]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/kvm_main.c
KVM: arm/arm64: Fix young bit from mmu notifier
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 #include <linux/kthread.h>
55
56 #include <asm/processor.h>
57 #include <asm/io.h>
58 #include <asm/ioctl.h>
59 #include <linux/uaccess.h>
60 #include <asm/pgtable.h>
61
62 #include "coalesced_mmio.h"
63 #include "async_pf.h"
64 #include "vfio.h"
65
66 #define CREATE_TRACE_POINTS
67 #include <trace/events/kvm.h>
68
69 /* Worst case buffer size needed for holding an integer. */
70 #define ITOA_MAX_LEN 12
71
72 MODULE_AUTHOR("Qumranet");
73 MODULE_LICENSE("GPL");
74
75 /* Architectures should define their poll value according to the halt latency */
76 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
77 module_param(halt_poll_ns, uint, 0644);
78 EXPORT_SYMBOL_GPL(halt_poll_ns);
79
80 /* Default doubles per-vcpu halt_poll_ns. */
81 unsigned int halt_poll_ns_grow = 2;
82 module_param(halt_poll_ns_grow, uint, 0644);
83 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84
85 /* Default resets per-vcpu halt_poll_ns . */
86 unsigned int halt_poll_ns_shrink;
87 module_param(halt_poll_ns_shrink, uint, 0644);
88 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
89
90 /*
91 * Ordering of locks:
92 *
93 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
94 */
95
96 DEFINE_MUTEX(kvm_lock);
97 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
98 LIST_HEAD(vm_list);
99
100 static cpumask_var_t cpus_hardware_enabled;
101 static int kvm_usage_count;
102 static atomic_t hardware_enable_failed;
103
104 struct kmem_cache *kvm_vcpu_cache;
105 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
106
107 static __read_mostly struct preempt_ops kvm_preempt_ops;
108
109 struct dentry *kvm_debugfs_dir;
110 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
111
112 static int kvm_debugfs_num_entries;
113 static const struct file_operations *stat_fops_per_vm[];
114
115 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
116 unsigned long arg);
117 #ifdef CONFIG_KVM_COMPAT
118 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long arg);
120 #endif
121 static int hardware_enable_all(void);
122 static void hardware_disable_all(void);
123
124 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
125
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
138
139 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
140 unsigned long start, unsigned long end)
141 {
142 }
143
144 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
145 {
146 /*
147 * The metadata used by is_zone_device_page() to determine whether or
148 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
149 * the device has been pinned, e.g. by get_user_pages(). WARN if the
150 * page_count() is zero to help detect bad usage of this helper.
151 */
152 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
153 return false;
154
155 return is_zone_device_page(pfn_to_page(pfn));
156 }
157
158 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
159 {
160 /*
161 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
162 * perspective they are "normal" pages, albeit with slightly different
163 * usage rules.
164 */
165 if (pfn_valid(pfn))
166 return PageReserved(pfn_to_page(pfn)) &&
167 !kvm_is_zone_device_pfn(pfn);
168
169 return true;
170 }
171
172 /*
173 * Switches to specified vcpu, until a matching vcpu_put()
174 */
175 int vcpu_load(struct kvm_vcpu *vcpu)
176 {
177 int cpu;
178
179 if (mutex_lock_killable(&vcpu->mutex))
180 return -EINTR;
181 cpu = get_cpu();
182 preempt_notifier_register(&vcpu->preempt_notifier);
183 kvm_arch_vcpu_load(vcpu, cpu);
184 put_cpu();
185 return 0;
186 }
187 EXPORT_SYMBOL_GPL(vcpu_load);
188
189 void vcpu_put(struct kvm_vcpu *vcpu)
190 {
191 preempt_disable();
192 kvm_arch_vcpu_put(vcpu);
193 preempt_notifier_unregister(&vcpu->preempt_notifier);
194 preempt_enable();
195 mutex_unlock(&vcpu->mutex);
196 }
197 EXPORT_SYMBOL_GPL(vcpu_put);
198
199 /* TODO: merge with kvm_arch_vcpu_should_kick */
200 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
201 {
202 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
203
204 /*
205 * We need to wait for the VCPU to reenable interrupts and get out of
206 * READING_SHADOW_PAGE_TABLES mode.
207 */
208 if (req & KVM_REQUEST_WAIT)
209 return mode != OUTSIDE_GUEST_MODE;
210
211 /*
212 * Need to kick a running VCPU, but otherwise there is nothing to do.
213 */
214 return mode == IN_GUEST_MODE;
215 }
216
217 static void ack_flush(void *_completed)
218 {
219 }
220
221 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
222 {
223 if (unlikely(!cpus))
224 cpus = cpu_online_mask;
225
226 if (cpumask_empty(cpus))
227 return false;
228
229 smp_call_function_many(cpus, ack_flush, NULL, wait);
230 return true;
231 }
232
233 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
234 {
235 int i, cpu, me;
236 cpumask_var_t cpus;
237 bool called;
238 struct kvm_vcpu *vcpu;
239
240 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
241
242 me = get_cpu();
243 kvm_for_each_vcpu(i, vcpu, kvm) {
244 kvm_make_request(req, vcpu);
245 cpu = vcpu->cpu;
246
247 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
248 continue;
249
250 if (cpus != NULL && cpu != -1 && cpu != me &&
251 kvm_request_needs_ipi(vcpu, req))
252 __cpumask_set_cpu(cpu, cpus);
253 }
254 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
255 put_cpu();
256 free_cpumask_var(cpus);
257 return called;
258 }
259
260 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
261 void kvm_flush_remote_tlbs(struct kvm *kvm)
262 {
263 /*
264 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
265 * kvm_make_all_cpus_request.
266 */
267 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
268
269 /*
270 * We want to publish modifications to the page tables before reading
271 * mode. Pairs with a memory barrier in arch-specific code.
272 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
273 * and smp_mb in walk_shadow_page_lockless_begin/end.
274 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
275 *
276 * There is already an smp_mb__after_atomic() before
277 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
278 * barrier here.
279 */
280 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
281 ++kvm->stat.remote_tlb_flush;
282 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
283 }
284 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
285 #endif
286
287 void kvm_reload_remote_mmus(struct kvm *kvm)
288 {
289 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
290 }
291
292 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
293 {
294 struct page *page;
295 int r;
296
297 mutex_init(&vcpu->mutex);
298 vcpu->cpu = -1;
299 vcpu->kvm = kvm;
300 vcpu->vcpu_id = id;
301 vcpu->pid = NULL;
302 init_swait_queue_head(&vcpu->wq);
303 kvm_async_pf_vcpu_init(vcpu);
304
305 vcpu->pre_pcpu = -1;
306 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
307
308 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
309 if (!page) {
310 r = -ENOMEM;
311 goto fail;
312 }
313 vcpu->run = page_address(page);
314
315 kvm_vcpu_set_in_spin_loop(vcpu, false);
316 kvm_vcpu_set_dy_eligible(vcpu, false);
317 vcpu->preempted = false;
318
319 r = kvm_arch_vcpu_init(vcpu);
320 if (r < 0)
321 goto fail_free_run;
322 return 0;
323
324 fail_free_run:
325 free_page((unsigned long)vcpu->run);
326 fail:
327 return r;
328 }
329 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
330
331 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
332 {
333 /*
334 * no need for rcu_read_lock as VCPU_RUN is the only place that
335 * will change the vcpu->pid pointer and on uninit all file
336 * descriptors are already gone.
337 */
338 put_pid(rcu_dereference_protected(vcpu->pid, 1));
339 kvm_arch_vcpu_uninit(vcpu);
340 free_page((unsigned long)vcpu->run);
341 }
342 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
343
344 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
345 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
346 {
347 return container_of(mn, struct kvm, mmu_notifier);
348 }
349
350 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
351 struct mm_struct *mm,
352 unsigned long address,
353 pte_t pte)
354 {
355 struct kvm *kvm = mmu_notifier_to_kvm(mn);
356 int idx;
357
358 idx = srcu_read_lock(&kvm->srcu);
359 spin_lock(&kvm->mmu_lock);
360 kvm->mmu_notifier_seq++;
361 kvm_set_spte_hva(kvm, address, pte);
362 spin_unlock(&kvm->mmu_lock);
363 srcu_read_unlock(&kvm->srcu, idx);
364 }
365
366 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
367 struct mm_struct *mm,
368 unsigned long start,
369 unsigned long end)
370 {
371 struct kvm *kvm = mmu_notifier_to_kvm(mn);
372 int need_tlb_flush = 0, idx;
373
374 idx = srcu_read_lock(&kvm->srcu);
375 spin_lock(&kvm->mmu_lock);
376 /*
377 * The count increase must become visible at unlock time as no
378 * spte can be established without taking the mmu_lock and
379 * count is also read inside the mmu_lock critical section.
380 */
381 kvm->mmu_notifier_count++;
382 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
383 need_tlb_flush |= kvm->tlbs_dirty;
384 /* we've to flush the tlb before the pages can be freed */
385 if (need_tlb_flush)
386 kvm_flush_remote_tlbs(kvm);
387
388 spin_unlock(&kvm->mmu_lock);
389
390 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
391
392 srcu_read_unlock(&kvm->srcu, idx);
393 }
394
395 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
396 struct mm_struct *mm,
397 unsigned long start,
398 unsigned long end)
399 {
400 struct kvm *kvm = mmu_notifier_to_kvm(mn);
401
402 spin_lock(&kvm->mmu_lock);
403 /*
404 * This sequence increase will notify the kvm page fault that
405 * the page that is going to be mapped in the spte could have
406 * been freed.
407 */
408 kvm->mmu_notifier_seq++;
409 smp_wmb();
410 /*
411 * The above sequence increase must be visible before the
412 * below count decrease, which is ensured by the smp_wmb above
413 * in conjunction with the smp_rmb in mmu_notifier_retry().
414 */
415 kvm->mmu_notifier_count--;
416 spin_unlock(&kvm->mmu_lock);
417
418 BUG_ON(kvm->mmu_notifier_count < 0);
419 }
420
421 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
422 struct mm_struct *mm,
423 unsigned long start,
424 unsigned long end)
425 {
426 struct kvm *kvm = mmu_notifier_to_kvm(mn);
427 int young, idx;
428
429 idx = srcu_read_lock(&kvm->srcu);
430 spin_lock(&kvm->mmu_lock);
431
432 young = kvm_age_hva(kvm, start, end);
433 if (young)
434 kvm_flush_remote_tlbs(kvm);
435
436 spin_unlock(&kvm->mmu_lock);
437 srcu_read_unlock(&kvm->srcu, idx);
438
439 return young;
440 }
441
442 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
443 struct mm_struct *mm,
444 unsigned long start,
445 unsigned long end)
446 {
447 struct kvm *kvm = mmu_notifier_to_kvm(mn);
448 int young, idx;
449
450 idx = srcu_read_lock(&kvm->srcu);
451 spin_lock(&kvm->mmu_lock);
452 /*
453 * Even though we do not flush TLB, this will still adversely
454 * affect performance on pre-Haswell Intel EPT, where there is
455 * no EPT Access Bit to clear so that we have to tear down EPT
456 * tables instead. If we find this unacceptable, we can always
457 * add a parameter to kvm_age_hva so that it effectively doesn't
458 * do anything on clear_young.
459 *
460 * Also note that currently we never issue secondary TLB flushes
461 * from clear_young, leaving this job up to the regular system
462 * cadence. If we find this inaccurate, we might come up with a
463 * more sophisticated heuristic later.
464 */
465 young = kvm_age_hva(kvm, start, end);
466 spin_unlock(&kvm->mmu_lock);
467 srcu_read_unlock(&kvm->srcu, idx);
468
469 return young;
470 }
471
472 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
473 struct mm_struct *mm,
474 unsigned long address)
475 {
476 struct kvm *kvm = mmu_notifier_to_kvm(mn);
477 int young, idx;
478
479 idx = srcu_read_lock(&kvm->srcu);
480 spin_lock(&kvm->mmu_lock);
481 young = kvm_test_age_hva(kvm, address);
482 spin_unlock(&kvm->mmu_lock);
483 srcu_read_unlock(&kvm->srcu, idx);
484
485 return young;
486 }
487
488 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
489 struct mm_struct *mm)
490 {
491 struct kvm *kvm = mmu_notifier_to_kvm(mn);
492 int idx;
493
494 idx = srcu_read_lock(&kvm->srcu);
495 kvm_arch_flush_shadow_all(kvm);
496 srcu_read_unlock(&kvm->srcu, idx);
497 }
498
499 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
500 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
501 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
502 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
503 .clear_young = kvm_mmu_notifier_clear_young,
504 .test_young = kvm_mmu_notifier_test_young,
505 .change_pte = kvm_mmu_notifier_change_pte,
506 .release = kvm_mmu_notifier_release,
507 };
508
509 static int kvm_init_mmu_notifier(struct kvm *kvm)
510 {
511 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
512 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
513 }
514
515 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
516
517 static int kvm_init_mmu_notifier(struct kvm *kvm)
518 {
519 return 0;
520 }
521
522 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
523
524 static struct kvm_memslots *kvm_alloc_memslots(void)
525 {
526 int i;
527 struct kvm_memslots *slots;
528
529 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
530 if (!slots)
531 return NULL;
532
533 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
534 slots->id_to_index[i] = slots->memslots[i].id = i;
535
536 return slots;
537 }
538
539 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
540 {
541 if (!memslot->dirty_bitmap)
542 return;
543
544 kvfree(memslot->dirty_bitmap);
545 memslot->dirty_bitmap = NULL;
546 }
547
548 /*
549 * Free any memory in @free but not in @dont.
