]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - virt/kvm/kvm_main.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6 into for-linus
[mirror_ubuntu-jammy-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43
44 #include <asm/processor.h>
45 #include <asm/io.h>
46 #include <asm/uaccess.h>
47 #include <asm/pgtable.h>
48
49 MODULE_AUTHOR("Qumranet");
50 MODULE_LICENSE("GPL");
51
52 DEFINE_SPINLOCK(kvm_lock);
53 LIST_HEAD(vm_list);
54
55 static cpumask_t cpus_hardware_enabled;
56
57 struct kmem_cache *kvm_vcpu_cache;
58 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
59
60 static __read_mostly struct preempt_ops kvm_preempt_ops;
61
62 static struct dentry *debugfs_dir;
63
64 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
65 unsigned long arg);
66
67 static inline int valid_vcpu(int n)
68 {
69 return likely(n >= 0 && n < KVM_MAX_VCPUS);
70 }
71
72 /*
73 * Switches to specified vcpu, until a matching vcpu_put()
74 */
75 void vcpu_load(struct kvm_vcpu *vcpu)
76 {
77 int cpu;
78
79 mutex_lock(&vcpu->mutex);
80 cpu = get_cpu();
81 preempt_notifier_register(&vcpu->preempt_notifier);
82 kvm_arch_vcpu_load(vcpu, cpu);
83 put_cpu();
84 }
85
86 void vcpu_put(struct kvm_vcpu *vcpu)
87 {
88 preempt_disable();
89 kvm_arch_vcpu_put(vcpu);
90 preempt_notifier_unregister(&vcpu->preempt_notifier);
91 preempt_enable();
92 mutex_unlock(&vcpu->mutex);
93 }
94
95 static void ack_flush(void *_completed)
96 {
97 }
98
99 void kvm_flush_remote_tlbs(struct kvm *kvm)
100 {
101 int i, cpu;
102 cpumask_t cpus;
103 struct kvm_vcpu *vcpu;
104
105 cpus_clear(cpus);
106 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
107 vcpu = kvm->vcpus[i];
108 if (!vcpu)
109 continue;
110 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
111 continue;
112 cpu = vcpu->cpu;
113 if (cpu != -1 && cpu != raw_smp_processor_id())
114 cpu_set(cpu, cpus);
115 }
116 if (cpus_empty(cpus))
117 return;
118 ++kvm->stat.remote_tlb_flush;
119 smp_call_function_mask(cpus, ack_flush, NULL, 1);
120 }
121
122 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
123 {
124 struct page *page;
125 int r;
126
127 mutex_init(&vcpu->mutex);
128 vcpu->cpu = -1;
129 vcpu->kvm = kvm;
130 vcpu->vcpu_id = id;
131 init_waitqueue_head(&vcpu->wq);
132
133 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
134 if (!page) {
135 r = -ENOMEM;
136 goto fail;
137 }
138 vcpu->run = page_address(page);
139
140 r = kvm_arch_vcpu_init(vcpu);
141 if (r < 0)
142 goto fail_free_run;
143 return 0;
144
145 fail_free_run:
146 free_page((unsigned long)vcpu->run);
147 fail:
148 return r;
149 }
150 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
151
152 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
153 {
154 kvm_arch_vcpu_uninit(vcpu);
155 free_page((unsigned long)vcpu->run);
156 }
157 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
158
159 static struct kvm *kvm_create_vm(void)
160 {
161 struct kvm *kvm = kvm_arch_create_vm();
162
163 if (IS_ERR(kvm))
164 goto out;
165
166 kvm->mm = current->mm;
167 atomic_inc(&kvm->mm->mm_count);
168 spin_lock_init(&kvm->mmu_lock);
169 kvm_io_bus_init(&kvm->pio_bus);
170 mutex_init(&kvm->lock);
171 kvm_io_bus_init(&kvm->mmio_bus);
172 spin_lock(&kvm_lock);
173 list_add(&kvm->vm_list, &vm_list);
174 spin_unlock(&kvm_lock);
175 out:
176 return kvm;
177 }
178
179 /*
180 * Free any memory in @free but not in @dont.
