**
1123 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1124 * are dirty write protect them for next write.
1125 * @kvm: pointer to kvm instance
1126 * @log: slot id and address to which we copy the log
1127 * @is_dirty: flag set if any page is dirty
1128 *
1129 * We need to keep it in mind that VCPU threads can write to the bitmap
1130 * concurrently. So, to avoid losing track of dirty pages we keep the
1131 * following order:
1132 *
1133 * 1. Take a snapshot of the bit and clear it if needed.
1134 * 2. Write protect the corresponding page.
1135 * 3. Copy the snapshot to the userspace.
1136 * 4. Upon return caller flushes TLB's if needed.
1137 *
1138 * Between 2 and 4, the guest may write to the page using the remaining TLB
1139 * entry. This is not a problem because the page is reported dirty using
1140 * the snapshot taken before and step 4 ensures that writes done after
1141 * exiting to userspace will be logged for the next call.
1142 *
1143 */
1144 int kvm_get_dirty_log_protect(struct kvm *kvm,
1145 struct kvm_dirty_log *log, bool *is_dirty)
1146 {
1147 struct kvm_memslots *slots;
1148 struct kvm_memory_slot *memslot;
1149 int r, i, as_id, id;
1150 unsigned long n;
1151 unsigned long *dirty_bitmap;
1152 unsigned long *dirty_bitmap_buffer;
1153
1154 r = -EINVAL;
1155 as_id = log->slot >> 16;
1156 id = (u16)log->slot;
1157 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1158 goto out;
1159
1160 slots = __kvm_memslots(kvm, as_id);
1161 memslot = id_to_memslot(slots, id);
1162
1163 dirty_bitmap = memslot->dirty_bitmap;
1164 r = -ENOENT;
1165 if (!dirty_bitmap)
1166 goto out;
1167
1168 n = kvm_dirty_bitmap_bytes(memslot);
1169
1170 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1171 memset(dirty_bitmap_buffer, 0, n);
1172
1173 spin_lock(&kvm->mmu_lock);
1174 *is_dirty = false;
1175 for (i = 0; i < n / sizeof(long); i++) {
1176 unsigned long mask;
1177 gfn_t offset;
1178
1179 if (!dirty_bitmap[i])
1180 continue;
1181
1182 *is_dirty = true;
1183
1184 mask = xchg(&dirty_bitmap[i], 0);
1185 dirty_bitmap_buffer[i] = mask;
1186
1187 if (mask) {
1188 offset = i * BITS_PER_LONG;
1189 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1190 offset, mask);
1191 }
1192 }
1193
1194 spin_unlock(&kvm->mmu_lock);
1195
1196 r = -EFAULT;
1197 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1198 goto out;
1199
1200 r = 0;
1201 out:
1202 return r;
1203 }
1204 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1205 #endif
1206
1207 bool kvm_largepages_enabled(void)
1208 {
1209 return largepages_enabled;
1210 }
1211
1212 void kvm_disable_largepages(void)
1213 {
1214 largepages_enabled = false;
1215 }
1216 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1217
1218 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1219 {
1220 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1221 }
1222 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1223
1224 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1225 {
1226 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1227 }
1228
1229 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1230 {
1231 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1232
1233 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1234 memslot->flags & KVM_MEMSLOT_INVALID)
1235 return false;
1236
1237 return true;
1238 }
1239 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1240
1241 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1242 {
1243 struct vm_area_struct *vma;
1244 unsigned long addr, size;
1245
1246 size = PAGE_SIZE;
1247
1248 addr = gfn_to_hva(kvm, gfn);
1249 if (kvm_is_error_hva(addr))
1250 return PAGE_SIZE;
1251
1252 down_read(&current->mm->mmap_sem);
1253 vma = find_vma(current->mm, addr);
1254 if (!vma)
1255 goto out;
1256
1257 size = vma_kernel_pagesize(vma);
1258
1259 out:
1260 up_read(&current->mm->mmap_sem);
1261
1262 return size;
1263 }
1264
1265 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1266 {
1267 return slot->flags & KVM_MEM_READONLY;
1268 }
1269
1270 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1271 gfn_t *nr_pages, bool write)
1272 {
1273 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1274 return KVM_HVA_ERR_BAD;
1275
1276 if (memslot_is_readonly(slot) && write)
1277 return KVM_HVA_ERR_RO_BAD;
1278
1279 if (nr_pages)
1280 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1281
1282 return __gfn_to_hva_memslot(slot, gfn);
1283 }
1284
1285 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1286 gfn_t *nr_pages)
1287 {
1288 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1289 }
1290
1291 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1292 gfn_t gfn)
1293 {
1294 return gfn_to_hva_many(slot, gfn, NULL);
1295 }
1296 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1297
1298 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1299 {
1300 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_hva);
1303
1304 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1305 {
1306 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1307 }
1308 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1309
1310 /*
1311 * If writable is set to false, the hva returned by this function is only
1312 * allowed to be read.
1313 */
1314 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1315 gfn_t gfn, bool *writable)
1316 {
1317 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1318
1319 if (!kvm_is_error_hva(hva) && writable)
1320 *writable = !memslot_is_readonly(slot);
1321
1322 return hva;
1323 }
1324
1325 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1326 {
1327 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1328
1329 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1330 }
1331
1332 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1333 {
1334 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1335
1336 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338
1339 static int get_user_page_nowait(unsigned long start, int write,
1340 struct page **page)
1341 {
1342 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1343
1344 if (write)
1345 flags |= FOLL_WRITE;
1346
1347 return __get_user_pages(current, current->mm, start, 1, flags, page,
1348 NULL, NULL);
1349 }
1350
1351 static inline int check_user_page_hwpoison(unsigned long addr)
1352 {
1353 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1354
1355 rc = __get_user_pages(current, current->mm, addr, 1,
1356 flags, NULL, NULL, NULL);
1357 return rc == -EHWPOISON;
1358 }
1359
1360 /*
1361 * The atomic path to get the writable pfn which will be stored in @pfn,
1362 * true indicates success, otherwise false is returned.
1363 */
1364 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1365 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1366 {
1367 struct page *page[1];
1368 int npages;
1369
1370 if (!(async || atomic))
1371 return false;
1372
1373 /*
1374 * Fast pin a writable pfn only if it is a write fault request
1375 * or the caller allows to map a writable pfn for a read fault
1376 * request.
1377 */
1378 if (!(write_fault || writable))
1379 return false;
1380
1381 npages = __get_user_pages_fast(addr, 1, 1, page);
1382 if (npages == 1) {
1383 *pfn = page_to_pfn(page[0]);
1384
1385 if (writable)
1386 *writable = true;
1387 return true;
1388 }
1389
1390 return false;
1391 }
1392
1393 /*
1394 * The slow path to get the pfn of the specified host virtual address,
1395 * 1 indicates success, -errno is returned if error is detected.
1396 */
1397 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1398 bool *writable, kvm_pfn_t *pfn)
1399 {
1400 struct page *page[1];
1401 int npages = 0;
1402
1403 might_sleep();
1404
1405 if (writable)
1406 *writable = write_fault;
1407
1408 if (async) {
1409 down_read(&current->mm->mmap_sem);
1410 npages = get_user_page_nowait(addr, write_fault, page);
1411 up_read(&current->mm->mmap_sem);
1412 } else
1413 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1414 write_fault, 0, page,
1415 FOLL_TOUCH|FOLL_HWPOISON);
1416 if (npages != 1)
1417 return npages;
1418
1419 /* map read fault as writable if possible */
1420 if (unlikely(!write_fault) && writable) {
1421 struct page *wpage[1];
1422
1423 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1424 if (npages == 1) {
1425 *writable = true;
1426 put_page(page[0]);
1427 page[0] = wpage[0];
1428 }
1429
1430 npages = 1;
1431 }
1432 *pfn = page_to_pfn(page[0]);
1433 return npages;
1434 }
1435
1436 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1437 {
1438 if (unlikely(!(vma->vm_flags & VM_READ)))
1439 return false;
1440
1441 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1442 return false;
1443
1444 return true;
1445 }
1446
1447 /*
1448 * Pin guest page in memory and return its pfn.
1449 * @addr: host virtual address which maps memory to the guest
1450 * @atomic: whether this function can sleep
1451 * @async: whether this function need to wait IO complete if the
1452 * host page is not in the memory
1453 * @write_fault: whether we should get a writable host page
1454 * @writable: whether it allows to map a writable host page for !@write_fault
1455 *
1456 * The function will map a writable host page for these two cases:
1457 * 1): @write_fault = true
1458 * 2): @write_fault = false && @writable, @writable will tell the caller
1459 * whether the mapping is writable.
