]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/kvm_main.c
3d73a3d28d6341512763f90488ab88a2c5cb0a8e
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90 * Ordering of locks:
91 *
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93 */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
126
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
129
130 static bool largepages_enabled = true;
131
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
135 static unsigned long long kvm_createvm_count;
136 static unsigned long long kvm_active_vms;
137
138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
139 unsigned long start, unsigned long end)
140 {
141 }
142
143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
144 {
145 if (pfn_valid(pfn))
146 return PageReserved(pfn_to_page(pfn));
147
148 return true;
149 }
150
151 /*
152 * Switches to specified vcpu, until a matching vcpu_put()
153 */
154 int vcpu_load(struct kvm_vcpu *vcpu)
155 {
156 int cpu;
157
158 if (mutex_lock_killable(&vcpu->mutex))
159 return -EINTR;
160 cpu = get_cpu();
161 preempt_notifier_register(&vcpu->preempt_notifier);
162 kvm_arch_vcpu_load(vcpu, cpu);
163 put_cpu();
164 return 0;
165 }
166 EXPORT_SYMBOL_GPL(vcpu_load);
167
168 void vcpu_put(struct kvm_vcpu *vcpu)
169 {
170 preempt_disable();
171 kvm_arch_vcpu_put(vcpu);
172 preempt_notifier_unregister(&vcpu->preempt_notifier);
173 preempt_enable();
174 mutex_unlock(&vcpu->mutex);
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182
183 /*
184 * We need to wait for the VCPU to reenable interrupts and get out of
185 * READING_SHADOW_PAGE_TABLES mode.
186 */
187 if (req & KVM_REQUEST_WAIT)
188 return mode != OUTSIDE_GUEST_MODE;
189
190 /*
191 * Need to kick a running VCPU, but otherwise there is nothing to do.
192 */
193 return mode == IN_GUEST_MODE;
194 }
195
196 static void ack_flush(void *_completed)
197 {
198 }
199
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202 if (unlikely(!cpus))
203 cpus = cpu_online_mask;
204
205 if (cpumask_empty(cpus))
206 return false;
207
208 smp_call_function_many(cpus, ack_flush, NULL, wait);
209 return true;
210 }
211
212 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
213 {
214 int i, cpu, me;
215 cpumask_var_t cpus;
216 bool called;
217 struct kvm_vcpu *vcpu;
218
219 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
220
221 me = get_cpu();
222 kvm_for_each_vcpu(i, vcpu, kvm) {
223 kvm_make_request(req, vcpu);
224 cpu = vcpu->cpu;
225
226 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
227 continue;
228
229 if (cpus != NULL && cpu != -1 && cpu != me &&
230 kvm_request_needs_ipi(vcpu, req))
231 __cpumask_set_cpu(cpu, cpus);
232 }
233 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
234 put_cpu();
235 free_cpumask_var(cpus);
236 return called;
237 }
238
239 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
240 void kvm_flush_remote_tlbs(struct kvm *kvm)
241 {
242 /*
243 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
244 * kvm_make_all_cpus_request.
245 */
246 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
247
248 /*
249 * We want to publish modifications to the page tables before reading
250 * mode. Pairs with a memory barrier in arch-specific code.
251 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
252 * and smp_mb in walk_shadow_page_lockless_begin/end.
253 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
254 *
255 * There is already an smp_mb__after_atomic() before
256 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
257 * barrier here.
258 */
259 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
260 ++kvm->stat.remote_tlb_flush;
261 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
262 }
263 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
264 #endif
265
266 void kvm_reload_remote_mmus(struct kvm *kvm)
267 {
268 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
269 }
270
271 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
272 {
273 struct page *page;
274 int r;
275
276 mutex_init(&vcpu->mutex);
277 vcpu->cpu = -1;
278 vcpu->kvm = kvm;
279 vcpu->vcpu_id = id;
280 vcpu->pid = NULL;
281 init_swait_queue_head(&vcpu->wq);
282 kvm_async_pf_vcpu_init(vcpu);
283
284 vcpu->pre_pcpu = -1;
285 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
286
287 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
288 if (!page) {
289 r = -ENOMEM;
290 goto fail;
291 }
292 vcpu->run = page_address(page);
293
294 kvm_vcpu_set_in_spin_loop(vcpu, false);
295 kvm_vcpu_set_dy_eligible(vcpu, false);
296 vcpu->preempted = false;
297
298 r = kvm_arch_vcpu_init(vcpu);
299 if (r < 0)
300 goto fail_free_run;
301 return 0;
302
303 fail_free_run:
304 free_page((unsigned long)vcpu->run);
305 fail:
306 return r;
307 }
308 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
309
310 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
311 {
312 /*
313 * no need for rcu_read_lock as VCPU_RUN is the only place that
314 * will change the vcpu->pid pointer and on uninit all file
315 * descriptors are already gone.
