]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - virt/kvm/kvm_main.c
3abcb2ce5b7db75f2f1963c63433fa8016c679bb
[mirror_ubuntu-jammy-kernel.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 #include <linux/kvm_dirty_ring.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* The start value to grow halt_poll_ns from */
85 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
86 module_param(halt_poll_ns_grow_start, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
88
89 /* Default resets per-vcpu halt_poll_ns . */
90 unsigned int halt_poll_ns_shrink;
91 module_param(halt_poll_ns_shrink, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
93
94 /*
95 * Ordering of locks:
96 *
97 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
98 */
99
100 DEFINE_MUTEX(kvm_lock);
101 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
102 LIST_HEAD(vm_list);
103
104 static cpumask_var_t cpus_hardware_enabled;
105 static int kvm_usage_count;
106 static atomic_t hardware_enable_failed;
107
108 static struct kmem_cache *kvm_vcpu_cache;
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116 static int kvm_debugfs_num_entries;
117 static const struct file_operations stat_fops_per_vm;
118
119 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
120 unsigned long arg);
121 #ifdef CONFIG_KVM_COMPAT
122 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
123 unsigned long arg);
124 #define KVM_COMPAT(c) .compat_ioctl = (c)
125 #else
126 /*
127 * For architectures that don't implement a compat infrastructure,
128 * adopt a double line of defense:
129 * - Prevent a compat task from opening /dev/kvm
130 * - If the open has been done by a 64bit task, and the KVM fd
131 * passed to a compat task, let the ioctls fail.
132 */
133 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
134 unsigned long arg) { return -EINVAL; }
135
136 static int kvm_no_compat_open(struct inode *inode, struct file *file)
137 {
138 return is_compat_task() ? -ENODEV : 0;
139 }
140 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
141 .open = kvm_no_compat_open
142 #endif
143 static int hardware_enable_all(void);
144 static void hardware_disable_all(void);
145
146 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
147
148 __visible bool kvm_rebooting;
149 EXPORT_SYMBOL_GPL(kvm_rebooting);
150
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
156
157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158 unsigned long start, unsigned long end)
159 {
160 }
161
162 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
163 {
164 /*
165 * The metadata used by is_zone_device_page() to determine whether or
166 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
167 * the device has been pinned, e.g. by get_user_pages(). WARN if the
168 * page_count() is zero to help detect bad usage of this helper.
169 */
170 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
171 return false;
172
173 return is_zone_device_page(pfn_to_page(pfn));
174 }
175
176 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
177 {
178 /*
179 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
180 * perspective they are "normal" pages, albeit with slightly different
181 * usage rules.
182 */
183 if (pfn_valid(pfn))
184 return PageReserved(pfn_to_page(pfn)) &&
185 !is_zero_pfn(pfn) &&
186 !kvm_is_zone_device_pfn(pfn);
187
188 return true;
189 }
190
191 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
192 {
193 struct page *page = pfn_to_page(pfn);
194
195 if (!PageTransCompoundMap(page))
196 return false;
197
198 return is_transparent_hugepage(compound_head(page));
199 }
200
201 /*
202 * Switches to specified vcpu, until a matching vcpu_put()
203 */
204 void vcpu_load(struct kvm_vcpu *vcpu)
205 {
206 int cpu = get_cpu();
207
208 __this_cpu_write(kvm_running_vcpu, vcpu);
209 preempt_notifier_register(&vcpu->preempt_notifier);
210 kvm_arch_vcpu_load(vcpu, cpu);
211 put_cpu();
212 }
213 EXPORT_SYMBOL_GPL(vcpu_load);
214
215 void vcpu_put(struct kvm_vcpu *vcpu)
216 {
217 preempt_disable();
218 kvm_arch_vcpu_put(vcpu);
219 preempt_notifier_unregister(&vcpu->preempt_notifier);
220 __this_cpu_write(kvm_running_vcpu, NULL);
221 preempt_enable();
222 }
223 EXPORT_SYMBOL_GPL(vcpu_put);
224
225 /* TODO: merge with kvm_arch_vcpu_should_kick */
226 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
227 {
228 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
229
230 /*
231 * We need to wait for the VCPU to reenable interrupts and get out of
232 * READING_SHADOW_PAGE_TABLES mode.
233 */
234 if (req & KVM_REQUEST_WAIT)
235 return mode != OUTSIDE_GUEST_MODE;
236
237 /*
238 * Need to kick a running VCPU, but otherwise there is nothing to do.
239 */
240 return mode == IN_GUEST_MODE;
241 }
242
243 static void ack_flush(void *_completed)
244 {
245 }
246
247 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
248 {
249 if (unlikely(!cpus))
250 cpus = cpu_online_mask;
251
252 if (cpumask_empty(cpus))
253 return false;
254
255 smp_call_function_many(cpus, ack_flush, NULL, wait);
256 return true;
257 }
258
259 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
260 struct kvm_vcpu *except,
261 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
262 {
263 int i, cpu, me;
264 struct kvm_vcpu *vcpu;
265 bool called;
266
267 me = get_cpu();
268
269 kvm_for_each_vcpu(i, vcpu, kvm) {
270 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
271 vcpu == except)
272 continue;
273
274 kvm_make_request(req, vcpu);
275 cpu = vcpu->cpu;
276
277 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278 continue;
279
280 if (tmp != NULL && cpu != -1 && cpu != me &&
281 kvm_request_needs_ipi(vcpu, req))
282 __cpumask_set_cpu(cpu, tmp);
283 }
284
285 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
286 put_cpu();
287
288 return called;
289 }
290
291 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
292 struct kvm_vcpu *except)
293 {
294 cpumask_var_t cpus;
295 bool called;
296
297 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
298
299 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
300
301 free_cpumask_var(cpus);
302 return called;
303 }
304
305 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
306 {
307 return kvm_make_all_cpus_request_except(kvm, req, NULL);
308 }
309
310 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
311 void kvm_flush_remote_tlbs(struct kvm *kvm)
312 {
313 /*
314 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
315 * kvm_make_all_cpus_request.
316 */
317 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
318
319 /*
320 * We want to publish modifications to the page tables before reading
321 * mode. Pairs with a memory barrier in arch-specific code.
322 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
323 * and smp_mb in walk_shadow_page_lockless_begin/end.
324 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
325 *
326 * There is already an smp_mb__after_atomic() before
327 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
328 * barrier here.
329 */
330 if (!kvm_arch_flush_remote_tlb(kvm)
331 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
332 ++kvm->stat.remote_tlb_flush;
333 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
334 }
335 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
336 #endif
337
338 void kvm_reload_remote_mmus(struct kvm *kvm)
339 {
340 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
341 }
342
343 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
344 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
345 gfp_t gfp_flags)
346 {
347 gfp_flags |= mc->gfp_zero;
348
349 if (mc->kmem_cache)
350 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
351 else
352 return (void *)__get_free_page(gfp_flags);
353 }
354
355 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
356 {
357 void *obj;
358
359 if (mc->nobjs >= min)
360 return 0;
361 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
362 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
363 if (!obj)
364 return mc->nobjs >= min ? 0 : -ENOMEM;
365 mc->objects[mc->nobjs++] = obj;
366 }
367 return 0;
368 }
369
370 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
371 {
372 return mc->nobjs;
373 }
374
375 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
376 {
377 while (mc->nobjs) {
378 if (mc->kmem_cache)
379 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
380 else
381 free_page((unsigned long)mc->objects[--mc->nobjs]);
382 }
383 }
384
385 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
386 {
387 void *p;
388
389 if (WARN_ON(!mc->nobjs))
390 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
391 else
392 p = mc->objects[--mc->nobjs];
393 BUG_ON(!p);
394 return p;
395 }
396 #endif
397
398 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
399 {
400 mutex_init(&vcpu->mutex);
401 vcpu->cpu = -1;
402 vcpu->kvm = kvm;
403 vcpu->vcpu_id = id;
404 vcpu->pid = NULL;
405 rcuwait_init(&vcpu->wait);
406 kvm_async_pf_vcpu_init(vcpu);
407
408 vcpu->pre_pcpu = -1;
409 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
410
411 kvm_vcpu_set_in_spin_loop(vcpu, false);
412 kvm_vcpu_set_dy_eligible(vcpu, false);
413 vcpu->preempted = false;
414 vcpu->ready = false;
415 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
416 }
417
418 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
419 {
420 kvm_dirty_ring_free(&vcpu->dirty_ring);
421 kvm_arch_vcpu_destroy(vcpu);
422
423 /*
424 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
425 * the vcpu->pid pointer, and at destruction time all file descriptors
426 * are already gone.
427 */
428 put_pid(rcu_dereference_protected(vcpu->pid, 1));
429
430 free_page((unsigned long)vcpu->run);
431 kmem_cache_free(kvm_vcpu_cache, vcpu);
432 }
433 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
434
435 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
436 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
437 {
438 return container_of(mn, struct kvm, mmu_notifier);
439 }
440
441 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
442 struct mm_struct *mm,
443 unsigned long start, unsigned long end)
444 {
445 struct kvm *kvm = mmu_notifier_to_kvm(mn);
446 int idx;
447
448 idx = srcu_read_lock(&kvm->srcu);
449 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
450 srcu_read_unlock(&kvm->srcu, idx);
451 }
452
453 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
454 struct mm_struct *mm,
455 unsigned long address,
456 pte_t pte)
457 {
458 struct kvm *kvm = mmu_notifier_to_kvm(mn);
459 int idx;
460
461 idx = srcu_read_lock(&kvm->srcu);
462 spin_lock(&kvm->mmu_lock);
463 kvm->mmu_notifier_seq++;
464
465 if (kvm_set_spte_hva(kvm, address, pte))
466 kvm_flush_remote_tlbs(kvm);
467
468 spin_unlock(&kvm->mmu_lock);
469 srcu_read_unlock(&kvm->srcu, idx);
470 }
471
472 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
473 const struct mmu_notifier_range *range)
474 {
475 struct kvm *kvm = mmu_notifier_to_kvm(mn);
476 int need_tlb_flush = 0, idx;
477
478 idx = srcu_read_lock(&kvm->srcu);
479 spin_lock(&kvm->mmu_lock);
480 /*
481 * The count increase must become visible at unlock time as no
482 * spte can be established without taking the mmu_lock and
483 * count is also read inside the mmu_lock critical section.
484 */
485 kvm->mmu_notifier_count++;
486 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
487 range->flags);
488 need_tlb_flush |= kvm->tlbs_dirty;
489 /* we've to flush the tlb before the pages can be freed */
490 if (need_tlb_flush)
491 kvm_flush_remote_tlbs(kvm);
492
493 spin_unlock(&kvm->mmu_lock);
494 srcu_read_unlock(&kvm->srcu, idx);
495
496 return 0;
497 }
498
499 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
500 const struct mmu_notifier_range *range)
501 {
502 struct kvm *kvm = mmu_notifier_to_kvm(mn);
503
504 spin_lock(&kvm->mmu_lock);
505 /*
506 * This sequence increase will notify the kvm page fault that
507 * the page that is going to be mapped in the spte could have
508 * been freed.
509 */
510 kvm->mmu_notifier_seq++;
511 smp_wmb();
512 /*
513 * The above sequence increase must be visible before the
514 * below count decrease, which is ensured by the smp_wmb above
515 * in conjunction with the smp_rmb in mmu_notifier_retry().
516 */
517 kvm->mmu_notifier_count--;
518 spin_unlock(&kvm->mmu_lock);
519
520 BUG_ON(kvm->mmu_notifier_count < 0);
521 }
522
523 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
524 struct mm_struct *mm,
525 unsigned long start,
526 unsigned long end)
527 {
528 struct kvm *kvm = mmu_notifier_to_kvm(mn);
529 int young, idx;
530
531 idx = srcu_read_lock(&kvm->srcu);
532 spin_lock(&kvm->mmu_lock);
533
534 young = kvm_age_hva(kvm, start, end);
535 if (young)
536 kvm_flush_remote_tlbs(kvm);
537
538 spin_unlock(&kvm->mmu_lock);
539 srcu_read_unlock(&kvm->srcu, idx);
540
541 return young;
542 }
543
544 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
545 struct mm_struct *mm,
546 unsigned long start,
547 unsigned long end)
548 {
549 struct kvm *kvm = mmu_notifier_to_kvm(mn);
550 int young, idx;
551
552 idx = srcu_read_lock(&kvm->srcu);
553 spin_lock(&kvm->mmu_lock);
554 /*
555 * Even though we do not flush TLB, this will still adversely
556 * affect performance on pre-Haswell Intel EPT, where there is
557 * no EPT Access Bit to clear so that we have to tear down EPT
558 * tables instead. If we find this unacceptable, we can always
559 * add a parameter to kvm_age_hva so that it effectively doesn't
560 * do anything on clear_young.
561 *
562 * Also note that currently we never issue secondary TLB flushes
563 * from clear_young, leaving this job up to the regular system
564 * cadence. If we find this inaccurate, we might come up with a
565 * more sophisticated heuristic later.
566 */
567 young = kvm_age_hva(kvm, start, end);
568 spin_unlock(&kvm->mmu_lock);
569 srcu_read_unlock(&kvm->srcu, idx);
570
571 return young;
572 }
573
574 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
575 struct mm_struct *mm,
576 unsigned long address)
577 {
578 struct kvm *kvm = mmu_notifier_to_kvm(mn);
579 int young, idx;
580
581 idx = srcu_read_lock(&kvm->srcu);
582 spin_lock(&kvm->mmu_lock);
583 young = kvm_test_age_hva(kvm, address);
584 spin_unlock(&kvm->mmu_lock);
585 srcu_read_unlock(&kvm->srcu, idx);
586
587 return young;
588 }
589
590 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
591 struct mm_struct *mm)
592 {
593 struct kvm *kvm = mmu_notifier_to_kvm(mn);
594 int idx;
595
596 idx = srcu_read_lock(&kvm->srcu);
597 kvm_arch_flush_shadow_all(kvm);
598 srcu_read_unlock(&kvm->srcu, idx);
599 }
600
601 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
602 .invalidate_range = kvm_mmu_notifier_invalidate_range,
603 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
604 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
605 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
606 .clear_young = kvm_mmu_notifier_clear_young,
607 .test_young = kvm_mmu_notifier_test_young,
608 .change_pte = kvm_mmu_notifier_change_pte,
609 .release = kvm_mmu_notifier_release,
610 };
611
612 static int kvm_init_mmu_notifier(struct kvm *kvm)
613 {
614 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
615 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
616 }
617
618 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
619
620 static int kvm_init_mmu_notifier(struct kvm *kvm)
621 {
622 return 0;
623 }
624
625 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
626
627 static struct kvm_memslots *kvm_alloc_memslots(void)
628 {
629 int i;
630 struct kvm_memslots *slots;
631
632 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
633 if (!slots)
634 return NULL;
635
636 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
637 slots->id_to_index[i] = -1;
638
639 return slots;
640 }
641
642 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
643 {
644 if (!memslot->dirty_bitmap)
645 return;
646
647 kvfree(memslot->dirty_bitmap);
648 memslot->dirty_bitmap = NULL;
649 }
650
651 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
652 {
653 kvm_destroy_dirty_bitmap(slot);
654
655 kvm_arch_free_memslot(kvm, slot);
656
657 slot->flags = 0;
658 slot->npages = 0;
659 }
660
661 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
662 {
663 struct kvm_memory_slot *memslot;
664
665 if (!slots)
666 return;
667
668 kvm_for_each_memslot(memslot, slots)
669 kvm_free_memslot(kvm, memslot);
670
671 kvfree(slots);
672 }
673
674 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
675 {
676 int i;
677
678 if (!kvm->debugfs_dentry)
679 return;
680
681 debugfs_remove_recursive(kvm->debugfs_dentry);
682
683 if (kvm->debugfs_stat_data) {
684 for (i = 0; i < kvm_debugfs_num_entries; i++)
685 kfree(kvm->debugfs_stat_data[i]);
686 kfree(kvm->debugfs_stat_data);
687 }
688 }
689
690 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
691 {
692 char dir_name[ITOA_MAX_LEN * 2];
693 struct kvm_stat_data *stat_data;
694 struct kvm_stats_debugfs_item *p;
695
696 if (!debugfs_initialized())
697 return 0;
698
699 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
700 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
701
702 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
703 sizeof(*kvm->debugfs_stat_data),
704 GFP_KERNEL_ACCOUNT);
705 if (!kvm->debugfs_stat_data)
706 return -ENOMEM;
707
708 for (p = debugfs_entries; p->name; p++) {
709 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
710 if (!stat_data)
711 return -ENOMEM;
712
713 stat_data->kvm = kvm;
714 stat_data->dbgfs_item = p;
715 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
716 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
717 kvm->debugfs_dentry, stat_data,
718 &stat_fops_per_vm);
719 }
720 return 0;
721 }
722
723 /*
724 * Called after the VM is otherwise initialized, but just before adding it to
725 * the vm_list.
726 */
727 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
728 {
729 return 0;
730 }
731
732 /*
733 * Called just after removing the VM from the vm_list, but before doing any
734 * other destruction.