550 */
551 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
552 struct kvm_memory_slot *dont)
553 {
554 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
555 kvm_destroy_dirty_bitmap(free);
556
557 kvm_arch_free_memslot(kvm, free, dont);
558
559 free->npages = 0;
560 }
561
562 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
563 {
564 struct kvm_memory_slot *memslot;
565
566 if (!slots)
567 return;
568
569 kvm_for_each_memslot(memslot, slots)
570 kvm_free_memslot(kvm, memslot, NULL);
571
572 kvfree(slots);
573 }
574
575 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
576 {
577 int i;
578
579 if (!kvm->debugfs_dentry)
580 return;
581
582 debugfs_remove_recursive(kvm->debugfs_dentry);
583
584 if (kvm->debugfs_stat_data) {
585 for (i = 0; i < kvm_debugfs_num_entries; i++)
586 kfree(kvm->debugfs_stat_data[i]);
587 kfree(kvm->debugfs_stat_data);
588 }
589 }
590
591 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
592 {
593 char dir_name[ITOA_MAX_LEN * 2];
594 struct kvm_stat_data *stat_data;
595 struct kvm_stats_debugfs_item *p;
596
597 if (!debugfs_initialized())
598 return 0;
599
600 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
601 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
602 kvm_debugfs_dir);
603 if (!kvm->debugfs_dentry)
604 return -ENOMEM;
605
606 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
607 sizeof(*kvm->debugfs_stat_data),
608 GFP_KERNEL);
609 if (!kvm->debugfs_stat_data)
610 return -ENOMEM;
611
612 for (p = debugfs_entries; p->name; p++) {
613 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
614 if (!stat_data)
615 return -ENOMEM;
616
617 stat_data->kvm = kvm;
618 stat_data->offset = p->offset;
619 stat_data->mode = p->mode ? p->mode : 0644;
620 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
621 if (!debugfs_create_file(p->name, stat_data->mode,
622 kvm->debugfs_dentry,
623 stat_data,
624 stat_fops_per_vm[p->kind]))
625 return -ENOMEM;
626 }
627 return 0;
628 }
629
630 /*
631 * Called after the VM is otherwise initialized, but just before adding it to
632 * the vm_list.
633 */
634 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
635 {
636 return 0;
637 }
638
639 /*
640 * Called just after removing the VM from the vm_list, but before doing any
641 * other destruction.
642 */
643 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
644 {
645 }
646
647 static struct kvm *kvm_create_vm(unsigned long type)
648 {
649 int r, i;
650 struct kvm *kvm = kvm_arch_alloc_vm();
651
652 if (!kvm)
653 return ERR_PTR(-ENOMEM);
654
655 spin_lock_init(&kvm->mmu_lock);
656 mmgrab(current->mm);
657 kvm->mm = current->mm;
658 kvm_eventfd_init(kvm);
659 mutex_init(&kvm->lock);
660 mutex_init(&kvm->irq_lock);
661 mutex_init(&kvm->slots_lock);
662 refcount_set(&kvm->users_count, 1);
663 INIT_LIST_HEAD(&kvm->devices);
664
665 r = kvm_arch_init_vm(kvm, type);
666 if (r)
667 goto out_err_no_disable;
668
669 r = hardware_enable_all();
670 if (r)
671 goto out_err_no_disable;
672
673 #ifdef CONFIG_HAVE_KVM_IRQFD
674 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
675 #endif
676
677 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
678
679 r = -ENOMEM;
680 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
681 struct kvm_memslots *slots = kvm_alloc_memslots();
682 if (!slots)
683 goto out_err_no_srcu;
684 /*
685 * Generations must be different for each address space.
686 * Init kvm generation close to the maximum to easily test the
687 * code of handling generation number wrap-around.
688 */
689 slots->generation = i * 2 - 150;
690 rcu_assign_pointer(kvm->memslots[i], slots);
691 }
692
693 if (init_srcu_struct(&kvm->srcu))
694 goto out_err_no_srcu;
695 if (init_srcu_struct(&kvm->irq_srcu))
696 goto out_err_no_irq_srcu;
697 for (i = 0; i < KVM_NR_BUSES; i++) {
698 rcu_assign_pointer(kvm->buses[i],
699 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
700 if (!kvm->buses[i])
701 goto out_err_no_mmu_notifier;
702 }
703
704 r = kvm_init_mmu_notifier(kvm);
705 if (r)
706 goto out_err_no_mmu_notifier;
707
708 r = kvm_arch_post_init_vm(kvm);
709 if (r)
710 goto out_err;
711
712 mutex_lock(&kvm_lock);
713 list_add(&kvm->vm_list, &vm_list);
714 mutex_unlock(&kvm_lock);
715
716 preempt_notifier_inc();
717
718 return kvm;
719
720 out_err:
721 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
722 if (kvm->mmu_notifier.ops)
723 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
724 #endif
725 out_err_no_mmu_notifier:
726 cleanup_srcu_struct(&kvm->irq_srcu);
727 out_err_no_irq_srcu:
728 cleanup_srcu_struct(&kvm->srcu);
729 out_err_no_srcu:
730 hardware_disable_all();
731 out_err_no_disable:
732 refcount_set(&kvm->users_count, 0);
733 for (i = 0; i < KVM_NR_BUSES; i++)
734 kfree(kvm_get_bus(kvm, i));
735 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
736 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
737 kvm_arch_free_vm(kvm);
738 mmdrop(current->mm);
739 return ERR_PTR(r);
740 }
741
742 static void kvm_destroy_devices(struct kvm *kvm)
743 {
744 struct kvm_device *dev, *tmp;
745
746 /*
747 * We do not need to take the kvm->lock here, because nobody else
748 * has a reference to the struct kvm at this point and therefore
749 * cannot access the devices list anyhow.
750 */
751 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
752 list_del(&dev->vm_node);
753 dev->ops->destroy(dev);
754 }
755 }
756
757 static void kvm_destroy_vm(struct kvm *kvm)
758 {
759 int i;
760 struct mm_struct *mm = kvm->mm;
761
762 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
763 kvm_destroy_vm_debugfs(kvm);
764 kvm_arch_sync_events(kvm);
765 mutex_lock(&kvm_lock);
766 list_del(&kvm->vm_list);
767 mutex_unlock(&kvm_lock);
768 kvm_arch_pre_destroy_vm(kvm);
769
770 kvm_free_irq_routing(kvm);
771 for (i = 0; i < KVM_NR_BUSES; i++) {
772 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
773
774 if (bus)
775 kvm_io_bus_destroy(bus);
776 kvm->buses[i] = NULL;
777 }
778 kvm_coalesced_mmio_free(kvm);
779 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
780 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
781 #else
782 kvm_arch_flush_shadow_all(kvm);
783 #endif
784 kvm_arch_destroy_vm(kvm);
785 kvm_destroy_devices(kvm);
786 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
787 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
788 cleanup_srcu_struct(&kvm->irq_srcu);
789 cleanup_srcu_struct(&kvm->srcu);
790 kvm_arch_free_vm(kvm);
791 preempt_notifier_dec();
792 hardware_disable_all();
793 mmdrop(mm);
794 }
795
796 void kvm_get_kvm(struct kvm *kvm)
797 {
798 refcount_inc(&kvm->users_count);
799 }
800 EXPORT_SYMBOL_GPL(kvm_get_kvm);
801
802 void kvm_put_kvm(struct kvm *kvm)
803 {
804 if (refcount_dec_and_test(&kvm->users_count))
805 kvm_destroy_vm(kvm);
806 }
807 EXPORT_SYMBOL_GPL(kvm_put_kvm);
808
809
810 static int kvm_vm_release(struct inode *inode, struct file *filp)
811 {
812 struct kvm *kvm = filp->private_data;
813
814 kvm_irqfd_release(kvm);
815
816 kvm_put_kvm(kvm);
817 return 0;
818 }
819
820 /*
821 * Allocation size is twice as large as the actual dirty bitmap size.
822 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
823 */
824 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
825 {
826 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
827
828 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
829 if (!memslot->dirty_bitmap)
830 return -ENOMEM;
831
832 return 0;
833 }
834
835 /*
836 * Insert memslot and re-sort memslots based on their GFN,
837 * so binary search could be used to lookup GFN.
838 * Sorting algorithm takes advantage of having initially
839 * sorted array and known changed memslot position.
840 */
841 static void update_memslots(struct kvm_memslots *slots,
842 struct kvm_memory_slot *new)
843 {
844 int id = new->id;
845 int i = slots->id_to_index[id];
846 struct kvm_memory_slot *mslots = slots->memslots;
847
848 WARN_ON(mslots[i].id != id);
849 if (!new->npages) {
850 WARN_ON(!mslots[i].npages);
851 if (mslots[i].npages)
852 slots->used_slots--;
853 } else {
854 if (!mslots[i].npages)
855 slots->used_slots++;
856 }
857
858 while (i < KVM_MEM_SLOTS_NUM - 1 &&
859 new->base_gfn <= mslots[i + 1].base_gfn) {
860 if (!mslots[i + 1].npages)
861 break;
862 mslots[i] = mslots[i + 1];
863 slots->id_to_index[mslots[i].id] = i;
864 i++;
865 }
866
867 /*
868 * The ">=" is needed when creating a slot with base_gfn == 0,
869 * so that it moves before all those with base_gfn == npages == 0.
870 *
871 * On the other hand, if new->npages is zero, the above loop has
872 * already left i pointing to the beginning of the empty part of
873 * mslots, and the ">=" would move the hole backwards in this
874 * case---which is wrong. So skip the loop when deleting a slot.
875 */
876 if (new->npages) {
877 while (i > 0 &&
878 new->base_gfn >= mslots[i - 1].base_gfn) {
879 mslots[i] = mslots[i - 1];
880 slots->id_to_index[mslots[i].id] = i;
881 i--;
882 }
883 } else
884 WARN_ON_ONCE(i != slots->used_slots);
885
886 mslots[i] = *new;
887 slots->id_to_index[mslots[i].id] = i;
888 }
889
890 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
891 {
892 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
893
894 #ifdef __KVM_HAVE_READONLY_MEM
895 valid_flags |= KVM_MEM_READONLY;
896 #endif
897
898 if (mem->flags & ~valid_flags)
899 return -EINVAL;
900
901 return 0;
902 }
903
904 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
905 int as_id, struct kvm_memslots *slots)
906 {
907 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
908 u64 gen;
909
910 /*
911 * Set the low bit in the generation, which disables SPTE caching
912 * until the end of synchronize_srcu_expedited.
913 */
914 WARN_ON(old_memslots->generation & 1);
915 slots->generation = old_memslots->generation + 1;
916
917 rcu_assign_pointer(kvm->memslots[as_id], slots);
918 synchronize_srcu_expedited(&kvm->srcu);
919
920 /*
921 * Increment the new memslot generation a second time. This prevents
922 * vm exits that race with memslot updates from caching a memslot
923 * generation that will (potentially) be valid forever.
924 *
925 * Generations must be unique even across address spaces. We do not need
926 * a global counter for that, instead the generation space is evenly split
927 * across address spaces. For example, with two address spaces, address
928 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
929 * use generations 2, 6, 10, 14, ...
930 */
931 gen = slots->generation + KVM_ADDRESS_SPACE_NUM * 2 - 1;
932
933 kvm_arch_memslots_updated(kvm, gen);
934
935 slots->generation = gen;
936
937 return old_memslots;
938 }
939
940 /*
941 * Allocate some memory and give it an address in the guest physical address
942 * space.
943 *
944 * Discontiguous memory is allowed, mostly for framebuffers.
945 *
946 * Must be called holding kvm->slots_lock for write.
947 */
948 int __kvm_set_memory_region(struct kvm *kvm,
949 const struct kvm_userspace_memory_region *mem)
950 {
951 int r;
952 gfn_t base_gfn;
953 unsigned long npages;
954 struct kvm_memory_slot *slot;
955 struct kvm_memory_slot old, new;
956 struct kvm_memslots *slots = NULL, *old_memslots;
957 int as_id, id;
958 enum kvm_mr_change change;
959
960 r = check_memory_region_flags(mem);
961 if (r)
962 goto out;
963
964 r = -EINVAL;
965 as_id = mem->slot >> 16;
966 id = (u16)mem->slot;
967
968 /* General sanity checks */
969 if (mem->memory_size & (PAGE_SIZE - 1))
970 goto out;
971 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
972 goto out;
973 /* We can read the guest memory with __xxx_user() later on. */
974 if ((id < KVM_USER_MEM_SLOTS) &&
975 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
976 !access_ok(VERIFY_WRITE,
977 (void __user *)(unsigned long)mem->userspace_addr,
978 mem->memory_size)))
979 goto out;
980 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
981 goto out;
982 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
983 goto out;
984
985 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
986 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
987 npages = mem->memory_size >> PAGE_SHIFT;
988
989 if (npages > KVM_MEM_MAX_NR_PAGES)
990 goto out;
991
992 new = old = *slot;
993
994 new.id = id;
995 new.base_gfn = base_gfn;
996 new.npages = npages;
997 new.flags = mem->flags;
998
999 if (npages) {
1000 if (!old.npages)
1001 change = KVM_MR_CREATE;
1002 else { /* Modify an existing slot. */
1003 if ((mem->userspace_addr != old.userspace_addr) ||
1004 (npages != old.npages) ||
1005 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1006 goto out;
1007
1008 if (base_gfn != old.base_gfn)
1009 change = KVM_MR_MOVE;
1010 else if (new.flags != old.flags)
1011 change = KVM_MR_FLAGS_ONLY;
1012 else { /* Nothing to change. */
1013 r = 0;
1014 goto out;
1015 }
1016 }
1017 } else {
1018 if (!old.npages)
1019 goto out;
1020
1021 change = KVM_MR_DELETE;
1022 new.base_gfn = 0;
1023 new.flags = 0;
1024 }
1025
1026 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1027 /* Check for overlaps */
1028 r = -EEXIST;
1029 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1030 if (slot->id == id)
1031 continue;
1032 if (!((base_gfn + npages <= slot->base_gfn) ||
1033 (base_gfn >= slot->base_gfn + slot->npages)))
1034 goto out;
1035 }
1036 }
1037
1038 /* Free page dirty bitmap if unneeded */
1039 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1040 new.dirty_bitmap = NULL;
1041
1042 r = -ENOMEM;
1043 if (change == KVM_MR_CREATE) {
1044 new.userspace_addr = mem->userspace_addr;
1045
1046 if (kvm_arch_create_memslot(kvm, &new, npages))
1047 goto out_free;
1048 }
1049
1050 /* Allocate page dirty bitmap if needed */
1051 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1052 if (kvm_create_dirty_bitmap(&new) < 0)
1053 goto out_free;
1054 }
1055
1056 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1057 if (!slots)
1058 goto out_free;
1059 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1060
1061 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1062 slot = id_to_memslot(slots, id);
1063 slot->flags |= KVM_MEMSLOT_INVALID;
1064
1065 old_memslots = install_new_memslots(kvm, as_id, slots);
1066
1067 /* From this point no new shadow pages pointing to a deleted,
1068 * or moved, memslot will be created.