1460 */
1461 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1462 bool write_fault, bool *writable)
1463 {
1464 struct vm_area_struct *vma;
1465 kvm_pfn_t pfn = 0;
1466 int npages;
1467
1468 /* we can do it either atomically or asynchronously, not both */
1469 BUG_ON(atomic && async);
1470
1471 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1472 return pfn;
1473
1474 if (atomic)
1475 return KVM_PFN_ERR_FAULT;
1476
1477 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1478 if (npages == 1)
1479 return pfn;
1480
1481 down_read(&current->mm->mmap_sem);
1482 if (npages == -EHWPOISON ||
1483 (!async && check_user_page_hwpoison(addr))) {
1484 pfn = KVM_PFN_ERR_HWPOISON;
1485 goto exit;
1486 }
1487
1488 vma = find_vma_intersection(current->mm, addr, addr + 1);
1489
1490 if (vma == NULL)
1491 pfn = KVM_PFN_ERR_FAULT;
1492 else if ((vma->vm_flags & VM_PFNMAP)) {
1493 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1494 vma->vm_pgoff;
1495 BUG_ON(!kvm_is_reserved_pfn(pfn));
1496 } else {
1497 if (async && vma_is_valid(vma, write_fault))
1498 *async = true;
1499 pfn = KVM_PFN_ERR_FAULT;
1500 }
1501 exit:
1502 up_read(&current->mm->mmap_sem);
1503 return pfn;
1504 }
1505
1506 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1507 bool atomic, bool *async, bool write_fault,
1508 bool *writable)
1509 {
1510 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1511
1512 if (addr == KVM_HVA_ERR_RO_BAD) {
1513 if (writable)
1514 *writable = false;
1515 return KVM_PFN_ERR_RO_FAULT;
1516 }
1517
1518 if (kvm_is_error_hva(addr)) {
1519 if (writable)
1520 *writable = false;
1521 return KVM_PFN_NOSLOT;
1522 }
1523
1524 /* Do not map writable pfn in the readonly memslot. */
1525 if (writable && memslot_is_readonly(slot)) {
1526 *writable = false;
1527 writable = NULL;
1528 }
1529
1530 return hva_to_pfn(addr, atomic, async, write_fault,
1531 writable);
1532 }
1533 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1534
1535 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1536 bool *writable)
1537 {
1538 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1539 write_fault, writable);
1540 }
1541 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1542
1543 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1544 {
1545 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1546 }
1547 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1548
1549 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1550 {
1551 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1552 }
1553 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1554
1555 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1556 {
1557 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1558 }
1559 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1560
1561 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1562 {
1563 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1564 }
1565 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1566
1567 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1568 {
1569 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1570 }
1571 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1572
1573 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1574 {
1575 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1576 }
1577 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1578
1579 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1580 struct page **pages, int nr_pages)
1581 {
1582 unsigned long addr;
1583 gfn_t entry;
1584
1585 addr = gfn_to_hva_many(slot, gfn, &entry);
1586 if (kvm_is_error_hva(addr))
1587 return -1;
1588
1589 if (entry < nr_pages)
1590 return 0;
1591
1592 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1593 }
1594 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1595
1596 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1597 {
1598 if (is_error_noslot_pfn(pfn))
1599 return KVM_ERR_PTR_BAD_PAGE;
1600
1601 if (kvm_is_reserved_pfn(pfn)) {
1602 WARN_ON(1);
1603 return KVM_ERR_PTR_BAD_PAGE;
1604 }
1605
1606 return pfn_to_page(pfn);
1607 }
1608
1609 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1610 {
1611 kvm_pfn_t pfn;
1612
1613 pfn = gfn_to_pfn(kvm, gfn);
1614
1615 return kvm_pfn_to_page(pfn);
1616 }
1617 EXPORT_SYMBOL_GPL(gfn_to_page);
1618
1619 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1620 {
1621 kvm_pfn_t pfn;
1622
1623 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1624
1625 return kvm_pfn_to_page(pfn);
1626 }
1627 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1628
1629 void kvm_release_page_clean(struct page *page)
1630 {
1631 WARN_ON(is_error_page(page));
1632
1633 kvm_release_pfn_clean(page_to_pfn(page));
1634 }
1635 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1636
1637 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1638 {
1639 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1640 put_page(pfn_to_page(pfn));
1641 }
1642 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1643
1644 void kvm_release_page_dirty(struct page *page)
1645 {
1646 WARN_ON(is_error_page(page));
1647
1648 kvm_release_pfn_dirty(page_to_pfn(page));
1649 }
1650 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1651
1652 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1653 {
1654 kvm_set_pfn_dirty(pfn);
1655 kvm_release_pfn_clean(pfn);
1656 }
1657
1658 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1659 {
1660 if (!kvm_is_reserved_pfn(pfn)) {
1661 struct page *page = pfn_to_page(pfn);
1662
1663 if (!PageReserved(page))
1664 SetPageDirty(page);
1665 }
1666 }
1667 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1668
1669 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1670 {
1671 if (!kvm_is_reserved_pfn(pfn))
1672 mark_page_accessed(pfn_to_page(pfn));
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1675
1676 void kvm_get_pfn(kvm_pfn_t pfn)
1677 {
1678 if (!kvm_is_reserved_pfn(pfn))
1679 get_page(pfn_to_page(pfn));
1680 }
1681 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1682
1683 static int next_segment(unsigned long len, int offset)
1684 {
1685 if (len > PAGE_SIZE - offset)
1686 return PAGE_SIZE - offset;
1687 else
1688 return len;
1689 }
1690
1691 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1692 void *data, int offset, int len)
1693 {
1694 int r;
1695 unsigned long addr;
1696
1697 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1698 if (kvm_is_error_hva(addr))
1699 return -EFAULT;
1700 r = __copy_from_user(data, (void __user *)addr + offset, len);
1701 if (r)
1702 return -EFAULT;
1703 return 0;
1704 }
1705
1706 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1707 int len)
1708 {
1709 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1710
1711 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1714
1715 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1716 int offset, int len)
1717 {
1718 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1719
1720 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1721 }
1722 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1723
1724 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1725 {
1726 gfn_t gfn = gpa >> PAGE_SHIFT;
1727 int seg;
1728 int offset = offset_in_page(gpa);
1729 int ret;
1730
1731 while ((seg = next_segment(len, offset)) != 0) {
1732 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1733 if (ret < 0)
1734 return ret;
1735 offset = 0;
1736 len -= seg;
1737 data += seg;
1738 ++gfn;
1739 }
1740 return 0;
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_read_guest);
1743
1744 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1745 {
1746 gfn_t gfn = gpa >> PAGE_SHIFT;
1747 int seg;
1748 int offset = offset_in_page(gpa);
1749 int ret;
1750
1751 while ((seg = next_segment(len, offset)) != 0) {
1752 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1753 if (ret < 0)
1754 return ret;
1755 offset = 0;
1756 len -= seg;
1757 data += seg;
1758 ++gfn;
1759 }
1760 return 0;
1761 }
1762 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1763
1764 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1765 void *data, int offset, unsigned long len)
1766 {
1767 int r;
1768 unsigned long addr;
1769
1770 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1771 if (kvm_is_error_hva(addr))
1772 return -EFAULT;
1773 pagefault_disable();
1774 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1775 pagefault_enable();
1776 if (r)
1777 return -EFAULT;
1778 return 0;
1779 }
1780
1781 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1782 unsigned long len)
1783 {
1784 gfn_t gfn = gpa >> PAGE_SHIFT;
1785 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1786 int offset = offset_in_page(gpa);
1787
1788 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1789 }
1790 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1791
1792 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1793 void *data, unsigned long len)
1794 {
1795 gfn_t gfn = gpa >> PAGE_SHIFT;
1796 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1797 int offset = offset_in_page(gpa);
1798
1799 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1802
1803 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1804 const void *data, int offset, int len)
1805 {
1806 int r;
1807 unsigned long addr;
1808
1809 addr = gfn_to_hva_memslot(memslot, gfn);
1810 if (kvm_is_error_hva(addr))
1811 return -EFAULT;
1812 r = __copy_to_user((void __user *)addr + offset, data, len);
1813 if (r)
1814 return -EFAULT;
1815 mark_page_dirty_in_slot(memslot, gfn);
1816 return 0;
1817 }
1818
1819 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1820 const void *data, int offset, int len)
1821 {
1822 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1823
1824 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1825 }
1826 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1827
1828 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1829 const void *data, int offset, int len)
1830 {
1831 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1832
1833 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1834 }
1835 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1836
1837 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1838 unsigned long len)
1839 {
1840 gfn_t gfn = gpa >> PAGE_SHIFT;
1841 int seg;
1842 int offset = offset_in_page(gpa);
1843 int ret;
1844
1845 while ((seg = next_segment(len, offset)) != 0) {
1846 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1847 if (ret < 0)
1848 return ret;
1849 offset = 0;
1850 len -= seg;
1851 data += seg;
1852 ++gfn;
1853 }
1854 return 0;
1855 }
1856 EXPORT_SYMBOL_GPL(kvm_write_guest);
1857
1858 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1859 unsigned long len)
1860 {
1861 gfn_t gfn = gpa >> PAGE_SHIFT;
1862 int seg;
1863 int offset = offset_in_page(gpa);
1864 int ret;
1865
1866 while ((seg = next_segment(len, offset)) != 0) {
1867 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1868 if (ret < 0)
1869 return ret;
1870 offset = 0;
1871 len -= seg;
1872 data += seg;
1873 ++gfn;
1874 }
1875 return 0;
1876 }
1877 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1878
1879 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1880 gpa_t gpa, unsigned long len)
1881 {
1882 struct kvm_memslots *slots = kvm_memslots(kvm);
1883 int offset = offset_in_page(gpa);
1884 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1885 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1886 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1887 gfn_t nr_pages_avail;
1888
1889 ghc->gpa = gpa;
1890 ghc->generation = slots->generation;
1891 ghc->len = len;
1892 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1893 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1894 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1895 ghc->hva += offset;
1896 } else {
1897 /*
1898 * If the requested region crosses two memslots, we still
1899 * verify that the entire region is valid here.