181 */
182 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
183 struct kvm_memory_slot *dont)
184 {
185 if (!dont || free->rmap != dont->rmap)
186 vfree(free->rmap);
187
188 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
189 vfree(free->dirty_bitmap);
190
191 free->npages = 0;
192 free->dirty_bitmap = NULL;
193 free->rmap = NULL;
194 }
195
196 void kvm_free_physmem(struct kvm *kvm)
197 {
198 int i;
199
200 for (i = 0; i < kvm->nmemslots; ++i)
201 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
202 }
203
204 static void kvm_destroy_vm(struct kvm *kvm)
205 {
206 struct mm_struct *mm = kvm->mm;
207
208 spin_lock(&kvm_lock);
209 list_del(&kvm->vm_list);
210 spin_unlock(&kvm_lock);
211 kvm_io_bus_destroy(&kvm->pio_bus);
212 kvm_io_bus_destroy(&kvm->mmio_bus);
213 kvm_arch_destroy_vm(kvm);
214 mmdrop(mm);
215 }
216
217 static int kvm_vm_release(struct inode *inode, struct file *filp)
218 {
219 struct kvm *kvm = filp->private_data;
220
221 kvm_destroy_vm(kvm);
222 return 0;
223 }
224
225 /*
226 * Allocate some memory and give it an address in the guest physical address
227 * space.
228 *
229 * Discontiguous memory is allowed, mostly for framebuffers.
230 *
231 * Must be called holding mmap_sem for write.
232 */
233 int __kvm_set_memory_region(struct kvm *kvm,
234 struct kvm_userspace_memory_region *mem,
235 int user_alloc)
236 {
237 int r;
238 gfn_t base_gfn;
239 unsigned long npages;
240 unsigned long i;
241 struct kvm_memory_slot *memslot;
242 struct kvm_memory_slot old, new;
243
244 r = -EINVAL;
245 /* General sanity checks */
246 if (mem->memory_size & (PAGE_SIZE - 1))
247 goto out;
248 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
249 goto out;
250 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
251 goto out;
252 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
253 goto out;
254
255 memslot = &kvm->memslots[mem->slot];
256 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
257 npages = mem->memory_size >> PAGE_SHIFT;
258
259 if (!npages)
260 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
261
262 new = old = *memslot;
263
264 new.base_gfn = base_gfn;
265 new.npages = npages;
266 new.flags = mem->flags;
267
268 /* Disallow changing a memory slot's size. */
269 r = -EINVAL;
270 if (npages && old.npages && npages != old.npages)
271 goto out_free;
272
273 /* Check for overlaps */
274 r = -EEXIST;
275 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
276 struct kvm_memory_slot *s = &kvm->memslots[i];
277
278 if (s == memslot)
279 continue;
280 if (!((base_gfn + npages <= s->base_gfn) ||
281 (base_gfn >= s->base_gfn + s->npages)))
282 goto out_free;
283 }
284
285 /* Free page dirty bitmap if unneeded */
286 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
287 new.dirty_bitmap = NULL;
288
289 r = -ENOMEM;
290
291 /* Allocate if a slot is being created */
292 if (npages && !new.rmap) {
293 new.rmap = vmalloc(npages * sizeof(struct page *));
294
295 if (!new.rmap)
296 goto out_free;
297
298 memset(new.rmap, 0, npages * sizeof(*new.rmap));
299
300 new.user_alloc = user_alloc;
301 new.userspace_addr = mem->userspace_addr;
302 }
303
304 /* Allocate page dirty bitmap if needed */
305 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
306 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
307
308 new.dirty_bitmap = vmalloc(dirty_bytes);
309 if (!new.dirty_bitmap)
310 goto out_free;
311 memset(new.dirty_bitmap, 0, dirty_bytes);
312 }
313
314 if (mem->slot >= kvm->nmemslots)
315 kvm->nmemslots = mem->slot + 1;
316
317 *memslot = new;
318
319 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
320 if (r) {
321 *memslot = old;
322 goto out_free;
323 }
324
325 kvm_free_physmem_slot(&old, &new);
326 return 0;
327
328 out_free:
329 kvm_free_physmem_slot(&new, &old);
330 out:
331 return r;
332
333 }
334 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
335
336 int kvm_set_memory_region(struct kvm *kvm,
337 struct kvm_userspace_memory_region *mem,
338 int user_alloc)
339 {
340 int r;
341
342 down_write(&current->mm->mmap_sem);
343 r = __kvm_set_memory_region(kvm, mem, user_alloc);
344 up_write(&current->mm->mmap_sem);
345 return r;
346 }
347 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
348
349 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
350 struct
351 kvm_userspace_memory_region *mem,
352 int user_alloc)
353 {
354 if (mem->slot >= KVM_MEMORY_SLOTS)