1069 *
1070 * validation of sp->gfn happens in:
1071 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1072 * - kvm_is_visible_gfn (mmu_check_roots)
1073 */
1074 kvm_arch_flush_shadow_memslot(kvm, slot);
1075
1076 /*
1077 * We can re-use the old_memslots from above, the only difference
1078 * from the currently installed memslots is the invalid flag. This
1079 * will get overwritten by update_memslots anyway.
1080 */
1081 slots = old_memslots;
1082 }
1083
1084 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1085 if (r)
1086 goto out_slots;
1087
1088 /* actual memory is freed via old in kvm_free_memslot below */
1089 if (change == KVM_MR_DELETE) {
1090 new.dirty_bitmap = NULL;
1091 memset(&new.arch, 0, sizeof(new.arch));
1092 }
1093
1094 update_memslots(slots, &new);
1095 old_memslots = install_new_memslots(kvm, as_id, slots);
1096
1097 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1098
1099 kvm_free_memslot(kvm, &old, &new);
1100 kvfree(old_memslots);
1101 return 0;
1102
1103 out_slots:
1104 kvfree(slots);
1105 out_free:
1106 kvm_free_memslot(kvm, &new, &old);
1107 out:
1108 return r;
1109 }
1110 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1111
1112 int kvm_set_memory_region(struct kvm *kvm,
1113 const struct kvm_userspace_memory_region *mem)
1114 {
1115 int r;
1116
1117 mutex_lock(&kvm->slots_lock);
1118 r = __kvm_set_memory_region(kvm, mem);
1119 mutex_unlock(&kvm->slots_lock);
1120 return r;
1121 }
1122 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1123
1124 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1125 struct kvm_userspace_memory_region *mem)
1126 {
1127 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1128 return -EINVAL;
1129
1130 return kvm_set_memory_region(kvm, mem);
1131 }
1132
1133 int kvm_get_dirty_log(struct kvm *kvm,
1134 struct kvm_dirty_log *log, int *is_dirty)
1135 {
1136 struct kvm_memslots *slots;
1137 struct kvm_memory_slot *memslot;
1138 int i, as_id, id;
1139 unsigned long n;
1140 unsigned long any = 0;
1141
1142 as_id = log->slot >> 16;
1143 id = (u16)log->slot;
1144 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1145 return -EINVAL;
1146
1147 slots = __kvm_memslots(kvm, as_id);
1148 memslot = id_to_memslot(slots, id);
1149 if (!memslot->dirty_bitmap)
1150 return -ENOENT;
1151
1152 n = kvm_dirty_bitmap_bytes(memslot);
1153
1154 for (i = 0; !any && i < n/sizeof(long); ++i)
1155 any = memslot->dirty_bitmap[i];
1156
1157 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1158 return -EFAULT;
1159
1160 if (any)
1161 *is_dirty = 1;
1162 return 0;
1163 }
1164 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1165
1166 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1167 /**
1168 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1169 * are dirty write protect them for next write.
1170 * @kvm: pointer to kvm instance
1171 * @log: slot id and address to which we copy the log
1172 * @is_dirty: flag set if any page is dirty
1173 *
1174 * We need to keep it in mind that VCPU threads can write to the bitmap
1175 * concurrently. So, to avoid losing track of dirty pages we keep the
1176 * following order:
1177 *
1178 * 1. Take a snapshot of the bit and clear it if needed.
1179 * 2. Write protect the corresponding page.
1180 * 3. Copy the snapshot to the userspace.
1181 * 4. Upon return caller flushes TLB's if needed.
1182 *
1183 * Between 2 and 4, the guest may write to the page using the remaining TLB
1184 * entry. This is not a problem because the page is reported dirty using
1185 * the snapshot taken before and step 4 ensures that writes done after
1186 * exiting to userspace will be logged for the next call.
1187 *
1188 */
1189 int kvm_get_dirty_log_protect(struct kvm *kvm,
1190 struct kvm_dirty_log *log, bool *is_dirty)
1191 {
1192 struct kvm_memslots *slots;
1193 struct kvm_memory_slot *memslot;
1194 int i, as_id, id;
1195 unsigned long n;
1196 unsigned long *dirty_bitmap;
1197 unsigned long *dirty_bitmap_buffer;
1198
1199 as_id = log->slot >> 16;
1200 id = (u16)log->slot;
1201 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1202 return -EINVAL;
1203
1204 slots = __kvm_memslots(kvm, as_id);
1205 memslot = id_to_memslot(slots, id);
1206
1207 dirty_bitmap = memslot->dirty_bitmap;
1208 if (!dirty_bitmap)
1209 return -ENOENT;
1210
1211 n = kvm_dirty_bitmap_bytes(memslot);
1212
1213 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1214 memset(dirty_bitmap_buffer, 0, n);
1215
1216 spin_lock(&kvm->mmu_lock);
1217 *is_dirty = false;
1218 for (i = 0; i < n / sizeof(long); i++) {
1219 unsigned long mask;
1220 gfn_t offset;
1221
1222 if (!dirty_bitmap[i])
1223 continue;
1224
1225 *is_dirty = true;
1226
1227 mask = xchg(&dirty_bitmap[i], 0);
1228 dirty_bitmap_buffer[i] = mask;
1229
1230 if (mask) {
1231 offset = i * BITS_PER_LONG;
1232 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1233 offset, mask);
1234 }
1235 }
1236
1237 spin_unlock(&kvm->mmu_lock);
1238 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1239 return -EFAULT;
1240 return 0;
1241 }
1242 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1243 #endif
1244
1245 bool kvm_largepages_enabled(void)
1246 {
1247 return largepages_enabled;
1248 }
1249
1250 void kvm_disable_largepages(void)
1251 {
1252 largepages_enabled = false;
1253 }
1254 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1255
1256 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1257 {
1258 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1259 }
1260 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1261
1262 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1263 {
1264 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1265 }
1266
1267 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1268 {
1269 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1270
1271 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1272 memslot->flags & KVM_MEMSLOT_INVALID)
1273 return false;
1274
1275 return true;
1276 }
1277 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1278
1279 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1280 {
1281 struct vm_area_struct *vma;
1282 unsigned long addr, size;
1283
1284 size = PAGE_SIZE;
1285
1286 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1287 if (kvm_is_error_hva(addr))
1288 return PAGE_SIZE;
1289
1290 down_read(&current->mm->mmap_sem);
1291 vma = find_vma(current->mm, addr);
1292 if (!vma)
1293 goto out;
1294
1295 size = vma_kernel_pagesize(vma);
1296
1297 out:
1298 up_read(&current->mm->mmap_sem);
1299
1300 return size;
1301 }
1302
1303 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1304 {
1305 return slot->flags & KVM_MEM_READONLY;
1306 }
1307
1308 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1309 gfn_t *nr_pages, bool write)
1310 {
1311 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1312 return KVM_HVA_ERR_BAD;
1313
1314 if (memslot_is_readonly(slot) && write)
1315 return KVM_HVA_ERR_RO_BAD;
1316
1317 if (nr_pages)
1318 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1319
1320 return __gfn_to_hva_memslot(slot, gfn);
1321 }
1322
1323 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1324 gfn_t *nr_pages)
1325 {
1326 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1327 }
1328
1329 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1330 gfn_t gfn)
1331 {
1332 return gfn_to_hva_many(slot, gfn, NULL);
1333 }
1334 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1335
1336 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1337 {
1338 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1339 }
1340 EXPORT_SYMBOL_GPL(gfn_to_hva);
1341
1342 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1343 {
1344 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1345 }
1346 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1347
1348 /*
1349 * If writable is set to false, the hva returned by this function is only
1350 * allowed to be read.
1351 */
1352 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1353 gfn_t gfn, bool *writable)
1354 {
1355 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1356
1357 if (!kvm_is_error_hva(hva) && writable)
1358 *writable = !memslot_is_readonly(slot);
1359
1360 return hva;
1361 }
1362
1363 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1364 {
1365 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1366
1367 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1368 }
1369
1370 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1371 {
1372 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1373
1374 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1375 }
1376
1377 static int get_user_page_nowait(unsigned long start, int write,
1378 struct page **page)
1379 {
1380 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1381
1382 if (write)
1383 flags |= FOLL_WRITE;
1384
1385 return get_user_pages(start, 1, flags, page, NULL);
1386 }
1387
1388 static inline int check_user_page_hwpoison(unsigned long addr)
1389 {
1390 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1391
1392 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1393 return rc == -EHWPOISON;
1394 }
1395
1396 /*
1397 * The atomic path to get the writable pfn which will be stored in @pfn,
1398 * true indicates success, otherwise false is returned.
1399 */
1400 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1401 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1402 {
1403 struct page *page[1];
1404 int npages;
1405
1406 if (!(async || atomic))
1407 return false;
1408
1409 /*
1410 * Fast pin a writable pfn only if it is a write fault request
1411 * or the caller allows to map a writable pfn for a read fault
1412 * request.
1413 */
1414 if (!(write_fault || writable))
1415 return false;
1416
1417 npages = __get_user_pages_fast(addr, 1, 1, page);
1418 if (npages == 1) {
1419 *pfn = page_to_pfn(page[0]);
1420
1421 if (writable)
1422 *writable = true;
1423 return true;
1424 }
1425
1426 return false;
1427 }
1428
1429 /*
1430 * The slow path to get the pfn of the specified host virtual address,
1431 * 1 indicates success, -errno is returned if error is detected.
1432 */
1433 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1434 bool *writable, kvm_pfn_t *pfn)
1435 {
1436 struct page *page[1];
1437 int npages = 0;
1438
1439 might_sleep();
1440
1441 if (writable)
1442 *writable = write_fault;
1443
1444 if (async) {
1445 down_read(&current->mm->mmap_sem);
1446 npages = get_user_page_nowait(addr, write_fault, page);
1447 up_read(&current->mm->mmap_sem);
1448 } else {
1449 unsigned int flags = FOLL_HWPOISON;
1450
1451 if (write_fault)
1452 flags |= FOLL_WRITE;
1453
1454 npages = get_user_pages_unlocked(addr, 1, page, flags);
1455 }
1456 if (npages != 1)
1457 return npages;
1458
1459 /* map read fault as writable if possible */
1460 if (unlikely(!write_fault) && writable) {
1461 struct page *wpage[1];
1462
1463 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1464 if (npages == 1) {
1465 *writable = true;
1466 put_page(page[0]);
1467 page[0] = wpage[0];
1468 }
1469
1470 npages = 1;
1471 }
1472 *pfn = page_to_pfn(page[0]);
1473 return npages;
1474 }
1475
1476 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1477 {
1478 if (unlikely(!(vma->vm_flags & VM_READ)))
1479 return false;
1480
1481 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1482 return false;
1483
1484 return true;
1485 }
1486
1487 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1488 unsigned long addr, bool *async,
1489 bool write_fault, bool *writable,
1490 kvm_pfn_t *p_pfn)
1491 {
1492 unsigned long pfn;
1493 int r;
1494
1495 r = follow_pfn(vma, addr, &pfn);
1496 if (r) {
1497 /*
1498 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1499 * not call the fault handler, so do it here.
1500 */
1501 bool unlocked = false;
1502 r = fixup_user_fault(current, current->mm, addr,
1503 (write_fault ? FAULT_FLAG_WRITE : 0),
1504 &unlocked);
1505 if (unlocked)
1506 return -EAGAIN;
1507 if (r)
1508 return r;
1509
1510 r = follow_pfn(vma, addr, &pfn);
1511 if (r)
1512 return r;
1513
1514 }
1515
1516 if (writable)
1517 *writable = true;
1518
1519 /*
1520 * Get a reference here because callers of *hva_to_pfn* and
1521 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1522 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1523 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1524 * simply do nothing for reserved pfns.
1525 *
1526 * Whoever called remap_pfn_range is also going to call e.g.
1527 * unmap_mapping_range before the underlying pages are freed,
1528 * causing a call to our MMU notifier.
1529 */
1530 kvm_get_pfn(pfn);
1531
1532 *p_pfn = pfn;
1533 return 0;
1534 }
1535
1536 /*
1537 * Pin guest page in memory and return its pfn.
1538 * @addr: host virtual address which maps memory to the guest
1539 * @atomic: whether this function can sleep
1540 * @async: whether this function need to wait IO complete if the
1541 * host page is not in the memory
1542 * @write_fault: whether we should get a writable host page
1543 * @writable: whether it allows to map a writable host page for !@write_fault
1544 *
1545 * The function will map a writable host page for these two cases:
1546 * 1): @write_fault = true
1547 * 2): @write_fault = false && @writable, @writable will tell the caller
1548 * whether the mapping is writable.