1900 */
1901 while (start_gfn <= end_gfn) {
1902 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1903 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1904 &nr_pages_avail);
1905 if (kvm_is_error_hva(ghc->hva))
1906 return -EFAULT;
1907 start_gfn += nr_pages_avail;
1908 }
1909 /* Use the slow path for cross page reads and writes. */
1910 ghc->memslot = NULL;
1911 }
1912 return 0;
1913 }
1914 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1915
1916 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1917 void *data, unsigned long len)
1918 {
1919 struct kvm_memslots *slots = kvm_memslots(kvm);
1920 int r;
1921
1922 BUG_ON(len > ghc->len);
1923
1924 if (slots->generation != ghc->generation)
1925 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1926
1927 if (unlikely(!ghc->memslot))
1928 return kvm_write_guest(kvm, ghc->gpa, data, len);
1929
1930 if (kvm_is_error_hva(ghc->hva))
1931 return -EFAULT;
1932
1933 r = __copy_to_user((void __user *)ghc->hva, data, len);
1934 if (r)
1935 return -EFAULT;
1936 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1937
1938 return 0;
1939 }
1940 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1941
1942 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1943 void *data, unsigned long len)
1944 {
1945 struct kvm_memslots *slots = kvm_memslots(kvm);
1946 int r;
1947
1948 BUG_ON(len > ghc->len);
1949
1950 if (slots->generation != ghc->generation)
1951 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1952
1953 if (unlikely(!ghc->memslot))
1954 return kvm_read_guest(kvm, ghc->gpa, data, len);
1955
1956 if (kvm_is_error_hva(ghc->hva))
1957 return -EFAULT;
1958
1959 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1960 if (r)
1961 return -EFAULT;
1962
1963 return 0;
1964 }
1965 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1966
1967 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1968 {
1969 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1970
1971 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1972 }
1973 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1974
1975 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1976 {
1977 gfn_t gfn = gpa >> PAGE_SHIFT;
1978 int seg;
1979 int offset = offset_in_page(gpa);
1980 int ret;
1981
1982 while ((seg = next_segment(len, offset)) != 0) {
1983 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1984 if (ret < 0)
1985 return ret;
1986 offset = 0;
1987 len -= seg;
1988 ++gfn;
1989 }
1990 return 0;
1991 }
1992 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1993
1994 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1995 gfn_t gfn)
1996 {
1997 if (memslot && memslot->dirty_bitmap) {
1998 unsigned long rel_gfn = gfn - memslot->base_gfn;
1999
2000 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2001 }
2002 }
2003
2004 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2005 {
2006 struct kvm_memory_slot *memslot;
2007
2008 memslot = gfn_to_memslot(kvm, gfn);
2009 mark_page_dirty_in_slot(memslot, gfn);
2010 }
2011 EXPORT_SYMBOL_GPL(mark_page_dirty);
2012
2013 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2014 {
2015 struct kvm_memory_slot *memslot;
2016
2017 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2018 mark_page_dirty_in_slot(memslot, gfn);
2019 }
2020 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2021
2022 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2023 {
2024 unsigned int old, val, grow;
2025
2026 old = val = vcpu->halt_poll_ns;
2027 grow = READ_ONCE(halt_poll_ns_grow);
2028 /* 10us base */
2029 if (val == 0 && grow)
2030 val = 10000;
2031 else
2032 val *= grow;
2033
2034 if (val > halt_poll_ns)
2035 val = halt_poll_ns;
2036
2037 vcpu->halt_poll_ns = val;
2038 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2039 }
2040
2041 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2042 {
2043 unsigned int old, val, shrink;
2044
2045 old = val = vcpu->halt_poll_ns;
2046 shrink = READ_ONCE(halt_poll_ns_shrink);
2047 if (shrink == 0)
2048 val = 0;
2049 else
2050 val /= shrink;
2051
2052 vcpu->halt_poll_ns = val;
2053 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2054 }
2055
2056 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2057 {
2058 if (kvm_arch_vcpu_runnable(vcpu)) {
2059 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2060 return -EINTR;
2061 }
2062 if (kvm_cpu_has_pending_timer(vcpu))
2063 return -EINTR;
2064 if (signal_pending(current))
2065 return -EINTR;
2066
2067 return 0;
2068 }
2069
2070 /*
2071 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2072 */
2073 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2074 {
2075 ktime_t start, cur;
2076 DECLARE_SWAITQUEUE(wait);
2077 bool waited = false;
2078 u64 block_ns;
2079
2080 start = cur = ktime_get();
2081 if (vcpu->halt_poll_ns) {
2082 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2083
2084 ++vcpu->stat.halt_attempted_poll;
2085 do {
2086 /*
2087 * This sets KVM_REQ_UNHALT if an interrupt
2088 * arrives.
2089 */
2090 if (kvm_vcpu_check_block(vcpu) < 0) {
2091 ++vcpu->stat.halt_successful_poll;
2092 if (!vcpu_valid_wakeup(vcpu))
2093 ++vcpu->stat.halt_poll_invalid;
2094 goto out;
2095 }
2096 cur = ktime_get();
2097 } while (single_task_running() && ktime_before(cur, stop));
2098 }
2099
2100 kvm_arch_vcpu_blocking(vcpu);
2101
2102 for (;;) {
2103 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2104
2105 if (kvm_vcpu_check_block(vcpu) < 0)
2106 break;
2107
2108 waited = true;
2109 schedule();
2110 }
2111
2112 finish_swait(&vcpu->wq, &wait);
2113 cur = ktime_get();
2114
2115 kvm_arch_vcpu_unblocking(vcpu);
2116 out:
2117 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2118
2119 if (!vcpu_valid_wakeup(vcpu))
2120 shrink_halt_poll_ns(vcpu);
2121 else if (halt_poll_ns) {
2122 if (block_ns <= vcpu->halt_poll_ns)
2123 ;
2124 /* we had a long block, shrink polling */
2125 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2126 shrink_halt_poll_ns(vcpu);
2127 /* we had a short halt and our poll time is too small */
2128 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2129 block_ns < halt_poll_ns)
2130 grow_halt_poll_ns(vcpu);
2131 } else
2132 vcpu->halt_poll_ns = 0;
2133
2134 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2135 kvm_arch_vcpu_block_finish(vcpu);
2136 }
2137 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2138
2139 #ifndef CONFIG_S390
2140 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2141 {
2142 struct swait_queue_head *wqp;
2143
2144 wqp = kvm_arch_vcpu_wq(vcpu);
2145 if (swait_active(wqp)) {
2146 swake_up(wqp);
2147 ++vcpu->stat.halt_wakeup;
2148 }
2149
2150 }
2151 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2152
2153 /*
2154 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2155 */
2156 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2157 {
2158 int me;
2159 int cpu = vcpu->cpu;
2160
2161 kvm_vcpu_wake_up(vcpu);
2162 me = get_cpu();
2163 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2164 if (kvm_arch_vcpu_should_kick(vcpu))
2165 smp_send_reschedule(cpu);
2166 put_cpu();
2167 }
2168 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2169 #endif /* !CONFIG_S390 */
2170
2171 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2172 {
2173 struct pid *pid;
2174 struct task_struct *task = NULL;
2175 int ret = 0;
2176
2177 rcu_read_lock();
2178 pid = rcu_dereference(target->pid);
2179 if (pid)
2180 task = get_pid_task(pid, PIDTYPE_PID);
2181 rcu_read_unlock();
2182 if (!task)
2183 return ret;
2184 ret = yield_to(task, 1);
2185 put_task_struct(task);
2186
2187 return ret;
2188 }
2189 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2190
2191 /*
2192 * Helper that checks whether a VCPU is eligible for directed yield.
2193 * Most eligible candidate to yield is decided by following heuristics:
2194 *
2195 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2196 * (preempted lock holder), indicated by @in_spin_loop.
2197 * Set at the beiginning and cleared at the end of interception/PLE handler.
2198 *
2199 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2200 * chance last time (mostly it has become eligible now since we have probably
2201 * yielded to lockholder in last iteration. This is done by toggling
2202 * @dy_eligible each time a VCPU checked for eligibility.)
2203 *
2204 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2205 * to preempted lock-holder could result in wrong VCPU selection and CPU
2206 * burning. Giving priority for a potential lock-holder increases lock
2207 * progress.