355 return -EINVAL;
356 return kvm_set_memory_region(kvm, mem, user_alloc);
357 }
358
359 int kvm_get_dirty_log(struct kvm *kvm,
360 struct kvm_dirty_log *log, int *is_dirty)
361 {
362 struct kvm_memory_slot *memslot;
363 int r, i;
364 int n;
365 unsigned long any = 0;
366
367 r = -EINVAL;
368 if (log->slot >= KVM_MEMORY_SLOTS)
369 goto out;
370
371 memslot = &kvm->memslots[log->slot];
372 r = -ENOENT;
373 if (!memslot->dirty_bitmap)
374 goto out;
375
376 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
377
378 for (i = 0; !any && i < n/sizeof(long); ++i)
379 any = memslot->dirty_bitmap[i];
380
381 r = -EFAULT;
382 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
383 goto out;
384
385 if (any)
386 *is_dirty = 1;
387
388 r = 0;
389 out:
390 return r;
391 }
392
393 int is_error_page(struct page *page)
394 {
395 return page == bad_page;
396 }
397 EXPORT_SYMBOL_GPL(is_error_page);
398
399 static inline unsigned long bad_hva(void)
400 {
401 return PAGE_OFFSET;
402 }
403
404 int kvm_is_error_hva(unsigned long addr)
405 {
406 return addr == bad_hva();
407 }
408 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
409
410 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
411 {
412 int i;
413
414 for (i = 0; i < kvm->nmemslots; ++i) {
415 struct kvm_memory_slot *memslot = &kvm->memslots[i];
416
417 if (gfn >= memslot->base_gfn
418 && gfn < memslot->base_gfn + memslot->npages)
419 return memslot;
420 }
421 return NULL;
422 }
423
424 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
425 {
426 gfn = unalias_gfn(kvm, gfn);
427 return __gfn_to_memslot(kvm, gfn);
428 }
429
430 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
431 {
432 int i;
433
434 gfn = unalias_gfn(kvm, gfn);
435 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
436 struct kvm_memory_slot *memslot = &kvm->memslots[i];
437
438 if (gfn >= memslot->base_gfn
439 && gfn < memslot->base_gfn + memslot->npages)
440 return 1;
441 }
442 return 0;
443 }
444 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
445
446 static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
447 {
448 struct kvm_memory_slot *slot;
449
450 gfn = unalias_gfn(kvm, gfn);
451 slot = __gfn_to_memslot(kvm, gfn);
452 if (!slot)
453 return bad_hva();
454 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
455 }
456
457 /*
458 * Requires current->mm->mmap_sem to be held
459 */
460 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
461 {
462 struct page *page[1];
463 unsigned long addr;
464 int npages;
465
466 might_sleep();
467
468 addr = gfn_to_hva(kvm, gfn);
469 if (kvm_is_error_hva(addr)) {
470 get_page(bad_page);
471 return bad_page;
472 }
473
474 npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
475 NULL);
476
477 if (npages != 1) {
478 get_page(bad_page);
479 return bad_page;
480 }
481
482 return page[0];
483 }
484
485 EXPORT_SYMBOL_GPL(gfn_to_page);
486
487 void kvm_release_page_clean(struct page *page)
488 {
489 put_page(page);
490 }
491 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
492
493 void kvm_release_page_dirty(struct page *page)
494 {
495 if (!PageReserved(page))
496 SetPageDirty(page);
497 put_page(page);
498 }
499 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
500
501 static int next_segment(unsigned long len, int offset)
502 {
503 if (len > PAGE_SIZE - offset)
504 return PAGE_SIZE - offset;
505 else
506 return len;
507 }
508
509 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
510 int len)
511 {
512 int r;
513 unsigned long addr;
514
515 addr = gfn_to_hva(kvm, gfn);
516 if (kvm_is_error_hva(addr))
517 return -EFAULT;
518 r = copy_from_user(data, (void __user *)addr + offset, len);
519 if (r)
520 return -EFAULT;
521 return 0;
522 }
523 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
524
525 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
526 {
527 gfn_t gfn = gpa >> PAGE_SHIFT;
528 int seg;
529 int offset = offset_in_page(gpa);
530 int ret;
531
532 while ((seg = next_segment(len, offset)) != 0) {
533 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
534 if (ret < 0)
535 return ret;
536 offset = 0;
537 len -= seg;
538 data += seg;
539 ++gfn;
540 }
541 return 0;
542 }
543 EXPORT_SYMBOL_GPL(kvm_read_guest);
544
545 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
546 unsigned long len)
547 {
548 int r;
549 unsigned long addr;
550 gfn_t gfn = gpa >> PAGE_SHIFT;
551 int offset = offset_in_page(gpa);