316 */
317 put_pid(rcu_dereference_protected(vcpu->pid, 1));
318 kvm_arch_vcpu_uninit(vcpu);
319 free_page((unsigned long)vcpu->run);
320 }
321 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
322
323 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
324 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
325 {
326 return container_of(mn, struct kvm, mmu_notifier);
327 }
328
329 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
330 struct mm_struct *mm,
331 unsigned long address,
332 pte_t pte)
333 {
334 struct kvm *kvm = mmu_notifier_to_kvm(mn);
335 int idx;
336
337 idx = srcu_read_lock(&kvm->srcu);
338 spin_lock(&kvm->mmu_lock);
339 kvm->mmu_notifier_seq++;
340 kvm_set_spte_hva(kvm, address, pte);
341 spin_unlock(&kvm->mmu_lock);
342 srcu_read_unlock(&kvm->srcu, idx);
343 }
344
345 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
346 struct mm_struct *mm,
347 unsigned long start,
348 unsigned long end)
349 {
350 struct kvm *kvm = mmu_notifier_to_kvm(mn);
351 int need_tlb_flush = 0, idx;
352
353 idx = srcu_read_lock(&kvm->srcu);
354 spin_lock(&kvm->mmu_lock);
355 /*
356 * The count increase must become visible at unlock time as no
357 * spte can be established without taking the mmu_lock and
358 * count is also read inside the mmu_lock critical section.
359 */
360 kvm->mmu_notifier_count++;
361 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
362 need_tlb_flush |= kvm->tlbs_dirty;
363 /* we've to flush the tlb before the pages can be freed */
364 if (need_tlb_flush)
365 kvm_flush_remote_tlbs(kvm);
366
367 spin_unlock(&kvm->mmu_lock);
368
369 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
370
371 srcu_read_unlock(&kvm->srcu, idx);
372 }
373
374 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
375 struct mm_struct *mm,
376 unsigned long start,
377 unsigned long end)
378 {
379 struct kvm *kvm = mmu_notifier_to_kvm(mn);
380
381 spin_lock(&kvm->mmu_lock);
382 /*
383 * This sequence increase will notify the kvm page fault that
384 * the page that is going to be mapped in the spte could have
385 * been freed.
386 */
387 kvm->mmu_notifier_seq++;
388 smp_wmb();
389 /*
390 * The above sequence increase must be visible before the
391 * below count decrease, which is ensured by the smp_wmb above
392 * in conjunction with the smp_rmb in mmu_notifier_retry().
393 */
394 kvm->mmu_notifier_count--;
395 spin_unlock(&kvm->mmu_lock);
396
397 BUG_ON(kvm->mmu_notifier_count < 0);
398 }
399
400 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
401 struct mm_struct *mm,
402 unsigned long start,
403 unsigned long end)
404 {
405 struct kvm *kvm = mmu_notifier_to_kvm(mn);
406 int young, idx;
407
408 idx = srcu_read_lock(&kvm->srcu);
409 spin_lock(&kvm->mmu_lock);
410
411 young = kvm_age_hva(kvm, start, end);
412 if (young)
413 kvm_flush_remote_tlbs(kvm);
414
415 spin_unlock(&kvm->mmu_lock);
416 srcu_read_unlock(&kvm->srcu, idx);
417
418 return young;
419 }
420
421 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
422 struct mm_struct *mm,
423 unsigned long start,
424 unsigned long end)
425 {
426 struct kvm *kvm = mmu_notifier_to_kvm(mn);
427 int young, idx;
428
429 idx = srcu_read_lock(&kvm->srcu);
430 spin_lock(&kvm->mmu_lock);
431 /*
432 * Even though we do not flush TLB, this will still adversely
433 * affect performance on pre-Haswell Intel EPT, where there is
434 * no EPT Access Bit to clear so that we have to tear down EPT
435 * tables instead. If we find this unacceptable, we can always
436 * add a parameter to kvm_age_hva so that it effectively doesn't
437 * do anything on clear_young.
438 *
439 * Also note that currently we never issue secondary TLB flushes
440 * from clear_young, leaving this job up to the regular system
441 * cadence. If we find this inaccurate, we might come up with a
442 * more sophisticated heuristic later.