2208 *
2209 * Since algorithm is based on heuristics, accessing another VCPU data without
2210 * locking does not harm. It may result in trying to yield to same VCPU, fail
2211 * and continue with next VCPU and so on.
2212 */
2213 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2214 {
2215 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2216 bool eligible;
2217
2218 eligible = !vcpu->spin_loop.in_spin_loop ||
2219 vcpu->spin_loop.dy_eligible;
2220
2221 if (vcpu->spin_loop.in_spin_loop)
2222 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2223
2224 return eligible;
2225 #else
2226 return true;
2227 #endif
2228 }
2229
2230 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2231 {
2232 struct kvm *kvm = me->kvm;
2233 struct kvm_vcpu *vcpu;
2234 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2235 int yielded = 0;
2236 int try = 3;
2237 int pass;
2238 int i;
2239
2240 kvm_vcpu_set_in_spin_loop(me, true);
2241 /*
2242 * We boost the priority of a VCPU that is runnable but not
2243 * currently running, because it got preempted by something
2244 * else and called schedule in __vcpu_run. Hopefully that
2245 * VCPU is holding the lock that we need and will release it.
2246 * We approximate round-robin by starting at the last boosted VCPU.
2247 */
2248 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2249 kvm_for_each_vcpu(i, vcpu, kvm) {
2250 if (!pass && i <= last_boosted_vcpu) {
2251 i = last_boosted_vcpu;
2252 continue;
2253 } else if (pass && i > last_boosted_vcpu)
2254 break;
2255 if (!ACCESS_ONCE(vcpu->preempted))
2256 continue;
2257 if (vcpu == me)
2258 continue;
2259 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2260 continue;
2261 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2262 continue;
2263
2264 yielded = kvm_vcpu_yield_to(vcpu);
2265 if (yielded > 0) {
2266 kvm->last_boosted_vcpu = i;
2267 break;
2268 } else if (yielded < 0) {
2269 try--;
2270 if (!try)
2271 break;
2272 }
2273 }
2274 }
2275 kvm_vcpu_set_in_spin_loop(me, false);
2276
2277 /* Ensure vcpu is not eligible during next spinloop */
2278 kvm_vcpu_set_dy_eligible(me, false);
2279 }
2280 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2281
2282 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2283 {
2284 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2285 struct page *page;
2286
2287 if (vmf->pgoff == 0)
2288 page = virt_to_page(vcpu->run);
2289 #ifdef CONFIG_X86
2290 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2291 page = virt_to_page(vcpu->arch.pio_data);
2292 #endif
2293 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2294 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2295 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2296 #endif
2297 else
2298 return kvm_arch_vcpu_fault(vcpu, vmf);
2299 get_page(page);
2300 vmf->page = page;
2301 return 0;
2302 }
2303
2304 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2305 .fault = kvm_vcpu_fault,
2306 };
2307
2308 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2309 {
2310 vma->vm_ops = &kvm_vcpu_vm_ops;
2311 return 0;
2312 }
2313
2314 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2315 {
2316 struct kvm_vcpu *vcpu = filp->private_data;
2317
2318 kvm_put_kvm(vcpu->kvm);
2319 return 0;
2320 }
2321
2322 static struct file_operations kvm_vcpu_fops = {
2323 .release = kvm_vcpu_release,
2324 .unlocked_ioctl = kvm_vcpu_ioctl,
2325 #ifdef CONFIG_KVM_COMPAT
2326 .compat_ioctl = kvm_vcpu_compat_ioctl,
2327 #endif
2328 .mmap = kvm_vcpu_mmap,
2329 .llseek = noop_llseek,
2330 };
2331
2332 /*
2333 * Allocates an inode for the vcpu.
2334 */
2335 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2336 {
2337 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2338 }
2339
2340 /*
2341 * Creates some virtual cpus. Good luck creating more than one.
2342 */
2343 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2344 {
2345 int r;
2346 struct kvm_vcpu *vcpu;
2347
2348 if (id >= KVM_MAX_VCPU_ID)
2349 return -EINVAL;
2350
2351 vcpu = kvm_arch_vcpu_create(kvm, id);
2352 if (IS_ERR(vcpu))
2353 return PTR_ERR(vcpu);
2354
2355 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2356
2357 r = kvm_arch_vcpu_setup(vcpu);
2358 if (r)
2359 goto vcpu_destroy;
2360
2361 mutex_lock(&kvm->lock);
2362 if (!kvm_vcpu_compatible(vcpu)) {
2363 r = -EINVAL;
2364 goto unlock_vcpu_destroy;
2365 }
2366 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2367 r = -EINVAL;
2368 goto unlock_vcpu_destroy;
2369 }
2370 if (kvm_get_vcpu_by_id(kvm, id)) {
2371 r = -EEXIST;
2372 goto unlock_vcpu_destroy;
2373 }
2374
2375 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2376
2377 /* Now it's all set up, let userspace reach it */
2378 kvm_get_kvm(kvm);
2379 r = create_vcpu_fd(vcpu);
2380 if (r < 0) {
2381 kvm_put_kvm(kvm);
2382 goto unlock_vcpu_destroy;
2383 }
2384
2385 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2386
2387 /*
2388 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2389 * before kvm->online_vcpu's incremented value.
2390 */
2391 smp_wmb();
2392 atomic_inc(&kvm->online_vcpus);
2393
2394 mutex_unlock(&kvm->lock);
2395 kvm_arch_vcpu_postcreate(vcpu);
2396 return r;
2397
2398 unlock_vcpu_destroy:
2399 mutex_unlock(&kvm->lock);
2400 vcpu_destroy:
2401 kvm_arch_vcpu_destroy(vcpu);
2402 return r;
2403 }
2404
2405 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2406 {
2407 if (sigset) {
2408 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2409 vcpu->sigset_active = 1;
2410 vcpu->sigset = *sigset;
2411 } else
2412 vcpu->sigset_active = 0;
2413 return 0;
2414 }
2415
2416 static long kvm_vcpu_ioctl(struct file *filp,
2417 unsigned int ioctl, unsigned long arg)
2418 {
2419 struct kvm_vcpu *vcpu = filp->private_data;
2420 void __user *argp = (void __user *)arg;
2421 int r;
2422 struct kvm_fpu *fpu = NULL;
2423 struct kvm_sregs *kvm_sregs = NULL;
2424
2425 if (vcpu->kvm->mm != current->mm)
2426 return -EIO;
2427
2428 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2429 return -EINVAL;
2430
2431 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2432 /*
2433 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2434 * so vcpu_load() would break it.