735 */
736 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
737 {
738 }
739
740 static struct kvm *kvm_create_vm(unsigned long type)
741 {
742 struct kvm *kvm = kvm_arch_alloc_vm();
743 int r = -ENOMEM;
744 int i;
745
746 if (!kvm)
747 return ERR_PTR(-ENOMEM);
748
749 spin_lock_init(&kvm->mmu_lock);
750 mmgrab(current->mm);
751 kvm->mm = current->mm;
752 kvm_eventfd_init(kvm);
753 mutex_init(&kvm->lock);
754 mutex_init(&kvm->irq_lock);
755 mutex_init(&kvm->slots_lock);
756 INIT_LIST_HEAD(&kvm->devices);
757
758 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
759
760 if (init_srcu_struct(&kvm->srcu))
761 goto out_err_no_srcu;
762 if (init_srcu_struct(&kvm->irq_srcu))
763 goto out_err_no_irq_srcu;
764
765 refcount_set(&kvm->users_count, 1);
766 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
767 struct kvm_memslots *slots = kvm_alloc_memslots();
768
769 if (!slots)
770 goto out_err_no_arch_destroy_vm;
771 /* Generations must be different for each address space. */
772 slots->generation = i;
773 rcu_assign_pointer(kvm->memslots[i], slots);
774 }
775
776 for (i = 0; i < KVM_NR_BUSES; i++) {
777 rcu_assign_pointer(kvm->buses[i],
778 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
779 if (!kvm->buses[i])
780 goto out_err_no_arch_destroy_vm;
781 }
782
783 kvm->max_halt_poll_ns = halt_poll_ns;
784
785 r = kvm_arch_init_vm(kvm, type);
786 if (r)
787 goto out_err_no_arch_destroy_vm;
788
789 r = hardware_enable_all();
790 if (r)
791 goto out_err_no_disable;
792
793 #ifdef CONFIG_HAVE_KVM_IRQFD
794 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
795 #endif
796
797 r = kvm_init_mmu_notifier(kvm);
798 if (r)
799 goto out_err_no_mmu_notifier;
800
801 r = kvm_arch_post_init_vm(kvm);
802 if (r)
803 goto out_err;
804
805 mutex_lock(&kvm_lock);
806 list_add(&kvm->vm_list, &vm_list);
807 mutex_unlock(&kvm_lock);
808
809 preempt_notifier_inc();
810
811 return kvm;
812
813 out_err:
814 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
815 if (kvm->mmu_notifier.ops)
816 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
817 #endif
818 out_err_no_mmu_notifier:
819 hardware_disable_all();
820 out_err_no_disable:
821 kvm_arch_destroy_vm(kvm);
822 out_err_no_arch_destroy_vm:
823 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
824 for (i = 0; i < KVM_NR_BUSES; i++)
825 kfree(kvm_get_bus(kvm, i));
826 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
827 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
828 cleanup_srcu_struct(&kvm->irq_srcu);
829 out_err_no_irq_srcu:
830 cleanup_srcu_struct(&kvm->srcu);
831 out_err_no_srcu:
832 kvm_arch_free_vm(kvm);
833 mmdrop(current->mm);
834 return ERR_PTR(r);
835 }
836
837 static void kvm_destroy_devices(struct kvm *kvm)
838 {
839 struct kvm_device *dev, *tmp;
840
841 /*
842 * We do not need to take the kvm->lock here, because nobody else
843 * has a reference to the struct kvm at this point and therefore
844 * cannot access the devices list anyhow.
845 */
846 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
847 list_del(&dev->vm_node);
848 dev->ops->destroy(dev);
849 }
850 }
851
852 static void kvm_destroy_vm(struct kvm *kvm)
853 {
854 int i;
855 struct mm_struct *mm = kvm->mm;
856
857 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
858 kvm_destroy_vm_debugfs(kvm);
859 kvm_arch_sync_events(kvm);
860 mutex_lock(&kvm_lock);
861 list_del(&kvm->vm_list);
862 mutex_unlock(&kvm_lock);
863 kvm_arch_pre_destroy_vm(kvm);
864
865 kvm_free_irq_routing(kvm);
866 for (i = 0; i < KVM_NR_BUSES; i++) {
867 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
868
869 if (bus)
870 kvm_io_bus_destroy(bus);
871 kvm->buses[i] = NULL;
872 }
873 kvm_coalesced_mmio_free(kvm);
874 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
875 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
876 #else
877 kvm_arch_flush_shadow_all(kvm);
878 #endif
879 kvm_arch_destroy_vm(kvm);
880 kvm_destroy_devices(kvm);
881 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
882 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
883 cleanup_srcu_struct(&kvm->irq_srcu);
884 cleanup_srcu_struct(&kvm->srcu);
885 kvm_arch_free_vm(kvm);
886 preempt_notifier_dec();
887 hardware_disable_all();
888 mmdrop(mm);
889 }
890
891 void kvm_get_kvm(struct kvm *kvm)
892 {
893 refcount_inc(&kvm->users_count);
894 }
895 EXPORT_SYMBOL_GPL(kvm_get_kvm);
896
897 void kvm_put_kvm(struct kvm *kvm)
898 {
899 if (refcount_dec_and_test(&kvm->users_count))
900 kvm_destroy_vm(kvm);
901 }
902 EXPORT_SYMBOL_GPL(kvm_put_kvm);
903
904 /*
905 * Used to put a reference that was taken on behalf of an object associated
906 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
907 * of the new file descriptor fails and the reference cannot be transferred to
908 * its final owner. In such cases, the caller is still actively using @kvm and
909 * will fail miserably if the refcount unexpectedly hits zero.
910 */
911 void kvm_put_kvm_no_destroy(struct kvm *kvm)
912 {
913 WARN_ON(refcount_dec_and_test(&kvm->users_count));
914 }
915 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
916
917 static int kvm_vm_release(struct inode *inode, struct file *filp)
918 {
919 struct kvm *kvm = filp->private_data;
920
921 kvm_irqfd_release(kvm);
922
923 kvm_put_kvm(kvm);
924 return 0;
925 }
926
927 /*
928 * Allocation size is twice as large as the actual dirty bitmap size.
929 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
930 */
931 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
932 {
933 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
934
935 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
936 if (!memslot->dirty_bitmap)
937 return -ENOMEM;
938
939 return 0;
940 }
941
942 /*
943 * Delete a memslot by decrementing the number of used slots and shifting all
944 * other entries in the array forward one spot.
945 */
946 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
947 struct kvm_memory_slot *memslot)
948 {
949 struct kvm_memory_slot *mslots = slots->memslots;
950 int i;
951
952 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
953 return;
954
955 slots->used_slots--;
956
957 if (atomic_read(&slots->lru_slot) >= slots->used_slots)
958 atomic_set(&slots->lru_slot, 0);
959
960 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
961 mslots[i] = mslots[i + 1];
962 slots->id_to_index[mslots[i].id] = i;
963 }
964 mslots[i] = *memslot;
965 slots->id_to_index[memslot->id] = -1;
966 }
967
968 /*
969 * "Insert" a new memslot by incrementing the number of used slots. Returns
970 * the new slot's initial index into the memslots array.
971 */
972 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
973 {
974 return slots->used_slots++;
975 }
976
977 /*
978 * Move a changed memslot backwards in the array by shifting existing slots
979 * with a higher GFN toward the front of the array. Note, the changed memslot
980 * itself is not preserved in the array, i.e. not swapped at this time, only
981 * its new index into the array is tracked. Returns the changed memslot's
982 * current index into the memslots array.
983 */
984 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
985 struct kvm_memory_slot *memslot)
986 {
987 struct kvm_memory_slot *mslots = slots->memslots;
988 int i;
989
990 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
991 WARN_ON_ONCE(!slots->used_slots))
992 return -1;
993
994 /*
995 * Move the target memslot backward in the array by shifting existing
996 * memslots with a higher GFN (than the target memslot) towards the
997 * front of the array.
998 */
999 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1000 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1001 break;
1002
1003 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1004
1005 /* Shift the next memslot forward one and update its index. */
1006 mslots[i] = mslots[i + 1];
1007 slots->id_to_index[mslots[i].id] = i;
1008 }
1009 return i;
1010 }
1011
1012 /*
1013 * Move a changed memslot forwards in the array by shifting existing slots with
1014 * a lower GFN toward the back of the array. Note, the changed memslot itself
1015 * is not preserved in the array, i.e. not swapped at this time, only its new
1016 * index into the array is tracked. Returns the changed memslot's final index
1017 * into the memslots array.
1018 */
1019 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1020 struct kvm_memory_slot *memslot,
1021 int start)
1022 {
1023 struct kvm_memory_slot *mslots = slots->memslots;
1024 int i;
1025
1026 for (i = start; i > 0; i--) {
1027 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1028 break;
1029
1030 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1031
1032 /* Shift the next memslot back one and update its index. */
1033 mslots[i] = mslots[i - 1];
1034 slots->id_to_index[mslots[i].id] = i;
1035 }
1036 return i;
1037 }
1038
1039 /*
1040 * Re-sort memslots based on their GFN to account for an added, deleted, or
1041 * moved memslot. Sorting memslots by GFN allows using a binary search during
1042 * memslot lookup.
1043 *
1044 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
1045 * at memslots[0] has the highest GFN.
1046 *
1047 * The sorting algorithm takes advantage of having initially sorted memslots
1048 * and knowing the position of the changed memslot. Sorting is also optimized
1049 * by not swapping the updated memslot and instead only shifting other memslots
1050 * and tracking the new index for the update memslot. Only once its final
1051 * index is known is the updated memslot copied into its position in the array.
1052 *
1053 * - When deleting a memslot, the deleted memslot simply needs to be moved to
1054 * the end of the array.
1055 *
1056 * - When creating a memslot, the algorithm "inserts" the new memslot at the
1057 * end of the array and then it forward to its correct location.
1058 *
1059 * - When moving a memslot, the algorithm first moves the updated memslot
1060 * backward to handle the scenario where the memslot's GFN was changed to a
1061 * lower value. update_memslots() then falls through and runs the same flow
1062 * as creating a memslot to move the memslot forward to handle the scenario
1063 * where its GFN was changed to a higher value.
1064 *
1065 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1066 * historical reasons. Originally, invalid memslots where denoted by having
1067 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1068 * to the end of the array. The current algorithm uses dedicated logic to
1069 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1070 *
1071 * The other historical motiviation for highest->lowest was to improve the
1072 * performance of memslot lookup. KVM originally used a linear search starting
1073 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1074 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1075 * single memslot above the 4gb boundary. As the largest memslot is also the
1076 * most likely to be referenced, sorting it to the front of the array was
1077 * advantageous. The current binary search starts from the middle of the array
1078 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1079 */
1080 static void update_memslots(struct kvm_memslots *slots,
1081 struct kvm_memory_slot *memslot,
1082 enum kvm_mr_change change)
1083 {
1084 int i;
1085
1086 if (change == KVM_MR_DELETE) {
1087 kvm_memslot_delete(slots, memslot);
1088 } else {
1089 if (change == KVM_MR_CREATE)
1090 i = kvm_memslot_insert_back(slots);
1091 else
1092 i = kvm_memslot_move_backward(slots, memslot);
1093 i = kvm_memslot_move_forward(slots, memslot, i);
1094
1095 /*
1096 * Copy the memslot to its new position in memslots and update
1097 * its index accordingly.
1098 */
1099 slots->memslots[i] = *memslot;
1100 slots->id_to_index[memslot->id] = i;
1101 }
1102 }
1103
1104 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1105 {
1106 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1107
1108 #ifdef __KVM_HAVE_READONLY_MEM
1109 valid_flags |= KVM_MEM_READONLY;
1110 #endif
1111
1112 if (mem->flags & ~valid_flags)
1113 return -EINVAL;
1114
1115 return 0;
1116 }
1117
1118 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1119 int as_id, struct kvm_memslots *slots)
1120 {
1121 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1122 u64 gen = old_memslots->generation;
1123
1124 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1125 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1126
1127 rcu_assign_pointer(kvm->memslots[as_id], slots);
1128 synchronize_srcu_expedited(&kvm->srcu);
1129
1130 /*
1131 * Increment the new memslot generation a second time, dropping the
1132 * update in-progress flag and incrementing the generation based on
1133 * the number of address spaces. This provides a unique and easily
1134 * identifiable generation number while the memslots are in flux.
1135 */
1136 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1137
1138 /*
1139 * Generations must be unique even across address spaces. We do not need
1140 * a global counter for that, instead the generation space is evenly split
1141 * across address spaces. For example, with two address spaces, address
1142 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1143 * use generations 1, 3, 5, ...
1144 */
1145 gen += KVM_ADDRESS_SPACE_NUM;
1146
1147 kvm_arch_memslots_updated(kvm, gen);
1148
1149 slots->generation = gen;
1150
1151 return old_memslots;
1152 }
1153
1154 /*
1155 * Note, at a minimum, the current number of used slots must be allocated, even
1156 * when deleting a memslot, as we need a complete duplicate of the memslots for
1157 * use when invalidating a memslot prior to deleting/moving the memslot.
1158 */
1159 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1160 enum kvm_mr_change change)
1161 {
1162 struct kvm_memslots *slots;
1163 size_t old_size, new_size;
1164
1165 old_size = sizeof(struct kvm_memslots) +
1166 (sizeof(struct kvm_memory_slot) * old->used_slots);
1167
1168 if (change == KVM_MR_CREATE)
1169 new_size = old_size + sizeof(struct kvm_memory_slot);
1170 else
1171 new_size = old_size;
1172
1173 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1174 if (likely(slots))
1175 memcpy(slots, old, old_size);
1176
1177 return slots;
1178 }
1179
1180 static int kvm_set_memslot(struct kvm *kvm,
1181 const struct kvm_userspace_memory_region *mem,
1182 struct kvm_memory_slot *old,
1183 struct kvm_memory_slot *new, int as_id,
1184 enum kvm_mr_change change)
1185 {
1186 struct kvm_memory_slot *slot;
1187 struct kvm_memslots *slots;
1188 int r;
1189
1190 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1191 if (!slots)
1192 return -ENOMEM;
1193
1194 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1195 /*
1196 * Note, the INVALID flag needs to be in the appropriate entry
1197 * in the freshly allocated memslots, not in @old or @new.
1198 */
1199 slot = id_to_memslot(slots, old->id);
1200 slot->flags |= KVM_MEMSLOT_INVALID;
1201
1202 /*
1203 * We can re-use the old memslots, the only difference from the
1204 * newly installed memslots is the invalid flag, which will get
1205 * dropped by update_memslots anyway. We'll also revert to the
1206 * old memslots if preparing the new memory region fails.
1207 */
1208 slots = install_new_memslots(kvm, as_id, slots);
1209
1210 /* From this point no new shadow pages pointing to a deleted,
1211 * or moved, memslot will be created.
1212 *
1213 * validation of sp->gfn happens in:
1214 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1215 * - kvm_is_visible_gfn (mmu_check_root)
1216 */
1217 kvm_arch_flush_shadow_memslot(kvm, slot);
1218 }
1219
1220 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1221 if (r)
1222 goto out_slots;
1223
1224 update_memslots(slots, new, change);
1225 slots = install_new_memslots(kvm, as_id, slots);
1226
1227 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1228
1229 kvfree(slots);
1230 return 0;
1231
1232 out_slots:
1233 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1234 slots = install_new_memslots(kvm, as_id, slots);
1235 kvfree(slots);
1236 return r;
1237 }
1238
1239 static int kvm_delete_memslot(struct kvm *kvm,
1240 const struct kvm_userspace_memory_region *mem,
1241 struct kvm_memory_slot *old, int as_id)
1242 {
1243 struct kvm_memory_slot new;
1244 int r;
1245
1246 if (!old->npages)
1247 return -EINVAL;
1248
1249 memset(&new, 0, sizeof(new));
1250 new.id = old->id;
1251 /*
1252 * This is only for debugging purpose; it should never be referenced
1253 * for a removed memslot.
1254 */
1255 new.as_id = as_id;
1256
1257 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1258 if (r)
1259 return r;
1260
1261 kvm_free_memslot(kvm, old);
1262 return 0;
1263 }
1264
1265 /*
1266 * Allocate some memory and give it an address in the guest physical address
1267 * space.
1268 *
1269 * Discontiguous memory is allowed, mostly for framebuffers.
1270 *
1271 * Must be called holding kvm->slots_lock for write.
1272 */
1273 int __kvm_set_memory_region(struct kvm *kvm,
1274 const struct kvm_userspace_memory_region *mem)
1275 {
1276 struct kvm_memory_slot old, new;
1277 struct kvm_memory_slot *tmp;
1278 enum kvm_mr_change change;
1279 int as_id, id;
1280 int r;
1281
1282 r = check_memory_region_flags(mem);
1283 if (r)
1284 return r;
1285
1286 as_id = mem->slot >> 16;
1287 id = (u16)mem->slot;
1288
1289 /* General sanity checks */
1290 if (mem->memory_size & (PAGE_SIZE - 1))
1291 return -EINVAL;
1292 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1293 return -EINVAL;
1294 /* We can read the guest memory with __xxx_user() later on. */
1295 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1296 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1297 mem->memory_size))
1298 return -EINVAL;
1299 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1300 return -EINVAL;
1301 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1302 return -EINVAL;
1303
1304 /*
1305 * Make a full copy of the old memslot, the pointer will become stale
1306 * when the memslots are re-sorted by update_memslots(), and the old
1307 * memslot needs to be referenced after calling update_memslots(), e.g.