552
553 addr = gfn_to_hva(kvm, gfn);
554 if (kvm_is_error_hva(addr))
555 return -EFAULT;
556 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
557 if (r)
558 return -EFAULT;
559 return 0;
560 }
561 EXPORT_SYMBOL(kvm_read_guest_atomic);
562
563 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
564 int offset, int len)
565 {
566 int r;
567 unsigned long addr;
568
569 addr = gfn_to_hva(kvm, gfn);
570 if (kvm_is_error_hva(addr))
571 return -EFAULT;
572 r = copy_to_user((void __user *)addr + offset, data, len);
573 if (r)
574 return -EFAULT;
575 mark_page_dirty(kvm, gfn);
576 return 0;
577 }
578 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
579
580 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
581 unsigned long len)
582 {
583 gfn_t gfn = gpa >> PAGE_SHIFT;
584 int seg;
585 int offset = offset_in_page(gpa);
586 int ret;
587
588 while ((seg = next_segment(len, offset)) != 0) {
589 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
590 if (ret < 0)
591 return ret;
592 offset = 0;
593 len -= seg;
594 data += seg;
595 ++gfn;
596 }
597 return 0;
598 }
599
600 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
601 {
602 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
603 }
604 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
605
606 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
607 {
608 gfn_t gfn = gpa >> PAGE_SHIFT;
609 int seg;
610 int offset = offset_in_page(gpa);
611 int ret;
612
613 while ((seg = next_segment(len, offset)) != 0) {
614 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
615 if (ret < 0)
616 return ret;
617 offset = 0;
618 len -= seg;
619 ++gfn;
620 }
621 return 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_clear_guest);
624
625 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
626 {
627 struct kvm_memory_slot *memslot;
628
629 gfn = unalias_gfn(kvm, gfn);
630 memslot = __gfn_to_memslot(kvm, gfn);
631 if (memslot && memslot->dirty_bitmap) {
632 unsigned long rel_gfn = gfn - memslot->base_gfn;
633
634 /* avoid RMW */
635 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
636 set_bit(rel_gfn, memslot->dirty_bitmap);
637 }
638 }
639
640 /*
641 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
642 */
643 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
644 {
645 DECLARE_WAITQUEUE(wait, current);
646
647 add_wait_queue(&vcpu->wq, &wait);
648
649 /*
650 * We will block until either an interrupt or a signal wakes us up
651 */
652 while (!kvm_cpu_has_interrupt(vcpu)
653 && !signal_pending(current)
654 && !kvm_arch_vcpu_runnable(vcpu)) {
655 set_current_state(TASK_INTERRUPTIBLE);
656 vcpu_put(vcpu);
657 schedule();
658 vcpu_load(vcpu);
659 }
660
661 __set_current_state(TASK_RUNNING);
662 remove_wait_queue(&vcpu->wq, &wait);
663 }
664
665 void kvm_resched(struct kvm_vcpu *vcpu)
666 {
667 if (!need_resched())
668 return;
669 cond_resched();
670 }
671 EXPORT_SYMBOL_GPL(kvm_resched);
672
673 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
674 {
675 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
676 struct page *page;
677
678 if (vmf->pgoff == 0)
679 page = virt_to_page(vcpu->run);
680 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
681 page = virt_to_page(vcpu->arch.pio_data);
682 else
683 return VM_FAULT_SIGBUS;
684 get_page(page);
685 vmf->page = page;
686 return 0;
687 }
688
689 static struct vm_operations_struct kvm_vcpu_vm_ops = {
690 .fault = kvm_vcpu_fault,
691 };
692
693 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
694 {
695 vma->vm_ops = &kvm_vcpu_vm_ops;
696 return 0;
697 }
698
699 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
700 {
701 struct kvm_vcpu *vcpu = filp->private_data;
702
703 fput(vcpu->kvm->filp);
704 return 0;
705 }
706
707 static struct file_operations kvm_vcpu_fops = {
708 .release = kvm_vcpu_release,
709 .unlocked_ioctl = kvm_vcpu_ioctl,
710 .compat_ioctl = kvm_vcpu_ioctl,
711 .mmap = kvm_vcpu_mmap,
712 };
713
714 /*
715 * Allocates an inode for the vcpu.
716 */
717 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
718 {
719 int fd, r;
720 struct inode *inode;
721 struct file *file;
722
723 r = anon_inode_getfd(&fd, &inode, &file,
724 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
725 if (r)
726 return r;
727 atomic_inc(&vcpu->kvm->filp->f_count);
728 return fd;
729 }
730
731 /*
732 * Creates some virtual cpus. Good luck creating more than one.