443 */
444 young = kvm_age_hva(kvm, start, end);
445 spin_unlock(&kvm->mmu_lock);
446 srcu_read_unlock(&kvm->srcu, idx);
447
448 return young;
449 }
450
451 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
452 struct mm_struct *mm,
453 unsigned long address)
454 {
455 struct kvm *kvm = mmu_notifier_to_kvm(mn);
456 int young, idx;
457
458 idx = srcu_read_lock(&kvm->srcu);
459 spin_lock(&kvm->mmu_lock);
460 young = kvm_test_age_hva(kvm, address);
461 spin_unlock(&kvm->mmu_lock);
462 srcu_read_unlock(&kvm->srcu, idx);
463
464 return young;
465 }
466
467 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
468 struct mm_struct *mm)
469 {
470 struct kvm *kvm = mmu_notifier_to_kvm(mn);
471 int idx;
472
473 idx = srcu_read_lock(&kvm->srcu);
474 kvm_arch_flush_shadow_all(kvm);
475 srcu_read_unlock(&kvm->srcu, idx);
476 }
477
478 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
479 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
480 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
481 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
482 .clear_young = kvm_mmu_notifier_clear_young,
483 .test_young = kvm_mmu_notifier_test_young,
484 .change_pte = kvm_mmu_notifier_change_pte,
485 .release = kvm_mmu_notifier_release,
486 };
487
488 static int kvm_init_mmu_notifier(struct kvm *kvm)
489 {
490 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
491 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
492 }
493
494 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
495
496 static int kvm_init_mmu_notifier(struct kvm *kvm)
497 {
498 return 0;
499 }
500
501 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
502
503 static struct kvm_memslots *kvm_alloc_memslots(void)
504 {
505 int i;
506 struct kvm_memslots *slots;
507
508 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
509 if (!slots)
510 return NULL;
511
512 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
513 slots->id_to_index[i] = slots->memslots[i].id = i;
514
515 return slots;
516 }
517
518 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
519 {
520 if (!memslot->dirty_bitmap)
521 return;
522
523 kvfree(memslot->dirty_bitmap);
524 memslot->dirty_bitmap = NULL;
525 }
526
527 /*
528 * Free any memory in @free but not in @dont.
529 */
530 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
531 struct kvm_memory_slot *dont)
532 {
533 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
534 kvm_destroy_dirty_bitmap(free);
535
536 kvm_arch_free_memslot(kvm, free, dont);
537
538 free->npages = 0;
539 }
540
541 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
542 {
543 struct kvm_memory_slot *memslot;
544
545 if (!slots)
546 return;
547
548 kvm_for_each_memslot(memslot, slots)
549 kvm_free_memslot(kvm, memslot, NULL);
550
551 kvfree(slots);
552 }
553
554 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
555 {
556 int i;
557
558 if (!kvm->debugfs_dentry)
559 return;
560
561 debugfs_remove_recursive(kvm->debugfs_dentry);
562
563 if (kvm->debugfs_stat_data) {
564 for (i = 0; i < kvm_debugfs_num_entries; i++)
565 kfree(kvm->debugfs_stat_data[i]);
566 kfree(kvm->debugfs_stat_data);
567 }
568 }
569
570 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
571 {
572 char dir_name[ITOA_MAX_LEN * 2];
573 struct kvm_stat_data *stat_data;
574 struct kvm_stats_debugfs_item *p;
575
576 if (!debugfs_initialized())
577 return 0;
578
579 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
580 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
581 kvm_debugfs_dir);
582 if (!kvm->debugfs_dentry)
583 return -ENOMEM;
584
585 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
586 sizeof(*kvm->debugfs_stat_data),
587 GFP_KERNEL);
588 if (!kvm->debugfs_stat_data)
589 return -ENOMEM;
590
591 for (p = debugfs_entries; p->name; p++) {
592 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
593 if (!stat_data)
594 return -ENOMEM;
595
596 stat_data->kvm = kvm;
597 stat_data->offset = p->offset;
598 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
599 if (!debugfs_create_file(p->name, 0644,
600 kvm->debugfs_dentry,
601 stat_data,
602 stat_fops_per_vm[p->kind]))
603 return -ENOMEM;
604 }
605 return 0;
606 }
607
608 static struct kvm *kvm_create_vm(unsigned long type)
609 {
610 int r, i;
611 struct kvm *kvm = kvm_arch_alloc_vm();
612
613 if (!kvm)
614 return ERR_PTR(-ENOMEM);
615
616 spin_lock_init(&kvm->mmu_lock);
617 mmgrab(current->mm);
618 kvm->mm = current->mm;
619 kvm_eventfd_init(kvm);
620 mutex_init(&kvm->lock);
621 mutex_init(&kvm->irq_lock);
622 mutex_init(&kvm->slots_lock);
623 refcount_set(&kvm->users_count, 1);
624 INIT_LIST_HEAD(&kvm->devices);
625
626 r = kvm_arch_init_vm(kvm, type);
627 if (r)
628 goto out_err_no_disable;
629
630 r = hardware_enable_all();
631 if (r)
632 goto out_err_no_disable;
633
634 #ifdef CONFIG_HAVE_KVM_IRQFD
635 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
636 #endif
637
638 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
639
640 r = -ENOMEM;
641 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
642 struct kvm_memslots *slots = kvm_alloc_memslots();
643 if (!slots)
644 goto out_err_no_srcu;
645 /*
646 * Generations must be different for each address space.
647 * Init kvm generation close to the maximum to easily test the
648 * code of handling generation number wrap-around.