1308 * to free its resources and for arch specific behavior.
1309 */
1310 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1311 if (tmp) {
1312 old = *tmp;
1313 tmp = NULL;
1314 } else {
1315 memset(&old, 0, sizeof(old));
1316 old.id = id;
1317 }
1318
1319 if (!mem->memory_size)
1320 return kvm_delete_memslot(kvm, mem, &old, as_id);
1321
1322 new.as_id = as_id;
1323 new.id = id;
1324 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1325 new.npages = mem->memory_size >> PAGE_SHIFT;
1326 new.flags = mem->flags;
1327 new.userspace_addr = mem->userspace_addr;
1328
1329 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1330 return -EINVAL;
1331
1332 if (!old.npages) {
1333 change = KVM_MR_CREATE;
1334 new.dirty_bitmap = NULL;
1335 memset(&new.arch, 0, sizeof(new.arch));
1336 } else { /* Modify an existing slot. */
1337 if ((new.userspace_addr != old.userspace_addr) ||
1338 (new.npages != old.npages) ||
1339 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1340 return -EINVAL;
1341
1342 if (new.base_gfn != old.base_gfn)
1343 change = KVM_MR_MOVE;
1344 else if (new.flags != old.flags)
1345 change = KVM_MR_FLAGS_ONLY;
1346 else /* Nothing to change. */
1347 return 0;
1348
1349 /* Copy dirty_bitmap and arch from the current memslot. */
1350 new.dirty_bitmap = old.dirty_bitmap;
1351 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1352 }
1353
1354 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1355 /* Check for overlaps */
1356 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1357 if (tmp->id == id)
1358 continue;
1359 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1360 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1361 return -EEXIST;
1362 }
1363 }
1364
1365 /* Allocate/free page dirty bitmap as needed */
1366 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1367 new.dirty_bitmap = NULL;
1368 else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1369 r = kvm_alloc_dirty_bitmap(&new);
1370 if (r)
1371 return r;
1372
1373 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1374 bitmap_set(new.dirty_bitmap, 0, new.npages);
1375 }
1376
1377 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1378 if (r)
1379 goto out_bitmap;
1380
1381 if (old.dirty_bitmap && !new.dirty_bitmap)
1382 kvm_destroy_dirty_bitmap(&old);
1383 return 0;
1384
1385 out_bitmap:
1386 if (new.dirty_bitmap && !old.dirty_bitmap)
1387 kvm_destroy_dirty_bitmap(&new);
1388 return r;
1389 }
1390 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1391
1392 int kvm_set_memory_region(struct kvm *kvm,
1393 const struct kvm_userspace_memory_region *mem)
1394 {
1395 int r;
1396
1397 mutex_lock(&kvm->slots_lock);
1398 r = __kvm_set_memory_region(kvm, mem);
1399 mutex_unlock(&kvm->slots_lock);
1400 return r;
1401 }
1402 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1403
1404 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1405 struct kvm_userspace_memory_region *mem)
1406 {
1407 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1408 return -EINVAL;
1409
1410 return kvm_set_memory_region(kvm, mem);
1411 }
1412
1413 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1414 /**
1415 * kvm_get_dirty_log - get a snapshot of dirty pages
1416 * @kvm: pointer to kvm instance
1417 * @log: slot id and address to which we copy the log
1418 * @is_dirty: set to '1' if any dirty pages were found
1419 * @memslot: set to the associated memslot, always valid on success
1420 */
1421 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1422 int *is_dirty, struct kvm_memory_slot **memslot)
1423 {
1424 struct kvm_memslots *slots;
1425 int i, as_id, id;
1426 unsigned long n;
1427 unsigned long any = 0;
1428
1429 /* Dirty ring tracking is exclusive to dirty log tracking */
1430 if (kvm->dirty_ring_size)
1431 return -ENXIO;
1432
1433 *memslot = NULL;
1434 *is_dirty = 0;
1435
1436 as_id = log->slot >> 16;
1437 id = (u16)log->slot;
1438 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1439 return -EINVAL;
1440
1441 slots = __kvm_memslots(kvm, as_id);
1442 *memslot = id_to_memslot(slots, id);
1443 if (!(*memslot) || !(*memslot)->dirty_bitmap)
1444 return -ENOENT;
1445
1446 kvm_arch_sync_dirty_log(kvm, *memslot);
1447
1448 n = kvm_dirty_bitmap_bytes(*memslot);
1449
1450 for (i = 0; !any && i < n/sizeof(long); ++i)
1451 any = (*memslot)->dirty_bitmap[i];
1452
1453 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1454 return -EFAULT;
1455
1456 if (any)
1457 *is_dirty = 1;
1458 return 0;
1459 }
1460 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1461
1462 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1463 /**
1464 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1465 * and reenable dirty page tracking for the corresponding pages.
1466 * @kvm: pointer to kvm instance
1467 * @log: slot id and address to which we copy the log
1468 *
1469 * We need to keep it in mind that VCPU threads can write to the bitmap
1470 * concurrently. So, to avoid losing track of dirty pages we keep the
1471 * following order:
1472 *
1473 * 1. Take a snapshot of the bit and clear it if needed.
1474 * 2. Write protect the corresponding page.
1475 * 3. Copy the snapshot to the userspace.
1476 * 4. Upon return caller flushes TLB's if needed.
1477 *
1478 * Between 2 and 4, the guest may write to the page using the remaining TLB
1479 * entry. This is not a problem because the page is reported dirty using
1480 * the snapshot taken before and step 4 ensures that writes done after
1481 * exiting to userspace will be logged for the next call.
1482 *
1483 */
1484 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1485 {
1486 struct kvm_memslots *slots;
1487 struct kvm_memory_slot *memslot;
1488 int i, as_id, id;
1489 unsigned long n;
1490 unsigned long *dirty_bitmap;
1491 unsigned long *dirty_bitmap_buffer;
1492 bool flush;
1493
1494 /* Dirty ring tracking is exclusive to dirty log tracking */
1495 if (kvm->dirty_ring_size)
1496 return -ENXIO;
1497
1498 as_id = log->slot >> 16;
1499 id = (u16)log->slot;
1500 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1501 return -EINVAL;
1502
1503 slots = __kvm_memslots(kvm, as_id);
1504 memslot = id_to_memslot(slots, id);
1505 if (!memslot || !memslot->dirty_bitmap)
1506 return -ENOENT;
1507
1508 dirty_bitmap = memslot->dirty_bitmap;
1509
1510 kvm_arch_sync_dirty_log(kvm, memslot);
1511
1512 n = kvm_dirty_bitmap_bytes(memslot);
1513 flush = false;
1514 if (kvm->manual_dirty_log_protect) {
1515 /*
1516 * Unlike kvm_get_dirty_log, we always return false in *flush,
1517 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1518 * is some code duplication between this function and
1519 * kvm_get_dirty_log, but hopefully all architecture
1520 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1521 * can be eliminated.
1522 */
1523 dirty_bitmap_buffer = dirty_bitmap;
1524 } else {
1525 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1526 memset(dirty_bitmap_buffer, 0, n);
1527
1528 spin_lock(&kvm->mmu_lock);
1529 for (i = 0; i < n / sizeof(long); i++) {
1530 unsigned long mask;
1531 gfn_t offset;
1532
1533 if (!dirty_bitmap[i])
1534 continue;
1535
1536 flush = true;
1537 mask = xchg(&dirty_bitmap[i], 0);
1538 dirty_bitmap_buffer[i] = mask;
1539
1540 offset = i * BITS_PER_LONG;
1541 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1542 offset, mask);
1543 }
1544 spin_unlock(&kvm->mmu_lock);
1545 }
1546
1547 if (flush)
1548 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1549
1550 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1551 return -EFAULT;
1552 return 0;
1553 }
1554
1555
1556 /**
1557 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1558 * @kvm: kvm instance
1559 * @log: slot id and address to which we copy the log
1560 *
1561 * Steps 1-4 below provide general overview of dirty page logging. See
1562 * kvm_get_dirty_log_protect() function description for additional details.
1563 *
1564 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1565 * always flush the TLB (step 4) even if previous step failed and the dirty
1566 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1567 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1568 * writes will be marked dirty for next log read.
1569 *
1570 * 1. Take a snapshot of the bit and clear it if needed.
1571 * 2. Write protect the corresponding page.
1572 * 3. Copy the snapshot to the userspace.
1573 * 4. Flush TLB's if needed.
1574 */
1575 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1576 struct kvm_dirty_log *log)
1577 {
1578 int r;
1579
1580 mutex_lock(&kvm->slots_lock);
1581
1582 r = kvm_get_dirty_log_protect(kvm, log);
1583
1584 mutex_unlock(&kvm->slots_lock);
1585 return r;
1586 }
1587
1588 /**
1589 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1590 * and reenable dirty page tracking for the corresponding pages.
1591 * @kvm: pointer to kvm instance
1592 * @log: slot id and address from which to fetch the bitmap of dirty pages
1593 */
1594 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1595 struct kvm_clear_dirty_log *log)
1596 {
1597 struct kvm_memslots *slots;
1598 struct kvm_memory_slot *memslot;
1599 int as_id, id;
1600 gfn_t offset;
1601 unsigned long i, n;
1602 unsigned long *dirty_bitmap;
1603 unsigned long *dirty_bitmap_buffer;
1604 bool flush;
1605
1606 /* Dirty ring tracking is exclusive to dirty log tracking */
1607 if (kvm->dirty_ring_size)
1608 return -ENXIO;
1609
1610 as_id = log->slot >> 16;
1611 id = (u16)log->slot;
1612 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1613 return -EINVAL;
1614
1615 if (log->first_page & 63)
1616 return -EINVAL;
1617
1618 slots = __kvm_memslots(kvm, as_id);
1619 memslot = id_to_memslot(slots, id);
1620 if (!memslot || !memslot->dirty_bitmap)
1621 return -ENOENT;
1622
1623 dirty_bitmap = memslot->dirty_bitmap;
1624
1625 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1626
1627 if (log->first_page > memslot->npages ||
1628 log->num_pages > memslot->npages - log->first_page ||
1629 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1630 return -EINVAL;
1631
1632 kvm_arch_sync_dirty_log(kvm, memslot);
1633
1634 flush = false;
1635 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1636 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1637 return -EFAULT;
1638
1639 spin_lock(&kvm->mmu_lock);
1640 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1641 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1642 i++, offset += BITS_PER_LONG) {
1643 unsigned long mask = *dirty_bitmap_buffer++;
1644 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1645 if (!mask)
1646 continue;
1647
1648 mask &= atomic_long_fetch_andnot(mask, p);
1649
1650 /*
1651 * mask contains the bits that really have been cleared. This
1652 * never includes any bits beyond the length of the memslot (if
1653 * the length is not aligned to 64 pages), therefore it is not
1654 * a problem if userspace sets them in log->dirty_bitmap.
1655 */
1656 if (mask) {
1657 flush = true;
1658 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1659 offset, mask);
1660 }
1661 }
1662 spin_unlock(&kvm->mmu_lock);
1663
1664 if (flush)
1665 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1666
1667 return 0;
1668 }
1669
1670 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1671 struct kvm_clear_dirty_log *log)
1672 {
1673 int r;
1674
1675 mutex_lock(&kvm->slots_lock);
1676
1677 r = kvm_clear_dirty_log_protect(kvm, log);
1678
1679 mutex_unlock(&kvm->slots_lock);
1680 return r;
1681 }
1682 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1683
1684 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1685 {
1686 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1687 }
1688 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1689
1690 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1691 {
1692 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1695
1696 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1697 {
1698 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1699
1700 return kvm_is_visible_memslot(memslot);
1701 }
1702 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1703
1704 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1705 {
1706 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1707
1708 return kvm_is_visible_memslot(memslot);
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1711
1712 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1713 {
1714 struct vm_area_struct *vma;
1715 unsigned long addr, size;
1716
1717 size = PAGE_SIZE;
1718
1719 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1720 if (kvm_is_error_hva(addr))
1721 return PAGE_SIZE;
1722
1723 mmap_read_lock(current->mm);
1724 vma = find_vma(current->mm, addr);
1725 if (!vma)
1726 goto out;
1727
1728 size = vma_kernel_pagesize(vma);
1729
1730 out:
1731 mmap_read_unlock(current->mm);
1732
1733 return size;
1734 }
1735
1736 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1737 {
1738 return slot->flags & KVM_MEM_READONLY;
1739 }
1740
1741 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1742 gfn_t *nr_pages, bool write)
1743 {
1744 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1745 return KVM_HVA_ERR_BAD;
1746
1747 if (memslot_is_readonly(slot) && write)
1748 return KVM_HVA_ERR_RO_BAD;
1749
1750 if (nr_pages)
1751 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1752
1753 return __gfn_to_hva_memslot(slot, gfn);
1754 }
1755
1756 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1757 gfn_t *nr_pages)
1758 {
1759 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1760 }
1761
1762 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1763 gfn_t gfn)
1764 {
1765 return gfn_to_hva_many(slot, gfn, NULL);
1766 }
1767 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1768
1769 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1770 {
1771 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1772 }
1773 EXPORT_SYMBOL_GPL(gfn_to_hva);
1774
1775 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1776 {
1777 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1778 }
1779 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1780
1781 /*
1782 * Return the hva of a @gfn and the R/W attribute if possible.
1783 *
1784 * @slot: the kvm_memory_slot which contains @gfn
1785 * @gfn: the gfn to be translated
1786 * @writable: used to return the read/write attribute of the @slot if the hva
1787 * is valid and @writable is not NULL
1788 */
1789 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1790 gfn_t gfn, bool *writable)
1791 {
1792 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1793
1794 if (!kvm_is_error_hva(hva) && writable)
1795 *writable = !memslot_is_readonly(slot);
1796
1797 return hva;
1798 }
1799
1800 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1801 {
1802 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1803
1804 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1805 }
1806
1807 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1808 {
1809 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1810
1811 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1812 }
1813
1814 static inline int check_user_page_hwpoison(unsigned long addr)
1815 {
1816 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1817
1818 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1819 return rc == -EHWPOISON;
1820 }
1821
1822 /*
1823 * The fast path to get the writable pfn which will be stored in @pfn,
1824 * true indicates success, otherwise false is returned. It's also the
1825 * only part that runs if we can in atomic context.
1826 */
1827 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1828 bool *writable, kvm_pfn_t *pfn)
1829 {
1830 struct page *page[1];
1831
1832 /*
1833 * Fast pin a writable pfn only if it is a write fault request
1834 * or the caller allows to map a writable pfn for a read fault
1835 * request.
1836 */
1837 if (!(write_fault || writable))
1838 return false;
1839
1840 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1841 *pfn = page_to_pfn(page[0]);
1842
1843 if (writable)
1844 *writable = true;
1845 return true;
1846 }
1847
1848 return false;
1849 }
1850
1851 /*
1852 * The slow path to get the pfn of the specified host virtual address,
1853 * 1 indicates success, -errno is returned if error is detected.
1854 */
1855 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1856 bool *writable, kvm_pfn_t *pfn)
1857 {
1858 unsigned int flags = FOLL_HWPOISON;
1859 struct page *page;
1860 int npages = 0;
1861
1862 might_sleep();
1863
1864 if (writable)
1865 *writable = write_fault;
1866
1867 if (write_fault)
1868 flags |= FOLL_WRITE;
1869 if (async)
1870 flags |= FOLL_NOWAIT;
1871
1872 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1873 if (npages != 1)
1874 return npages;
1875
1876 /* map read fault as writable if possible */
1877 if (unlikely(!write_fault) && writable) {
1878 struct page *wpage;
1879
1880 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1881 *writable = true;
1882 put_page(page);
1883 page = wpage;
1884 }
1885 }
1886 *pfn = page_to_pfn(page);
1887 return npages;
1888 }
1889
1890 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1891 {
1892 if (unlikely(!(vma->vm_flags & VM_READ)))
1893 return false;
1894
1895 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1896 return false;
1897
1898 return true;
1899 }
1900
1901 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1902 unsigned long addr, bool *async,
1903 bool write_fault, bool *writable,
1904 kvm_pfn_t *p_pfn)
1905 {
1906 unsigned long pfn;
1907 int r;
1908
1909 r = follow_pfn(vma, addr, &pfn);
1910 if (r) {
1911 /*
1912 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1913 * not call the fault handler, so do it here.
1914 */
1915 bool unlocked = false;
1916 r = fixup_user_fault(current->mm, addr,
1917 (write_fault ? FAULT_FLAG_WRITE : 0),
1918 &unlocked);
1919 if (unlocked)
1920 return -EAGAIN;
1921 if (r)
1922 return r;
1923
1924 r = follow_pfn(vma, addr, &pfn);
1925 if (r)
1926 return r;
1927
1928 }
1929
1930 if (writable)
1931 *writable = true;
1932
1933 /*
1934 * Get a reference here because callers of *hva_to_pfn* and
1935 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1936 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1937 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1938 * simply do nothing for reserved pfns.