2435 */
2436 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2437 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2438 #endif
2439
2440
2441 r = vcpu_load(vcpu);
2442 if (r)
2443 return r;
2444 switch (ioctl) {
2445 case KVM_RUN:
2446 r = -EINVAL;
2447 if (arg)
2448 goto out;
2449 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2450 /* The thread running this VCPU changed. */
2451 struct pid *oldpid = vcpu->pid;
2452 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2453
2454 rcu_assign_pointer(vcpu->pid, newpid);
2455 if (oldpid)
2456 synchronize_rcu();
2457 put_pid(oldpid);
2458 }
2459 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2460 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2461 break;
2462 case KVM_GET_REGS: {
2463 struct kvm_regs *kvm_regs;
2464
2465 r = -ENOMEM;
2466 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2467 if (!kvm_regs)
2468 goto out;
2469 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2470 if (r)
2471 goto out_free1;
2472 r = -EFAULT;
2473 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2474 goto out_free1;
2475 r = 0;
2476 out_free1:
2477 kfree(kvm_regs);
2478 break;
2479 }
2480 case KVM_SET_REGS: {
2481 struct kvm_regs *kvm_regs;
2482
2483 r = -ENOMEM;
2484 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2485 if (IS_ERR(kvm_regs)) {
2486 r = PTR_ERR(kvm_regs);
2487 goto out;
2488 }
2489 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2490 kfree(kvm_regs);
2491 break;
2492 }
2493 case KVM_GET_SREGS: {
2494 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2495 r = -ENOMEM;
2496 if (!kvm_sregs)
2497 goto out;
2498 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2499 if (r)
2500 goto out;
2501 r = -EFAULT;
2502 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2503 goto out;
2504 r = 0;
2505 break;
2506 }
2507 case KVM_SET_SREGS: {
2508 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2509 if (IS_ERR(kvm_sregs)) {
2510 r = PTR_ERR(kvm_sregs);
2511 kvm_sregs = NULL;
2512 goto out;
2513 }
2514 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2515 break;
2516 }
2517 case KVM_GET_MP_STATE: {
2518 struct kvm_mp_state mp_state;
2519
2520 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2521 if (r)
2522 goto out;
2523 r = -EFAULT;
2524 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2525 goto out;
2526 r = 0;
2527 break;
2528 }
2529 case KVM_SET_MP_STATE: {
2530 struct kvm_mp_state mp_state;
2531
2532 r = -EFAULT;
2533 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2534 goto out;
2535 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2536 break;
2537 }
2538 case KVM_TRANSLATE: {
2539 struct kvm_translation tr;
2540
2541 r = -EFAULT;
2542 if (copy_from_user(&tr, argp, sizeof(tr)))
2543 goto out;
2544 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2545 if (r)
2546 goto out;
2547 r = -EFAULT;
2548 if (copy_to_user(argp, &tr, sizeof(tr)))
2549 goto out;
2550 r = 0;
2551 break;
2552 }
2553 case KVM_SET_GUEST_DEBUG: {
2554 struct kvm_guest_debug dbg;
2555
2556 r = -EFAULT;
2557 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2558 goto out;
2559 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2560 break;
2561 }
2562 case KVM_SET_SIGNAL_MASK: {
2563 struct kvm_signal_mask __user *sigmask_arg = argp;
2564 struct kvm_signal_mask kvm_sigmask;
2565 sigset_t sigset, *p;
2566
2567 p = NULL;
2568 if (argp) {
2569 r = -EFAULT;
2570 if (copy_from_user(&kvm_sigmask, argp,
2571 sizeof(kvm_sigmask)))
2572 goto out;
2573 r = -EINVAL;
2574 if (kvm_sigmask.len != sizeof(sigset))
2575 goto out;
2576 r = -EFAULT;
2577 if (copy_from_user(&sigset, sigmask_arg->sigset,
2578 sizeof(sigset)))
2579 goto out;
2580 p = &sigset;
2581 }
2582 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2583 break;
2584 }
2585 case KVM_GET_FPU: {
2586 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2587 r = -ENOMEM;
2588 if (!fpu)
2589 goto out;
2590 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2591 if (r)
2592 goto out;
2593 r = -EFAULT;
2594 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2595 goto out;
2596 r = 0;
2597 break;
2598 }
2599 case KVM_SET_FPU: {
2600 fpu = memdup_user(argp, sizeof(*fpu));
2601 if (IS_ERR(fpu)) {
2602 r = PTR_ERR(fpu);
2603 fpu = NULL;
2604 goto out;
2605 }
2606 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2607 break;
2608 }
2609 default:
2610 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2611 }
2612 out:
2613 vcpu_put(vcpu);
2614 kfree(fpu);
2615 kfree(kvm_sregs);
2616 return r;
2617 }
2618
2619 #ifdef CONFIG_KVM_COMPAT
2620 static long kvm_vcpu_compat_ioctl(struct file *filp,
2621 unsigned int ioctl, unsigned long arg)
2622 {
2623 struct kvm_vcpu *vcpu = filp->private_data;
2624 void __user *argp = compat_ptr(arg);
2625 int r;
2626
2627 if (vcpu->kvm->mm != current->mm)
2628 return -EIO;
2629
2630 switch (ioctl) {
2631 case KVM_SET_SIGNAL_MASK: {
2632 struct kvm_signal_mask __user *sigmask_arg = argp;
2633 struct kvm_signal_mask kvm_sigmask;
2634 compat_sigset_t csigset;
2635 sigset_t sigset;
2636
2637 if (argp) {
2638 r = -EFAULT;
2639 if (copy_from_user(&kvm_sigmask, argp,
2640 sizeof(kvm_sigmask)))
2641 goto out;
2642 r = -EINVAL;
2643 if (kvm_sigmask.len != sizeof(csigset))
2644 goto out;
2645 r = -EFAULT;
2646 if (copy_from_user(&csigset, sigmask_arg->sigset,
2647 sizeof(csigset)))
2648 goto out;
2649 sigset_from_compat(&sigset, &csigset);
2650 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2651 } else
2652 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2653 break;
2654 }
2655 default:
2656 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2657 }
2658
2659 out:
2660 return r;
2661 }
2662 #endif
2663
2664 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2665 int (*accessor)(struct kvm_device *dev,
2666 struct kvm_device_attr *attr),
2667 unsigned long arg)
2668 {
2669 struct kvm_device_attr attr;
2670
2671 if (!accessor)
2672 return -EPERM;
2673
2674 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2675 return -EFAULT;
2676
2677 return accessor(dev, &attr);
2678 }
2679
2680 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2681 unsigned long arg)
2682 {
2683 struct kvm_device *dev = filp->private_data;
2684
2685 switch (ioctl) {
2686 case KVM_SET_DEVICE_ATTR:
2687 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2688 case KVM_GET_DEVICE_ATTR:
2689 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2690 case KVM_HAS_DEVICE_ATTR:
2691 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2692 default:
2693 if (dev->ops->ioctl)
2694 return dev->ops->ioctl(dev, ioctl, arg);
2695
2696 return -ENOTTY;
2697 }
2698 }
2699
2700 static int kvm_device_release(struct inode *inode, struct file *filp)
2701 {
2702 struct kvm_device *dev = filp->private_data;
2703 struct kvm *kvm = dev->kvm;
2704
2705 kvm_put_kvm(kvm);
2706 return 0;
2707 }
2708
2709 static const struct file_operations kvm_device_fops = {
2710 .unlocked_ioctl = kvm_device_ioctl,
2711 #ifdef CONFIG_KVM_COMPAT
2712 .compat_ioctl = kvm_device_ioctl,
2713 #endif
2714 .release = kvm_device_release,
2715 };
2716
2717 struct kvm_device *kvm_device_from_filp(struct file *filp)
2718 {
2719 if (filp->f_op != &kvm_device_fops)
2720 return NULL;
2721
2722 return filp->private_data;
2723 }
2724
2725 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2726 #ifdef CONFIG_KVM_MPIC
2727 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2728 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2729 #endif
2730
2731 #ifdef CONFIG_KVM_XICS
2732 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2733 #endif
2734 };
2735
2736 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2737 {
2738 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2739 return -ENOSPC;
2740
2741 if (kvm_device_ops_table[type] != NULL)
2742 return -EEXIST;
2743
2744 kvm_device_ops_table[type] = ops;
2745 return 0;
2746 }
2747
2748 void kvm_unregister_device_ops(u32 type)
2749 {
2750 if (kvm_device_ops_table[type] != NULL)
2751 kvm_device_ops_table[type] = NULL;
2752 }
2753
2754 static int kvm_ioctl_create_device(struct kvm *kvm,
2755 struct kvm_create_device *cd)
2756 {
2757 struct kvm_device_ops *ops = NULL;
2758 struct kvm_device *dev;
2759 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2760 int ret;
2761
2762 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2763 return -ENODEV;
2764
2765 ops = kvm_device_ops_table[cd->type];
2766 if (ops == NULL)
2767 return -ENODEV;
2768
2769 if (test)
2770 return 0;
2771
2772 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2773 if (!dev)
2774 return -ENOMEM;
2775
2776 dev->ops = ops;
2777 dev->kvm = kvm;
2778
2779 ret = ops->create(dev, cd->type);
2780 if (ret < 0) {
2781 kfree(dev);
2782 return ret;
2783 }
2784
2785 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2786 if (ret < 0) {
2787 ops->destroy(dev);
2788 return ret;
2789 }
2790
2791 list_add(&dev->vm_node, &kvm->devices);
2792 kvm_get_kvm(kvm);
2793 cd->fd = ret;
2794 return 0;
2795 }
2796
2797 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2798 {
2799 switch (arg) {
2800 case KVM_CAP_USER_MEMORY:
2801 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2802 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2803 case KVM_CAP_INTERNAL_ERROR_DATA:
2804 #ifdef CONFIG_HAVE_KVM_MSI
2805 case KVM_CAP_SIGNAL_MSI:
2806 #endif
2807 #ifdef CONFIG_HAVE_KVM_IRQFD
2808 case KVM_CAP_IRQFD:
2809 case KVM_CAP_IRQFD_RESAMPLE:
2810 #endif
2811 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2812 case KVM_CAP_CHECK_EXTENSION_VM:
2813 return 1;
2814 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2815 case KVM_CAP_IRQ_ROUTING:
2816 return KVM_MAX_IRQ_ROUTES;
2817 #endif
2818 #if KVM_ADDRESS_SPACE_NUM > 1
2819 case KVM_CAP_MULTI_ADDRESS_SPACE:
2820 return KVM_ADDRESS_SPACE_NUM;
2821 #endif
2822 case KVM_CAP_MAX_VCPU_ID:
2823 return KVM_MAX_VCPU_ID;
2824 default:
2825 break;
2826 }
2827 return kvm_vm_ioctl_check_extension(kvm, arg);
2828 }
2829
2830 static long kvm_vm_ioctl(struct file *filp,
2831 unsigned int ioctl, unsigned long arg)
2832 {
2833 struct kvm *kvm = filp->private_data;
2834 void __user *argp = (void __user *)arg;
2835 int r;
2836
2837 if (kvm->mm != current->mm)
2838 return -EIO;
2839 switch (ioctl) {
2840 case KVM_CREATE_VCPU:
2841 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2842 break;
2843 case KVM_SET_USER_MEMORY_REGION: {
2844 struct kvm_userspace_memory_region kvm_userspace_mem;
2845
2846 r = -EFAULT;
2847 if (copy_from_user(&kvm_userspace_mem, argp,
2848 sizeof(kvm_userspace_mem)))
2849 goto out;
2850
2851 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2852 break;
2853 }
2854 case KVM_GET_DIRTY_LOG: {
2855 struct kvm_dirty_log log;
2856
2857 r = -EFAULT;
2858 if (copy_from_user(&log, argp, sizeof(log)))
2859 goto out;
2860 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2861 break;
2862 }
2863 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2864 case KVM_REGISTER_COALESCED_MMIO: {
2865 struct kvm_coalesced_mmio_zone zone;
2866
2867 r = -EFAULT;
2868 if (copy_from_user(&zone, argp, sizeof(zone)))
2869 goto out;
2870 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2871 break;
2872 }
2873 case KVM_UNREGISTER_COALESCED_MMIO: {
2874 struct kvm_coalesced_mmio_zone zone;
2875
2876 r = -EFAULT;
2877 if (copy_from_user(&zone, argp, sizeof(zone)))
2878 goto out;
2879 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2880 break;
2881 }
2882 #endif
2883 case KVM_IRQFD: {
2884 struct kvm_irqfd data;
2885
2886 r = -EFAULT;
2887 if (copy_from_user(&data, argp, sizeof(data)))
2888 goto out;
2889 r = kvm_irqfd(kvm, &data);
2890 break;
2891 }
2892 case KVM_IOEVENTFD: {
2893 struct kvm_ioeventfd data;
2894
2895 r = -EFAULT;
2896 if (copy_from_user(&data, argp, sizeof(data)))
2897 goto out;
2898 r = kvm_ioeventfd(kvm, &data);
2899 break;
2900 }
2901 #ifdef CONFIG_HAVE_KVM_MSI
2902 case KVM_SIGNAL_MSI: {
2903 struct kvm_msi msi;
2904
2905 r = -EFAULT;
2906 if (copy_from_user(&msi, argp, sizeof(msi)))
2907 goto out;
2908 r = kvm_send_userspace_msi(kvm, &msi);
2909 break;
2910 }
2911 #endif
2912 #ifdef __KVM_HAVE_IRQ_LINE
2913 case KVM_IRQ_LINE_STATUS:
2914 case KVM_IRQ_LINE: {
2915 struct kvm_irq_level irq_event;
2916
2917 r = -EFAULT;
2918 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2919 goto out;
2920
2921 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2922 ioctl == KVM_IRQ_LINE_STATUS);
2923 if (r)
2924 goto out;
2925
2926 r = -EFAULT;
2927 if (ioctl == KVM_IRQ_LINE_STATUS) {
2928 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2929 goto out;
2930 }
2931
2932 r = 0;
2933 break;
2934 }
2935 #endif
2936 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2937 case KVM_SET_GSI_ROUTING: {
2938 struct kvm_irq_routing routing;
2939 struct kvm_irq_routing __user *urouting;
2940 struct kvm_irq_routing_entry *entries = NULL;
2941
2942 r = -EFAULT;
2943 if (copy_from_user(&routing, argp, sizeof(routing)))
2944 goto out;
2945 r = -EINVAL;
2946 if (routing.nr > KVM_MAX_IRQ_ROUTES)
2947 goto out;
2948 if (routing.flags)
2949 goto out;
2950 if (routing.nr) {
2951 r = -ENOMEM;
2952 entries = vmalloc(routing.nr * sizeof(*entries));
2953 if (!entries)
2954 goto out;
2955 r = -EFAULT;
2956 urouting = argp;
2957 if (copy_from_user(entries, urouting->entries,
2958 routing.nr * sizeof(*entries)))
2959 goto out_free_irq_routing;
2960 }
2961 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2962 routing.flags);
2963 out_free_irq_routing:
2964 vfree(entries);
2965 break;
2966 }
2967 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2968 case KVM_CREATE_DEVICE: {
2969 struct kvm_create_device cd;
2970
2971 r = -EFAULT;
2972 if (copy_from_user(&cd, argp, sizeof(cd)))
2973 goto out;
2974
2975 r = kvm_ioctl_create_device(kvm, &cd);
2976 if (r)
2977 goto out;
2978
2979 r = -EFAULT;
2980 if (copy_to_user(argp, &cd, sizeof(cd)))
2981 goto out;
2982
2983 r = 0;
2984 break;
2985 }
2986 case KVM_CHECK_EXTENSION:
2987 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2988 break;
2989 default:
2990 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2991 }
2992 out:
2993 return r;
2994 }
2995
2996 #ifdef CONFIG_KVM_COMPAT
2997 struct compat_kvm_dirty_log {
2998 __u32 slot;
2999 __u32 padding1;
3000 union {
3001 compat_uptr_t dirty_bitmap; /* one bit per page */
3002 __u64 padding2;
3003 };
3004 };
3005
3006 static long kvm_vm_compat_ioctl(struct file *filp,
3007 unsigned int ioctl, unsigned long arg)
3008 {
3009 struct kvm *kvm = filp->private_data;
3010 int r;
3011
3012 if (kvm->mm != current->mm)
3013 return -EIO;
3014 switch (ioctl) {
3015 case KVM_GET_DIRTY_LOG: {
3016 struct compat_kvm_dirty_log compat_log;
3017 struct kvm_dirty_log log;
3018
3019 r = -EFAULT;
3020 if (copy_from_user(&compat_log, (void __user *)arg,
3021 sizeof(compat_log)))
3022 goto out;
3023 log.slot = compat_log.slot;
3024 log.padding1 = compat_log.padding1;
3025 log.padding2 = compat_log.padding2;
3026 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3027
3028 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3029 break;
3030 }
3031 default:
3032 r = kvm_vm_ioctl(filp, ioctl, arg);
3033 }
3034
3035 out:
3036 return r;
3037 }
3038 #endif
3039
3040 static struct file_operations kvm_vm_fops = {
3041 .release = kvm_vm_release,
3042 .unlocked_ioctl = kvm_vm_ioctl,
3043 #ifdef CONFIG_KVM_COMPAT
3044 .compat_ioctl = kvm_vm_compat_ioctl,
3045 #endif
3046 .llseek = noop_llseek,
3047 };
3048
3049 static int kvm_dev_ioctl_create_vm(unsigned long type)
3050 {
3051 int r;
3052 struct kvm *kvm;
3053 struct file *file;
3054
3055 kvm = kvm_create_vm(type);
3056 if (IS_ERR(kvm))
3057 return PTR_ERR(kvm);
3058 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3059 r = kvm_coalesced_mmio_init(kvm);
3060 if (r < 0) {
3061 kvm_put_kvm(kvm);
3062 return r;
3063 }
3064 #endif
3065 r = get_unused_fd_flags(O_CLOEXEC);
3066 if (r < 0) {
3067 kvm_put_kvm(kvm);
3068 return r;
3069 }
3070 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3071 if (IS_ERR(file)) {
3072 put_unused_fd(r);
3073 kvm_put_kvm(kvm);
3074 return PTR_ERR(file);
3075 }
3076
3077 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3078 put_unused_fd(r);
3079 fput(file);
3080 return -ENOMEM;
3081 }
3082
3083 fd_install(r, file);
3084 return r;
3085 }
3086
3087 static long kvm_dev_ioctl(struct file *filp,
3088 unsigned int ioctl, unsigned long arg)
3089 {
3090 long r = -EINVAL;
3091
3092 switch (ioctl) {
3093 case KVM_GET_API_VERSION:
3094 if (arg)
3095 goto out;
3096 r = KVM_API_VERSION;
3097 break;
3098 case KVM_CREATE_VM:
3099 r = kvm_dev_ioctl_create_vm(arg);
3100 break;
3101 case KVM_CHECK_EXTENSION:
3102 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3103 break;
3104 case KVM_GET_VCPU_MMAP_SIZE:
3105 if (arg)
3106 goto out;
3107 r = PAGE_SIZE; /* struct kvm_run */
3108 #ifdef CONFIG_X86
3109 r += PAGE_SIZE; /* pio data page */
3110 #endif
3111 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3112 r += PAGE_SIZE; /* coalesced mmio ring page */
3113 #endif
3114 break;
3115 case KVM_TRACE_ENABLE:
3116 case KVM_TRACE_PAUSE:
3117 case KVM_TRACE_DISABLE:
3118 r = -EOPNOTSUPP;
3119 break;
3120 default:
3121 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3122 }
3123 out:
3124 return r;
3125 }
3126
3127 static struct file_operations kvm_chardev_ops = {
3128 .unlocked_ioctl = kvm_dev_ioctl,
3129 .compat_ioctl = kvm_dev_ioctl,
3130 .llseek = noop_llseek,
3131 };
3132
3133 static struct miscdevice kvm_dev = {
3134 KVM_MINOR,
3135 "kvm",
3136 &kvm_chardev_ops,
3137 };
3138
3139 static void hardware_enable_nolock(void *junk)
3140 {
3141 int cpu = raw_smp_processor_id();
3142 int r;
3143
3144 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3145 return;
3146
3147 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3148
3149 r = kvm_arch_hardware_enable();
3150
3151 if (r) {
3152 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3153 atomic_inc(&hardware_enable_failed);
3154 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3155 }
3156 }
3157
3158 static int kvm_starting_cpu(unsigned int cpu)
3159 {
3160 raw_spin_lock(&kvm_count_lock);
3161 if (kvm_usage_count)
3162 hardware_enable_nolock(NULL);
3163 raw_spin_unlock(&kvm_count_lock);
3164 return 0;
3165 }
3166
3167 static void hardware_disable_nolock(void *junk)
3168 {
3169 int cpu = raw_smp_processor_id();
3170
3171 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3172 return;
3173 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3174 kvm_arch_hardware_disable();
3175 }
3176
3177 static int kvm_dying_cpu(unsigned int cpu)
3178 {
3179 raw_spin_lock(&kvm_count_lock);
3180 if (kvm_usage_count)
3181 hardware_disable_nolock(NULL);
3182 raw_spin_unlock(&kvm_count_lock);
3183 return 0;
3184 }
3185
3186 static void hardware_disable_all_nolock(void)
3187 {
3188 BUG_ON(!kvm_usage_count);
3189
3190 kvm_usage_count--;
3191 if (!kvm_usage_count)
3192 on_each_cpu(hardware_disable_nolock, NULL, 1);
3193 }
3194
3195 static void hardware_disable_all(void)
3196 {
3197 raw_spin_lock(&kvm_count_lock);
3198 hardware_disable_all_nolock();
3199 raw_spin_unlock(&kvm_count_lock);
3200 }
3201
3202 static int hardware_enable_all(void)
3203 {
3204 int r = 0;
3205
3206 raw_spin_lock(&kvm_count_lock);
3207
3208 kvm_usage_count++;
3209 if (kvm_usage_count == 1) {
3210 atomic_set(&hardware_enable_failed, 0);
3211 on_each_cpu(hardware_enable_nolock, NULL, 1);
3212
3213 if (atomic_read(&hardware_enable_failed)) {
3214 hardware_disable_all_nolock();
3215 r = -EBUSY;
3216 }
3217 }
3218
3219 raw_spin_unlock(&kvm_count_lock);
3220
3221 return r;
3222 }
3223
3224 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3225 void *v)
3226 {
3227 /*
3228 * Some (well, at least mine) BIOSes hang on reboot if
3229 * in vmx root mode.