649 */
650 slots->generation = i * 2 - 150;
651 rcu_assign_pointer(kvm->memslots[i], slots);
652 }
653
654 if (init_srcu_struct(&kvm->srcu))
655 goto out_err_no_srcu;
656 if (init_srcu_struct(&kvm->irq_srcu))
657 goto out_err_no_irq_srcu;
658 for (i = 0; i < KVM_NR_BUSES; i++) {
659 rcu_assign_pointer(kvm->buses[i],
660 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
661 if (!kvm->buses[i])
662 goto out_err;
663 }
664
665 r = kvm_init_mmu_notifier(kvm);
666 if (r)
667 goto out_err;
668
669 spin_lock(&kvm_lock);
670 list_add(&kvm->vm_list, &vm_list);
671 spin_unlock(&kvm_lock);
672
673 preempt_notifier_inc();
674
675 return kvm;
676
677 out_err:
678 cleanup_srcu_struct(&kvm->irq_srcu);
679 out_err_no_irq_srcu:
680 cleanup_srcu_struct(&kvm->srcu);
681 out_err_no_srcu:
682 hardware_disable_all();
683 out_err_no_disable:
684 refcount_set(&kvm->users_count, 0);
685 for (i = 0; i < KVM_NR_BUSES; i++)
686 kfree(kvm_get_bus(kvm, i));
687 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
688 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
689 kvm_arch_free_vm(kvm);
690 mmdrop(current->mm);
691 return ERR_PTR(r);
692 }
693
694 static void kvm_destroy_devices(struct kvm *kvm)
695 {
696 struct kvm_device *dev, *tmp;
697
698 /*
699 * We do not need to take the kvm->lock here, because nobody else
700 * has a reference to the struct kvm at this point and therefore
701 * cannot access the devices list anyhow.
702 */
703 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
704 list_del(&dev->vm_node);
705 dev->ops->destroy(dev);
706 }
707 }
708
709 static void kvm_destroy_vm(struct kvm *kvm)
710 {
711 int i;
712 struct mm_struct *mm = kvm->mm;
713
714 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
715 kvm_destroy_vm_debugfs(kvm);
716 kvm_arch_sync_events(kvm);
717 spin_lock(&kvm_lock);
718 list_del(&kvm->vm_list);
719 spin_unlock(&kvm_lock);
720 kvm_free_irq_routing(kvm);
721 for (i = 0; i < KVM_NR_BUSES; i++) {
722 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
723
724 if (bus)
725 kvm_io_bus_destroy(bus);
726 kvm->buses[i] = NULL;
727 }
728 kvm_coalesced_mmio_free(kvm);
729 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
730 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
731 #else
732 kvm_arch_flush_shadow_all(kvm);
733 #endif
734 kvm_arch_destroy_vm(kvm);
735 kvm_destroy_devices(kvm);
736 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
737 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
738 cleanup_srcu_struct(&kvm->irq_srcu);
739 cleanup_srcu_struct(&kvm->srcu);
740 kvm_arch_free_vm(kvm);
741 preempt_notifier_dec();
742 hardware_disable_all();
743 mmdrop(mm);
744 }
745
746 void kvm_get_kvm(struct kvm *kvm)
747 {
748 refcount_inc(&kvm->users_count);
749 }
750 EXPORT_SYMBOL_GPL(kvm_get_kvm);
751
752 void kvm_put_kvm(struct kvm *kvm)
753 {
754 if (refcount_dec_and_test(&kvm->users_count))
755 kvm_destroy_vm(kvm);
756 }
757 EXPORT_SYMBOL_GPL(kvm_put_kvm);
758
759
760 static int kvm_vm_release(struct inode *inode, struct file *filp)
761 {
762 struct kvm *kvm = filp->private_data;
763
764 kvm_irqfd_release(kvm);
765
766 kvm_put_kvm(kvm);
767 return 0;
768 }
769
770 /*
771 * Allocation size is twice as large as the actual dirty bitmap size.
772 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
773 */
774 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
775 {
776 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
777
778 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
779 if (!memslot->dirty_bitmap)
780 return -ENOMEM;
781
782 return 0;
783 }
784
785 /*
786 * Insert memslot and re-sort memslots based on their GFN,
787 * so binary search could be used to lookup GFN.
788 * Sorting algorithm takes advantage of having initially
789 * sorted array and known changed memslot position.
790 */
791 static void update_memslots(struct kvm_memslots *slots,
792 struct kvm_memory_slot *new)
793 {
794 int id = new->id;
795 int i = slots->id_to_index[id];
796 struct kvm_memory_slot *mslots = slots->memslots;
797
798 WARN_ON(mslots[i].id != id);
799 if (!new->npages) {
800 WARN_ON(!mslots[i].npages);
801 if (mslots[i].npages)
802 slots->used_slots--;
803 } else {
804 if (!mslots[i].npages)
805 slots->used_slots++;
806 }
807
808 while (i < KVM_MEM_SLOTS_NUM - 1 &&
809 new->base_gfn <= mslots[i + 1].base_gfn) {
810 if (!mslots[i + 1].npages)
811 break;
812 mslots[i] = mslots[i + 1];
813 slots->id_to_index[mslots[i].id] = i;
814 i++;
815 }
816
817 /*
818 * The ">=" is needed when creating a slot with base_gfn == 0,
819 * so that it moves before all those with base_gfn == npages == 0.
820 *
821 * On the other hand, if new->npages is zero, the above loop has
822 * already left i pointing to the beginning of the empty part of
823 * mslots, and the ">=" would move the hole backwards in this
824 * case---which is wrong. So skip the loop when deleting a slot.