1939 *
1940 * Whoever called remap_pfn_range is also going to call e.g.
1941 * unmap_mapping_range before the underlying pages are freed,
1942 * causing a call to our MMU notifier.
1943 */
1944 kvm_get_pfn(pfn);
1945
1946 *p_pfn = pfn;
1947 return 0;
1948 }
1949
1950 /*
1951 * Pin guest page in memory and return its pfn.
1952 * @addr: host virtual address which maps memory to the guest
1953 * @atomic: whether this function can sleep
1954 * @async: whether this function need to wait IO complete if the
1955 * host page is not in the memory
1956 * @write_fault: whether we should get a writable host page
1957 * @writable: whether it allows to map a writable host page for !@write_fault
1958 *
1959 * The function will map a writable host page for these two cases:
1960 * 1): @write_fault = true
1961 * 2): @write_fault = false && @writable, @writable will tell the caller
1962 * whether the mapping is writable.
1963 */
1964 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1965 bool write_fault, bool *writable)
1966 {
1967 struct vm_area_struct *vma;
1968 kvm_pfn_t pfn = 0;
1969 int npages, r;
1970
1971 /* we can do it either atomically or asynchronously, not both */
1972 BUG_ON(atomic && async);
1973
1974 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1975 return pfn;
1976
1977 if (atomic)
1978 return KVM_PFN_ERR_FAULT;
1979
1980 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1981 if (npages == 1)
1982 return pfn;
1983
1984 mmap_read_lock(current->mm);
1985 if (npages == -EHWPOISON ||
1986 (!async && check_user_page_hwpoison(addr))) {
1987 pfn = KVM_PFN_ERR_HWPOISON;
1988 goto exit;
1989 }
1990
1991 retry:
1992 vma = find_vma_intersection(current->mm, addr, addr + 1);
1993
1994 if (vma == NULL)
1995 pfn = KVM_PFN_ERR_FAULT;
1996 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1997 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1998 if (r == -EAGAIN)
1999 goto retry;
2000 if (r < 0)
2001 pfn = KVM_PFN_ERR_FAULT;
2002 } else {
2003 if (async && vma_is_valid(vma, write_fault))
2004 *async = true;
2005 pfn = KVM_PFN_ERR_FAULT;
2006 }
2007 exit:
2008 mmap_read_unlock(current->mm);
2009 return pfn;
2010 }
2011
2012 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2013 bool atomic, bool *async, bool write_fault,
2014 bool *writable)
2015 {
2016 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2017
2018 if (addr == KVM_HVA_ERR_RO_BAD) {
2019 if (writable)
2020 *writable = false;
2021 return KVM_PFN_ERR_RO_FAULT;
2022 }
2023
2024 if (kvm_is_error_hva(addr)) {
2025 if (writable)
2026 *writable = false;
2027 return KVM_PFN_NOSLOT;
2028 }
2029
2030 /* Do not map writable pfn in the readonly memslot. */
2031 if (writable && memslot_is_readonly(slot)) {
2032 *writable = false;
2033 writable = NULL;
2034 }
2035
2036 return hva_to_pfn(addr, atomic, async, write_fault,
2037 writable);
2038 }
2039 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2040
2041 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2042 bool *writable)
2043 {
2044 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2045 write_fault, writable);
2046 }
2047 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2048
2049 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2050 {
2051 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2052 }
2053 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2054
2055 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2056 {
2057 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2058 }
2059 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2060
2061 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2062 {
2063 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2064 }
2065 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2066
2067 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2068 {
2069 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2070 }
2071 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2072
2073 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2074 {
2075 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2076 }
2077 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2078
2079 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2080 struct page **pages, int nr_pages)
2081 {
2082 unsigned long addr;
2083 gfn_t entry = 0;
2084
2085 addr = gfn_to_hva_many(slot, gfn, &entry);
2086 if (kvm_is_error_hva(addr))
2087 return -1;
2088
2089 if (entry < nr_pages)
2090 return 0;
2091
2092 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2093 }
2094 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2095
2096 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2097 {
2098 if (is_error_noslot_pfn(pfn))
2099 return KVM_ERR_PTR_BAD_PAGE;
2100
2101 if (kvm_is_reserved_pfn(pfn)) {
2102 WARN_ON(1);
2103 return KVM_ERR_PTR_BAD_PAGE;
2104 }
2105
2106 return pfn_to_page(pfn);
2107 }
2108
2109 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2110 {
2111 kvm_pfn_t pfn;
2112
2113 pfn = gfn_to_pfn(kvm, gfn);
2114
2115 return kvm_pfn_to_page(pfn);
2116 }
2117 EXPORT_SYMBOL_GPL(gfn_to_page);
2118
2119 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2120 {
2121 if (pfn == 0)
2122 return;
2123
2124 if (cache)
2125 cache->pfn = cache->gfn = 0;
2126
2127 if (dirty)
2128 kvm_release_pfn_dirty(pfn);
2129 else
2130 kvm_release_pfn_clean(pfn);
2131 }
2132
2133 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2134 struct gfn_to_pfn_cache *cache, u64 gen)
2135 {
2136 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2137
2138 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2139 cache->gfn = gfn;
2140 cache->dirty = false;
2141 cache->generation = gen;
2142 }
2143
2144 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2145 struct kvm_host_map *map,
2146 struct gfn_to_pfn_cache *cache,
2147 bool atomic)
2148 {
2149 kvm_pfn_t pfn;
2150 void *hva = NULL;
2151 struct page *page = KVM_UNMAPPED_PAGE;
2152 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2153 u64 gen = slots->generation;
2154
2155 if (!map)
2156 return -EINVAL;
2157
2158 if (cache) {
2159 if (!cache->pfn || cache->gfn != gfn ||
2160 cache->generation != gen) {
2161 if (atomic)
2162 return -EAGAIN;
2163 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2164 }
2165 pfn = cache->pfn;
2166 } else {
2167 if (atomic)
2168 return -EAGAIN;
2169 pfn = gfn_to_pfn_memslot(slot, gfn);
2170 }
2171 if (is_error_noslot_pfn(pfn))
2172 return -EINVAL;
2173
2174 if (pfn_valid(pfn)) {
2175 page = pfn_to_page(pfn);
2176 if (atomic)
2177 hva = kmap_atomic(page);
2178 else
2179 hva = kmap(page);
2180 #ifdef CONFIG_HAS_IOMEM
2181 } else if (!atomic) {
2182 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2183 } else {
2184 return -EINVAL;
2185 #endif
2186 }
2187
2188 if (!hva)
2189 return -EFAULT;
2190
2191 map->page = page;
2192 map->hva = hva;
2193 map->pfn = pfn;
2194 map->gfn = gfn;
2195
2196 return 0;
2197 }
2198
2199 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2200 struct gfn_to_pfn_cache *cache, bool atomic)
2201 {
2202 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2203 cache, atomic);
2204 }
2205 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2206
2207 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2208 {
2209 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2210 NULL, false);
2211 }
2212 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2213
2214 static void __kvm_unmap_gfn(struct kvm *kvm,
2215 struct kvm_memory_slot *memslot,
2216 struct kvm_host_map *map,
2217 struct gfn_to_pfn_cache *cache,
2218 bool dirty, bool atomic)
2219 {
2220 if (!map)
2221 return;
2222
2223 if (!map->hva)
2224 return;
2225
2226 if (map->page != KVM_UNMAPPED_PAGE) {
2227 if (atomic)
2228 kunmap_atomic(map->hva);
2229 else
2230 kunmap(map->page);
2231 }
2232 #ifdef CONFIG_HAS_IOMEM
2233 else if (!atomic)
2234 memunmap(map->hva);
2235 else
2236 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2237 #endif
2238
2239 if (dirty)
2240 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2241
2242 if (cache)
2243 cache->dirty |= dirty;
2244 else
2245 kvm_release_pfn(map->pfn, dirty, NULL);
2246
2247 map->hva = NULL;
2248 map->page = NULL;
2249 }
2250
2251 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2252 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2253 {
2254 __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2255 cache, dirty, atomic);
2256 return 0;
2257 }
2258 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2259
2260 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2261 {
2262 __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2263 map, NULL, dirty, false);
2264 }
2265 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2266
2267 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2268 {
2269 kvm_pfn_t pfn;
2270
2271 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2272
2273 return kvm_pfn_to_page(pfn);
2274 }
2275 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2276
2277 void kvm_release_page_clean(struct page *page)
2278 {
2279 WARN_ON(is_error_page(page));
2280
2281 kvm_release_pfn_clean(page_to_pfn(page));
2282 }
2283 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2284
2285 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2286 {
2287 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2288 put_page(pfn_to_page(pfn));
2289 }
2290 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2291
2292 void kvm_release_page_dirty(struct page *page)
2293 {
2294 WARN_ON(is_error_page(page));
2295
2296 kvm_release_pfn_dirty(page_to_pfn(page));
2297 }
2298 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2299
2300 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2301 {
2302 kvm_set_pfn_dirty(pfn);
2303 kvm_release_pfn_clean(pfn);
2304 }
2305 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2306
2307 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2308 {
2309 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2310 SetPageDirty(pfn_to_page(pfn));
2311 }
2312 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2313
2314 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2315 {
2316 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2317 mark_page_accessed(pfn_to_page(pfn));
2318 }
2319 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2320
2321 void kvm_get_pfn(kvm_pfn_t pfn)
2322 {
2323 if (!kvm_is_reserved_pfn(pfn))
2324 get_page(pfn_to_page(pfn));
2325 }
2326 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2327
2328 static int next_segment(unsigned long len, int offset)
2329 {
2330 if (len > PAGE_SIZE - offset)
2331 return PAGE_SIZE - offset;
2332 else
2333 return len;
2334 }
2335
2336 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2337 void *data, int offset, int len)
2338 {
2339 int r;
2340 unsigned long addr;
2341
2342 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2343 if (kvm_is_error_hva(addr))
2344 return -EFAULT;
2345 r = __copy_from_user(data, (void __user *)addr + offset, len);
2346 if (r)
2347 return -EFAULT;
2348 return 0;
2349 }
2350
2351 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2352 int len)
2353 {
2354 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2355
2356 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2357 }
2358 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2359
2360 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2361 int offset, int len)
2362 {
2363 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2364
2365 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2366 }
2367 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2368
2369 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2370 {
2371 gfn_t gfn = gpa >> PAGE_SHIFT;
2372 int seg;
2373 int offset = offset_in_page(gpa);
2374 int ret;
2375
2376 while ((seg = next_segment(len, offset)) != 0) {
2377 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2378 if (ret < 0)
2379 return ret;
2380 offset = 0;
2381 len -= seg;
2382 data += seg;
2383 ++gfn;
2384 }
2385 return 0;
2386 }
2387 EXPORT_SYMBOL_GPL(kvm_read_guest);
2388
2389 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2390 {
2391 gfn_t gfn = gpa >> PAGE_SHIFT;
2392 int seg;
2393 int offset = offset_in_page(gpa);
2394 int ret;
2395
2396 while ((seg = next_segment(len, offset)) != 0) {
2397 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2398 if (ret < 0)
2399 return ret;
2400 offset = 0;
2401 len -= seg;
2402 data += seg;
2403 ++gfn;
2404 }
2405 return 0;
2406 }
2407 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2408
2409 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2410 void *data, int offset, unsigned long len)
2411 {
2412 int r;
2413 unsigned long addr;
2414
2415 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2416 if (kvm_is_error_hva(addr))
2417 return -EFAULT;
2418 pagefault_disable();
2419 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2420 pagefault_enable();
2421 if (r)
2422 return -EFAULT;
2423 return 0;
2424 }
2425
2426 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2427 void *data, unsigned long len)
2428 {
2429 gfn_t gfn = gpa >> PAGE_SHIFT;
2430 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2431 int offset = offset_in_page(gpa);
2432
2433 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2434 }
2435 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2436
2437 static int __kvm_write_guest_page(struct kvm *kvm,
2438 struct kvm_memory_slot *memslot, gfn_t gfn,
2439 const void *data, int offset, int len)
2440 {
2441 int r;
2442 unsigned long addr;
2443
2444 addr = gfn_to_hva_memslot(memslot, gfn);
2445 if (kvm_is_error_hva(addr))
2446 return -EFAULT;
2447 r = __copy_to_user((void __user *)addr + offset, data, len);
2448 if (r)
2449 return -EFAULT;
2450 mark_page_dirty_in_slot(kvm, memslot, gfn);
2451 return 0;
2452 }
2453
2454 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2455 const void *data, int offset, int len)
2456 {
2457 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2458
2459 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2460 }
2461 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2462
2463 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2464 const void *data, int offset, int len)
2465 {
2466 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2467
2468 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2469 }
2470 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2471
2472 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2473 unsigned long len)
2474 {
2475 gfn_t gfn = gpa >> PAGE_SHIFT;
2476 int seg;
2477 int offset = offset_in_page(gpa);
2478 int ret;
2479
2480 while ((seg = next_segment(len, offset)) != 0) {
2481 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2482 if (ret < 0)
2483 return ret;
2484 offset = 0;
2485 len -= seg;
2486 data += seg;
2487 ++gfn;
2488 }
2489 return 0;
2490 }
2491 EXPORT_SYMBOL_GPL(kvm_write_guest);
2492
2493 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2494 unsigned long len)
2495 {
2496 gfn_t gfn = gpa >> PAGE_SHIFT;
2497 int seg;
2498 int offset = offset_in_page(gpa);
2499 int ret;
2500
2501 while ((seg = next_segment(len, offset)) != 0) {
2502 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2503 if (ret < 0)
2504 return ret;
2505 offset = 0;
2506 len -= seg;
2507 data += seg;
2508 ++gfn;
2509 }
2510 return 0;
2511 }
2512 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2513
2514 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2515 struct gfn_to_hva_cache *ghc,
2516 gpa_t gpa, unsigned long len)
2517 {
2518 int offset = offset_in_page(gpa);
2519 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2520 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2521 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2522 gfn_t nr_pages_avail;
2523
2524 /* Update ghc->generation before performing any error checks. */
2525 ghc->generation = slots->generation;
2526
2527 if (start_gfn > end_gfn) {
2528 ghc->hva = KVM_HVA_ERR_BAD;
2529 return -EINVAL;
2530 }
2531
2532 /*
2533 * If the requested region crosses two memslots, we still
2534 * verify that the entire region is valid here.
2535 */
2536 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2537 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2538 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2539 &nr_pages_avail);
2540 if (kvm_is_error_hva(ghc->hva))
2541 return -EFAULT;
2542 }
2543
2544 /* Use the slow path for cross page reads and writes. */
2545 if (nr_pages_needed == 1)
2546 ghc->hva += offset;
2547 else
2548 ghc->memslot = NULL;
2549
2550 ghc->gpa = gpa;
2551 ghc->len = len;
2552 return 0;
2553 }
2554
2555 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2556 gpa_t gpa, unsigned long len)
2557 {
2558 struct kvm_memslots *slots = kvm_memslots(kvm);
2559 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2560 }
2561 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2562
2563 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2564 void *data, unsigned int offset,
2565 unsigned long len)
2566 {
2567 struct kvm_memslots *slots = kvm_memslots(kvm);
2568 int r;
2569 gpa_t gpa = ghc->gpa + offset;
2570
2571 BUG_ON(len + offset > ghc->len);
2572
2573 if (slots->generation != ghc->generation) {
2574 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2575 return -EFAULT;
2576 }
2577
2578 if (kvm_is_error_hva(ghc->hva))
2579 return -EFAULT;
2580
2581 if (unlikely(!ghc->memslot))
2582 return kvm_write_guest(kvm, gpa, data, len);
2583
2584 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2585 if (r)
2586 return -EFAULT;
2587 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2588
2589 return 0;
2590 }
2591 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2592
2593 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2594 void *data, unsigned long len)
2595 {
2596 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2597 }
2598 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2599
2600 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2601 void *data, unsigned int offset,
2602 unsigned long len)
2603 {
2604 struct kvm_memslots *slots = kvm_memslots(kvm);
2605 int r;
2606 gpa_t gpa = ghc->gpa + offset;
2607
2608 BUG_ON(len + offset > ghc->len);
2609
2610 if (slots->generation != ghc->generation) {
2611 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2612 return -EFAULT;
2613 }
2614
2615 if (kvm_is_error_hva(ghc->hva))
2616 return -EFAULT;
2617
2618 if (unlikely(!ghc->memslot))
2619 return kvm_read_guest(kvm, gpa, data, len);
2620
2621 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2622 if (r)
2623 return -EFAULT;
2624
2625 return 0;
2626 }
2627 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2628
2629 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2630 void *data, unsigned long len)
2631 {
2632 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2633 }
2634 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2635
2636 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2637 {
2638 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2639 gfn_t gfn = gpa >> PAGE_SHIFT;
2640 int seg;
2641 int offset = offset_in_page(gpa);
2642 int ret;
2643
2644 while ((seg = next_segment(len, offset)) != 0) {
2645 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2646 if (ret < 0)
2647 return ret;
2648 offset = 0;
2649 len -= seg;
2650 ++gfn;
2651 }
2652 return 0;
2653 }
2654 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2655
2656 void mark_page_dirty_in_slot(struct kvm *kvm,
2657 struct kvm_memory_slot *memslot,
2658 gfn_t gfn)
2659 {
2660 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
2661 unsigned long rel_gfn = gfn - memslot->base_gfn;
2662 u32 slot = (memslot->as_id << 16) | memslot->id;
2663
2664 if (kvm->dirty_ring_size)
2665 kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2666 slot, rel_gfn);
2667 else
2668 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2669 }
2670 }
2671 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2672
2673 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2674 {
2675 struct kvm_memory_slot *memslot;
2676
2677 memslot = gfn_to_memslot(kvm, gfn);
2678 mark_page_dirty_in_slot(kvm, memslot, gfn);
2679 }
2680 EXPORT_SYMBOL_GPL(mark_page_dirty);
2681
2682 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2683 {
2684 struct kvm_memory_slot *memslot;
2685
2686 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2687 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
2688 }
2689 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2690
2691 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2692 {
2693 if (!vcpu->sigset_active)
2694 return;
2695
2696 /*
2697 * This does a lockless modification of ->real_blocked, which is fine
2698 * because, only current can change ->real_blocked and all readers of
2699 * ->real_blocked don't care as long ->real_blocked is always a subset
2700 * of ->blocked.