733 */
734 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
735 {
736 int r;
737 struct kvm_vcpu *vcpu;
738
739 if (!valid_vcpu(n))
740 return -EINVAL;
741
742 vcpu = kvm_arch_vcpu_create(kvm, n);
743 if (IS_ERR(vcpu))
744 return PTR_ERR(vcpu);
745
746 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
747
748 r = kvm_arch_vcpu_setup(vcpu);
749 if (r)
750 goto vcpu_destroy;
751
752 mutex_lock(&kvm->lock);
753 if (kvm->vcpus[n]) {
754 r = -EEXIST;
755 mutex_unlock(&kvm->lock);
756 goto vcpu_destroy;
757 }
758 kvm->vcpus[n] = vcpu;
759 mutex_unlock(&kvm->lock);
760
761 /* Now it's all set up, let userspace reach it */
762 r = create_vcpu_fd(vcpu);
763 if (r < 0)
764 goto unlink;
765 return r;
766
767 unlink:
768 mutex_lock(&kvm->lock);
769 kvm->vcpus[n] = NULL;
770 mutex_unlock(&kvm->lock);
771 vcpu_destroy:
772 kvm_arch_vcpu_destroy(vcpu);
773 return r;
774 }
775
776 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
777 {
778 if (sigset) {
779 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
780 vcpu->sigset_active = 1;
781 vcpu->sigset = *sigset;
782 } else
783 vcpu->sigset_active = 0;
784 return 0;
785 }
786
787 static long kvm_vcpu_ioctl(struct file *filp,
788 unsigned int ioctl, unsigned long arg)
789 {
790 struct kvm_vcpu *vcpu = filp->private_data;
791 void __user *argp = (void __user *)arg;
792 int r;
793
794 if (vcpu->kvm->mm != current->mm)
795 return -EIO;
796 switch (ioctl) {
797 case KVM_RUN:
798 r = -EINVAL;
799 if (arg)
800 goto out;
801 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
802 break;
803 case KVM_GET_REGS: {
804 struct kvm_regs kvm_regs;
805
806 memset(&kvm_regs, 0, sizeof kvm_regs);
807 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
808 if (r)
809 goto out;
810 r = -EFAULT;
811 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
812 goto out;
813 r = 0;
814 break;
815 }
816 case KVM_SET_REGS: {
817 struct kvm_regs kvm_regs;
818
819 r = -EFAULT;
820 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
821 goto out;
822 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
823 if (r)
824 goto out;
825 r = 0;
826 break;
827 }
828 case KVM_GET_SREGS: {
829 struct kvm_sregs kvm_sregs;
830
831 memset(&kvm_sregs, 0, sizeof kvm_sregs);
832 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
833 if (r)
834 goto out;
835 r = -EFAULT;
836 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
837 goto out;
838 r = 0;
839 break;
840 }
841 case KVM_SET_SREGS: {
842 struct kvm_sregs kvm_sregs;
843
844 r = -EFAULT;
845 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
846 goto out;
847 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
848 if (r)
849 goto out;
850 r = 0;
851 break;
852 }
853 case KVM_TRANSLATE: {
854 struct kvm_translation tr;
855
856 r = -EFAULT;
857 if (copy_from_user(&tr, argp, sizeof tr))
858 goto out;
859 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
860 if (r)
861 goto out;
862 r = -EFAULT;
863 if (copy_to_user(argp, &tr, sizeof tr))
864 goto out;
865 r = 0;
866 break;
867 }
868 case KVM_DEBUG_GUEST: {
869 struct kvm_debug_guest dbg;
870
871 r = -EFAULT;
872 if (copy_from_user(&dbg, argp, sizeof dbg))
873 goto out;
874 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
875 if (r)
876 goto out;
877 r = 0;
878 break;
879 }
880 case KVM_SET_SIGNAL_MASK: {
881 struct kvm_signal_mask __user *sigmask_arg = argp;
882 struct kvm_signal_mask kvm_sigmask;
883 sigset_t sigset, *p;
884
885 p = NULL;
886 if (argp) {
887 r = -EFAULT;
888 if (copy_from_user(&kvm_sigmask, argp,
889 sizeof kvm_sigmask))
890 goto out;
891 r = -EINVAL;
892 if (kvm_sigmask.len != sizeof sigset)
893 goto out;
894 r = -EFAULT;
895 if (copy_from_user(&sigset, sigmask_arg->sigset,
896 sizeof sigset))
897 goto out;
898 p = &sigset;
899 }
900 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
901 break;
902 }
903 case KVM_GET_FPU: {
904 struct kvm_fpu fpu;
905
906 memset(&fpu, 0, sizeof fpu);
907 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
908 if (r)
909 goto out;
910 r = -EFAULT;
911 if (copy_to_user(argp, &fpu, sizeof fpu))
912 goto out;
913 r = 0;
914 break;
915 }
916 case KVM_SET_FPU: {
917 struct kvm_fpu fpu;
918
919 r = -EFAULT;
920 if (copy_from_user(&fpu, argp, sizeof fpu))
921 goto out;
922 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
923 if (r)
924 goto out;
925 r = 0;
926 break;
927 }
928 default:
929 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
930 }
931 out:
932 return r;
933 }
934
935 static long kvm_vm_ioctl(struct file *filp,
936 unsigned int ioctl, unsigned long arg)
937 {
938 struct kvm *kvm = filp->private_data;