1549 */
1550 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1551 bool write_fault, bool *writable)
1552 {
1553 struct vm_area_struct *vma;
1554 kvm_pfn_t pfn = 0;
1555 int npages, r;
1556
1557 /* we can do it either atomically or asynchronously, not both */
1558 BUG_ON(atomic && async);
1559
1560 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1561 return pfn;
1562
1563 if (atomic)
1564 return KVM_PFN_ERR_FAULT;
1565
1566 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1567 if (npages == 1)
1568 return pfn;
1569
1570 down_read(&current->mm->mmap_sem);
1571 if (npages == -EHWPOISON ||
1572 (!async && check_user_page_hwpoison(addr))) {
1573 pfn = KVM_PFN_ERR_HWPOISON;
1574 goto exit;
1575 }
1576
1577 retry:
1578 vma = find_vma_intersection(current->mm, addr, addr + 1);
1579
1580 if (vma == NULL)
1581 pfn = KVM_PFN_ERR_FAULT;
1582 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1583 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1584 if (r == -EAGAIN)
1585 goto retry;
1586 if (r < 0)
1587 pfn = KVM_PFN_ERR_FAULT;
1588 } else {
1589 if (async && vma_is_valid(vma, write_fault))
1590 *async = true;
1591 pfn = KVM_PFN_ERR_FAULT;
1592 }
1593 exit:
1594 up_read(&current->mm->mmap_sem);
1595 return pfn;
1596 }
1597
1598 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1599 bool atomic, bool *async, bool write_fault,
1600 bool *writable)
1601 {
1602 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1603
1604 if (addr == KVM_HVA_ERR_RO_BAD) {
1605 if (writable)
1606 *writable = false;
1607 return KVM_PFN_ERR_RO_FAULT;
1608 }
1609
1610 if (kvm_is_error_hva(addr)) {
1611 if (writable)
1612 *writable = false;
1613 return KVM_PFN_NOSLOT;
1614 }
1615
1616 /* Do not map writable pfn in the readonly memslot. */
1617 if (writable && memslot_is_readonly(slot)) {
1618 *writable = false;
1619 writable = NULL;
1620 }
1621
1622 return hva_to_pfn(addr, atomic, async, write_fault,
1623 writable);
1624 }
1625 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1626
1627 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1628 bool *writable)
1629 {
1630 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1631 write_fault, writable);
1632 }
1633 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1634
1635 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1636 {
1637 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1638 }
1639 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1640
1641 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1642 {
1643 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1644 }
1645 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1646
1647 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1648 {
1649 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1650 }
1651 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1652
1653 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1654 {
1655 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1656 }
1657 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1658
1659 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1660 {
1661 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1662 }
1663 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1664
1665 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1666 {
1667 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1670
1671 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1672 struct page **pages, int nr_pages)
1673 {
1674 unsigned long addr;
1675 gfn_t entry = 0;
1676
1677 addr = gfn_to_hva_many(slot, gfn, &entry);
1678 if (kvm_is_error_hva(addr))
1679 return -1;
1680
1681 if (entry < nr_pages)
1682 return 0;
1683
1684 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1685 }
1686 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1687
1688 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1689 {
1690 if (is_error_noslot_pfn(pfn))
1691 return KVM_ERR_PTR_BAD_PAGE;
1692
1693 if (kvm_is_reserved_pfn(pfn)) {
1694 WARN_ON(1);
1695 return KVM_ERR_PTR_BAD_PAGE;
1696 }
1697
1698 return pfn_to_page(pfn);
1699 }
1700
1701 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1702 {
1703 kvm_pfn_t pfn;
1704
1705 pfn = gfn_to_pfn(kvm, gfn);
1706
1707 return kvm_pfn_to_page(pfn);
1708 }
1709 EXPORT_SYMBOL_GPL(gfn_to_page);
1710
1711 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1712 {
1713 kvm_pfn_t pfn;
1714
1715 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1716
1717 return kvm_pfn_to_page(pfn);
1718 }
1719 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1720
1721 void kvm_release_page_clean(struct page *page)
1722 {
1723 WARN_ON(is_error_page(page));
1724
1725 kvm_release_pfn_clean(page_to_pfn(page));
1726 }
1727 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1728
1729 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1730 {
1731 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1732 put_page(pfn_to_page(pfn));
1733 }
1734 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1735
1736 void kvm_release_page_dirty(struct page *page)
1737 {
1738 WARN_ON(is_error_page(page));
1739
1740 kvm_release_pfn_dirty(page_to_pfn(page));
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1743
1744 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1745 {
1746 kvm_set_pfn_dirty(pfn);
1747 kvm_release_pfn_clean(pfn);
1748 }
1749 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1750
1751 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1752 {
1753 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) {
1754 struct page *page = pfn_to_page(pfn);
1755
1756 if (!PageReserved(page))
1757 SetPageDirty(page);
1758 }
1759 }
1760 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1761
1762 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1763 {
1764 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1765 mark_page_accessed(pfn_to_page(pfn));
1766 }
1767 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1768
1769 void kvm_get_pfn(kvm_pfn_t pfn)
1770 {
1771 if (!kvm_is_reserved_pfn(pfn))
1772 get_page(pfn_to_page(pfn));
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1775
1776 static int next_segment(unsigned long len, int offset)
1777 {
1778 if (len > PAGE_SIZE - offset)
1779 return PAGE_SIZE - offset;
1780 else
1781 return len;
1782 }
1783
1784 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1785 void *data, int offset, int len)
1786 {
1787 int r;
1788 unsigned long addr;
1789
1790 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1791 if (kvm_is_error_hva(addr))
1792 return -EFAULT;
1793 r = __copy_from_user(data, (void __user *)addr + offset, len);
1794 if (r)
1795 return -EFAULT;
1796 return 0;
1797 }
1798
1799 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1800 int len)
1801 {
1802 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1803
1804 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1805 }
1806 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1807
1808 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1809 int offset, int len)
1810 {
1811 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1812
1813 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1814 }
1815 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1816
1817 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1818 {
1819 gfn_t gfn = gpa >> PAGE_SHIFT;
1820 int seg;
1821 int offset = offset_in_page(gpa);
1822 int ret;
1823
1824 while ((seg = next_segment(len, offset)) != 0) {
1825 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1826 if (ret < 0)
1827 return ret;
1828 offset = 0;
1829 len -= seg;
1830 data += seg;
1831 ++gfn;
1832 }
1833 return 0;
1834 }
1835 EXPORT_SYMBOL_GPL(kvm_read_guest);
1836
1837 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1838 {
1839 gfn_t gfn = gpa >> PAGE_SHIFT;
1840 int seg;
1841 int offset = offset_in_page(gpa);
1842 int ret;
1843
1844 while ((seg = next_segment(len, offset)) != 0) {
1845 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1846 if (ret < 0)
1847 return ret;
1848 offset = 0;
1849 len -= seg;
1850 data += seg;
1851 ++gfn;
1852 }
1853 return 0;
1854 }
1855 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1856
1857 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1858 void *data, int offset, unsigned long len)
1859 {
1860 int r;
1861 unsigned long addr;
1862
1863 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1864 if (kvm_is_error_hva(addr))
1865 return -EFAULT;
1866 pagefault_disable();
1867 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1868 pagefault_enable();
1869 if (r)
1870 return -EFAULT;
1871 return 0;
1872 }
1873
1874 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1875 unsigned long len)
1876 {
1877 gfn_t gfn = gpa >> PAGE_SHIFT;
1878 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1879 int offset = offset_in_page(gpa);
1880
1881 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1882 }
1883 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1884
1885 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1886 void *data, unsigned long len)
1887 {
1888 gfn_t gfn = gpa >> PAGE_SHIFT;
1889 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1890 int offset = offset_in_page(gpa);
1891
1892 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1893 }
1894 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1895
1896 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1897 const void *data, int offset, int len)
1898 {
1899 int r;
1900 unsigned long addr;
1901
1902 addr = gfn_to_hva_memslot(memslot, gfn);
1903 if (kvm_is_error_hva(addr))
1904 return -EFAULT;
1905 r = __copy_to_user((void __user *)addr + offset, data, len);
1906 if (r)
1907 return -EFAULT;
1908 mark_page_dirty_in_slot(memslot, gfn);
1909 return 0;
1910 }
1911
1912 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1913 const void *data, int offset, int len)
1914 {
1915 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1916
1917 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1918 }
1919 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1920
1921 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1922 const void *data, int offset, int len)
1923 {
1924 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1925
1926 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1927 }
1928 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1929
1930 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1931 unsigned long len)
1932 {
1933 gfn_t gfn = gpa >> PAGE_SHIFT;
1934 int seg;
1935 int offset = offset_in_page(gpa);
1936 int ret;
1937
1938 while ((seg = next_segment(len, offset)) != 0) {
1939 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1940 if (ret < 0)
1941 return ret;
1942 offset = 0;
1943 len -= seg;
1944 data += seg;
1945 ++gfn;
1946 }
1947 return 0;
1948 }
1949 EXPORT_SYMBOL_GPL(kvm_write_guest);
1950
1951 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1952 unsigned long len)
1953 {
1954 gfn_t gfn = gpa >> PAGE_SHIFT;
1955 int seg;
1956 int offset = offset_in_page(gpa);
1957 int ret;
1958
1959 while ((seg = next_segment(len, offset)) != 0) {
1960 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1961 if (ret < 0)
1962 return ret;
1963 offset = 0;
1964 len -= seg;
1965 data += seg;
1966 ++gfn;
1967 }
1968 return 0;
1969 }
1970 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1971
1972 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1973 struct gfn_to_hva_cache *ghc,
1974 gpa_t gpa, unsigned long len)
1975 {
1976 int offset = offset_in_page(gpa);
1977 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1978 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1979 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1980 gfn_t nr_pages_avail;
1981
1982 ghc->gpa = gpa;
1983 ghc->generation = slots->generation;
1984 ghc->len = len;
1985 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1986 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1987 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1988 ghc->hva += offset;
1989 } else {
1990 /*
1991 * If the requested region crosses two memslots, we still
1992 * verify that the entire region is valid here.
1993 */
1994 while (start_gfn <= end_gfn) {
1995 nr_pages_avail = 0;
1996 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1997 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1998 &nr_pages_avail);
1999 if (kvm_is_error_hva(ghc->hva))
2000 return -EFAULT;
2001 start_gfn += nr_pages_avail;
2002 }
2003 /* Use the slow path for cross page reads and writes. */
2004 ghc->memslot = NULL;
2005 }
2006 return 0;
2007 }
2008
2009 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2010 gpa_t gpa, unsigned long len)
2011 {
2012 struct kvm_memslots *slots = kvm_memslots(kvm);
2013 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2014 }
2015 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2016
2017 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2018 void *data, unsigned int offset,
2019 unsigned long len)
2020 {
2021 struct kvm_memslots *slots = kvm_memslots(kvm);
2022 int r;
2023 gpa_t gpa = ghc->gpa + offset;
2024
2025 BUG_ON(len + offset > ghc->len);
2026
2027 if (slots->generation != ghc->generation)
2028 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2029
2030 if (unlikely(!ghc->memslot))
2031 return kvm_write_guest(kvm, gpa, data, len);
2032
2033 if (kvm_is_error_hva(ghc->hva))
2034 return -EFAULT;
2035
2036 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2037 if (r)
2038 return -EFAULT;
2039 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2040
2041 return 0;
2042 }
2043 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2044
2045 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2046 void *data, unsigned long len)
2047 {
2048 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2049 }
2050 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2051
2052 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2053 void *data, unsigned long len)
2054 {
2055 struct kvm_memslots *slots = kvm_memslots(kvm);
2056 int r;
2057
2058 BUG_ON(len > ghc->len);
2059
2060 if (slots->generation != ghc->generation)
2061 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2062
2063 if (unlikely(!ghc->memslot))
2064 return kvm_read_guest(kvm, ghc->gpa, data, len);
2065
2066 if (kvm_is_error_hva(ghc->hva))
2067 return -EFAULT;
2068
2069 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2070 if (r)
2071 return -EFAULT;
2072
2073 return 0;
2074 }
2075 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2076
2077 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2078 {
2079 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2080
2081 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2082 }
2083 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2084
2085 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2086 {
2087 gfn_t gfn = gpa >> PAGE_SHIFT;
2088 int seg;
2089 int offset = offset_in_page(gpa);
2090 int ret;
2091
2092 while ((seg = next_segment(len, offset)) != 0) {
2093 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2094 if (ret < 0)
2095 return ret;
2096 offset = 0;
2097 len -= seg;
2098 ++gfn;
2099 }
2100 return 0;
2101 }
2102 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2103
2104 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2105 gfn_t gfn)
2106 {
2107 if (memslot && memslot->dirty_bitmap) {
2108 unsigned long rel_gfn = gfn - memslot->base_gfn;
2109
2110 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2111 }
2112 }
2113
2114 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2115 {
2116 struct kvm_memory_slot *memslot;
2117
2118 memslot = gfn_to_memslot(kvm, gfn);
2119 mark_page_dirty_in_slot(memslot, gfn);
2120 }
2121 EXPORT_SYMBOL_GPL(mark_page_dirty);
2122
2123 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2124 {
2125 struct kvm_memory_slot *memslot;
2126
2127 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2128 mark_page_dirty_in_slot(memslot, gfn);
2129 }
2130 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2131
2132 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2133 {
2134 if (!vcpu->sigset_active)
2135 return;
2136
2137 /*
2138 * This does a lockless modification of ->real_blocked, which is fine
2139 * because, only current can change ->real_blocked and all readers of
2140 * ->real_blocked don't care as long ->real_blocked is always a subset
2141 * of ->blocked.
2142 */
2143 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2144 }
2145
2146 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2147 {
2148 if (!vcpu->sigset_active)
2149 return;
2150
2151 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2152 sigemptyset(&current->real_blocked);
2153 }
2154
2155 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2156 {
2157 unsigned int old, val, grow;
2158
2159 old = val = vcpu->halt_poll_ns;
2160 grow = READ_ONCE(halt_poll_ns_grow);
2161 /* 10us base */
2162 if (val == 0 && grow)
2163 val = 10000;
2164 else
2165 val *= grow;
2166
2167 if (val > halt_poll_ns)
2168 val = halt_poll_ns;
2169
2170 vcpu->halt_poll_ns = val;
2171 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2172 }
2173
2174 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2175 {
2176 unsigned int old, val, shrink;
2177
2178 old = val = vcpu->halt_poll_ns;
2179 shrink = READ_ONCE(halt_poll_ns_shrink);
2180 if (shrink == 0)
2181 val = 0;
2182 else
2183 val /= shrink;
2184
2185 vcpu->halt_poll_ns = val;
2186 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2187 }
2188
2189 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2190 {
2191 if (kvm_arch_vcpu_runnable(vcpu)) {
2192 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2193 return -EINTR;
2194 }
2195 if (kvm_cpu_has_pending_timer(vcpu))
2196 return -EINTR;
2197 if (signal_pending(current))
2198 return -EINTR;
2199
2200 return 0;
2201 }
2202
2203 /*
2204 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2205 */
2206 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2207 {
2208 ktime_t start, cur;
2209 DECLARE_SWAITQUEUE(wait);
2210 bool waited = false;
2211 u64 block_ns;
2212
2213 start = cur = ktime_get();
2214 if (vcpu->halt_poll_ns) {
2215 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2216
2217 ++vcpu->stat.halt_attempted_poll;
2218 do {
2219 /*
2220 * This sets KVM_REQ_UNHALT if an interrupt
2221 * arrives.