2701 */
2702 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2703 }
2704
2705 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2706 {
2707 if (!vcpu->sigset_active)
2708 return;
2709
2710 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2711 sigemptyset(&current->real_blocked);
2712 }
2713
2714 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2715 {
2716 unsigned int old, val, grow, grow_start;
2717
2718 old = val = vcpu->halt_poll_ns;
2719 grow_start = READ_ONCE(halt_poll_ns_grow_start);
2720 grow = READ_ONCE(halt_poll_ns_grow);
2721 if (!grow)
2722 goto out;
2723
2724 val *= grow;
2725 if (val < grow_start)
2726 val = grow_start;
2727
2728 if (val > halt_poll_ns)
2729 val = halt_poll_ns;
2730
2731 vcpu->halt_poll_ns = val;
2732 out:
2733 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2734 }
2735
2736 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2737 {
2738 unsigned int old, val, shrink;
2739
2740 old = val = vcpu->halt_poll_ns;
2741 shrink = READ_ONCE(halt_poll_ns_shrink);
2742 if (shrink == 0)
2743 val = 0;
2744 else
2745 val /= shrink;
2746
2747 vcpu->halt_poll_ns = val;
2748 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2749 }
2750
2751 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2752 {
2753 int ret = -EINTR;
2754 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2755
2756 if (kvm_arch_vcpu_runnable(vcpu)) {
2757 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2758 goto out;
2759 }
2760 if (kvm_cpu_has_pending_timer(vcpu))
2761 goto out;
2762 if (signal_pending(current))
2763 goto out;
2764
2765 ret = 0;
2766 out:
2767 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2768 return ret;
2769 }
2770
2771 static inline void
2772 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2773 {
2774 if (waited)
2775 vcpu->stat.halt_poll_fail_ns += poll_ns;
2776 else
2777 vcpu->stat.halt_poll_success_ns += poll_ns;
2778 }
2779
2780 /*
2781 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2782 */
2783 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2784 {
2785 ktime_t start, cur, poll_end;
2786 bool waited = false;
2787 u64 block_ns;
2788
2789 kvm_arch_vcpu_blocking(vcpu);
2790
2791 start = cur = poll_end = ktime_get();
2792 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2793 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2794
2795 ++vcpu->stat.halt_attempted_poll;
2796 do {
2797 /*
2798 * This sets KVM_REQ_UNHALT if an interrupt
2799 * arrives.
2800 */
2801 if (kvm_vcpu_check_block(vcpu) < 0) {
2802 ++vcpu->stat.halt_successful_poll;
2803 if (!vcpu_valid_wakeup(vcpu))
2804 ++vcpu->stat.halt_poll_invalid;
2805 goto out;
2806 }
2807 poll_end = cur = ktime_get();
2808 } while (single_task_running() && ktime_before(cur, stop));
2809 }
2810
2811 prepare_to_rcuwait(&vcpu->wait);
2812 for (;;) {
2813 set_current_state(TASK_INTERRUPTIBLE);
2814
2815 if (kvm_vcpu_check_block(vcpu) < 0)
2816 break;
2817
2818 waited = true;
2819 schedule();
2820 }
2821 finish_rcuwait(&vcpu->wait);
2822 cur = ktime_get();
2823 out:
2824 kvm_arch_vcpu_unblocking(vcpu);
2825 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2826
2827 update_halt_poll_stats(
2828 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2829
2830 if (!kvm_arch_no_poll(vcpu)) {
2831 if (!vcpu_valid_wakeup(vcpu)) {
2832 shrink_halt_poll_ns(vcpu);
2833 } else if (vcpu->kvm->max_halt_poll_ns) {
2834 if (block_ns <= vcpu->halt_poll_ns)
2835 ;
2836 /* we had a long block, shrink polling */
2837 else if (vcpu->halt_poll_ns &&
2838 block_ns > vcpu->kvm->max_halt_poll_ns)
2839 shrink_halt_poll_ns(vcpu);
2840 /* we had a short halt and our poll time is too small */
2841 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2842 block_ns < vcpu->kvm->max_halt_poll_ns)
2843 grow_halt_poll_ns(vcpu);
2844 } else {
2845 vcpu->halt_poll_ns = 0;
2846 }
2847 }
2848
2849 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2850 kvm_arch_vcpu_block_finish(vcpu);
2851 }
2852 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2853
2854 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2855 {
2856 struct rcuwait *waitp;
2857
2858 waitp = kvm_arch_vcpu_get_wait(vcpu);
2859 if (rcuwait_wake_up(waitp)) {
2860 WRITE_ONCE(vcpu->ready, true);
2861 ++vcpu->stat.halt_wakeup;
2862 return true;
2863 }
2864
2865 return false;
2866 }
2867 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2868
2869 #ifndef CONFIG_S390
2870 /*
2871 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2872 */
2873 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2874 {
2875 int me;
2876 int cpu = vcpu->cpu;
2877
2878 if (kvm_vcpu_wake_up(vcpu))
2879 return;
2880
2881 me = get_cpu();
2882 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2883 if (kvm_arch_vcpu_should_kick(vcpu))
2884 smp_send_reschedule(cpu);
2885 put_cpu();
2886 }
2887 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2888 #endif /* !CONFIG_S390 */
2889
2890 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2891 {
2892 struct pid *pid;
2893 struct task_struct *task = NULL;
2894 int ret = 0;
2895
2896 rcu_read_lock();
2897 pid = rcu_dereference(target->pid);
2898 if (pid)
2899 task = get_pid_task(pid, PIDTYPE_PID);
2900 rcu_read_unlock();
2901 if (!task)
2902 return ret;
2903 ret = yield_to(task, 1);
2904 put_task_struct(task);
2905
2906 return ret;
2907 }
2908 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2909
2910 /*
2911 * Helper that checks whether a VCPU is eligible for directed yield.
2912 * Most eligible candidate to yield is decided by following heuristics:
2913 *
2914 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2915 * (preempted lock holder), indicated by @in_spin_loop.
2916 * Set at the beginning and cleared at the end of interception/PLE handler.
2917 *
2918 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2919 * chance last time (mostly it has become eligible now since we have probably
2920 * yielded to lockholder in last iteration. This is done by toggling
2921 * @dy_eligible each time a VCPU checked for eligibility.)
2922 *
2923 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2924 * to preempted lock-holder could result in wrong VCPU selection and CPU
2925 * burning. Giving priority for a potential lock-holder increases lock
2926 * progress.
2927 *
2928 * Since algorithm is based on heuristics, accessing another VCPU data without
2929 * locking does not harm. It may result in trying to yield to same VCPU, fail
2930 * and continue with next VCPU and so on.
2931 */
2932 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2933 {
2934 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2935 bool eligible;
2936
2937 eligible = !vcpu->spin_loop.in_spin_loop ||
2938 vcpu->spin_loop.dy_eligible;
2939
2940 if (vcpu->spin_loop.in_spin_loop)
2941 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2942
2943 return eligible;
2944 #else
2945 return true;
2946 #endif
2947 }
2948
2949 /*
2950 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2951 * a vcpu_load/vcpu_put pair. However, for most architectures
2952 * kvm_arch_vcpu_runnable does not require vcpu_load.
2953 */
2954 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2955 {
2956 return kvm_arch_vcpu_runnable(vcpu);
2957 }
2958
2959 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2960 {
2961 if (kvm_arch_dy_runnable(vcpu))
2962 return true;
2963
2964 #ifdef CONFIG_KVM_ASYNC_PF
2965 if (!list_empty_careful(&vcpu->async_pf.done))
2966 return true;
2967 #endif
2968
2969 return false;
2970 }
2971
2972 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2973 {
2974 struct kvm *kvm = me->kvm;
2975 struct kvm_vcpu *vcpu;
2976 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2977 int yielded = 0;
2978 int try = 3;
2979 int pass;
2980 int i;
2981
2982 kvm_vcpu_set_in_spin_loop(me, true);
2983 /*
2984 * We boost the priority of a VCPU that is runnable but not
2985 * currently running, because it got preempted by something
2986 * else and called schedule in __vcpu_run. Hopefully that
2987 * VCPU is holding the lock that we need and will release it.
2988 * We approximate round-robin by starting at the last boosted VCPU.
2989 */
2990 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2991 kvm_for_each_vcpu(i, vcpu, kvm) {
2992 if (!pass && i <= last_boosted_vcpu) {
2993 i = last_boosted_vcpu;
2994 continue;
2995 } else if (pass && i > last_boosted_vcpu)
2996 break;
2997 if (!READ_ONCE(vcpu->ready))
2998 continue;
2999 if (vcpu == me)
3000 continue;
3001 if (rcuwait_active(&vcpu->wait) &&
3002 !vcpu_dy_runnable(vcpu))
3003 continue;
3004 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3005 !kvm_arch_vcpu_in_kernel(vcpu))
3006 continue;
3007 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3008 continue;
3009
3010 yielded = kvm_vcpu_yield_to(vcpu);
3011 if (yielded > 0) {
3012 kvm->last_boosted_vcpu = i;
3013 break;
3014 } else if (yielded < 0) {
3015 try--;
3016 if (!try)
3017 break;
3018 }
3019 }
3020 }
3021 kvm_vcpu_set_in_spin_loop(me, false);
3022
3023 /* Ensure vcpu is not eligible during next spinloop */
3024 kvm_vcpu_set_dy_eligible(me, false);
3025 }
3026 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3027
3028 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3029 {
3030 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3031 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3032 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3033 kvm->dirty_ring_size / PAGE_SIZE);
3034 #else
3035 return false;
3036 #endif
3037 }
3038
3039 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3040 {
3041 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3042 struct page *page;
3043
3044 if (vmf->pgoff == 0)
3045 page = virt_to_page(vcpu->run);
3046 #ifdef CONFIG_X86
3047 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3048 page = virt_to_page(vcpu->arch.pio_data);
3049 #endif
3050 #ifdef CONFIG_KVM_MMIO
3051 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3052 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3053 #endif
3054 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3055 page = kvm_dirty_ring_get_page(
3056 &vcpu->dirty_ring,
3057 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3058 else
3059 return kvm_arch_vcpu_fault(vcpu, vmf);
3060 get_page(page);
3061 vmf->page = page;
3062 return 0;
3063 }
3064
3065 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3066 .fault = kvm_vcpu_fault,
3067 };
3068
3069 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3070 {
3071 struct kvm_vcpu *vcpu = file->private_data;
3072 unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3073
3074 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3075 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3076 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3077 return -EINVAL;
3078
3079 vma->vm_ops = &kvm_vcpu_vm_ops;
3080 return 0;
3081 }
3082
3083 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3084 {
3085 struct kvm_vcpu *vcpu = filp->private_data;
3086
3087 kvm_put_kvm(vcpu->kvm);
3088 return 0;
3089 }
3090
3091 static struct file_operations kvm_vcpu_fops = {
3092 .release = kvm_vcpu_release,
3093 .unlocked_ioctl = kvm_vcpu_ioctl,
3094 .mmap = kvm_vcpu_mmap,
3095 .llseek = noop_llseek,
3096 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3097 };
3098
3099 /*
3100 * Allocates an inode for the vcpu.
3101 */
3102 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3103 {
3104 char name[8 + 1 + ITOA_MAX_LEN + 1];
3105
3106 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3107 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3108 }
3109
3110 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3111 {
3112 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3113 struct dentry *debugfs_dentry;
3114 char dir_name[ITOA_MAX_LEN * 2];
3115
3116 if (!debugfs_initialized())
3117 return;
3118
3119 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3120 debugfs_dentry = debugfs_create_dir(dir_name,
3121 vcpu->kvm->debugfs_dentry);
3122
3123 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3124 #endif
3125 }
3126
3127 /*
3128 * Creates some virtual cpus. Good luck creating more than one.
3129 */
3130 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3131 {
3132 int r;
3133 struct kvm_vcpu *vcpu;
3134 struct page *page;
3135
3136 if (id >= KVM_MAX_VCPU_ID)
3137 return -EINVAL;
3138
3139 mutex_lock(&kvm->lock);
3140 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3141 mutex_unlock(&kvm->lock);
3142 return -EINVAL;
3143 }
3144
3145 kvm->created_vcpus++;
3146 mutex_unlock(&kvm->lock);
3147
3148 r = kvm_arch_vcpu_precreate(kvm, id);
3149 if (r)
3150 goto vcpu_decrement;
3151
3152 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3153 if (!vcpu) {
3154 r = -ENOMEM;
3155 goto vcpu_decrement;
3156 }
3157
3158 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3159 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3160 if (!page) {
3161 r = -ENOMEM;
3162 goto vcpu_free;
3163 }
3164 vcpu->run = page_address(page);
3165
3166 kvm_vcpu_init(vcpu, kvm, id);
3167
3168 r = kvm_arch_vcpu_create(vcpu);
3169 if (r)
3170 goto vcpu_free_run_page;
3171
3172 if (kvm->dirty_ring_size) {
3173 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3174 id, kvm->dirty_ring_size);
3175 if (r)
3176 goto arch_vcpu_destroy;
3177 }
3178
3179 mutex_lock(&kvm->lock);
3180 if (kvm_get_vcpu_by_id(kvm, id)) {
3181 r = -EEXIST;
3182 goto unlock_vcpu_destroy;
3183 }
3184
3185 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3186 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3187
3188 /* Now it's all set up, let userspace reach it */
3189 kvm_get_kvm(kvm);
3190 r = create_vcpu_fd(vcpu);
3191 if (r < 0) {
3192 kvm_put_kvm_no_destroy(kvm);
3193 goto unlock_vcpu_destroy;
3194 }
3195
3196 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3197
3198 /*
3199 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3200 * before kvm->online_vcpu's incremented value.
3201 */
3202 smp_wmb();
3203 atomic_inc(&kvm->online_vcpus);
3204
3205 mutex_unlock(&kvm->lock);
3206 kvm_arch_vcpu_postcreate(vcpu);
3207 kvm_create_vcpu_debugfs(vcpu);
3208 return r;
3209
3210 unlock_vcpu_destroy:
3211 mutex_unlock(&kvm->lock);
3212 kvm_dirty_ring_free(&vcpu->dirty_ring);
3213 arch_vcpu_destroy:
3214 kvm_arch_vcpu_destroy(vcpu);
3215 vcpu_free_run_page:
3216 free_page((unsigned long)vcpu->run);
3217 vcpu_free:
3218 kmem_cache_free(kvm_vcpu_cache, vcpu);
3219 vcpu_decrement:
3220 mutex_lock(&kvm->lock);
3221 kvm->created_vcpus--;
3222 mutex_unlock(&kvm->lock);
3223 return r;
3224 }
3225
3226 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3227 {
3228 if (sigset) {
3229 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3230 vcpu->sigset_active = 1;
3231 vcpu->sigset = *sigset;
3232 } else
3233 vcpu->sigset_active = 0;
3234 return 0;
3235 }
3236
3237 static long kvm_vcpu_ioctl(struct file *filp,
3238 unsigned int ioctl, unsigned long arg)
3239 {
3240 struct kvm_vcpu *vcpu = filp->private_data;
3241 void __user *argp = (void __user *)arg;
3242 int r;
3243 struct kvm_fpu *fpu = NULL;
3244 struct kvm_sregs *kvm_sregs = NULL;
3245
3246 if (vcpu->kvm->mm != current->mm)
3247 return -EIO;
3248
3249 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3250 return -EINVAL;
3251
3252 /*
3253 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3254 * execution; mutex_lock() would break them.