825 */
826 if (new->npages) {
827 while (i > 0 &&
828 new->base_gfn >= mslots[i - 1].base_gfn) {
829 mslots[i] = mslots[i - 1];
830 slots->id_to_index[mslots[i].id] = i;
831 i--;
832 }
833 } else
834 WARN_ON_ONCE(i != slots->used_slots);
835
836 mslots[i] = *new;
837 slots->id_to_index[mslots[i].id] = i;
838 }
839
840 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
841 {
842 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
843
844 #ifdef __KVM_HAVE_READONLY_MEM
845 valid_flags |= KVM_MEM_READONLY;
846 #endif
847
848 if (mem->flags & ~valid_flags)
849 return -EINVAL;
850
851 return 0;
852 }
853
854 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
855 int as_id, struct kvm_memslots *slots)
856 {
857 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
858 u64 gen;
859
860 /*
861 * Set the low bit in the generation, which disables SPTE caching
862 * until the end of synchronize_srcu_expedited.
863 */
864 WARN_ON(old_memslots->generation & 1);
865 slots->generation = old_memslots->generation + 1;
866
867 rcu_assign_pointer(kvm->memslots[as_id], slots);
868 synchronize_srcu_expedited(&kvm->srcu);
869
870 /*
871 * Increment the new memslot generation a second time. This prevents
872 * vm exits that race with memslot updates from caching a memslot
873 * generation that will (potentially) be valid forever.
874 *
875 * Generations must be unique even across address spaces. We do not need
876 * a global counter for that, instead the generation space is evenly split
877 * across address spaces. For example, with two address spaces, address
878 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
879 * use generations 2, 6, 10, 14, ...
880 */
881 gen = slots->generation + KVM_ADDRESS_SPACE_NUM * 2 - 1;
882
883 kvm_arch_memslots_updated(kvm, gen);
884
885 slots->generation = gen;
886
887 return old_memslots;
888 }
889
890 /*
891 * Allocate some memory and give it an address in the guest physical address
892 * space.
893 *
894 * Discontiguous memory is allowed, mostly for framebuffers.
895 *
896 * Must be called holding kvm->slots_lock for write.
897 */
898 int __kvm_set_memory_region(struct kvm *kvm,
899 const struct kvm_userspace_memory_region *mem)
900 {
901 int r;
902 gfn_t base_gfn;
903 unsigned long npages;
904 struct kvm_memory_slot *slot;
905 struct kvm_memory_slot old, new;
906 struct kvm_memslots *slots = NULL, *old_memslots;
907 int as_id, id;
908 enum kvm_mr_change change;
909
910 r = check_memory_region_flags(mem);
911 if (r)
912 goto out;
913
914 r = -EINVAL;
915 as_id = mem->slot >> 16;
916 id = (u16)mem->slot;
917
918 /* General sanity checks */
919 if (mem->memory_size & (PAGE_SIZE - 1))
920 goto out;
921 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
922 goto out;
923 /* We can read the guest memory with __xxx_user() later on. */
924 if ((id < KVM_USER_MEM_SLOTS) &&
925 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
926 !access_ok(VERIFY_WRITE,
927 (void __user *)(unsigned long)mem->userspace_addr,
928 mem->memory_size)))
929 goto out;
930 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
931 goto out;
932 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
933 goto out;
934
935 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
936 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
937 npages = mem->memory_size >> PAGE_SHIFT;
938
939 if (npages > KVM_MEM_MAX_NR_PAGES)
940 goto out;
941
942 new = old = *slot;
943
944 new.id = id;
945 new.base_gfn = base_gfn;
946 new.npages = npages;
947 new.flags = mem->flags;
948
949 if (npages) {
950 if (!old.npages)
951 change = KVM_MR_CREATE;
952 else { /* Modify an existing slot. */
953 if ((mem->userspace_addr != old.userspace_addr) ||
954 (npages != old.npages) ||
955 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
956 goto out;
957
958 if (base_gfn != old.base_gfn)
959 change = KVM_MR_MOVE;
960 else if (new.flags != old.flags)
961 change = KVM_MR_FLAGS_ONLY;
962 else { /* Nothing to change. */
963 r = 0;
964 goto out;
965 }
966 }
967 } else {
968 if (!old.npages)
969 goto out;
970
971 change = KVM_MR_DELETE;
972 new.base_gfn = 0;
973 new.flags = 0;
974 }
975
976 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
977 /* Check for overlaps */
978 r = -EEXIST;
979 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
980 if (slot->id == id)
981 continue;
982 if (!((base_gfn + npages <= slot->base_gfn) ||
983 (base_gfn >= slot->base_gfn + slot->npages)))
984 goto out;
985 }
986 }
987
988 /* Free page dirty bitmap if unneeded */
989 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
990 new.dirty_bitmap = NULL;
991
992 r = -ENOMEM;
993 if (change == KVM_MR_CREATE) {
994 new.userspace_addr = mem->userspace_addr;
995
996 if (kvm_arch_create_memslot(kvm, &new, npages))
997 goto out_free;
998 }
999
1000 /* Allocate page dirty bitmap if needed */
1001 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1002 if (kvm_create_dirty_bitmap(&new) < 0)
1003 goto out_free;
1004 }
1005
1006 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1007 if (!slots)
1008 goto out_free;
1009 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1010
1011 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1012 slot = id_to_memslot(slots, id);
1013 slot->flags |= KVM_MEMSLOT_INVALID;
1014
1015 old_memslots = install_new_memslots(kvm, as_id, slots);
1016
1017 /* From this point no new shadow pages pointing to a deleted,
1018 * or moved, memslot will be created.