3230 *
3231 * And Intel TXT required VMX off for all cpu when system shutdown.
3232 */
3233 pr_info("kvm: exiting hardware virtualization\n");
3234 kvm_rebooting = true;
3235 on_each_cpu(hardware_disable_nolock, NULL, 1);
3236 return NOTIFY_OK;
3237 }
3238
3239 static struct notifier_block kvm_reboot_notifier = {
3240 .notifier_call = kvm_reboot,
3241 .priority = 0,
3242 };
3243
3244 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3245 {
3246 int i;
3247
3248 for (i = 0; i < bus->dev_count; i++) {
3249 struct kvm_io_device *pos = bus->range[i].dev;
3250
3251 kvm_iodevice_destructor(pos);
3252 }
3253 kfree(bus);
3254 }
3255
3256 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3257 const struct kvm_io_range *r2)
3258 {
3259 gpa_t addr1 = r1->addr;
3260 gpa_t addr2 = r2->addr;
3261
3262 if (addr1 < addr2)
3263 return -1;
3264
3265 /* If r2->len == 0, match the exact address. If r2->len != 0,
3266 * accept any overlapping write. Any order is acceptable for
3267 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3268 * we process all of them.
3269 */
3270 if (r2->len) {
3271 addr1 += r1->len;
3272 addr2 += r2->len;
3273 }
3274
3275 if (addr1 > addr2)
3276 return 1;
3277
3278 return 0;
3279 }
3280
3281 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3282 {
3283 return kvm_io_bus_cmp(p1, p2);
3284 }
3285
3286 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3287 gpa_t addr, int len)
3288 {
3289 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3290 .addr = addr,
3291 .len = len,
3292 .dev = dev,
3293 };
3294
3295 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3296 kvm_io_bus_sort_cmp, NULL);
3297
3298 return 0;
3299 }
3300
3301 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3302 gpa_t addr, int len)
3303 {
3304 struct kvm_io_range *range, key;
3305 int off;
3306
3307 key = (struct kvm_io_range) {
3308 .addr = addr,
3309 .len = len,
3310 };
3311
3312 range = bsearch(&key, bus->range, bus->dev_count,
3313 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3314 if (range == NULL)
3315 return -ENOENT;
3316
3317 off = range - bus->range;
3318
3319 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3320 off--;
3321
3322 return off;
3323 }
3324
3325 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3326 struct kvm_io_range *range, const void *val)
3327 {
3328 int idx;
3329
3330 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3331 if (idx < 0)
3332 return -EOPNOTSUPP;
3333
3334 while (idx < bus->dev_count &&
3335 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3336 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3337 range->len, val))
3338 return idx;
3339 idx++;
3340 }
3341
3342 return -EOPNOTSUPP;
3343 }
3344
3345 /* kvm_io_bus_write - called under kvm->slots_lock */
3346 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3347 int len, const void *val)
3348 {
3349 struct kvm_io_bus *bus;
3350 struct kvm_io_range range;
3351 int r;
3352
3353 range = (struct kvm_io_range) {
3354 .addr = addr,
3355 .len = len,
3356 };
3357
3358 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3359 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3360 return r < 0 ? r : 0;
3361 }
3362
3363 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3364 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3365 gpa_t addr, int len, const void *val, long cookie)
3366 {
3367 struct kvm_io_bus *bus;
3368 struct kvm_io_range range;
3369
3370 range = (struct kvm_io_range) {
3371 .addr = addr,
3372 .len = len,
3373 };
3374
3375 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3376
3377 /* First try the device referenced by cookie. */
3378 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3379 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3380 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3381 val))
3382 return cookie;
3383
3384 /*
3385 * cookie contained garbage; fall back to search and return the
3386 * correct cookie value.
3387 */
3388 return __kvm_io_bus_write(vcpu, bus, &range, val);
3389 }
3390
3391 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3392 struct kvm_io_range *range, void *val)
3393 {
3394 int idx;
3395
3396 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3397 if (idx < 0)
3398 return -EOPNOTSUPP;
3399
3400 while (idx < bus->dev_count &&
3401 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3402 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3403 range->len, val))
3404 return idx;
3405 idx++;
3406 }
3407
3408 return -EOPNOTSUPP;
3409 }
3410 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3411
3412 /* kvm_io_bus_read - called under kvm->slots_lock */
3413 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3414 int len, void *val)
3415 {
3416 struct kvm_io_bus *bus;
3417 struct kvm_io_range range;
3418 int r;
3419
3420 range = (struct kvm_io_range) {
3421 .addr = addr,
3422 .len = len,
3423 };
3424
3425 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3426 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3427 return r < 0 ? r : 0;
3428 }
3429
3430
3431 /* Caller must hold slots_lock. */
3432 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3433 int len, struct kvm_io_device *dev)
3434 {
3435 struct kvm_io_bus *new_bus, *bus;
3436
3437 bus = kvm->buses[bus_idx];
3438 /* exclude ioeventfd which is limited by maximum fd */
3439 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3440 return -ENOSPC;
3441
3442 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3443 sizeof(struct kvm_io_range)), GFP_KERNEL);
3444 if (!new_bus)
3445 return -ENOMEM;
3446 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3447 sizeof(struct kvm_io_range)));
3448 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3449 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3450 synchronize_srcu_expedited(&kvm->srcu);
3451 kfree(bus);
3452
3453 return 0;
3454 }
3455
3456 /* Caller must hold slots_lock. */
3457 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3458 struct kvm_io_device *dev)
3459 {
3460 int i, r;
3461 struct kvm_io_bus *new_bus, *bus;
3462
3463 bus = kvm->buses[bus_idx];
3464 r = -ENOENT;
3465 for (i = 0; i < bus->dev_count; i++)
3466 if (bus->range[i].dev == dev) {
3467 r = 0;
3468 break;
3469 }
3470
3471 if (r)
3472 return r;
3473
3474 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3475 sizeof(struct kvm_io_range)), GFP_KERNEL);
3476 if (!new_bus)
3477 return -ENOMEM;
3478
3479 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3480 new_bus->dev_count--;
3481 memcpy(new_bus->range + i, bus->range + i + 1,
3482 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3483
3484 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3485 synchronize_srcu_expedited(&kvm->srcu);
3486 kfree(bus);
3487 return r;
3488 }
3489
3490 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3491 int (*get)(void *, u64 *), int (*set)(void *, u64),
3492 const char *fmt)
3493 {
3494 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3495 inode->i_private;
3496
3497 /* The debugfs files are a reference to the kvm struct which
3498 * is still valid when kvm_destroy_vm is called.
3499 * To avoid the race between open and the removal of the debugfs
3500 * directory we test against the users count.