3255 */
3256 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3257 if (r != -ENOIOCTLCMD)
3258 return r;
3259
3260 if (mutex_lock_killable(&vcpu->mutex))
3261 return -EINTR;
3262 switch (ioctl) {
3263 case KVM_RUN: {
3264 struct pid *oldpid;
3265 r = -EINVAL;
3266 if (arg)
3267 goto out;
3268 oldpid = rcu_access_pointer(vcpu->pid);
3269 if (unlikely(oldpid != task_pid(current))) {
3270 /* The thread running this VCPU changed. */
3271 struct pid *newpid;
3272
3273 r = kvm_arch_vcpu_run_pid_change(vcpu);
3274 if (r)
3275 break;
3276
3277 newpid = get_task_pid(current, PIDTYPE_PID);
3278 rcu_assign_pointer(vcpu->pid, newpid);
3279 if (oldpid)
3280 synchronize_rcu();
3281 put_pid(oldpid);
3282 }
3283 r = kvm_arch_vcpu_ioctl_run(vcpu);
3284 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3285 break;
3286 }
3287 case KVM_GET_REGS: {
3288 struct kvm_regs *kvm_regs;
3289
3290 r = -ENOMEM;
3291 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3292 if (!kvm_regs)
3293 goto out;
3294 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3295 if (r)
3296 goto out_free1;
3297 r = -EFAULT;
3298 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3299 goto out_free1;
3300 r = 0;
3301 out_free1:
3302 kfree(kvm_regs);
3303 break;
3304 }
3305 case KVM_SET_REGS: {
3306 struct kvm_regs *kvm_regs;
3307
3308 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3309 if (IS_ERR(kvm_regs)) {
3310 r = PTR_ERR(kvm_regs);
3311 goto out;
3312 }
3313 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3314 kfree(kvm_regs);
3315 break;
3316 }
3317 case KVM_GET_SREGS: {
3318 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3319 GFP_KERNEL_ACCOUNT);
3320 r = -ENOMEM;
3321 if (!kvm_sregs)
3322 goto out;
3323 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3324 if (r)
3325 goto out;
3326 r = -EFAULT;
3327 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3328 goto out;
3329 r = 0;
3330 break;
3331 }
3332 case KVM_SET_SREGS: {
3333 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3334 if (IS_ERR(kvm_sregs)) {
3335 r = PTR_ERR(kvm_sregs);
3336 kvm_sregs = NULL;
3337 goto out;
3338 }
3339 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3340 break;
3341 }
3342 case KVM_GET_MP_STATE: {
3343 struct kvm_mp_state mp_state;
3344
3345 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3346 if (r)
3347 goto out;
3348 r = -EFAULT;
3349 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3350 goto out;
3351 r = 0;
3352 break;
3353 }
3354 case KVM_SET_MP_STATE: {
3355 struct kvm_mp_state mp_state;
3356
3357 r = -EFAULT;
3358 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3359 goto out;
3360 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3361 break;
3362 }
3363 case KVM_TRANSLATE: {
3364 struct kvm_translation tr;
3365
3366 r = -EFAULT;
3367 if (copy_from_user(&tr, argp, sizeof(tr)))
3368 goto out;
3369 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3370 if (r)
3371 goto out;
3372 r = -EFAULT;
3373 if (copy_to_user(argp, &tr, sizeof(tr)))
3374 goto out;
3375 r = 0;
3376 break;
3377 }
3378 case KVM_SET_GUEST_DEBUG: {
3379 struct kvm_guest_debug dbg;
3380
3381 r = -EFAULT;
3382 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3383 goto out;
3384 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3385 break;
3386 }
3387 case KVM_SET_SIGNAL_MASK: {
3388 struct kvm_signal_mask __user *sigmask_arg = argp;
3389 struct kvm_signal_mask kvm_sigmask;
3390 sigset_t sigset, *p;
3391
3392 p = NULL;
3393 if (argp) {
3394 r = -EFAULT;
3395 if (copy_from_user(&kvm_sigmask, argp,
3396 sizeof(kvm_sigmask)))
3397 goto out;
3398 r = -EINVAL;
3399 if (kvm_sigmask.len != sizeof(sigset))
3400 goto out;
3401 r = -EFAULT;
3402 if (copy_from_user(&sigset, sigmask_arg->sigset,
3403 sizeof(sigset)))
3404 goto out;
3405 p = &sigset;
3406 }
3407 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3408 break;
3409 }
3410 case KVM_GET_FPU: {
3411 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3412 r = -ENOMEM;
3413 if (!fpu)
3414 goto out;
3415 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3416 if (r)
3417 goto out;
3418 r = -EFAULT;
3419 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3420 goto out;
3421 r = 0;
3422 break;
3423 }
3424 case KVM_SET_FPU: {
3425 fpu = memdup_user(argp, sizeof(*fpu));
3426 if (IS_ERR(fpu)) {
3427 r = PTR_ERR(fpu);
3428 fpu = NULL;
3429 goto out;
3430 }
3431 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3432 break;
3433 }
3434 default:
3435 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3436 }
3437 out:
3438 mutex_unlock(&vcpu->mutex);
3439 kfree(fpu);
3440 kfree(kvm_sregs);
3441 return r;
3442 }
3443
3444 #ifdef CONFIG_KVM_COMPAT
3445 static long kvm_vcpu_compat_ioctl(struct file *filp,
3446 unsigned int ioctl, unsigned long arg)
3447 {
3448 struct kvm_vcpu *vcpu = filp->private_data;
3449 void __user *argp = compat_ptr(arg);
3450 int r;
3451
3452 if (vcpu->kvm->mm != current->mm)
3453 return -EIO;
3454
3455 switch (ioctl) {
3456 case KVM_SET_SIGNAL_MASK: {
3457 struct kvm_signal_mask __user *sigmask_arg = argp;
3458 struct kvm_signal_mask kvm_sigmask;
3459 sigset_t sigset;
3460
3461 if (argp) {
3462 r = -EFAULT;
3463 if (copy_from_user(&kvm_sigmask, argp,
3464 sizeof(kvm_sigmask)))
3465 goto out;
3466 r = -EINVAL;
3467 if (kvm_sigmask.len != sizeof(compat_sigset_t))
3468 goto out;
3469 r = -EFAULT;
3470 if (get_compat_sigset(&sigset,
3471 (compat_sigset_t __user *)sigmask_arg->sigset))
3472 goto out;
3473 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3474 } else
3475 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3476 break;
3477 }
3478 default:
3479 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3480 }
3481
3482 out:
3483 return r;
3484 }
3485 #endif
3486
3487 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3488 {
3489 struct kvm_device *dev = filp->private_data;
3490
3491 if (dev->ops->mmap)
3492 return dev->ops->mmap(dev, vma);
3493
3494 return -ENODEV;
3495 }
3496
3497 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3498 int (*accessor)(struct kvm_device *dev,
3499 struct kvm_device_attr *attr),
3500 unsigned long arg)
3501 {
3502 struct kvm_device_attr attr;
3503
3504 if (!accessor)
3505 return -EPERM;
3506
3507 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3508 return -EFAULT;
3509
3510 return accessor(dev, &attr);
3511 }
3512
3513 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3514 unsigned long arg)
3515 {
3516 struct kvm_device *dev = filp->private_data;
3517
3518 if (dev->kvm->mm != current->mm)
3519 return -EIO;
3520
3521 switch (ioctl) {
3522 case KVM_SET_DEVICE_ATTR:
3523 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3524 case KVM_GET_DEVICE_ATTR:
3525 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3526 case KVM_HAS_DEVICE_ATTR:
3527 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3528 default:
3529 if (dev->ops->ioctl)
3530 return dev->ops->ioctl(dev, ioctl, arg);
3531
3532 return -ENOTTY;
3533 }
3534 }
3535
3536 static int kvm_device_release(struct inode *inode, struct file *filp)
3537 {
3538 struct kvm_device *dev = filp->private_data;
3539 struct kvm *kvm = dev->kvm;
3540
3541 if (dev->ops->release) {
3542 mutex_lock(&kvm->lock);
3543 list_del(&dev->vm_node);
3544 dev->ops->release(dev);
3545 mutex_unlock(&kvm->lock);
3546 }
3547
3548 kvm_put_kvm(kvm);
3549 return 0;
3550 }
3551
3552 static const struct file_operations kvm_device_fops = {
3553 .unlocked_ioctl = kvm_device_ioctl,
3554 .release = kvm_device_release,
3555 KVM_COMPAT(kvm_device_ioctl),
3556 .mmap = kvm_device_mmap,
3557 };
3558
3559 struct kvm_device *kvm_device_from_filp(struct file *filp)
3560 {
3561 if (filp->f_op != &kvm_device_fops)
3562 return NULL;
3563
3564 return filp->private_data;
3565 }
3566
3567 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3568 #ifdef CONFIG_KVM_MPIC
3569 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3570 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3571 #endif
3572 };
3573
3574 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3575 {
3576 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3577 return -ENOSPC;
3578
3579 if (kvm_device_ops_table[type] != NULL)
3580 return -EEXIST;
3581
3582 kvm_device_ops_table[type] = ops;
3583 return 0;
3584 }
3585
3586 void kvm_unregister_device_ops(u32 type)
3587 {
3588 if (kvm_device_ops_table[type] != NULL)
3589 kvm_device_ops_table[type] = NULL;
3590 }
3591
3592 static int kvm_ioctl_create_device(struct kvm *kvm,
3593 struct kvm_create_device *cd)
3594 {
3595 const struct kvm_device_ops *ops = NULL;
3596 struct kvm_device *dev;
3597 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3598 int type;
3599 int ret;
3600
3601 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3602 return -ENODEV;
3603
3604 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3605 ops = kvm_device_ops_table[type];
3606 if (ops == NULL)
3607 return -ENODEV;
3608
3609 if (test)
3610 return 0;
3611
3612 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3613 if (!dev)
3614 return -ENOMEM;
3615
3616 dev->ops = ops;
3617 dev->kvm = kvm;
3618
3619 mutex_lock(&kvm->lock);
3620 ret = ops->create(dev, type);
3621 if (ret < 0) {
3622 mutex_unlock(&kvm->lock);
3623 kfree(dev);
3624 return ret;
3625 }
3626 list_add(&dev->vm_node, &kvm->devices);
3627 mutex_unlock(&kvm->lock);
3628
3629 if (ops->init)
3630 ops->init(dev);
3631
3632 kvm_get_kvm(kvm);
3633 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3634 if (ret < 0) {
3635 kvm_put_kvm_no_destroy(kvm);
3636 mutex_lock(&kvm->lock);
3637 list_del(&dev->vm_node);
3638 mutex_unlock(&kvm->lock);
3639 ops->destroy(dev);
3640 return ret;
3641 }
3642
3643 cd->fd = ret;
3644 return 0;
3645 }
3646
3647 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3648 {
3649 switch (arg) {
3650 case KVM_CAP_USER_MEMORY:
3651 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3652 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3653 case KVM_CAP_INTERNAL_ERROR_DATA:
3654 #ifdef CONFIG_HAVE_KVM_MSI
3655 case KVM_CAP_SIGNAL_MSI:
3656 #endif
3657 #ifdef CONFIG_HAVE_KVM_IRQFD
3658 case KVM_CAP_IRQFD:
3659 case KVM_CAP_IRQFD_RESAMPLE:
3660 #endif
3661 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3662 case KVM_CAP_CHECK_EXTENSION_VM:
3663 case KVM_CAP_ENABLE_CAP_VM:
3664 case KVM_CAP_HALT_POLL:
3665 return 1;
3666 #ifdef CONFIG_KVM_MMIO
3667 case KVM_CAP_COALESCED_MMIO:
3668 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3669 case KVM_CAP_COALESCED_PIO:
3670 return 1;
3671 #endif
3672 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3673 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3674 return KVM_DIRTY_LOG_MANUAL_CAPS;
3675 #endif
3676 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3677 case KVM_CAP_IRQ_ROUTING:
3678 return KVM_MAX_IRQ_ROUTES;
3679 #endif
3680 #if KVM_ADDRESS_SPACE_NUM > 1
3681 case KVM_CAP_MULTI_ADDRESS_SPACE:
3682 return KVM_ADDRESS_SPACE_NUM;
3683 #endif
3684 case KVM_CAP_NR_MEMSLOTS:
3685 return KVM_USER_MEM_SLOTS;
3686 case KVM_CAP_DIRTY_LOG_RING:
3687 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3688 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
3689 #else
3690 return 0;
3691 #endif
3692 default:
3693 break;
3694 }
3695 return kvm_vm_ioctl_check_extension(kvm, arg);
3696 }
3697
3698 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
3699 {
3700 int r;
3701
3702 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
3703 return -EINVAL;
3704
3705 /* the size should be power of 2 */
3706 if (!size || (size & (size - 1)))
3707 return -EINVAL;
3708
3709 /* Should be bigger to keep the reserved entries, or a page */
3710 if (size < kvm_dirty_ring_get_rsvd_entries() *
3711 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
3712 return -EINVAL;
3713
3714 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
3715 sizeof(struct kvm_dirty_gfn))
3716 return -E2BIG;
3717
3718 /* We only allow it to set once */
3719 if (kvm->dirty_ring_size)
3720 return -EINVAL;
3721
3722 mutex_lock(&kvm->lock);
3723
3724 if (kvm->created_vcpus) {
3725 /* We don't allow to change this value after vcpu created */
3726 r = -EINVAL;
3727 } else {
3728 kvm->dirty_ring_size = size;
3729 r = 0;
3730 }
3731
3732 mutex_unlock(&kvm->lock);
3733 return r;
3734 }
3735
3736 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
3737 {
3738 int i;
3739 struct kvm_vcpu *vcpu;
3740 int cleared = 0;
3741
3742 if (!kvm->dirty_ring_size)
3743 return -EINVAL;
3744
3745 mutex_lock(&kvm->slots_lock);
3746
3747 kvm_for_each_vcpu(i, vcpu, kvm)
3748 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
3749
3750 mutex_unlock(&kvm->slots_lock);
3751
3752 if (cleared)
3753 kvm_flush_remote_tlbs(kvm);
3754
3755 return cleared;
3756 }
3757
3758 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3759 struct kvm_enable_cap *cap)
3760 {
3761 return -EINVAL;
3762 }
3763
3764 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3765 struct kvm_enable_cap *cap)
3766 {
3767 switch (cap->cap) {
3768 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3769 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3770 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3771
3772 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3773 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3774
3775 if (cap->flags || (cap->args[0] & ~allowed_options))
3776 return -EINVAL;
3777 kvm->manual_dirty_log_protect = cap->args[0];
3778 return 0;
3779 }
3780 #endif
3781 case KVM_CAP_HALT_POLL: {
3782 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3783 return -EINVAL;
3784
3785 kvm->max_halt_poll_ns = cap->args[0];
3786 return 0;
3787 }
3788 case KVM_CAP_DIRTY_LOG_RING:
3789 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
3790 default:
3791 return kvm_vm_ioctl_enable_cap(kvm, cap);
3792 }
3793 }
3794
3795 static long kvm_vm_ioctl(struct file *filp,
3796 unsigned int ioctl, unsigned long arg)
3797 {
3798 struct kvm *kvm = filp->private_data;
3799 void __user *argp = (void __user *)arg;
3800 int r;
3801
3802 if (kvm->mm != current->mm)
3803 return -EIO;
3804 switch (ioctl) {
3805 case KVM_CREATE_VCPU:
3806 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3807 break;
3808 case KVM_ENABLE_CAP: {
3809 struct kvm_enable_cap cap;
3810
3811 r = -EFAULT;
3812 if (copy_from_user(&cap, argp, sizeof(cap)))
3813 goto out;
3814 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3815 break;
3816 }
3817 case KVM_SET_USER_MEMORY_REGION: {
3818 struct kvm_userspace_memory_region kvm_userspace_mem;
3819
3820 r = -EFAULT;
3821 if (copy_from_user(&kvm_userspace_mem, argp,
3822 sizeof(kvm_userspace_mem)))
3823 goto out;
3824
3825 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3826 break;
3827 }
3828 case KVM_GET_DIRTY_LOG: {
3829 struct kvm_dirty_log log;
3830
3831 r = -EFAULT;
3832 if (copy_from_user(&log, argp, sizeof(log)))
3833 goto out;
3834 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3835 break;
3836 }
3837 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3838 case KVM_CLEAR_DIRTY_LOG: {
3839 struct kvm_clear_dirty_log log;
3840
3841 r = -EFAULT;
3842 if (copy_from_user(&log, argp, sizeof(log)))
3843 goto out;
3844 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3845 break;
3846 }
3847 #endif
3848 #ifdef CONFIG_KVM_MMIO
3849 case KVM_REGISTER_COALESCED_MMIO: {
3850 struct kvm_coalesced_mmio_zone zone;
3851
3852 r = -EFAULT;
3853 if (copy_from_user(&zone, argp, sizeof(zone)))
3854 goto out;
3855 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3856 break;
3857 }
3858 case KVM_UNREGISTER_COALESCED_MMIO: {
3859 struct kvm_coalesced_mmio_zone zone;
3860
3861 r = -EFAULT;
3862 if (copy_from_user(&zone, argp, sizeof(zone)))
3863 goto out;
3864 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3865 break;
3866 }
3867 #endif
3868 case KVM_IRQFD: {
3869 struct kvm_irqfd data;
3870
3871 r = -EFAULT;
3872 if (copy_from_user(&data, argp, sizeof(data)))
3873 goto out;
3874 r = kvm_irqfd(kvm, &data);
3875 break;
3876 }
3877 case KVM_IOEVENTFD: {
3878 struct kvm_ioeventfd data;
3879
3880 r = -EFAULT;
3881 if (copy_from_user(&data, argp, sizeof(data)))
3882 goto out;
3883 r = kvm_ioeventfd(kvm, &data);
3884 break;
3885 }
3886 #ifdef CONFIG_HAVE_KVM_MSI