1019 *
1020 * validation of sp->gfn happens in:
1021 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1022 * - kvm_is_visible_gfn (mmu_check_roots)
1023 */
1024 kvm_arch_flush_shadow_memslot(kvm, slot);
1025
1026 /*
1027 * We can re-use the old_memslots from above, the only difference
1028 * from the currently installed memslots is the invalid flag. This
1029 * will get overwritten by update_memslots anyway.
1030 */
1031 slots = old_memslots;
1032 }
1033
1034 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1035 if (r)
1036 goto out_slots;
1037
1038 /* actual memory is freed via old in kvm_free_memslot below */
1039 if (change == KVM_MR_DELETE) {
1040 new.dirty_bitmap = NULL;
1041 memset(&new.arch, 0, sizeof(new.arch));
1042 }
1043
1044 update_memslots(slots, &new);
1045 old_memslots = install_new_memslots(kvm, as_id, slots);
1046
1047 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1048
1049 kvm_free_memslot(kvm, &old, &new);
1050 kvfree(old_memslots);
1051 return 0;
1052
1053 out_slots:
1054 kvfree(slots);
1055 out_free:
1056 kvm_free_memslot(kvm, &new, &old);
1057 out:
1058 return r;
1059 }
1060 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1061
1062 int kvm_set_memory_region(struct kvm *kvm,
1063 const struct kvm_userspace_memory_region *mem)
1064 {
1065 int r;
1066
1067 mutex_lock(&kvm->slots_lock);
1068 r = __kvm_set_memory_region(kvm, mem);
1069 mutex_unlock(&kvm->slots_lock);
1070 return r;
1071 }
1072 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1073
1074 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1075 struct kvm_userspace_memory_region *mem)
1076 {
1077 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1078 return -EINVAL;
1079
1080 return kvm_set_memory_region(kvm, mem);
1081 }
1082
1083 int kvm_get_dirty_log(struct kvm *kvm,
1084 struct kvm_dirty_log *log, int *is_dirty)
1085 {
1086 struct kvm_memslots *slots;
1087 struct kvm_memory_slot *memslot;
1088 int i, as_id, id;
1089 unsigned long n;
1090 unsigned long any = 0;
1091
1092 as_id = log->slot >> 16;
1093 id = (u16)log->slot;
1094 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1095 return -EINVAL;
1096
1097 slots = __kvm_memslots(kvm, as_id);
1098 memslot = id_to_memslot(slots, id);
1099 if (!memslot->dirty_bitmap)
1100 return -ENOENT;
1101
1102 n = kvm_dirty_bitmap_bytes(memslot);
1103
1104 for (i = 0; !any && i < n/sizeof(long); ++i)
1105 any = memslot->dirty_bitmap[i];
1106
1107 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1108 return -EFAULT;
1109
1110 if (any)
1111 *is_dirty = 1;
1112 return 0;
1113 }
1114 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1115
1116 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1117 /**
1118 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1119 * are dirty write protect them for next write.
1120 * @kvm: pointer to kvm instance
1121 * @log: slot id and address to which we copy the log
1122 * @is_dirty: flag set if any page is dirty
1123 *
1124 * We need to keep it in mind that VCPU threads can write to the bitmap
1125 * concurrently. So, to avoid losing track of dirty pages we keep the
1126 * following order:
1127 *
1128 * 1. Take a snapshot of the bit and clear it if needed.
1129 * 2. Write protect the corresponding page.
1130 * 3. Copy the snapshot to the userspace.
1131 * 4. Upon return caller flushes TLB's if needed.
1132 *
1133 * Between 2 and 4, the guest may write to the page using the remaining TLB
1134 * entry. This is not a problem because the page is reported dirty using
1135 * the snapshot taken before and step 4 ensures that writes done after
1136 * exiting to userspace will be logged for the next call.