2222 */
2223 if (kvm_vcpu_check_block(vcpu) < 0) {
2224 ++vcpu->stat.halt_successful_poll;
2225 if (!vcpu_valid_wakeup(vcpu))
2226 ++vcpu->stat.halt_poll_invalid;
2227 goto out;
2228 }
2229 cur = ktime_get();
2230 } while (single_task_running() && ktime_before(cur, stop));
2231 }
2232
2233 kvm_arch_vcpu_blocking(vcpu);
2234
2235 for (;;) {
2236 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2237
2238 if (kvm_vcpu_check_block(vcpu) < 0)
2239 break;
2240
2241 waited = true;
2242 schedule();
2243 }
2244
2245 finish_swait(&vcpu->wq, &wait);
2246 cur = ktime_get();
2247
2248 kvm_arch_vcpu_unblocking(vcpu);
2249 out:
2250 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2251
2252 if (!vcpu_valid_wakeup(vcpu))
2253 shrink_halt_poll_ns(vcpu);
2254 else if (halt_poll_ns) {
2255 if (block_ns <= vcpu->halt_poll_ns)
2256 ;
2257 /* we had a long block, shrink polling */
2258 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2259 shrink_halt_poll_ns(vcpu);
2260 /* we had a short halt and our poll time is too small */
2261 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2262 block_ns < halt_poll_ns)
2263 grow_halt_poll_ns(vcpu);
2264 } else
2265 vcpu->halt_poll_ns = 0;
2266
2267 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2268 kvm_arch_vcpu_block_finish(vcpu);
2269 }
2270 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2271
2272 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2273 {
2274 struct swait_queue_head *wqp;
2275
2276 wqp = kvm_arch_vcpu_wq(vcpu);
2277 if (swq_has_sleeper(wqp)) {
2278 swake_up(wqp);
2279 ++vcpu->stat.halt_wakeup;
2280 return true;
2281 }
2282
2283 return false;
2284 }
2285 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2286
2287 #ifndef CONFIG_S390
2288 /*
2289 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2290 */
2291 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2292 {
2293 int me;
2294 int cpu = vcpu->cpu;
2295
2296 if (kvm_vcpu_wake_up(vcpu))
2297 return;
2298
2299 me = get_cpu();
2300 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2301 if (kvm_arch_vcpu_should_kick(vcpu))
2302 smp_send_reschedule(cpu);
2303 put_cpu();
2304 }
2305 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2306 #endif /* !CONFIG_S390 */
2307
2308 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2309 {
2310 struct pid *pid;
2311 struct task_struct *task = NULL;
2312 int ret = 0;
2313
2314 rcu_read_lock();
2315 pid = rcu_dereference(target->pid);
2316 if (pid)
2317 task = get_pid_task(pid, PIDTYPE_PID);
2318 rcu_read_unlock();
2319 if (!task)
2320 return ret;
2321 ret = yield_to(task, 1);
2322 put_task_struct(task);
2323
2324 return ret;
2325 }
2326 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2327
2328 /*
2329 * Helper that checks whether a VCPU is eligible for directed yield.
2330 * Most eligible candidate to yield is decided by following heuristics:
2331 *
2332 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2333 * (preempted lock holder), indicated by @in_spin_loop.
2334 * Set at the beiginning and cleared at the end of interception/PLE handler.
2335 *
2336 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2337 * chance last time (mostly it has become eligible now since we have probably
2338 * yielded to lockholder in last iteration. This is done by toggling
2339 * @dy_eligible each time a VCPU checked for eligibility.)
2340 *
2341 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2342 * to preempted lock-holder could result in wrong VCPU selection and CPU
2343 * burning. Giving priority for a potential lock-holder increases lock
2344 * progress.
2345 *
2346 * Since algorithm is based on heuristics, accessing another VCPU data without
2347 * locking does not harm. It may result in trying to yield to same VCPU, fail
2348 * and continue with next VCPU and so on.
2349 */
2350 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2351 {
2352 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2353 bool eligible;
2354
2355 eligible = !vcpu->spin_loop.in_spin_loop ||
2356 vcpu->spin_loop.dy_eligible;
2357
2358 if (vcpu->spin_loop.in_spin_loop)
2359 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2360
2361 return eligible;
2362 #else
2363 return true;
2364 #endif
2365 }
2366
2367 /*
2368 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2369 * a vcpu_load/vcpu_put pair. However, for most architectures
2370 * kvm_arch_vcpu_runnable does not require vcpu_load.
2371 */
2372 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2373 {
2374 return kvm_arch_vcpu_runnable(vcpu);
2375 }
2376
2377 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2378 {
2379 if (kvm_arch_dy_runnable(vcpu))
2380 return true;
2381
2382 #ifdef CONFIG_KVM_ASYNC_PF
2383 if (!list_empty_careful(&vcpu->async_pf.done))
2384 return true;
2385 #endif
2386
2387 return false;
2388 }
2389
2390 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2391 {
2392 struct kvm *kvm = me->kvm;
2393 struct kvm_vcpu *vcpu;
2394 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2395 int yielded = 0;
2396 int try = 3;
2397 int pass;
2398 int i;
2399
2400 kvm_vcpu_set_in_spin_loop(me, true);
2401 /*
2402 * We boost the priority of a VCPU that is runnable but not
2403 * currently running, because it got preempted by something
2404 * else and called schedule in __vcpu_run. Hopefully that
2405 * VCPU is holding the lock that we need and will release it.
2406 * We approximate round-robin by starting at the last boosted VCPU.
2407 */
2408 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2409 kvm_for_each_vcpu(i, vcpu, kvm) {
2410 if (!pass && i <= last_boosted_vcpu) {
2411 i = last_boosted_vcpu;
2412 continue;
2413 } else if (pass && i > last_boosted_vcpu)
2414 break;
2415 if (!READ_ONCE(vcpu->preempted))
2416 continue;
2417 if (vcpu == me)
2418 continue;
2419 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2420 continue;
2421 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2422 continue;
2423 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2424 continue;
2425
2426 yielded = kvm_vcpu_yield_to(vcpu);
2427 if (yielded > 0) {
2428 kvm->last_boosted_vcpu = i;
2429 break;
2430 } else if (yielded < 0) {
2431 try--;
2432 if (!try)
2433 break;
2434 }
2435 }
2436 }
2437 kvm_vcpu_set_in_spin_loop(me, false);
2438
2439 /* Ensure vcpu is not eligible during next spinloop */
2440 kvm_vcpu_set_dy_eligible(me, false);
2441 }
2442 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2443
2444 static int kvm_vcpu_fault(struct vm_fault *vmf)
2445 {
2446 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2447 struct page *page;
2448
2449 if (vmf->pgoff == 0)
2450 page = virt_to_page(vcpu->run);
2451 #ifdef CONFIG_X86
2452 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2453 page = virt_to_page(vcpu->arch.pio_data);
2454 #endif
2455 #ifdef CONFIG_KVM_MMIO
2456 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2457 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2458 #endif
2459 else
2460 return kvm_arch_vcpu_fault(vcpu, vmf);
2461 get_page(page);
2462 vmf->page = page;
2463 return 0;
2464 }
2465
2466 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2467 .fault = kvm_vcpu_fault,
2468 };
2469
2470 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2471 {
2472 vma->vm_ops = &kvm_vcpu_vm_ops;
2473 return 0;
2474 }
2475
2476 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2477 {
2478 struct kvm_vcpu *vcpu = filp->private_data;
2479
2480 debugfs_remove_recursive(vcpu->debugfs_dentry);
2481 kvm_put_kvm(vcpu->kvm);
2482 return 0;
2483 }
2484
2485 static struct file_operations kvm_vcpu_fops = {
2486 .release = kvm_vcpu_release,
2487 .unlocked_ioctl = kvm_vcpu_ioctl,
2488 #ifdef CONFIG_KVM_COMPAT
2489 .compat_ioctl = kvm_vcpu_compat_ioctl,
2490 #endif
2491 .mmap = kvm_vcpu_mmap,
2492 .llseek = noop_llseek,
2493 };
2494
2495 /*
2496 * Allocates an inode for the vcpu.
2497 */
2498 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2499 {
2500 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2501 }
2502
2503 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2504 {
2505 char dir_name[ITOA_MAX_LEN * 2];
2506 int ret;
2507
2508 if (!kvm_arch_has_vcpu_debugfs())
2509 return 0;
2510
2511 if (!debugfs_initialized())
2512 return 0;
2513
2514 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2515 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2516 vcpu->kvm->debugfs_dentry);
2517 if (!vcpu->debugfs_dentry)
2518 return -ENOMEM;
2519
2520 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2521 if (ret < 0) {
2522 debugfs_remove_recursive(vcpu->debugfs_dentry);
2523 return ret;
2524 }
2525
2526 return 0;
2527 }
2528
2529 /*
2530 * Creates some virtual cpus. Good luck creating more than one.
2531 */
2532 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2533 {
2534 int r;
2535 struct kvm_vcpu *vcpu;
2536
2537 if (id >= KVM_MAX_VCPU_ID)
2538 return -EINVAL;
2539
2540 mutex_lock(&kvm->lock);
2541 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2542 mutex_unlock(&kvm->lock);
2543 return -EINVAL;
2544 }
2545
2546 kvm->created_vcpus++;
2547 mutex_unlock(&kvm->lock);
2548
2549 vcpu = kvm_arch_vcpu_create(kvm, id);
2550 if (IS_ERR(vcpu)) {
2551 r = PTR_ERR(vcpu);
2552 goto vcpu_decrement;
2553 }
2554
2555 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2556
2557 r = kvm_arch_vcpu_setup(vcpu);
2558 if (r)
2559 goto vcpu_destroy;
2560
2561 r = kvm_create_vcpu_debugfs(vcpu);
2562 if (r)
2563 goto vcpu_destroy;
2564
2565 mutex_lock(&kvm->lock);
2566 if (kvm_get_vcpu_by_id(kvm, id)) {
2567 r = -EEXIST;
2568 goto unlock_vcpu_destroy;
2569 }
2570
2571 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2572
2573 /* Now it's all set up, let userspace reach it */
2574 kvm_get_kvm(kvm);
2575 r = create_vcpu_fd(vcpu);
2576 if (r < 0) {
2577 kvm_put_kvm(kvm);
2578 goto unlock_vcpu_destroy;
2579 }
2580
2581 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2582
2583 /*
2584 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2585 * before kvm->online_vcpu's incremented value.
2586 */
2587 smp_wmb();
2588 atomic_inc(&kvm->online_vcpus);
2589
2590 mutex_unlock(&kvm->lock);
2591 kvm_arch_vcpu_postcreate(vcpu);
2592 return r;
2593
2594 unlock_vcpu_destroy:
2595 mutex_unlock(&kvm->lock);
2596 debugfs_remove_recursive(vcpu->debugfs_dentry);
2597 vcpu_destroy:
2598 kvm_arch_vcpu_destroy(vcpu);
2599 vcpu_decrement:
2600 mutex_lock(&kvm->lock);
2601 kvm->created_vcpus--;
2602 mutex_unlock(&kvm->lock);
2603 return r;
2604 }
2605
2606 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2607 {
2608 if (sigset) {
2609 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2610 vcpu->sigset_active = 1;
2611 vcpu->sigset = *sigset;
2612 } else
2613 vcpu->sigset_active = 0;
2614 return 0;
2615 }
2616
2617 static long kvm_vcpu_ioctl(struct file *filp,
2618 unsigned int ioctl, unsigned long arg)
2619 {
2620 struct kvm_vcpu *vcpu = filp->private_data;
2621 void __user *argp = (void __user *)arg;
2622 int r;
2623 struct kvm_fpu *fpu = NULL;
2624 struct kvm_sregs *kvm_sregs = NULL;
2625
2626 if (vcpu->kvm->mm != current->mm)
2627 return -EIO;
2628
2629 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2630 return -EINVAL;
2631
2632 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2633 /*
2634 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2635 * so vcpu_load() would break it.