3501 */
3502 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3503 return -ENOENT;
3504
3505 if (simple_attr_open(inode, file, get, set, fmt)) {
3506 kvm_put_kvm(stat_data->kvm);
3507 return -ENOMEM;
3508 }
3509
3510 return 0;
3511 }
3512
3513 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3514 {
3515 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3516 inode->i_private;
3517
3518 simple_attr_release(inode, file);
3519 kvm_put_kvm(stat_data->kvm);
3520
3521 return 0;
3522 }
3523
3524 static int vm_stat_get_per_vm(void *data, u64 *val)
3525 {
3526 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3527
3528 *val = *(u32 *)((void *)stat_data->kvm + stat_data->offset);
3529
3530 return 0;
3531 }
3532
3533 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3534 {
3535 __simple_attr_check_format("%llu\n", 0ull);
3536 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3537 NULL, "%llu\n");
3538 }
3539
3540 static const struct file_operations vm_stat_get_per_vm_fops = {
3541 .owner = THIS_MODULE,
3542 .open = vm_stat_get_per_vm_open,
3543 .release = kvm_debugfs_release,
3544 .read = simple_attr_read,
3545 .write = simple_attr_write,
3546 .llseek = generic_file_llseek,
3547 };
3548
3549 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3550 {
3551 int i;
3552 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3553 struct kvm_vcpu *vcpu;
3554
3555 *val = 0;
3556
3557 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3558 *val += *(u32 *)((void *)vcpu + stat_data->offset);
3559
3560 return 0;
3561 }
3562
3563 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3564 {
3565 __simple_attr_check_format("%llu\n", 0ull);
3566 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3567 NULL, "%llu\n");
3568 }
3569
3570 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3571 .owner = THIS_MODULE,
3572 .open = vcpu_stat_get_per_vm_open,
3573 .release = kvm_debugfs_release,
3574 .read = simple_attr_read,
3575 .write = simple_attr_write,
3576 .llseek = generic_file_llseek,
3577 };
3578
3579 static const struct file_operations *stat_fops_per_vm[] = {
3580 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3581 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3582 };
3583
3584 static int vm_stat_get(void *_offset, u64 *val)
3585 {
3586 unsigned offset = (long)_offset;
3587 struct kvm *kvm;
3588 struct kvm_stat_data stat_tmp = {.offset = offset};
3589 u64 tmp_val;
3590
3591 *val = 0;
3592 spin_lock(&kvm_lock);
3593 list_for_each_entry(kvm, &vm_list, vm_list) {
3594 stat_tmp.kvm = kvm;
3595 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3596 *val += tmp_val;
3597 }
3598 spin_unlock(&kvm_lock);
3599 return 0;
3600 }
3601
3602 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3603
3604 static int vcpu_stat_get(void *_offset, u64 *val)
3605 {
3606 unsigned offset = (long)_offset;
3607 struct kvm *kvm;
3608 struct kvm_stat_data stat_tmp = {.offset = offset};
3609 u64 tmp_val;
3610
3611 *val = 0;
3612 spin_lock(&kvm_lock);
3613 list_for_each_entry(kvm, &vm_list, vm_list) {
3614 stat_tmp.kvm = kvm;
3615 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3616 *val += tmp_val;
3617 }
3618 spin_unlock(&kvm_lock);
3619 return 0;
3620 }
3621
3622 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3623
3624 static const struct file_operations *stat_fops[] = {
3625 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3626 [KVM_STAT_VM] = &vm_stat_fops,
3627 };
3628
3629 static int kvm_init_debug(void)
3630 {
3631 int r = -EEXIST;
3632 struct kvm_stats_debugfs_item *p;
3633
3634 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3635 if (kvm_debugfs_dir == NULL)
3636 goto out;
3637
3638 kvm_debugfs_num_entries = 0;
3639 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3640 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3641 (void *)(long)p->offset,
3642 stat_fops[p->kind]))
3643 goto out_dir;
3644 }
3645
3646 return 0;
3647
3648 out_dir:
3649 debugfs_remove_recursive(kvm_debugfs_dir);
3650 out:
3651 return r;
3652 }
3653
3654 static int kvm_suspend(void)
3655 {
3656 if (kvm_usage_count)
3657 hardware_disable_nolock(NULL);
3658 return 0;
3659 }
3660
3661 static void kvm_resume(void)
3662 {
3663 if (kvm_usage_count) {
3664 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3665 hardware_enable_nolock(NULL);
3666 }
3667 }
3668
3669 static struct syscore_ops kvm_syscore_ops = {
3670 .suspend = kvm_suspend,
3671 .resume = kvm_resume,
3672 };
3673
3674 static inline
3675 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3676 {
3677 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3678 }
3679
3680 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3681 {
3682 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3683
3684 if (vcpu->preempted)
3685 vcpu->preempted = false;
3686
3687 kvm_arch_sched_in(vcpu, cpu);
3688
3689 kvm_arch_vcpu_load(vcpu, cpu);
3690 }
3691
3692 static void kvm_sched_out(struct preempt_notifier *pn,
3693 struct task_struct *next)
3694 {
3695 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3696
3697 if (current->state == TASK_RUNNING)
3698 vcpu->preempted = true;
3699 kvm_arch_vcpu_put(vcpu);
3700 }
3701
3702 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3703 struct module *module)
3704 {
3705 int r;
3706 int cpu;
3707
3708 r = kvm_arch_init(opaque);
3709 if (r)
3710 goto out_fail;
3711
3712 /*
3713 * kvm_arch_init makes sure there's at most one caller
3714 * for architectures that support multiple implementations,
3715 * like intel and amd on x86.
3716 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3717 * conflicts in case kvm is already setup for another implementation.
3718 */
3719 r = kvm_irqfd_init();
3720 if (r)
3721 goto out_irqfd;
3722
3723 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3724 r = -ENOMEM;
3725 goto out_free_0;
3726 }
3727
3728 r = kvm_arch_hardware_setup();
3729 if (r < 0)
3730 goto out_free_0a;
3731
3732 for_each_online_cpu(cpu) {
3733 smp_call_function_single(cpu,
3734 kvm_arch_check_processor_compat,
3735 &r, 1);
3736 if (r < 0)
3737 goto out_free_1;
3738 }
3739
3740 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3741 kvm_starting_cpu, kvm_dying_cpu);
3742 if (r)
3743 goto out_free_2;
3744 register_reboot_notifier(&kvm_reboot_notifier);
3745
3746 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3747 if (!vcpu_align)
3748 vcpu_align = __alignof__(struct kvm_vcpu);
3749 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3750 0, NULL);
3751 if (!kvm_vcpu_cache) {
3752 r = -ENOMEM;
3753 goto out_free_3;
3754 }
3755
3756 r = kvm_async_pf_init();
3757 if (r)
3758 goto out_free;
3759
3760 kvm_chardev_ops.owner = module;
3761 kvm_vm_fops.owner = module;
3762 kvm_vcpu_fops.owner = module;
3763
3764 r = misc_register(&kvm_dev);
3765 if (r) {
3766 pr_err("kvm: misc device register failed\n");
3767 goto out_unreg;
3768 }
3769
3770 register_syscore_ops(&kvm_syscore_ops);
3771
3772 kvm_preempt_ops.sched_in = kvm_sched_in;
3773 kvm_preempt_ops.sched_out = kvm_sched_out;
3774
3775 r = kvm_init_debug();
3776 if (r) {
3777 pr_err("kvm: create debugfs files failed\n");
3778 goto out_undebugfs;
3779 }
3780
3781 r = kvm_vfio_ops_init();
3782 WARN_ON(r);
3783
3784 return 0;
3785
3786 out_undebugfs:
3787 unregister_syscore_ops(&kvm_syscore_ops);
3788 misc_deregister(&kvm_dev);
3789 out_unreg:
3790 kvm_async_pf_deinit();
3791 out_free:
3792 kmem_cache_destroy(kvm_vcpu_cache);
3793 out_free_3:
3794 unregister_reboot_notifier(&kvm_reboot_notifier);
3795 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3796 out_free_2:
3797 out_free_1:
3798 kvm_arch_hardware_unsetup();
3799 out_free_0a:
3800 free_cpumask_var(cpus_hardware_enabled);
3801 out_free_0:
3802 kvm_irqfd_exit();
3803 out_irqfd:
3804 kvm_arch_exit();
3805 out_fail:
3806 return r;
3807 }
3808 EXPORT_SYMBOL_GPL(kvm_init);
3809
3810 void kvm_exit(void)
3811 {
3812 debugfs_remove_recursive(kvm_debugfs_dir);
3813 misc_deregister(&kvm_dev);
3814 kmem_cache_destroy(kvm_vcpu_cache);
3815 kvm_async_pf_deinit();
3816 unregister_syscore_ops(&kvm_syscore_ops);
3817 unregister_reboot_notifier(&kvm_reboot_notifier);
3818 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3819 on_each_cpu(hardware_disable_nolock, NULL, 1);
3820 kvm_arch_hardware_unsetup();
3821 kvm_arch_exit();
3822 kvm_irqfd_exit();
3823 free_cpumask_var(cpus_hardware_enabled);
3824 kvm_vfio_ops_exit();
3825 }
3826 EXPORT_SYMBOL_GPL(kvm_exit);