3887 case KVM_SIGNAL_MSI: {
3888 struct kvm_msi msi;
3889
3890 r = -EFAULT;
3891 if (copy_from_user(&msi, argp, sizeof(msi)))
3892 goto out;
3893 r = kvm_send_userspace_msi(kvm, &msi);
3894 break;
3895 }
3896 #endif
3897 #ifdef __KVM_HAVE_IRQ_LINE
3898 case KVM_IRQ_LINE_STATUS:
3899 case KVM_IRQ_LINE: {
3900 struct kvm_irq_level irq_event;
3901
3902 r = -EFAULT;
3903 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3904 goto out;
3905
3906 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3907 ioctl == KVM_IRQ_LINE_STATUS);
3908 if (r)
3909 goto out;
3910
3911 r = -EFAULT;
3912 if (ioctl == KVM_IRQ_LINE_STATUS) {
3913 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3914 goto out;
3915 }
3916
3917 r = 0;
3918 break;
3919 }
3920 #endif
3921 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3922 case KVM_SET_GSI_ROUTING: {
3923 struct kvm_irq_routing routing;
3924 struct kvm_irq_routing __user *urouting;
3925 struct kvm_irq_routing_entry *entries = NULL;
3926
3927 r = -EFAULT;
3928 if (copy_from_user(&routing, argp, sizeof(routing)))
3929 goto out;
3930 r = -EINVAL;
3931 if (!kvm_arch_can_set_irq_routing(kvm))
3932 goto out;
3933 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3934 goto out;
3935 if (routing.flags)
3936 goto out;
3937 if (routing.nr) {
3938 urouting = argp;
3939 entries = vmemdup_user(urouting->entries,
3940 array_size(sizeof(*entries),
3941 routing.nr));
3942 if (IS_ERR(entries)) {
3943 r = PTR_ERR(entries);
3944 goto out;
3945 }
3946 }
3947 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3948 routing.flags);
3949 kvfree(entries);
3950 break;
3951 }
3952 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3953 case KVM_CREATE_DEVICE: {
3954 struct kvm_create_device cd;
3955
3956 r = -EFAULT;
3957 if (copy_from_user(&cd, argp, sizeof(cd)))
3958 goto out;
3959
3960 r = kvm_ioctl_create_device(kvm, &cd);
3961 if (r)
3962 goto out;
3963
3964 r = -EFAULT;
3965 if (copy_to_user(argp, &cd, sizeof(cd)))
3966 goto out;
3967
3968 r = 0;
3969 break;
3970 }
3971 case KVM_CHECK_EXTENSION:
3972 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3973 break;
3974 case KVM_RESET_DIRTY_RINGS:
3975 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
3976 break;
3977 default:
3978 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3979 }
3980 out:
3981 return r;
3982 }
3983
3984 #ifdef CONFIG_KVM_COMPAT
3985 struct compat_kvm_dirty_log {
3986 __u32 slot;
3987 __u32 padding1;
3988 union {
3989 compat_uptr_t dirty_bitmap; /* one bit per page */
3990 __u64 padding2;
3991 };
3992 };
3993
3994 static long kvm_vm_compat_ioctl(struct file *filp,
3995 unsigned int ioctl, unsigned long arg)
3996 {
3997 struct kvm *kvm = filp->private_data;
3998 int r;
3999
4000 if (kvm->mm != current->mm)
4001 return -EIO;
4002 switch (ioctl) {
4003 case KVM_GET_DIRTY_LOG: {
4004 struct compat_kvm_dirty_log compat_log;
4005 struct kvm_dirty_log log;
4006
4007 if (copy_from_user(&compat_log, (void __user *)arg,
4008 sizeof(compat_log)))
4009 return -EFAULT;
4010 log.slot = compat_log.slot;
4011 log.padding1 = compat_log.padding1;
4012 log.padding2 = compat_log.padding2;
4013 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4014
4015 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4016 break;
4017 }
4018 default:
4019 r = kvm_vm_ioctl(filp, ioctl, arg);
4020 }
4021 return r;
4022 }
4023 #endif
4024
4025 static struct file_operations kvm_vm_fops = {
4026 .release = kvm_vm_release,
4027 .unlocked_ioctl = kvm_vm_ioctl,
4028 .llseek = noop_llseek,
4029 KVM_COMPAT(kvm_vm_compat_ioctl),
4030 };
4031
4032 static int kvm_dev_ioctl_create_vm(unsigned long type)
4033 {
4034 int r;
4035 struct kvm *kvm;
4036 struct file *file;
4037
4038 kvm = kvm_create_vm(type);
4039 if (IS_ERR(kvm))
4040 return PTR_ERR(kvm);
4041 #ifdef CONFIG_KVM_MMIO
4042 r = kvm_coalesced_mmio_init(kvm);
4043 if (r < 0)
4044 goto put_kvm;
4045 #endif
4046 r = get_unused_fd_flags(O_CLOEXEC);
4047 if (r < 0)
4048 goto put_kvm;
4049
4050 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4051 if (IS_ERR(file)) {
4052 put_unused_fd(r);
4053 r = PTR_ERR(file);
4054 goto put_kvm;
4055 }
4056
4057 /*
4058 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4059 * already set, with ->release() being kvm_vm_release(). In error
4060 * cases it will be called by the final fput(file) and will take
4061 * care of doing kvm_put_kvm(kvm).
4062 */
4063 if (kvm_create_vm_debugfs(kvm, r) < 0) {
4064 put_unused_fd(r);
4065 fput(file);
4066 return -ENOMEM;
4067 }
4068 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4069
4070 fd_install(r, file);
4071 return r;
4072
4073 put_kvm:
4074 kvm_put_kvm(kvm);
4075 return r;
4076 }
4077
4078 static long kvm_dev_ioctl(struct file *filp,
4079 unsigned int ioctl, unsigned long arg)
4080 {
4081 long r = -EINVAL;
4082
4083 switch (ioctl) {
4084 case KVM_GET_API_VERSION:
4085 if (arg)
4086 goto out;
4087 r = KVM_API_VERSION;
4088 break;
4089 case KVM_CREATE_VM:
4090 r = kvm_dev_ioctl_create_vm(arg);
4091 break;
4092 case KVM_CHECK_EXTENSION:
4093 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4094 break;
4095 case KVM_GET_VCPU_MMAP_SIZE:
4096 if (arg)
4097 goto out;
4098 r = PAGE_SIZE; /* struct kvm_run */
4099 #ifdef CONFIG_X86
4100 r += PAGE_SIZE; /* pio data page */
4101 #endif
4102 #ifdef CONFIG_KVM_MMIO
4103 r += PAGE_SIZE; /* coalesced mmio ring page */
4104 #endif
4105 break;
4106 case KVM_TRACE_ENABLE:
4107 case KVM_TRACE_PAUSE:
4108 case KVM_TRACE_DISABLE:
4109 r = -EOPNOTSUPP;
4110 break;
4111 default:
4112 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4113 }
4114 out:
4115 return r;
4116 }
4117
4118 static struct file_operations kvm_chardev_ops = {
4119 .unlocked_ioctl = kvm_dev_ioctl,
4120 .llseek = noop_llseek,
4121 KVM_COMPAT(kvm_dev_ioctl),
4122 };
4123
4124 static struct miscdevice kvm_dev = {
4125 KVM_MINOR,
4126 "kvm",
4127 &kvm_chardev_ops,
4128 };
4129
4130 static void hardware_enable_nolock(void *junk)
4131 {
4132 int cpu = raw_smp_processor_id();
4133 int r;
4134
4135 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4136 return;
4137
4138 cpumask_set_cpu(cpu, cpus_hardware_enabled);
4139
4140 r = kvm_arch_hardware_enable();
4141
4142 if (r) {
4143 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4144 atomic_inc(&hardware_enable_failed);
4145 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4146 }
4147 }
4148
4149 static int kvm_starting_cpu(unsigned int cpu)
4150 {
4151 raw_spin_lock(&kvm_count_lock);
4152 if (kvm_usage_count)
4153 hardware_enable_nolock(NULL);
4154 raw_spin_unlock(&kvm_count_lock);
4155 return 0;
4156 }
4157
4158 static void hardware_disable_nolock(void *junk)
4159 {
4160 int cpu = raw_smp_processor_id();
4161
4162 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4163 return;
4164 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4165 kvm_arch_hardware_disable();
4166 }
4167
4168 static int kvm_dying_cpu(unsigned int cpu)
4169 {
4170 raw_spin_lock(&kvm_count_lock);
4171 if (kvm_usage_count)
4172 hardware_disable_nolock(NULL);
4173 raw_spin_unlock(&kvm_count_lock);
4174 return 0;
4175 }
4176
4177 static void hardware_disable_all_nolock(void)
4178 {
4179 BUG_ON(!kvm_usage_count);
4180
4181 kvm_usage_count--;
4182 if (!kvm_usage_count)
4183 on_each_cpu(hardware_disable_nolock, NULL, 1);
4184 }
4185
4186 static void hardware_disable_all(void)
4187 {
4188 raw_spin_lock(&kvm_count_lock);
4189 hardware_disable_all_nolock();
4190 raw_spin_unlock(&kvm_count_lock);
4191 }
4192
4193 static int hardware_enable_all(void)
4194 {
4195 int r = 0;
4196
4197 raw_spin_lock(&kvm_count_lock);
4198
4199 kvm_usage_count++;
4200 if (kvm_usage_count == 1) {
4201 atomic_set(&hardware_enable_failed, 0);
4202 on_each_cpu(hardware_enable_nolock, NULL, 1);
4203
4204 if (atomic_read(&hardware_enable_failed)) {
4205 hardware_disable_all_nolock();
4206 r = -EBUSY;
4207 }
4208 }
4209
4210 raw_spin_unlock(&kvm_count_lock);
4211
4212 return r;
4213 }
4214
4215 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4216 void *v)
4217 {
4218 /*
4219 * Some (well, at least mine) BIOSes hang on reboot if
4220 * in vmx root mode.
4221 *
4222 * And Intel TXT required VMX off for all cpu when system shutdown.
4223 */
4224 pr_info("kvm: exiting hardware virtualization\n");
4225 kvm_rebooting = true;
4226 on_each_cpu(hardware_disable_nolock, NULL, 1);
4227 return NOTIFY_OK;
4228 }
4229
4230 static struct notifier_block kvm_reboot_notifier = {
4231 .notifier_call = kvm_reboot,
4232 .priority = 0,
4233 };
4234
4235 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4236 {
4237 int i;
4238
4239 for (i = 0; i < bus->dev_count; i++) {
4240 struct kvm_io_device *pos = bus->range[i].dev;
4241
4242 kvm_iodevice_destructor(pos);
4243 }
4244 kfree(bus);
4245 }
4246
4247 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4248 const struct kvm_io_range *r2)
4249 {
4250 gpa_t addr1 = r1->addr;
4251 gpa_t addr2 = r2->addr;
4252
4253 if (addr1 < addr2)
4254 return -1;
4255
4256 /* If r2->len == 0, match the exact address. If r2->len != 0,
4257 * accept any overlapping write. Any order is acceptable for
4258 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4259 * we process all of them.
4260 */
4261 if (r2->len) {
4262 addr1 += r1->len;
4263 addr2 += r2->len;
4264 }
4265
4266 if (addr1 > addr2)
4267 return 1;
4268
4269 return 0;
4270 }
4271
4272 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4273 {
4274 return kvm_io_bus_cmp(p1, p2);
4275 }
4276
4277 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4278 gpa_t addr, int len)
4279 {
4280 struct kvm_io_range *range, key;
4281 int off;
4282
4283 key = (struct kvm_io_range) {
4284 .addr = addr,
4285 .len = len,
4286 };
4287
4288 range = bsearch(&key, bus->range, bus->dev_count,
4289 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4290 if (range == NULL)
4291 return -ENOENT;
4292
4293 off = range - bus->range;
4294
4295 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4296 off--;
4297
4298 return off;
4299 }
4300
4301 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4302 struct kvm_io_range *range, const void *val)
4303 {
4304 int idx;
4305
4306 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4307 if (idx < 0)
4308 return -EOPNOTSUPP;
4309
4310 while (idx < bus->dev_count &&
4311 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4312 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4313 range->len, val))
4314 return idx;
4315 idx++;
4316 }
4317
4318 return -EOPNOTSUPP;
4319 }
4320
4321 /* kvm_io_bus_write - called under kvm->slots_lock */
4322 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4323 int len, const void *val)
4324 {
4325 struct kvm_io_bus *bus;
4326 struct kvm_io_range range;
4327 int r;
4328
4329 range = (struct kvm_io_range) {
4330 .addr = addr,
4331 .len = len,
4332 };
4333
4334 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4335 if (!bus)
4336 return -ENOMEM;
4337 r = __kvm_io_bus_write(vcpu, bus, &range, val);
4338 return r < 0 ? r : 0;
4339 }
4340 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4341
4342 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4343 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4344 gpa_t addr, int len, const void *val, long cookie)
4345 {
4346 struct kvm_io_bus *bus;
4347 struct kvm_io_range range;
4348
4349 range = (struct kvm_io_range) {
4350 .addr = addr,
4351 .len = len,
4352 };
4353
4354 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4355 if (!bus)
4356 return -ENOMEM;
4357
4358 /* First try the device referenced by cookie. */
4359 if ((cookie >= 0) && (cookie < bus->dev_count) &&
4360 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4361 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4362 val))
4363 return cookie;
4364
4365 /*
4366 * cookie contained garbage; fall back to search and return the
4367 * correct cookie value.
4368 */
4369 return __kvm_io_bus_write(vcpu, bus, &range, val);
4370 }
4371
4372 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4373 struct kvm_io_range *range, void *val)
4374 {
4375 int idx;
4376
4377 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4378 if (idx < 0)
4379 return -EOPNOTSUPP;
4380
4381 while (idx < bus->dev_count &&
4382 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4383 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4384 range->len, val))
4385 return idx;
4386 idx++;
4387 }
4388
4389 return -EOPNOTSUPP;
4390 }
4391
4392 /* kvm_io_bus_read - called under kvm->slots_lock */
4393 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4394 int len, void *val)
4395 {
4396 struct kvm_io_bus *bus;
4397 struct kvm_io_range range;
4398 int r;
4399
4400 range = (struct kvm_io_range) {
4401 .addr = addr,
4402 .len = len,
4403 };
4404
4405 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4406 if (!bus)
4407 return -ENOMEM;
4408 r = __kvm_io_bus_read(vcpu, bus, &range, val);
4409 return r < 0 ? r : 0;
4410 }
4411
4412 /* Caller must hold slots_lock. */
4413 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4414 int len, struct kvm_io_device *dev)
4415 {
4416 int i;
4417 struct kvm_io_bus *new_bus, *bus;
4418 struct kvm_io_range range;
4419
4420 bus = kvm_get_bus(kvm, bus_idx);
4421 if (!bus)
4422 return -ENOMEM;
4423
4424 /* exclude ioeventfd which is limited by maximum fd */
4425 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4426 return -ENOSPC;
4427
4428 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4429 GFP_KERNEL_ACCOUNT);
4430 if (!new_bus)
4431 return -ENOMEM;
4432
4433 range = (struct kvm_io_range) {
4434 .addr = addr,
4435 .len = len,
4436 .dev = dev,
4437 };
4438
4439 for (i = 0; i < bus->dev_count; i++)
4440 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4441 break;
4442
4443 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4444 new_bus->dev_count++;
4445 new_bus->range[i] = range;
4446 memcpy(new_bus->range + i + 1, bus->range + i,
4447 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4448 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4449 synchronize_srcu_expedited(&kvm->srcu);
4450 kfree(bus);
4451
4452 return 0;
4453 }
4454
4455 /* Caller must hold slots_lock. */
4456 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4457 struct kvm_io_device *dev)
4458 {
4459 int i, j;
4460 struct kvm_io_bus *new_bus, *bus;
4461
4462 bus = kvm_get_bus(kvm, bus_idx);
4463 if (!bus)
4464 return;
4465
4466 for (i = 0; i < bus->dev_count; i++)
4467 if (bus->range[i].dev == dev) {
4468 break;
4469 }
4470
4471 if (i == bus->dev_count)
4472 return;
4473
4474 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4475 GFP_KERNEL_ACCOUNT);
4476 if (new_bus) {
4477 memcpy(new_bus, bus, struct_size(bus, range, i));
4478 new_bus->dev_count--;
4479 memcpy(new_bus->range + i, bus->range + i + 1,
4480 flex_array_size(new_bus, range, new_bus->dev_count - i));
4481 } else {
4482 pr_err("kvm: failed to shrink bus, removing it completely\n");
4483 for (j = 0; j < bus->dev_count; j++) {
4484 if (j == i)
4485 continue;
4486 kvm_iodevice_destructor(bus->range[j].dev);
4487 }
4488 }
4489
4490 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4491 synchronize_srcu_expedited(&kvm->srcu);
4492 kfree(bus);
4493 return;
4494 }
4495
4496 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4497 gpa_t addr)
4498 {
4499 struct kvm_io_bus *bus;
4500 int dev_idx, srcu_idx;
4501 struct kvm_io_device *iodev = NULL;
4502
4503 srcu_idx = srcu_read_lock(&kvm->srcu);
4504
4505 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4506 if (!bus)
4507 goto out_unlock;
4508
4509 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4510 if (dev_idx < 0)
4511 goto out_unlock;
4512
4513 iodev = bus->range[dev_idx].dev;
4514
4515 out_unlock:
4516 srcu_read_unlock(&kvm->srcu, srcu_idx);
4517
4518 return iodev;
4519 }
4520 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4521
4522 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4523 int (*get)(void *, u64 *), int (*set)(void *, u64),
4524 const char *fmt)
4525 {
4526 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4527 inode->i_private;
4528
4529 /* The debugfs files are a reference to the kvm struct which
4530 * is still valid when kvm_destroy_vm is called.