2636 */
2637 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2638 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2639 #endif
2640
2641
2642 r = vcpu_load(vcpu);
2643 if (r)
2644 return r;
2645 switch (ioctl) {
2646 case KVM_RUN: {
2647 struct pid *oldpid;
2648 r = -EINVAL;
2649 if (arg)
2650 goto out;
2651 oldpid = rcu_access_pointer(vcpu->pid);
2652 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2653 /* The thread running this VCPU changed. */
2654 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2655
2656 rcu_assign_pointer(vcpu->pid, newpid);
2657 if (oldpid)
2658 synchronize_rcu();
2659 put_pid(oldpid);
2660 }
2661 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2662 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2663 break;
2664 }
2665 case KVM_GET_REGS: {
2666 struct kvm_regs *kvm_regs;
2667
2668 r = -ENOMEM;
2669 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2670 if (!kvm_regs)
2671 goto out;
2672 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2673 if (r)
2674 goto out_free1;
2675 r = -EFAULT;
2676 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2677 goto out_free1;
2678 r = 0;
2679 out_free1:
2680 kfree(kvm_regs);
2681 break;
2682 }
2683 case KVM_SET_REGS: {
2684 struct kvm_regs *kvm_regs;
2685
2686 r = -ENOMEM;
2687 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2688 if (IS_ERR(kvm_regs)) {
2689 r = PTR_ERR(kvm_regs);
2690 goto out;
2691 }
2692 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2693 kfree(kvm_regs);
2694 break;
2695 }
2696 case KVM_GET_SREGS: {
2697 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2698 r = -ENOMEM;
2699 if (!kvm_sregs)
2700 goto out;
2701 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2702 if (r)
2703 goto out;
2704 r = -EFAULT;
2705 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2706 goto out;
2707 r = 0;
2708 break;
2709 }
2710 case KVM_SET_SREGS: {
2711 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2712 if (IS_ERR(kvm_sregs)) {
2713 r = PTR_ERR(kvm_sregs);
2714 kvm_sregs = NULL;
2715 goto out;
2716 }
2717 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2718 break;
2719 }
2720 case KVM_GET_MP_STATE: {
2721 struct kvm_mp_state mp_state;
2722
2723 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2724 if (r)
2725 goto out;
2726 r = -EFAULT;
2727 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2728 goto out;
2729 r = 0;
2730 break;
2731 }
2732 case KVM_SET_MP_STATE: {
2733 struct kvm_mp_state mp_state;
2734
2735 r = -EFAULT;
2736 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2737 goto out;
2738 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2739 break;
2740 }
2741 case KVM_TRANSLATE: {
2742 struct kvm_translation tr;
2743
2744 r = -EFAULT;
2745 if (copy_from_user(&tr, argp, sizeof(tr)))
2746 goto out;
2747 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2748 if (r)
2749 goto out;
2750 r = -EFAULT;
2751 if (copy_to_user(argp, &tr, sizeof(tr)))
2752 goto out;
2753 r = 0;
2754 break;
2755 }
2756 case KVM_SET_GUEST_DEBUG: {
2757 struct kvm_guest_debug dbg;
2758
2759 r = -EFAULT;
2760 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2761 goto out;
2762 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2763 break;
2764 }
2765 case KVM_SET_SIGNAL_MASK: {
2766 struct kvm_signal_mask __user *sigmask_arg = argp;
2767 struct kvm_signal_mask kvm_sigmask;
2768 sigset_t sigset, *p;
2769
2770 p = NULL;
2771 if (argp) {
2772 r = -EFAULT;
2773 if (copy_from_user(&kvm_sigmask, argp,
2774 sizeof(kvm_sigmask)))
2775 goto out;
2776 r = -EINVAL;
2777 if (kvm_sigmask.len != sizeof(sigset))
2778 goto out;
2779 r = -EFAULT;
2780 if (copy_from_user(&sigset, sigmask_arg->sigset,
2781 sizeof(sigset)))
2782 goto out;
2783 p = &sigset;
2784 }
2785 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2786 break;
2787 }
2788 case KVM_GET_FPU: {
2789 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2790 r = -ENOMEM;
2791 if (!fpu)
2792 goto out;
2793 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2794 if (r)
2795 goto out;
2796 r = -EFAULT;
2797 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2798 goto out;
2799 r = 0;
2800 break;
2801 }
2802 case KVM_SET_FPU: {
2803 fpu = memdup_user(argp, sizeof(*fpu));
2804 if (IS_ERR(fpu)) {
2805 r = PTR_ERR(fpu);
2806 fpu = NULL;
2807 goto out;
2808 }
2809 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2810 break;
2811 }
2812 default:
2813 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2814 }
2815 out:
2816 vcpu_put(vcpu);
2817 kfree(fpu);
2818 kfree(kvm_sregs);
2819 return r;
2820 }
2821
2822 #ifdef CONFIG_KVM_COMPAT
2823 static long kvm_vcpu_compat_ioctl(struct file *filp,
2824 unsigned int ioctl, unsigned long arg)
2825 {
2826 struct kvm_vcpu *vcpu = filp->private_data;
2827 void __user *argp = compat_ptr(arg);
2828 int r;
2829
2830 if (vcpu->kvm->mm != current->mm)
2831 return -EIO;
2832
2833 switch (ioctl) {
2834 case KVM_SET_SIGNAL_MASK: {
2835 struct kvm_signal_mask __user *sigmask_arg = argp;
2836 struct kvm_signal_mask kvm_sigmask;
2837 sigset_t sigset;
2838
2839 if (argp) {
2840 r = -EFAULT;
2841 if (copy_from_user(&kvm_sigmask, argp,
2842 sizeof(kvm_sigmask)))
2843 goto out;
2844 r = -EINVAL;
2845 if (kvm_sigmask.len != sizeof(compat_sigset_t))
2846 goto out;
2847 r = -EFAULT;
2848 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2849 goto out;
2850 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2851 } else
2852 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2853 break;
2854 }
2855 default:
2856 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2857 }
2858
2859 out:
2860 return r;
2861 }
2862 #endif
2863
2864 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2865 int (*accessor)(struct kvm_device *dev,
2866 struct kvm_device_attr *attr),
2867 unsigned long arg)
2868 {
2869 struct kvm_device_attr attr;
2870
2871 if (!accessor)
2872 return -EPERM;
2873
2874 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2875 return -EFAULT;
2876
2877 return accessor(dev, &attr);
2878 }
2879
2880 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2881 unsigned long arg)
2882 {
2883 struct kvm_device *dev = filp->private_data;
2884
2885 if (dev->kvm->mm != current->mm)
2886 return -EIO;
2887
2888 switch (ioctl) {
2889 case KVM_SET_DEVICE_ATTR:
2890 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2891 case KVM_GET_DEVICE_ATTR:
2892 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2893 case KVM_HAS_DEVICE_ATTR:
2894 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2895 default:
2896 if (dev->ops->ioctl)
2897 return dev->ops->ioctl(dev, ioctl, arg);
2898
2899 return -ENOTTY;
2900 }
2901 }
2902
2903 static int kvm_device_release(struct inode *inode, struct file *filp)
2904 {
2905 struct kvm_device *dev = filp->private_data;
2906 struct kvm *kvm = dev->kvm;
2907
2908 kvm_put_kvm(kvm);
2909 return 0;
2910 }
2911
2912 static const struct file_operations kvm_device_fops = {
2913 .unlocked_ioctl = kvm_device_ioctl,
2914 #ifdef CONFIG_KVM_COMPAT
2915 .compat_ioctl = kvm_device_ioctl,
2916 #endif
2917 .release = kvm_device_release,
2918 };
2919
2920 struct kvm_device *kvm_device_from_filp(struct file *filp)
2921 {
2922 if (filp->f_op != &kvm_device_fops)
2923 return NULL;
2924
2925 return filp->private_data;
2926 }
2927
2928 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2929 #ifdef CONFIG_KVM_MPIC
2930 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2931 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2932 #endif
2933 };
2934
2935 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2936 {
2937 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2938 return -ENOSPC;
2939
2940 if (kvm_device_ops_table[type] != NULL)
2941 return -EEXIST;
2942
2943 kvm_device_ops_table[type] = ops;
2944 return 0;
2945 }
2946
2947 void kvm_unregister_device_ops(u32 type)
2948 {
2949 if (kvm_device_ops_table[type] != NULL)
2950 kvm_device_ops_table[type] = NULL;
2951 }
2952
2953 static int kvm_ioctl_create_device(struct kvm *kvm,
2954 struct kvm_create_device *cd)
2955 {
2956 struct kvm_device_ops *ops = NULL;
2957 struct kvm_device *dev;
2958 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2959 int type;
2960 int ret;
2961
2962 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2963 return -ENODEV;
2964
2965 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
2966 ops = kvm_device_ops_table[type];
2967 if (ops == NULL)
2968 return -ENODEV;
2969
2970 if (test)
2971 return 0;
2972
2973 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2974 if (!dev)
2975 return -ENOMEM;
2976
2977 dev->ops = ops;
2978 dev->kvm = kvm;
2979
2980 mutex_lock(&kvm->lock);
2981 ret = ops->create(dev, type);
2982 if (ret < 0) {
2983 mutex_unlock(&kvm->lock);
2984 kfree(dev);
2985 return ret;
2986 }
2987 list_add(&dev->vm_node, &kvm->devices);
2988 mutex_unlock(&kvm->lock);
2989
2990 if (ops->init)
2991 ops->init(dev);
2992
2993 kvm_get_kvm(kvm);
2994 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2995 if (ret < 0) {
2996 kvm_put_kvm(kvm);
2997 mutex_lock(&kvm->lock);
2998 list_del(&dev->vm_node);
2999 mutex_unlock(&kvm->lock);
3000 ops->destroy(dev);
3001 return ret;
3002 }
3003
3004 cd->fd = ret;
3005 return 0;
3006 }
3007
3008 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3009 {
3010 switch (arg) {
3011 case KVM_CAP_USER_MEMORY:
3012 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3013 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3014 case KVM_CAP_INTERNAL_ERROR_DATA:
3015 #ifdef CONFIG_HAVE_KVM_MSI
3016 case KVM_CAP_SIGNAL_MSI:
3017 #endif
3018 #ifdef CONFIG_HAVE_KVM_IRQFD
3019 case KVM_CAP_IRQFD:
3020 case KVM_CAP_IRQFD_RESAMPLE:
3021 #endif
3022 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3023 case KVM_CAP_CHECK_EXTENSION_VM:
3024 return 1;
3025 #ifdef CONFIG_KVM_MMIO
3026 case KVM_CAP_COALESCED_MMIO:
3027 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3028 #endif
3029 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3030 case KVM_CAP_IRQ_ROUTING:
3031 return KVM_MAX_IRQ_ROUTES;
3032 #endif
3033 #if KVM_ADDRESS_SPACE_NUM > 1
3034 case KVM_CAP_MULTI_ADDRESS_SPACE:
3035 return KVM_ADDRESS_SPACE_NUM;
3036 #endif
3037 default:
3038 break;
3039 }
3040 return kvm_vm_ioctl_check_extension(kvm, arg);
3041 }
3042
3043 static long kvm_vm_ioctl(struct file *filp,
3044 unsigned int ioctl, unsigned long arg)
3045 {
3046 struct kvm *kvm = filp->private_data;
3047 void __user *argp = (void __user *)arg;
3048 int r;
3049
3050 if (kvm->mm != current->mm)
3051 return -EIO;
3052 switch (ioctl) {
3053 case KVM_CREATE_VCPU:
3054 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3055 break;
3056 case KVM_SET_USER_MEMORY_REGION: {
3057 struct kvm_userspace_memory_region kvm_userspace_mem;
3058
3059 r = -EFAULT;
3060 if (copy_from_user(&kvm_userspace_mem, argp,
3061 sizeof(kvm_userspace_mem)))
3062 goto out;
3063
3064 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3065 break;
3066 }
3067 case KVM_GET_DIRTY_LOG: {
3068 struct kvm_dirty_log log;
3069
3070 r = -EFAULT;
3071 if (copy_from_user(&log, argp, sizeof(log)))
3072 goto out;
3073 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3074 break;
3075 }
3076 #ifdef CONFIG_KVM_MMIO
3077 case KVM_REGISTER_COALESCED_MMIO: {
3078 struct kvm_coalesced_mmio_zone zone;
3079
3080 r = -EFAULT;
3081 if (copy_from_user(&zone, argp, sizeof(zone)))
3082 goto out;
3083 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3084 break;
3085 }
3086 case KVM_UNREGISTER_COALESCED_MMIO: {
3087 struct kvm_coalesced_mmio_zone zone;
3088
3089 r = -EFAULT;
3090 if (copy_from_user(&zone, argp, sizeof(zone)))
3091 goto out;
3092 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3093 break;
3094 }
3095 #endif
3096 case KVM_IRQFD: {
3097 struct kvm_irqfd data;
3098
3099 r = -EFAULT;
3100 if (copy_from_user(&data, argp, sizeof(data)))
3101 goto out;
3102 r = kvm_irqfd(kvm, &data);
3103 break;
3104 }
3105 case KVM_IOEVENTFD: {
3106 struct kvm_ioeventfd data;
3107
3108 r = -EFAULT;
3109 if (copy_from_user(&data, argp, sizeof(data)))
3110 goto out;
3111 r = kvm_ioeventfd(kvm, &data);
3112 break;
3113 }
3114 #ifdef CONFIG_HAVE_KVM_MSI
3115 case KVM_SIGNAL_MSI: {
3116 struct kvm_msi msi;
3117
3118 r = -EFAULT;
3119 if (copy_from_user(&msi, argp, sizeof(msi)))
3120 goto out;
3121 r = kvm_send_userspace_msi(kvm, &msi);
3122 break;
3123 }
3124 #endif
3125 #ifdef __KVM_HAVE_IRQ_LINE
3126 case KVM_IRQ_LINE_STATUS:
3127 case KVM_IRQ_LINE: {
3128 struct kvm_irq_level irq_event;
3129
3130 r = -EFAULT;
3131 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3132 goto out;
3133
3134 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3135 ioctl == KVM_IRQ_LINE_STATUS);
3136 if (r)
3137 goto out;
3138
3139 r = -EFAULT;
3140 if (ioctl == KVM_IRQ_LINE_STATUS) {
3141 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3142 goto out;
3143 }
3144
3145 r = 0;
3146 break;
3147 }
3148 #endif
3149 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3150 case KVM_SET_GSI_ROUTING: {
3151 struct kvm_irq_routing routing;
3152 struct kvm_irq_routing __user *urouting;
3153 struct kvm_irq_routing_entry *entries = NULL;
3154
3155 r = -EFAULT;
3156 if (copy_from_user(&routing, argp, sizeof(routing)))
3157 goto out;
3158 r = -EINVAL;
3159 if (!kvm_arch_can_set_irq_routing(kvm))
3160 goto out;
3161 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3162 goto out;
3163 if (routing.flags)
3164 goto out;
3165 if (routing.nr) {
3166 r = -ENOMEM;
3167 entries = vmalloc(routing.nr * sizeof(*entries));
3168 if (!entries)
3169 goto out;
3170 r = -EFAULT;
3171 urouting = argp;
3172 if (copy_from_user(entries, urouting->entries,
3173 routing.nr * sizeof(*entries)))
3174 goto out_free_irq_routing;
3175 }
3176 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3177 routing.flags);
3178 out_free_irq_routing:
3179 vfree(entries);
3180 break;
3181 }
3182 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3183 case KVM_CREATE_DEVICE: {
3184 struct kvm_create_device cd;
3185
3186 r = -EFAULT;
3187 if (copy_from_user(&cd, argp, sizeof(cd)))
3188 goto out;
3189
3190 r = kvm_ioctl_create_device(kvm, &cd);
3191 if (r)
3192 goto out;
3193
3194 r = -EFAULT;
3195 if (copy_to_user(argp, &cd, sizeof(cd)))
3196 goto out;
3197
3198 r = 0;
3199 break;
3200 }
3201 case KVM_CHECK_EXTENSION:
3202 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3203 break;
3204 default:
3205 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3206 }
3207 out:
3208 return r;
3209 }
3210
3211 #ifdef CONFIG_KVM_COMPAT
3212 struct compat_kvm_dirty_log {
3213 __u32 slot;
3214 __u32 padding1;
3215 union {
3216 compat_uptr_t dirty_bitmap; /* one bit per page */
3217 __u64 padding2;
3218 };
3219 };
3220
3221 static long kvm_vm_compat_ioctl(struct file *filp,
3222 unsigned int ioctl, unsigned long arg)
3223 {
3224 struct kvm *kvm = filp->private_data;
3225 int r;
3226
3227 if (kvm->mm != current->mm)
3228 return -EIO;
3229 switch (ioctl) {
3230 case KVM_GET_DIRTY_LOG: {
3231 struct compat_kvm_dirty_log compat_log;
3232 struct kvm_dirty_log log;
3233
3234 if (copy_from_user(&compat_log, (void __user *)arg,
3235 sizeof(compat_log)))
3236 return -EFAULT;
3237 log.slot = compat_log.slot;
3238 log.padding1 = compat_log.padding1;
3239 log.padding2 = compat_log.padding2;
3240 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3241
3242 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3243 break;
3244 }
3245 default:
3246 r = kvm_vm_ioctl(filp, ioctl, arg);
3247 }
3248 return r;
3249 }
3250 #endif
3251
3252 static struct file_operations kvm_vm_fops = {
3253 .release = kvm_vm_release,
3254 .unlocked_ioctl = kvm_vm_ioctl,
3255 #ifdef CONFIG_KVM_COMPAT
3256 .compat_ioctl = kvm_vm_compat_ioctl,
3257 #endif
3258 .llseek = noop_llseek,
3259 };
3260
3261 static int kvm_dev_ioctl_create_vm(unsigned long type)
3262 {
3263 int r;
3264 struct kvm *kvm;
3265 struct file *file;
3266
3267 kvm = kvm_create_vm(type);
3268 if (IS_ERR(kvm))
3269 return PTR_ERR(kvm);
3270 #ifdef CONFIG_KVM_MMIO
3271 r = kvm_coalesced_mmio_init(kvm);
3272 if (r < 0) {
3273 kvm_put_kvm(kvm);
3274 return r;
3275 }
3276 #endif
3277 r = get_unused_fd_flags(O_CLOEXEC);
3278 if (r < 0) {
3279 kvm_put_kvm(kvm);
3280 return r;
3281 }
3282 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3283 if (IS_ERR(file)) {
3284 put_unused_fd(r);
3285 kvm_put_kvm(kvm);
3286 return PTR_ERR(file);
3287 }
3288
3289 /*
3290 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3291 * already set, with ->release() being kvm_vm_release(). In error
3292 * cases it will be called by the final fput(file) and will take
3293 * care of doing kvm_put_kvm(kvm).