1137 *
1138 */
1139 int kvm_get_dirty_log_protect(struct kvm *kvm,
1140 struct kvm_dirty_log *log, bool *is_dirty)
1141 {
1142 struct kvm_memslots *slots;
1143 struct kvm_memory_slot *memslot;
1144 int i, as_id, id;
1145 unsigned long n;
1146 unsigned long *dirty_bitmap;
1147 unsigned long *dirty_bitmap_buffer;
1148
1149 as_id = log->slot >> 16;
1150 id = (u16)log->slot;
1151 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1152 return -EINVAL;
1153
1154 slots = __kvm_memslots(kvm, as_id);
1155 memslot = id_to_memslot(slots, id);
1156
1157 dirty_bitmap = memslot->dirty_bitmap;
1158 if (!dirty_bitmap)
1159 return -ENOENT;
1160
1161 n = kvm_dirty_bitmap_bytes(memslot);
1162
1163 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1164 memset(dirty_bitmap_buffer, 0, n);
1165
1166 spin_lock(&kvm->mmu_lock);
1167 *is_dirty = false;
1168 for (i = 0; i < n / sizeof(long); i++) {
1169 unsigned long mask;
1170 gfn_t offset;
1171
1172 if (!dirty_bitmap[i])
1173 continue;
1174
1175 *is_dirty = true;
1176
1177 mask = xchg(&dirty_bitmap[i], 0);
1178 dirty_bitmap_buffer[i] = mask;
1179
1180 if (mask) {
1181 offset = i * BITS_PER_LONG;
1182 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1183 offset, mask);
1184 }
1185 }
1186
1187 spin_unlock(&kvm->mmu_lock);
1188 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1189 return -EFAULT;
1190 return 0;
1191 }
1192 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1193 #endif
1194
1195 bool kvm_largepages_enabled(void)
1196 {
1197 return largepages_enabled;
1198 }
1199
1200 void kvm_disable_largepages(void)
1201 {
1202 largepages_enabled = false;
1203 }
1204 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1205
1206 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1207 {
1208 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1209 }
1210 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1211
1212 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1213 {
1214 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1215 }
1216
1217 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1218 {
1219 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1220
1221 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1222 memslot->flags & KVM_MEMSLOT_INVALID)
1223 return false;
1224
1225 return true;
1226 }
1227 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1228
1229 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1230 {
1231 struct vm_area_struct *vma;
1232 unsigned long addr, size;
1233
1234 size = PAGE_SIZE;
1235
1236 addr = gfn_to_hva(kvm, gfn);
1237 if (kvm_is_error_hva(addr))
1238 return PAGE_SIZE;
1239
1240 down_read(&current->mm->mmap_sem);
1241 vma = find_vma(current->mm, addr);
1242 if (!vma)
1243 goto out;
1244
1245 size = vma_kernel_pagesize(vma);
1246
1247 out:
1248 up_read(&current->mm->mmap_sem);
1249
1250 return size;
1251 }
1252
1253 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1254 {
1255 return slot->flags & KVM_MEM_READONLY;
1256 }
1257
1258 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1259 gfn_t *nr_pages, bool write)
1260 {
1261 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1262 return KVM_HVA_ERR_BAD;
1263
1264 if (memslot_is_readonly(slot) && write)
1265 return KVM_HVA_ERR_RO_BAD;
1266
1267 if (nr_pages)
1268 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1269
1270 return __gfn_to_hva_memslot(slot, gfn);
1271 }
1272
1273 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1274 gfn_t *nr_pages)
1275 {
1276 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1277 }
1278
1279 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1280 gfn_t gfn)
1281 {
1282 return gfn_to_hva_many(slot, gfn, NULL);
1283 }
1284 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1285
1286 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1287 {
1288 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1289 }
1290 EXPORT_SYMBOL_GPL(gfn_to_hva);
1291
1292 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1293 {
1294 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1295 }
1296 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1297
1298 /*
1299 * If writable is set to false, the hva returned by this function is only
1300 * allowed to be read.
1301 */
1302 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1303 gfn_t gfn, bool *writable)
1304 {
1305 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1306
1307 if (!kvm_is_error_hva(hva) && writable)
1308 *writable = !memslot_is_readonly(slot);
1309
1310 return hva;
1311 }
1312
1313 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1314 {
1315 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1316
1317 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1318 }
1319
1320 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1321 {
1322 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1323
1324 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1325 }
1326
1327 static int get_user_page_nowait(unsigned long start, int write,
1328 struct page **page)
1329 {
1330 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1331
1332 if (write)
1333 flags |= FOLL_WRITE;
1334
1335 return get_user_pages(start, 1, flags, page, NULL);
1336 }
1337
1338 static inline int check_user_page_hwpoison(unsigned long addr)
1339 {
1340 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1341
1342 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1343 return rc == -EHWPOISON;
1344 }
1345
1346 /*
1347 * The atomic path to get the writable pfn which will be stored in @pfn,
1348 * true indicates success, otherwise false is returned.
1349 */
1350 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1351 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1352 {
1353 struct page *page[1];
1354 int npages;
1355
1356 if (!(async || atomic))
1357 return false;
1358
1359 /*
1360 * Fast pin a writable pfn only if it is a write fault request
1361 * or the caller allows to map a writable pfn for a read fault
1362 * request.
1363 */
1364 if (!(write_fault || writable))
1365 return false;
1366
1367 npages = __get_user_pages_fast(addr, 1, 1, page);
1368 if (npages == 1) {
1369 *pfn = page_to_pfn(page[0]);
1370
1371 if (writable)
1372 *writable = true;
1373 return true;
1374 }
1375
1376 return false;
1377 }
1378
1379 /*
1380 * The slow path to get the pfn of the specified host virtual address,
1381 * 1 indicates success, -errno is returned if error is detected.