4531 * To avoid the race between open and the removal of the debugfs
4532 * directory we test against the users count.
4533 */
4534 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4535 return -ENOENT;
4536
4537 if (simple_attr_open(inode, file, get,
4538 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4539 ? set : NULL,
4540 fmt)) {
4541 kvm_put_kvm(stat_data->kvm);
4542 return -ENOMEM;
4543 }
4544
4545 return 0;
4546 }
4547
4548 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4549 {
4550 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4551 inode->i_private;
4552
4553 simple_attr_release(inode, file);
4554 kvm_put_kvm(stat_data->kvm);
4555
4556 return 0;
4557 }
4558
4559 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4560 {
4561 *val = *(ulong *)((void *)kvm + offset);
4562
4563 return 0;
4564 }
4565
4566 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4567 {
4568 *(ulong *)((void *)kvm + offset) = 0;
4569
4570 return 0;
4571 }
4572
4573 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4574 {
4575 int i;
4576 struct kvm_vcpu *vcpu;
4577
4578 *val = 0;
4579
4580 kvm_for_each_vcpu(i, vcpu, kvm)
4581 *val += *(u64 *)((void *)vcpu + offset);
4582
4583 return 0;
4584 }
4585
4586 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4587 {
4588 int i;
4589 struct kvm_vcpu *vcpu;
4590
4591 kvm_for_each_vcpu(i, vcpu, kvm)
4592 *(u64 *)((void *)vcpu + offset) = 0;
4593
4594 return 0;
4595 }
4596
4597 static int kvm_stat_data_get(void *data, u64 *val)
4598 {
4599 int r = -EFAULT;
4600 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4601
4602 switch (stat_data->dbgfs_item->kind) {
4603 case KVM_STAT_VM:
4604 r = kvm_get_stat_per_vm(stat_data->kvm,
4605 stat_data->dbgfs_item->offset, val);
4606 break;
4607 case KVM_STAT_VCPU:
4608 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4609 stat_data->dbgfs_item->offset, val);
4610 break;
4611 }
4612
4613 return r;
4614 }
4615
4616 static int kvm_stat_data_clear(void *data, u64 val)
4617 {
4618 int r = -EFAULT;
4619 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4620
4621 if (val)
4622 return -EINVAL;
4623
4624 switch (stat_data->dbgfs_item->kind) {
4625 case KVM_STAT_VM:
4626 r = kvm_clear_stat_per_vm(stat_data->kvm,
4627 stat_data->dbgfs_item->offset);
4628 break;
4629 case KVM_STAT_VCPU:
4630 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4631 stat_data->dbgfs_item->offset);
4632 break;
4633 }
4634
4635 return r;
4636 }
4637
4638 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4639 {
4640 __simple_attr_check_format("%llu\n", 0ull);
4641 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4642 kvm_stat_data_clear, "%llu\n");
4643 }
4644
4645 static const struct file_operations stat_fops_per_vm = {
4646 .owner = THIS_MODULE,
4647 .open = kvm_stat_data_open,
4648 .release = kvm_debugfs_release,
4649 .read = simple_attr_read,
4650 .write = simple_attr_write,
4651 .llseek = no_llseek,
4652 };
4653
4654 static int vm_stat_get(void *_offset, u64 *val)
4655 {
4656 unsigned offset = (long)_offset;
4657 struct kvm *kvm;
4658 u64 tmp_val;
4659
4660 *val = 0;
4661 mutex_lock(&kvm_lock);
4662 list_for_each_entry(kvm, &vm_list, vm_list) {
4663 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4664 *val += tmp_val;
4665 }
4666 mutex_unlock(&kvm_lock);
4667 return 0;
4668 }
4669
4670 static int vm_stat_clear(void *_offset, u64 val)
4671 {
4672 unsigned offset = (long)_offset;
4673 struct kvm *kvm;
4674
4675 if (val)
4676 return -EINVAL;
4677
4678 mutex_lock(&kvm_lock);
4679 list_for_each_entry(kvm, &vm_list, vm_list) {
4680 kvm_clear_stat_per_vm(kvm, offset);
4681 }
4682 mutex_unlock(&kvm_lock);
4683
4684 return 0;
4685 }
4686
4687 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4688
4689 static int vcpu_stat_get(void *_offset, u64 *val)
4690 {
4691 unsigned offset = (long)_offset;
4692 struct kvm *kvm;
4693 u64 tmp_val;
4694
4695 *val = 0;
4696 mutex_lock(&kvm_lock);
4697 list_for_each_entry(kvm, &vm_list, vm_list) {
4698 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4699 *val += tmp_val;
4700 }
4701 mutex_unlock(&kvm_lock);
4702 return 0;
4703 }
4704
4705 static int vcpu_stat_clear(void *_offset, u64 val)
4706 {
4707 unsigned offset = (long)_offset;
4708 struct kvm *kvm;
4709
4710 if (val)
4711 return -EINVAL;
4712
4713 mutex_lock(&kvm_lock);
4714 list_for_each_entry(kvm, &vm_list, vm_list) {
4715 kvm_clear_stat_per_vcpu(kvm, offset);
4716 }
4717 mutex_unlock(&kvm_lock);
4718
4719 return 0;
4720 }
4721
4722 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4723 "%llu\n");
4724
4725 static const struct file_operations *stat_fops[] = {
4726 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4727 [KVM_STAT_VM] = &vm_stat_fops,
4728 };
4729
4730 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4731 {
4732 struct kobj_uevent_env *env;
4733 unsigned long long created, active;
4734
4735 if (!kvm_dev.this_device || !kvm)
4736 return;
4737
4738 mutex_lock(&kvm_lock);
4739 if (type == KVM_EVENT_CREATE_VM) {
4740 kvm_createvm_count++;
4741 kvm_active_vms++;
4742 } else if (type == KVM_EVENT_DESTROY_VM) {
4743 kvm_active_vms--;
4744 }
4745 created = kvm_createvm_count;
4746 active = kvm_active_vms;
4747 mutex_unlock(&kvm_lock);
4748
4749 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4750 if (!env)
4751 return;
4752
4753 add_uevent_var(env, "CREATED=%llu", created);
4754 add_uevent_var(env, "COUNT=%llu", active);
4755
4756 if (type == KVM_EVENT_CREATE_VM) {
4757 add_uevent_var(env, "EVENT=create");
4758 kvm->userspace_pid = task_pid_nr(current);
4759 } else if (type == KVM_EVENT_DESTROY_VM) {
4760 add_uevent_var(env, "EVENT=destroy");
4761 }
4762 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4763
4764 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4765 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4766
4767 if (p) {
4768 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4769 if (!IS_ERR(tmp))
4770 add_uevent_var(env, "STATS_PATH=%s", tmp);
4771 kfree(p);
4772 }
4773 }
4774 /* no need for checks, since we are adding at most only 5 keys */
4775 env->envp[env->envp_idx++] = NULL;
4776 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4777 kfree(env);
4778 }
4779
4780 static void kvm_init_debug(void)
4781 {
4782 struct kvm_stats_debugfs_item *p;
4783
4784 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4785
4786 kvm_debugfs_num_entries = 0;
4787 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4788 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4789 kvm_debugfs_dir, (void *)(long)p->offset,
4790 stat_fops[p->kind]);
4791 }
4792 }
4793
4794 static int kvm_suspend(void)
4795 {
4796 if (kvm_usage_count)
4797 hardware_disable_nolock(NULL);
4798 return 0;
4799 }
4800
4801 static void kvm_resume(void)
4802 {
4803 if (kvm_usage_count) {
4804 #ifdef CONFIG_LOCKDEP
4805 WARN_ON(lockdep_is_held(&kvm_count_lock));
4806 #endif
4807 hardware_enable_nolock(NULL);
4808 }
4809 }
4810
4811 static struct syscore_ops kvm_syscore_ops = {
4812 .suspend = kvm_suspend,
4813 .resume = kvm_resume,
4814 };
4815
4816 static inline
4817 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4818 {
4819 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4820 }
4821
4822 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4823 {
4824 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4825
4826 WRITE_ONCE(vcpu->preempted, false);
4827 WRITE_ONCE(vcpu->ready, false);
4828
4829 __this_cpu_write(kvm_running_vcpu, vcpu);
4830 kvm_arch_sched_in(vcpu, cpu);
4831 kvm_arch_vcpu_load(vcpu, cpu);
4832 }
4833
4834 static void kvm_sched_out(struct preempt_notifier *pn,
4835 struct task_struct *next)
4836 {
4837 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4838
4839 if (current->state == TASK_RUNNING) {
4840 WRITE_ONCE(vcpu->preempted, true);
4841 WRITE_ONCE(vcpu->ready, true);
4842 }
4843 kvm_arch_vcpu_put(vcpu);
4844 __this_cpu_write(kvm_running_vcpu, NULL);
4845 }
4846
4847 /**
4848 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4849 *
4850 * We can disable preemption locally around accessing the per-CPU variable,
4851 * and use the resolved vcpu pointer after enabling preemption again,
4852 * because even if the current thread is migrated to another CPU, reading
4853 * the per-CPU value later will give us the same value as we update the
4854 * per-CPU variable in the preempt notifier handlers.
4855 */
4856 struct kvm_vcpu *kvm_get_running_vcpu(void)
4857 {
4858 struct kvm_vcpu *vcpu;
4859
4860 preempt_disable();
4861 vcpu = __this_cpu_read(kvm_running_vcpu);
4862 preempt_enable();
4863
4864 return vcpu;
4865 }
4866 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4867
4868 /**
4869 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4870 */
4871 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4872 {
4873 return &kvm_running_vcpu;
4874 }
4875
4876 struct kvm_cpu_compat_check {
4877 void *opaque;
4878 int *ret;
4879 };
4880
4881 static void check_processor_compat(void *data)
4882 {
4883 struct kvm_cpu_compat_check *c = data;
4884
4885 *c->ret = kvm_arch_check_processor_compat(c->opaque);
4886 }
4887
4888 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4889 struct module *module)
4890 {
4891 struct kvm_cpu_compat_check c;
4892 int r;
4893 int cpu;
4894
4895 r = kvm_arch_init(opaque);
4896 if (r)
4897 goto out_fail;
4898
4899 /*
4900 * kvm_arch_init makes sure there's at most one caller
4901 * for architectures that support multiple implementations,
4902 * like intel and amd on x86.
4903 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4904 * conflicts in case kvm is already setup for another implementation.
4905 */
4906 r = kvm_irqfd_init();
4907 if (r)
4908 goto out_irqfd;
4909
4910 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4911 r = -ENOMEM;
4912 goto out_free_0;
4913 }
4914
4915 r = kvm_arch_hardware_setup(opaque);
4916 if (r < 0)
4917 goto out_free_1;
4918
4919 c.ret = &r;
4920 c.opaque = opaque;
4921 for_each_online_cpu(cpu) {
4922 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4923 if (r < 0)
4924 goto out_free_2;
4925 }
4926
4927 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4928 kvm_starting_cpu, kvm_dying_cpu);
4929 if (r)
4930 goto out_free_2;
4931 register_reboot_notifier(&kvm_reboot_notifier);
4932
4933 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4934 if (!vcpu_align)
4935 vcpu_align = __alignof__(struct kvm_vcpu);
4936 kvm_vcpu_cache =
4937 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4938 SLAB_ACCOUNT,
4939 offsetof(struct kvm_vcpu, arch),
4940 sizeof_field(struct kvm_vcpu, arch),
4941 NULL);
4942 if (!kvm_vcpu_cache) {
4943 r = -ENOMEM;
4944 goto out_free_3;
4945 }
4946
4947 r = kvm_async_pf_init();
4948 if (r)
4949 goto out_free;
4950
4951 kvm_chardev_ops.owner = module;
4952 kvm_vm_fops.owner = module;
4953 kvm_vcpu_fops.owner = module;
4954
4955 r = misc_register(&kvm_dev);
4956 if (r) {
4957 pr_err("kvm: misc device register failed\n");
4958 goto out_unreg;
4959 }
4960
4961 register_syscore_ops(&kvm_syscore_ops);
4962
4963 kvm_preempt_ops.sched_in = kvm_sched_in;
4964 kvm_preempt_ops.sched_out = kvm_sched_out;
4965
4966 kvm_init_debug();
4967
4968 r = kvm_vfio_ops_init();
4969 WARN_ON(r);
4970
4971 return 0;
4972
4973 out_unreg:
4974 kvm_async_pf_deinit();
4975 out_free:
4976 kmem_cache_destroy(kvm_vcpu_cache);
4977 out_free_3:
4978 unregister_reboot_notifier(&kvm_reboot_notifier);
4979 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4980 out_free_2:
4981 kvm_arch_hardware_unsetup();
4982 out_free_1:
4983 free_cpumask_var(cpus_hardware_enabled);
4984 out_free_0:
4985 kvm_irqfd_exit();
4986 out_irqfd:
4987 kvm_arch_exit();
4988 out_fail:
4989 return r;
4990 }
4991 EXPORT_SYMBOL_GPL(kvm_init);
4992
4993 void kvm_exit(void)
4994 {
4995 debugfs_remove_recursive(kvm_debugfs_dir);
4996 misc_deregister(&kvm_dev);
4997 kmem_cache_destroy(kvm_vcpu_cache);
4998 kvm_async_pf_deinit();
4999 unregister_syscore_ops(&kvm_syscore_ops);
5000 unregister_reboot_notifier(&kvm_reboot_notifier);
5001 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5002 on_each_cpu(hardware_disable_nolock, NULL, 1);
5003 kvm_arch_hardware_unsetup();
5004 kvm_arch_exit();
5005 kvm_irqfd_exit();
5006 free_cpumask_var(cpus_hardware_enabled);
5007 kvm_vfio_ops_exit();
5008 }
5009 EXPORT_SYMBOL_GPL(kvm_exit);
5010
5011 struct kvm_vm_worker_thread_context {
5012 struct kvm *kvm;
5013 struct task_struct *parent;
5014 struct completion init_done;
5015 kvm_vm_thread_fn_t thread_fn;
5016 uintptr_t data;
5017 int err;
5018 };
5019
5020 static int kvm_vm_worker_thread(void *context)
5021 {
5022 /*
5023 * The init_context is allocated on the stack of the parent thread, so
5024 * we have to locally copy anything that is needed beyond initialization
5025 */
5026 struct kvm_vm_worker_thread_context *init_context = context;
5027 struct kvm *kvm = init_context->kvm;
5028 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5029 uintptr_t data = init_context->data;
5030 int err;
5031
5032 err = kthread_park(current);
5033 /* kthread_park(current) is never supposed to return an error */
5034 WARN_ON(err != 0);
5035 if (err)
5036 goto init_complete;
5037
5038 err = cgroup_attach_task_all(init_context->parent, current);
5039 if (err) {
5040 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5041 __func__, err);
5042 goto init_complete;
5043 }
5044
5045 set_user_nice(current, task_nice(init_context->parent));
5046
5047 init_complete:
5048 init_context->err = err;
5049 complete(&init_context->init_done);
5050 init_context = NULL;
5051
5052 if (err)
5053 return err;
5054
5055 /* Wait to be woken up by the spawner before proceeding. */
5056 kthread_parkme();
5057
5058 if (!kthread_should_stop())
5059 err = thread_fn(kvm, data);
5060
5061 return err;
5062 }
5063
5064 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5065 uintptr_t data, const char *name,
5066 struct task_struct **thread_ptr)
5067 {
5068 struct kvm_vm_worker_thread_context init_context = {};
5069 struct task_struct *thread;
5070
5071 *thread_ptr = NULL;
5072 init_context.kvm = kvm;
5073 init_context.parent = current;
5074 init_context.thread_fn = thread_fn;
5075 init_context.data = data;
5076 init_completion(&init_context.init_done);
5077
5078 thread = kthread_run(kvm_vm_worker_thread, &init_context,
5079 "%s-%d", name, task_pid_nr(current));
5080 if (IS_ERR(thread))
5081 return PTR_ERR(thread);
5082
5083 /* kthread_run is never supposed to return NULL */
5084 WARN_ON(thread == NULL);
5085
5086 wait_for_completion(&init_context.init_done);
5087
5088 if (!init_context.err)
5089 *thread_ptr = thread;
5090
5091 return init_context.err;
5092 }