939 void __user *argp = (void __user *)arg;
940 int r;
941
942 if (kvm->mm != current->mm)
943 return -EIO;
944 switch (ioctl) {
945 case KVM_CREATE_VCPU:
946 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
947 if (r < 0)
948 goto out;
949 break;
950 case KVM_SET_USER_MEMORY_REGION: {
951 struct kvm_userspace_memory_region kvm_userspace_mem;
952
953 r = -EFAULT;
954 if (copy_from_user(&kvm_userspace_mem, argp,
955 sizeof kvm_userspace_mem))
956 goto out;
957
958 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
959 if (r)
960 goto out;
961 break;
962 }
963 case KVM_GET_DIRTY_LOG: {
964 struct kvm_dirty_log log;
965
966 r = -EFAULT;
967 if (copy_from_user(&log, argp, sizeof log))
968 goto out;
969 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
970 if (r)
971 goto out;
972 break;
973 }
974 default:
975 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
976 }
977 out:
978 return r;
979 }
980
981 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
982 {
983 struct kvm *kvm = vma->vm_file->private_data;
984 struct page *page;
985
986 if (!kvm_is_visible_gfn(kvm, vmf->pgoff))
987 return VM_FAULT_SIGBUS;
988 page = gfn_to_page(kvm, vmf->pgoff);
989 if (is_error_page(page)) {
990 kvm_release_page_clean(page);
991 return VM_FAULT_SIGBUS;
992 }
993 vmf->page = page;
994 return 0;
995 }
996
997 static struct vm_operations_struct kvm_vm_vm_ops = {
998 .fault = kvm_vm_fault,
999 };
1000
1001 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1002 {
1003 vma->vm_ops = &kvm_vm_vm_ops;
1004 return 0;
1005 }
1006
1007 static struct file_operations kvm_vm_fops = {
1008 .release = kvm_vm_release,
1009 .unlocked_ioctl = kvm_vm_ioctl,
1010 .compat_ioctl = kvm_vm_ioctl,
1011 .mmap = kvm_vm_mmap,
1012 };
1013
1014 static int kvm_dev_ioctl_create_vm(void)
1015 {
1016 int fd, r;
1017 struct inode *inode;
1018 struct file *file;
1019 struct kvm *kvm;
1020
1021 kvm = kvm_create_vm();
1022 if (IS_ERR(kvm))
1023 return PTR_ERR(kvm);
1024 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
1025 if (r) {
1026 kvm_destroy_vm(kvm);
1027 return r;
1028 }
1029
1030 kvm->filp = file;
1031
1032 return fd;
1033 }
1034
1035 static long kvm_dev_ioctl(struct file *filp,
1036 unsigned int ioctl, unsigned long arg)
1037 {
1038 void __user *argp = (void __user *)arg;
1039 long r = -EINVAL;
1040
1041 switch (ioctl) {
1042 case KVM_GET_API_VERSION:
1043 r = -EINVAL;
1044 if (arg)
1045 goto out;
1046 r = KVM_API_VERSION;
1047 break;
1048 case KVM_CREATE_VM:
1049 r = -EINVAL;
1050 if (arg)
1051 goto out;
1052 r = kvm_dev_ioctl_create_vm();
1053 break;
1054 case KVM_CHECK_EXTENSION:
1055 r = kvm_dev_ioctl_check_extension((long)argp);
1056 break;
1057 case KVM_GET_VCPU_MMAP_SIZE:
1058 r = -EINVAL;
1059 if (arg)
1060 goto out;
1061 r = 2 * PAGE_SIZE;
1062 break;
1063 default:
1064 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1065 }
1066 out:
1067 return r;
1068 }
1069
1070 static struct file_operations kvm_chardev_ops = {
1071 .unlocked_ioctl = kvm_dev_ioctl,
1072 .compat_ioctl = kvm_dev_ioctl,
1073 };
1074
1075 static struct miscdevice kvm_dev = {
1076 KVM_MINOR,
1077 "kvm",
1078 &kvm_chardev_ops,
1079 };
1080
1081 static void hardware_enable(void *junk)
1082 {
1083 int cpu = raw_smp_processor_id();
1084
1085 if (cpu_isset(cpu, cpus_hardware_enabled))
1086 return;
1087 cpu_set(cpu, cpus_hardware_enabled);
1088 kvm_arch_hardware_enable(NULL);
1089 }
1090
1091 static void hardware_disable(void *junk)
1092 {
1093 int cpu = raw_smp_processor_id();
1094
1095 if (!cpu_isset(cpu, cpus_hardware_enabled))
1096 return;
1097 cpu_clear(cpu, cpus_hardware_enabled);
1098 decache_vcpus_on_cpu(cpu);
1099 kvm_arch_hardware_disable(NULL);
1100 }
1101
1102 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1103 void *v)
1104 {
1105 int cpu = (long)v;
1106
1107 val &= ~CPU_TASKS_FROZEN;
1108 switch (val) {
1109 case CPU_DYING:
1110 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1111 cpu);
1112 hardware_disable(NULL);
1113 break;
1114 case CPU_UP_CANCELED:
1115 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1116 cpu);
1117 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
1118 break;
1119 case CPU_ONLINE:
1120 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1121 cpu);
1122 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
1123 break;
1124 }
1125 return NOTIFY_OK;
1126 }
1127
1128 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1129 void *v)
1130 {
1131 if (val == SYS_RESTART) {
1132 /*
1133 * Some (well, at least mine) BIOSes hang on reboot if
1134 * in vmx root mode.