3294 */
3295 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3296 put_unused_fd(r);
3297 fput(file);
3298 return -ENOMEM;
3299 }
3300 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3301
3302 fd_install(r, file);
3303 return r;
3304 }
3305
3306 static long kvm_dev_ioctl(struct file *filp,
3307 unsigned int ioctl, unsigned long arg)
3308 {
3309 long r = -EINVAL;
3310
3311 switch (ioctl) {
3312 case KVM_GET_API_VERSION:
3313 if (arg)
3314 goto out;
3315 r = KVM_API_VERSION;
3316 break;
3317 case KVM_CREATE_VM:
3318 r = kvm_dev_ioctl_create_vm(arg);
3319 break;
3320 case KVM_CHECK_EXTENSION:
3321 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3322 break;
3323 case KVM_GET_VCPU_MMAP_SIZE:
3324 if (arg)
3325 goto out;
3326 r = PAGE_SIZE; /* struct kvm_run */
3327 #ifdef CONFIG_X86
3328 r += PAGE_SIZE; /* pio data page */
3329 #endif
3330 #ifdef CONFIG_KVM_MMIO
3331 r += PAGE_SIZE; /* coalesced mmio ring page */
3332 #endif
3333 break;
3334 case KVM_TRACE_ENABLE:
3335 case KVM_TRACE_PAUSE:
3336 case KVM_TRACE_DISABLE:
3337 r = -EOPNOTSUPP;
3338 break;
3339 default:
3340 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3341 }
3342 out:
3343 return r;
3344 }
3345
3346 static struct file_operations kvm_chardev_ops = {
3347 .unlocked_ioctl = kvm_dev_ioctl,
3348 .compat_ioctl = kvm_dev_ioctl,
3349 .llseek = noop_llseek,
3350 };
3351
3352 static struct miscdevice kvm_dev = {
3353 KVM_MINOR,
3354 "kvm",
3355 &kvm_chardev_ops,
3356 };
3357
3358 static void hardware_enable_nolock(void *junk)
3359 {
3360 int cpu = raw_smp_processor_id();
3361 int r;
3362
3363 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3364 return;
3365
3366 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3367
3368 r = kvm_arch_hardware_enable();
3369
3370 if (r) {
3371 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3372 atomic_inc(&hardware_enable_failed);
3373 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3374 }
3375 }
3376
3377 static int kvm_starting_cpu(unsigned int cpu)
3378 {
3379 raw_spin_lock(&kvm_count_lock);
3380 if (kvm_usage_count)
3381 hardware_enable_nolock(NULL);
3382 raw_spin_unlock(&kvm_count_lock);
3383 return 0;
3384 }
3385
3386 static void hardware_disable_nolock(void *junk)
3387 {
3388 int cpu = raw_smp_processor_id();
3389
3390 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3391 return;
3392 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3393 kvm_arch_hardware_disable();
3394 }
3395
3396 static int kvm_dying_cpu(unsigned int cpu)
3397 {
3398 raw_spin_lock(&kvm_count_lock);
3399 if (kvm_usage_count)
3400 hardware_disable_nolock(NULL);
3401 raw_spin_unlock(&kvm_count_lock);
3402 return 0;
3403 }
3404
3405 static void hardware_disable_all_nolock(void)
3406 {
3407 BUG_ON(!kvm_usage_count);
3408
3409 kvm_usage_count--;
3410 if (!kvm_usage_count)
3411 on_each_cpu(hardware_disable_nolock, NULL, 1);
3412 }
3413
3414 static void hardware_disable_all(void)
3415 {
3416 raw_spin_lock(&kvm_count_lock);
3417 hardware_disable_all_nolock();
3418 raw_spin_unlock(&kvm_count_lock);
3419 }
3420
3421 static int hardware_enable_all(void)
3422 {
3423 int r = 0;
3424
3425 raw_spin_lock(&kvm_count_lock);
3426
3427 kvm_usage_count++;
3428 if (kvm_usage_count == 1) {
3429 atomic_set(&hardware_enable_failed, 0);
3430 on_each_cpu(hardware_enable_nolock, NULL, 1);
3431
3432 if (atomic_read(&hardware_enable_failed)) {
3433 hardware_disable_all_nolock();
3434 r = -EBUSY;
3435 }
3436 }
3437
3438 raw_spin_unlock(&kvm_count_lock);
3439
3440 return r;
3441 }
3442
3443 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3444 void *v)
3445 {
3446 /*
3447 * Some (well, at least mine) BIOSes hang on reboot if
3448 * in vmx root mode.
3449 *
3450 * And Intel TXT required VMX off for all cpu when system shutdown.
3451 */
3452 pr_info("kvm: exiting hardware virtualization\n");
3453 kvm_rebooting = true;
3454 on_each_cpu(hardware_disable_nolock, NULL, 1);
3455 return NOTIFY_OK;
3456 }
3457
3458 static struct notifier_block kvm_reboot_notifier = {
3459 .notifier_call = kvm_reboot,
3460 .priority = 0,
3461 };
3462
3463 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3464 {
3465 int i;
3466
3467 for (i = 0; i < bus->dev_count; i++) {
3468 struct kvm_io_device *pos = bus->range[i].dev;
3469
3470 kvm_iodevice_destructor(pos);
3471 }
3472 kfree(bus);
3473 }
3474
3475 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3476 const struct kvm_io_range *r2)
3477 {
3478 gpa_t addr1 = r1->addr;
3479 gpa_t addr2 = r2->addr;
3480
3481 if (addr1 < addr2)
3482 return -1;
3483
3484 /* If r2->len == 0, match the exact address. If r2->len != 0,
3485 * accept any overlapping write. Any order is acceptable for
3486 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3487 * we process all of them.
3488 */
3489 if (r2->len) {
3490 addr1 += r1->len;
3491 addr2 += r2->len;
3492 }
3493
3494 if (addr1 > addr2)
3495 return 1;
3496
3497 return 0;
3498 }
3499
3500 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3501 {
3502 return kvm_io_bus_cmp(p1, p2);
3503 }
3504
3505 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3506 gpa_t addr, int len)
3507 {
3508 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3509 .addr = addr,
3510 .len = len,
3511 .dev = dev,
3512 };
3513
3514 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3515 kvm_io_bus_sort_cmp, NULL);
3516
3517 return 0;
3518 }
3519
3520 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3521 gpa_t addr, int len)
3522 {
3523 struct kvm_io_range *range, key;
3524 int off;
3525
3526 key = (struct kvm_io_range) {
3527 .addr = addr,
3528 .len = len,
3529 };
3530
3531 range = bsearch(&key, bus->range, bus->dev_count,
3532 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3533 if (range == NULL)
3534 return -ENOENT;
3535
3536 off = range - bus->range;
3537
3538 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3539 off--;
3540
3541 return off;
3542 }
3543
3544 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3545 struct kvm_io_range *range, const void *val)
3546 {
3547 int idx;
3548
3549 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3550 if (idx < 0)
3551 return -EOPNOTSUPP;
3552
3553 while (idx < bus->dev_count &&
3554 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3555 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3556 range->len, val))
3557 return idx;
3558 idx++;
3559 }
3560
3561 return -EOPNOTSUPP;
3562 }
3563
3564 /* kvm_io_bus_write - called under kvm->slots_lock */
3565 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3566 int len, const void *val)
3567 {
3568 struct kvm_io_bus *bus;
3569 struct kvm_io_range range;
3570 int r;
3571
3572 range = (struct kvm_io_range) {
3573 .addr = addr,
3574 .len = len,
3575 };
3576
3577 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3578 if (!bus)
3579 return -ENOMEM;
3580 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3581 return r < 0 ? r : 0;
3582 }
3583
3584 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3585 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3586 gpa_t addr, int len, const void *val, long cookie)
3587 {
3588 struct kvm_io_bus *bus;
3589 struct kvm_io_range range;
3590
3591 range = (struct kvm_io_range) {
3592 .addr = addr,
3593 .len = len,
3594 };
3595
3596 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3597 if (!bus)
3598 return -ENOMEM;
3599
3600 /* First try the device referenced by cookie. */
3601 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3602 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3603 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3604 val))
3605 return cookie;
3606
3607 /*
3608 * cookie contained garbage; fall back to search and return the
3609 * correct cookie value.
3610 */
3611 return __kvm_io_bus_write(vcpu, bus, &range, val);
3612 }
3613
3614 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3615 struct kvm_io_range *range, void *val)
3616 {
3617 int idx;
3618
3619 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3620 if (idx < 0)
3621 return -EOPNOTSUPP;
3622
3623 while (idx < bus->dev_count &&
3624 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3625 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3626 range->len, val))
3627 return idx;
3628 idx++;
3629 }
3630
3631 return -EOPNOTSUPP;
3632 }
3633 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3634
3635 /* kvm_io_bus_read - called under kvm->slots_lock */
3636 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3637 int len, void *val)
3638 {
3639 struct kvm_io_bus *bus;
3640 struct kvm_io_range range;
3641 int r;
3642
3643 range = (struct kvm_io_range) {
3644 .addr = addr,
3645 .len = len,
3646 };
3647
3648 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3649 if (!bus)
3650 return -ENOMEM;
3651 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3652 return r < 0 ? r : 0;
3653 }
3654
3655
3656 /* Caller must hold slots_lock. */
3657 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3658 int len, struct kvm_io_device *dev)
3659 {
3660 struct kvm_io_bus *new_bus, *bus;
3661
3662 bus = kvm_get_bus(kvm, bus_idx);
3663 if (!bus)
3664 return -ENOMEM;
3665
3666 /* exclude ioeventfd which is limited by maximum fd */
3667 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3668 return -ENOSPC;
3669
3670 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3671 sizeof(struct kvm_io_range)), GFP_KERNEL);
3672 if (!new_bus)
3673 return -ENOMEM;
3674 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3675 sizeof(struct kvm_io_range)));
3676 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3677 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3678 synchronize_srcu_expedited(&kvm->srcu);
3679 kfree(bus);
3680
3681 return 0;
3682 }
3683
3684 /* Caller must hold slots_lock. */
3685 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3686 struct kvm_io_device *dev)
3687 {
3688 int i;
3689 struct kvm_io_bus *new_bus, *bus;
3690
3691 bus = kvm_get_bus(kvm, bus_idx);
3692 if (!bus)
3693 return;
3694
3695 for (i = 0; i < bus->dev_count; i++)
3696 if (bus->range[i].dev == dev) {
3697 break;
3698 }
3699
3700 if (i == bus->dev_count)
3701 return;
3702
3703 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3704 sizeof(struct kvm_io_range)), GFP_KERNEL);
3705 if (!new_bus) {
3706 pr_err("kvm: failed to shrink bus, removing it completely\n");
3707 goto broken;
3708 }
3709
3710 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3711 new_bus->dev_count--;
3712 memcpy(new_bus->range + i, bus->range + i + 1,
3713 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3714
3715 broken:
3716 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3717 synchronize_srcu_expedited(&kvm->srcu);
3718 kfree(bus);
3719 return;
3720 }
3721
3722 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3723 gpa_t addr)
3724 {
3725 struct kvm_io_bus *bus;
3726 int dev_idx, srcu_idx;
3727 struct kvm_io_device *iodev = NULL;
3728
3729 srcu_idx = srcu_read_lock(&kvm->srcu);
3730
3731 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3732 if (!bus)
3733 goto out_unlock;
3734
3735 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3736 if (dev_idx < 0)
3737 goto out_unlock;
3738
3739 iodev = bus->range[dev_idx].dev;
3740
3741 out_unlock:
3742 srcu_read_unlock(&kvm->srcu, srcu_idx);
3743
3744 return iodev;
3745 }
3746 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3747
3748 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3749 int (*get)(void *, u64 *), int (*set)(void *, u64),
3750 const char *fmt)
3751 {
3752 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3753 inode->i_private;
3754
3755 /* The debugfs files are a reference to the kvm struct which
3756 * is still valid when kvm_destroy_vm is called.
3757 * To avoid the race between open and the removal of the debugfs
3758 * directory we test against the users count.