1135 */
1136 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1137 on_each_cpu(hardware_disable, NULL, 0, 1);
1138 }
1139 return NOTIFY_OK;
1140 }
1141
1142 static struct notifier_block kvm_reboot_notifier = {
1143 .notifier_call = kvm_reboot,
1144 .priority = 0,
1145 };
1146
1147 void kvm_io_bus_init(struct kvm_io_bus *bus)
1148 {
1149 memset(bus, 0, sizeof(*bus));
1150 }
1151
1152 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1153 {
1154 int i;
1155
1156 for (i = 0; i < bus->dev_count; i++) {
1157 struct kvm_io_device *pos = bus->devs[i];
1158
1159 kvm_iodevice_destructor(pos);
1160 }
1161 }
1162
1163 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
1164 {
1165 int i;
1166
1167 for (i = 0; i < bus->dev_count; i++) {
1168 struct kvm_io_device *pos = bus->devs[i];
1169
1170 if (pos->in_range(pos, addr))
1171 return pos;
1172 }
1173
1174 return NULL;
1175 }
1176
1177 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1178 {
1179 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1180
1181 bus->devs[bus->dev_count++] = dev;
1182 }
1183
1184 static struct notifier_block kvm_cpu_notifier = {
1185 .notifier_call = kvm_cpu_hotplug,
1186 .priority = 20, /* must be > scheduler priority */
1187 };
1188
1189 static int vm_stat_get(void *_offset, u64 *val)
1190 {
1191 unsigned offset = (long)_offset;
1192 struct kvm *kvm;
1193
1194 *val = 0;
1195 spin_lock(&kvm_lock);
1196 list_for_each_entry(kvm, &vm_list, vm_list)
1197 *val += *(u32 *)((void *)kvm + offset);
1198 spin_unlock(&kvm_lock);
1199 return 0;
1200 }
1201
1202 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1203
1204 static int vcpu_stat_get(void *_offset, u64 *val)
1205 {
1206 unsigned offset = (long)_offset;
1207 struct kvm *kvm;
1208 struct kvm_vcpu *vcpu;
1209 int i;
1210
1211 *val = 0;
1212 spin_lock(&kvm_lock);
1213 list_for_each_entry(kvm, &vm_list, vm_list)
1214 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1215 vcpu = kvm->vcpus[i];
1216 if (vcpu)
1217 *val += *(u32 *)((void *)vcpu + offset);
1218 }
1219 spin_unlock(&kvm_lock);
1220 return 0;
1221 }
1222
1223 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1224
1225 static struct file_operations *stat_fops[] = {
1226 [KVM_STAT_VCPU] = &vcpu_stat_fops,
1227 [KVM_STAT_VM] = &vm_stat_fops,
1228 };
1229
1230 static void kvm_init_debug(void)
1231 {
1232 struct kvm_stats_debugfs_item *p;
1233
1234 debugfs_dir = debugfs_create_dir("kvm", NULL);
1235 for (p = debugfs_entries; p->name; ++p)
1236 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
1237 (void *)(long)p->offset,
1238 stat_fops[p->kind]);
1239 }
1240
1241 static void kvm_exit_debug(void)
1242 {
1243 struct kvm_stats_debugfs_item *p;
1244
1245 for (p = debugfs_entries; p->name; ++p)
1246 debugfs_remove(p->dentry);
1247 debugfs_remove(debugfs_dir);
1248 }
1249
1250 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1251 {
1252 hardware_disable(NULL);
1253 return 0;
1254 }
1255
1256 static int kvm_resume(struct sys_device *dev)
1257 {
1258 hardware_enable(NULL);
1259 return 0;
1260 }
1261
1262 static struct sysdev_class kvm_sysdev_class = {
1263 .name = "kvm",
1264 .suspend = kvm_suspend,
1265 .resume = kvm_resume,
1266 };
1267
1268 static struct sys_device kvm_sysdev = {
1269 .id = 0,