3759 */
3760 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3761 return -ENOENT;
3762
3763 if (simple_attr_open(inode, file, get,
3764 stat_data->mode & S_IWUGO ? set : NULL,
3765 fmt)) {
3766 kvm_put_kvm(stat_data->kvm);
3767 return -ENOMEM;
3768 }
3769
3770 return 0;
3771 }
3772
3773 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3774 {
3775 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3776 inode->i_private;
3777
3778 simple_attr_release(inode, file);
3779 kvm_put_kvm(stat_data->kvm);
3780
3781 return 0;
3782 }
3783
3784 static int vm_stat_get_per_vm(void *data, u64 *val)
3785 {
3786 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3787
3788 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3789
3790 return 0;
3791 }
3792
3793 static int vm_stat_clear_per_vm(void *data, u64 val)
3794 {
3795 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3796
3797 if (val)
3798 return -EINVAL;
3799
3800 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3801
3802 return 0;
3803 }
3804
3805 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3806 {
3807 __simple_attr_check_format("%llu\n", 0ull);
3808 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3809 vm_stat_clear_per_vm, "%llu\n");
3810 }
3811
3812 static const struct file_operations vm_stat_get_per_vm_fops = {
3813 .owner = THIS_MODULE,
3814 .open = vm_stat_get_per_vm_open,
3815 .release = kvm_debugfs_release,
3816 .read = simple_attr_read,
3817 .write = simple_attr_write,
3818 .llseek = no_llseek,
3819 };
3820
3821 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3822 {
3823 int i;
3824 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3825 struct kvm_vcpu *vcpu;
3826
3827 *val = 0;
3828
3829 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3830 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3831
3832 return 0;
3833 }
3834
3835 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3836 {
3837 int i;
3838 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3839 struct kvm_vcpu *vcpu;
3840
3841 if (val)
3842 return -EINVAL;
3843
3844 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3845 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3846
3847 return 0;
3848 }
3849
3850 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3851 {
3852 __simple_attr_check_format("%llu\n", 0ull);
3853 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3854 vcpu_stat_clear_per_vm, "%llu\n");
3855 }
3856
3857 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3858 .owner = THIS_MODULE,
3859 .open = vcpu_stat_get_per_vm_open,
3860 .release = kvm_debugfs_release,
3861 .read = simple_attr_read,
3862 .write = simple_attr_write,
3863 .llseek = no_llseek,
3864 };
3865
3866 static const struct file_operations *stat_fops_per_vm[] = {
3867 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3868 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3869 };
3870
3871 static int vm_stat_get(void *_offset, u64 *val)
3872 {
3873 unsigned offset = (long)_offset;
3874 struct kvm *kvm;
3875 struct kvm_stat_data stat_tmp = {.offset = offset};
3876 u64 tmp_val;
3877
3878 *val = 0;
3879 mutex_lock(&kvm_lock);
3880 list_for_each_entry(kvm, &vm_list, vm_list) {
3881 stat_tmp.kvm = kvm;
3882 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3883 *val += tmp_val;
3884 }
3885 mutex_unlock(&kvm_lock);
3886 return 0;
3887 }
3888
3889 static int vm_stat_clear(void *_offset, u64 val)
3890 {
3891 unsigned offset = (long)_offset;
3892 struct kvm *kvm;
3893 struct kvm_stat_data stat_tmp = {.offset = offset};
3894
3895 if (val)
3896 return -EINVAL;
3897
3898 mutex_lock(&kvm_lock);
3899 list_for_each_entry(kvm, &vm_list, vm_list) {
3900 stat_tmp.kvm = kvm;
3901 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3902 }
3903 mutex_unlock(&kvm_lock);
3904
3905 return 0;
3906 }
3907
3908 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3909
3910 static int vcpu_stat_get(void *_offset, u64 *val)
3911 {
3912 unsigned offset = (long)_offset;
3913 struct kvm *kvm;
3914 struct kvm_stat_data stat_tmp = {.offset = offset};
3915 u64 tmp_val;
3916
3917 *val = 0;
3918 mutex_lock(&kvm_lock);
3919 list_for_each_entry(kvm, &vm_list, vm_list) {
3920 stat_tmp.kvm = kvm;
3921 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3922 *val += tmp_val;
3923 }
3924 mutex_unlock(&kvm_lock);
3925 return 0;
3926 }
3927
3928 static int vcpu_stat_clear(void *_offset, u64 val)
3929 {
3930 unsigned offset = (long)_offset;
3931 struct kvm *kvm;
3932 struct kvm_stat_data stat_tmp = {.offset = offset};
3933
3934 if (val)
3935 return -EINVAL;
3936
3937 mutex_lock(&kvm_lock);
3938 list_for_each_entry(kvm, &vm_list, vm_list) {
3939 stat_tmp.kvm = kvm;
3940 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3941 }
3942 mutex_unlock(&kvm_lock);
3943
3944 return 0;
3945 }
3946
3947 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3948 "%llu\n");
3949
3950 static const struct file_operations *stat_fops[] = {
3951 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3952 [KVM_STAT_VM] = &vm_stat_fops,
3953 };
3954
3955 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3956 {
3957 struct kobj_uevent_env *env;
3958 unsigned long long created, active;
3959
3960 if (!kvm_dev.this_device || !kvm)
3961 return;
3962
3963 mutex_lock(&kvm_lock);
3964 if (type == KVM_EVENT_CREATE_VM) {
3965 kvm_createvm_count++;
3966 kvm_active_vms++;
3967 } else if (type == KVM_EVENT_DESTROY_VM) {
3968 kvm_active_vms--;
3969 }
3970 created = kvm_createvm_count;
3971 active = kvm_active_vms;
3972 mutex_unlock(&kvm_lock);
3973
3974 env = kzalloc(sizeof(*env), GFP_KERNEL);
3975 if (!env)
3976 return;
3977
3978 add_uevent_var(env, "CREATED=%llu", created);
3979 add_uevent_var(env, "COUNT=%llu", active);
3980
3981 if (type == KVM_EVENT_CREATE_VM) {
3982 add_uevent_var(env, "EVENT=create");
3983 kvm->userspace_pid = task_pid_nr(current);
3984 } else if (type == KVM_EVENT_DESTROY_VM) {
3985 add_uevent_var(env, "EVENT=destroy");
3986 }
3987 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3988
3989 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
3990 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3991
3992 if (p) {
3993 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3994 if (!IS_ERR(tmp))
3995 add_uevent_var(env, "STATS_PATH=%s", tmp);
3996 kfree(p);
3997 }
3998 }
3999 /* no need for checks, since we are adding at most only 5 keys */
4000 env->envp[env->envp_idx++] = NULL;
4001 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4002 kfree(env);
4003 }
4004
4005 static int kvm_init_debug(void)
4006 {
4007 int r = -EEXIST;
4008 struct kvm_stats_debugfs_item *p;
4009
4010 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4011 if (kvm_debugfs_dir == NULL)
4012 goto out;
4013
4014 kvm_debugfs_num_entries = 0;
4015 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4016 int mode = p->mode ? p->mode : 0644;
4017 if (!debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4018 (void *)(long)p->offset,
4019 stat_fops[p->kind]))
4020 goto out_dir;
4021 }
4022
4023 return 0;
4024
4025 out_dir:
4026 debugfs_remove_recursive(kvm_debugfs_dir);
4027 out:
4028 return r;
4029 }
4030
4031 static int kvm_suspend(void)
4032 {
4033 if (kvm_usage_count)
4034 hardware_disable_nolock(NULL);
4035 return 0;
4036 }
4037
4038 static void kvm_resume(void)
4039 {
4040 if (kvm_usage_count) {
4041 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
4042 hardware_enable_nolock(NULL);
4043 }
4044 }
4045
4046 static struct syscore_ops kvm_syscore_ops = {
4047 .suspend = kvm_suspend,
4048 .resume = kvm_resume,
4049 };
4050
4051 static inline
4052 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4053 {
4054 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4055 }
4056
4057 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4058 {
4059 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4060
4061 if (vcpu->preempted)
4062 vcpu->preempted = false;
4063
4064 kvm_arch_sched_in(vcpu, cpu);
4065
4066 kvm_arch_vcpu_load(vcpu, cpu);
4067 }
4068
4069 static void kvm_sched_out(struct preempt_notifier *pn,
4070 struct task_struct *next)
4071 {
4072 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4073
4074 if (current->state == TASK_RUNNING)
4075 vcpu->preempted = true;
4076 kvm_arch_vcpu_put(vcpu);
4077 }
4078
4079 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4080 struct module *module)
4081 {
4082 int r;
4083 int cpu;
4084
4085 r = kvm_arch_init(opaque);
4086 if (r)
4087 goto out_fail;
4088
4089 /*
4090 * kvm_arch_init makes sure there's at most one caller
4091 * for architectures that support multiple implementations,
4092 * like intel and amd on x86.
4093 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4094 * conflicts in case kvm is already setup for another implementation.
4095 */
4096 r = kvm_irqfd_init();
4097 if (r)
4098 goto out_irqfd;
4099
4100 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4101 r = -ENOMEM;
4102 goto out_free_0;
4103 }
4104
4105 r = kvm_arch_hardware_setup();
4106 if (r < 0)
4107 goto out_free_0a;
4108
4109 for_each_online_cpu(cpu) {
4110 smp_call_function_single(cpu,
4111 kvm_arch_check_processor_compat,
4112 &r, 1);
4113 if (r < 0)
4114 goto out_free_1;
4115 }
4116
4117 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4118 kvm_starting_cpu, kvm_dying_cpu);
4119 if (r)
4120 goto out_free_2;
4121 register_reboot_notifier(&kvm_reboot_notifier);
4122
4123 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4124 if (!vcpu_align)
4125 vcpu_align = __alignof__(struct kvm_vcpu);
4126 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4127 SLAB_ACCOUNT, NULL);
4128 if (!kvm_vcpu_cache) {
4129 r = -ENOMEM;
4130 goto out_free_3;
4131 }
4132
4133 r = kvm_async_pf_init();
4134 if (r)
4135 goto out_free;
4136
4137 kvm_chardev_ops.owner = module;
4138 kvm_vm_fops.owner = module;
4139 kvm_vcpu_fops.owner = module;
4140
4141 r = misc_register(&kvm_dev);
4142 if (r) {
4143 pr_err("kvm: misc device register failed\n");
4144 goto out_unreg;
4145 }
4146
4147 register_syscore_ops(&kvm_syscore_ops);
4148
4149 kvm_preempt_ops.sched_in = kvm_sched_in;
4150 kvm_preempt_ops.sched_out = kvm_sched_out;
4151
4152 r = kvm_init_debug();
4153 if (r) {
4154 pr_err("kvm: create debugfs files failed\n");
4155 goto out_undebugfs;
4156 }
4157
4158 r = kvm_vfio_ops_init();
4159 WARN_ON(r);
4160
4161 return 0;
4162
4163 out_undebugfs:
4164 unregister_syscore_ops(&kvm_syscore_ops);
4165 misc_deregister(&kvm_dev);
4166 out_unreg:
4167 kvm_async_pf_deinit();
4168 out_free:
4169 kmem_cache_destroy(kvm_vcpu_cache);
4170 out_free_3:
4171 unregister_reboot_notifier(&kvm_reboot_notifier);
4172 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4173 out_free_2:
4174 out_free_1:
4175 kvm_arch_hardware_unsetup();
4176 out_free_0a:
4177 free_cpumask_var(cpus_hardware_enabled);
4178 out_free_0:
4179 kvm_irqfd_exit();
4180 out_irqfd:
4181 kvm_arch_exit();
4182 out_fail:
4183 return r;
4184 }
4185 EXPORT_SYMBOL_GPL(kvm_init);
4186
4187 void kvm_exit(void)
4188 {
4189 debugfs_remove_recursive(kvm_debugfs_dir);
4190 misc_deregister(&kvm_dev);
4191 kmem_cache_destroy(kvm_vcpu_cache);
4192 kvm_async_pf_deinit();
4193 unregister_syscore_ops(&kvm_syscore_ops);
4194 unregister_reboot_notifier(&kvm_reboot_notifier);
4195 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4196 on_each_cpu(hardware_disable_nolock, NULL, 1);
4197 kvm_arch_hardware_unsetup();
4198 kvm_arch_exit();
4199 kvm_irqfd_exit();
4200 free_cpumask_var(cpus_hardware_enabled);
4201 kvm_vfio_ops_exit();
4202 }
4203 EXPORT_SYMBOL_GPL(kvm_exit);
4204
4205 struct kvm_vm_worker_thread_context {
4206 struct kvm *kvm;
4207 struct task_struct *parent;
4208 struct completion init_done;
4209 kvm_vm_thread_fn_t thread_fn;
4210 uintptr_t data;
4211 int err;
4212 };
4213
4214 static int kvm_vm_worker_thread(void *context)
4215 {
4216 /*
4217 * The init_context is allocated on the stack of the parent thread, so
4218 * we have to locally copy anything that is needed beyond initialization
4219 */
4220 struct kvm_vm_worker_thread_context *init_context = context;
4221 struct kvm *kvm = init_context->kvm;
4222 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4223 uintptr_t data = init_context->data;
4224 int err;
4225
4226 err = kthread_park(current);
4227 /* kthread_park(current) is never supposed to return an error */
4228 WARN_ON(err != 0);
4229 if (err)
4230 goto init_complete;
4231
4232 err = cgroup_attach_task_all(init_context->parent, current);
4233 if (err) {
4234 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4235 __func__, err);
4236 goto init_complete;
4237 }
4238
4239 set_user_nice(current, task_nice(init_context->parent));
4240
4241 init_complete:
4242 init_context->err = err;
4243 complete(&init_context->init_done);
4244 init_context = NULL;
4245
4246 if (err)
4247 return err;
4248
4249 /* Wait to be woken up by the spawner before proceeding. */
4250 kthread_parkme();
4251
4252 if (!kthread_should_stop())
4253 err = thread_fn(kvm, data);
4254
4255 return err;
4256 }
4257
4258 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4259 uintptr_t data, const char *name,
4260 struct task_struct **thread_ptr)
4261 {
4262 struct kvm_vm_worker_thread_context init_context = {};
4263 struct task_struct *thread;
4264
4265 *thread_ptr = NULL;
4266 init_context.kvm = kvm;
4267 init_context.parent = current;
4268 init_context.thread_fn = thread_fn;
4269 init_context.data = data;
4270 init_completion(&init_context.init_done);
4271
4272 thread = kthread_run(kvm_vm_worker_thread, &init_context,
4273 "%s-%d", name, task_pid_nr(current));
4274 if (IS_ERR(thread))
4275 return PTR_ERR(thread);
4276
4277 /* kthread_run is never supposed to return NULL */
4278 WARN_ON(thread == NULL);
4279
4280 wait_for_completion(&init_context.init_done);
4281
4282 if (!init_context.err)
4283 *thread_ptr = thread;
4284
4285 return init_context.err;
4286 }