1270 .cls = &kvm_sysdev_class,
1271 };
1272
1273 struct page *bad_page;
1274
1275 static inline
1276 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
1277 {
1278 return container_of(pn, struct kvm_vcpu, preempt_notifier);
1279 }
1280
1281 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
1282 {
1283 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1284
1285 kvm_arch_vcpu_load(vcpu, cpu);
1286 }
1287
1288 static void kvm_sched_out(struct preempt_notifier *pn,
1289 struct task_struct *next)
1290 {
1291 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1292
1293 kvm_arch_vcpu_put(vcpu);
1294 }
1295
1296 int kvm_init(void *opaque, unsigned int vcpu_size,
1297 struct module *module)
1298 {
1299 int r;
1300 int cpu;
1301
1302 kvm_init_debug();
1303
1304 r = kvm_arch_init(opaque);
1305 if (r)
1306 goto out_fail;
1307
1308 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1309
1310 if (bad_page == NULL) {
1311 r = -ENOMEM;
1312 goto out;
1313 }
1314
1315 r = kvm_arch_hardware_setup();
1316 if (r < 0)
1317 goto out_free_0;
1318
1319 for_each_online_cpu(cpu) {
1320 smp_call_function_single(cpu,
1321 kvm_arch_check_processor_compat,
1322 &r, 0, 1);
1323 if (r < 0)
1324 goto out_free_1;
1325 }
1326
1327 on_each_cpu(hardware_enable, NULL, 0, 1);
1328 r = register_cpu_notifier(&kvm_cpu_notifier);
1329 if (r)
1330 goto out_free_2;
1331 register_reboot_notifier(&kvm_reboot_notifier);
1332
1333 r = sysdev_class_register(&kvm_sysdev_class);
1334 if (r)
1335 goto out_free_3;
1336
1337 r = sysdev_register(&kvm_sysdev);
1338 if (r)
1339 goto out_free_4;
1340
1341 /* A kmem cache lets us meet the alignment requirements of fx_save. */
1342 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
1343 __alignof__(struct kvm_vcpu),
1344 0, NULL);
1345 if (!kvm_vcpu_cache) {
1346 r = -ENOMEM;
1347 goto out_free_5;
1348 }
1349
1350 kvm_chardev_ops.owner = module;
1351
1352 r = misc_register(&kvm_dev);
1353 if (r) {
1354 printk(KERN_ERR "kvm: misc device register failed\n");
1355 goto out_free;
1356 }
1357
1358 kvm_preempt_ops.sched_in = kvm_sched_in;
1359 kvm_preempt_ops.sched_out = kvm_sched_out;
1360
1361 return 0;
1362
1363 out_free:
1364 kmem_cache_destroy(kvm_vcpu_cache);
1365 out_free_5:
1366 sysdev_unregister(&kvm_sysdev);
1367 out_free_4:
1368 sysdev_class_unregister(&kvm_sysdev_class);
1369 out_free_3:
1370 unregister_reboot_notifier(&kvm_reboot_notifier);
1371 unregister_cpu_notifier(&kvm_cpu_notifier);
1372 out_free_2:
1373 on_each_cpu(hardware_disable, NULL, 0, 1);
1374 out_free_1:
1375 kvm_arch_hardware_unsetup();
1376 out_free_0:
1377 __free_page(bad_page);
1378 out:
1379 kvm_arch_exit();
1380 kvm_exit_debug();
1381 out_fail:
1382 return r;
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_init);
1385
1386 void kvm_exit(void)
1387 {
1388 misc_deregister(&kvm_dev);
1389 kmem_cache_destroy(kvm_vcpu_cache);
1390 sysdev_unregister(&kvm_sysdev);
1391 sysdev_class_unregister(&kvm_sysdev_class);
1392 unregister_reboot_notifier(&kvm_reboot_notifier);
1393 unregister_cpu_notifier(&kvm_cpu_notifier);
1394 on_each_cpu(hardware_disable, NULL, 0, 1);
1395 kvm_arch_hardware_unsetup();
1396 kvm_arch_exit();
1397 kvm_exit_debug();
1398 __free_page(bad_page);
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_exit);