1382 */
1383 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1384 bool *writable, kvm_pfn_t *pfn)
1385 {
1386 struct page *page[1];
1387 int npages = 0;
1388
1389 might_sleep();
1390
1391 if (writable)
1392 *writable = write_fault;
1393
1394 if (async) {
1395 down_read(&current->mm->mmap_sem);
1396 npages = get_user_page_nowait(addr, write_fault, page);
1397 up_read(&current->mm->mmap_sem);
1398 } else {
1399 unsigned int flags = FOLL_HWPOISON;
1400
1401 if (write_fault)
1402 flags |= FOLL_WRITE;
1403
1404 npages = get_user_pages_unlocked(addr, 1, page, flags);
1405 }
1406 if (npages != 1)
1407 return npages;
1408
1409 /* map read fault as writable if possible */
1410 if (unlikely(!write_fault) && writable) {
1411 struct page *wpage[1];
1412
1413 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1414 if (npages == 1) {
1415 *writable = true;
1416 put_page(page[0]);
1417 page[0] = wpage[0];
1418 }
1419
1420 npages = 1;
1421 }
1422 *pfn = page_to_pfn(page[0]);
1423 return npages;
1424 }
1425
1426 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1427 {
1428 if (unlikely(!(vma->vm_flags & VM_READ)))
1429 return false;
1430
1431 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1432 return false;
1433
1434 return true;
1435 }
1436
1437 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1438 unsigned long addr, bool *async,
1439 bool write_fault, bool *writable,
1440 kvm_pfn_t *p_pfn)
1441 {
1442 unsigned long pfn;
1443 int r;
1444
1445 r = follow_pfn(vma, addr, &pfn);
1446 if (r) {
1447 /*
1448 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1449 * not call the fault handler, so do it here.
1450 */
1451 bool unlocked = false;
1452 r = fixup_user_fault(current, current->mm, addr,
1453 (write_fault ? FAULT_FLAG_WRITE : 0),
1454 &unlocked);
1455 if (unlocked)
1456 return -EAGAIN;
1457 if (r)
1458 return r;
1459
1460 r = follow_pfn(vma, addr, &pfn);
1461 if (r)
1462 return r;
1463
1464 }
1465
1466 if (writable)
1467 *writable = true;
1468
1469 /*
1470 * Get a reference here because callers of *hva_to_pfn* and
1471 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1472 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1473 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1474 * simply do nothing for reserved pfns.
1475 *
1476 * Whoever called remap_pfn_range is also going to call e.g.
1477 * unmap_mapping_range before the underlying pages are freed,
1478 * causing a call to our MMU notifier.
1479 */
1480 kvm_get_pfn(pfn);
1481
1482 *p_pfn = pfn;
1483 return 0;
1484 }
1485
1486 /*
1487 * Pin guest page in memory and return its pfn.
1488 * @addr: host virtual address which maps memory to the guest
1489 * @atomic: whether this function can sleep
1490 * @async: whether this function need to wait IO complete if the
1491 * host page is not in the memory
1492 * @write_fault: whether we should get a writable host page
1493 * @writable: whether it allows to map a writable host page for !@write_fault
1494 *
1495 * The function will map a writable host page for these two cases:
1496 * 1): @write_fault = true
1497 * 2): @write_fault = false && @writable, @writable will tell the caller
1498 * whether the mapping is writable.
1499 */
1500 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1501 bool write_fault, bool *writable)
1502 {
1503 struct vm_area_struct *vma;
1504 kvm_pfn_t pfn = 0;
1505 int npages, r;
1506
1507 /* we can do it either atomically or asynchronously, not both */
1508 BUG_ON(atomic && async);
1509
1510 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1511 return pfn;
1512
1513 if (atomic)
1514 return KVM_PFN_ERR_FAULT;
1515
1516 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1517 if (npages == 1)
1518 return pfn;
1519
1520 down_read(&current->mm->mmap_sem);
1521 if (npages == -EHWPOISON ||
1522 (!async && check_user_page_hwpoison(addr))) {
1523 pfn = KVM_PFN_ERR_HWPOISON;
1524 goto exit;
1525 }
1526
1527 retry:
1528 vma = find_vma_intersection(current->mm, addr, addr + 1);
1529
1530 if (vma == NULL)
1531 pfn = KVM_PFN_ERR_FAULT;
1532 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1533 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1534 if (r == -EAGAIN)
1535 goto retry;
1536 if (r < 0)
1537 pfn = KVM_PFN_ERR_FAULT;
1538 } else {
1539 if (async && vma_is_valid(vma, write_fault))
1540 *async = true;
1541 pfn = KVM_PFN_ERR_FAULT;
1542 }
1543 exit:
1544 up_read(&current->mm->mmap_sem);
1545 return pfn;
1546 }
1547
1548 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1549 bool atomic, bool *async, bool write_fault,
1550 bool *writable)
1551 {
1552 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1553
1554 if (addr == KVM_HVA_ERR_RO_BAD) {
1555 if (writable)
1556 *writable = false;
1557 return KVM_PFN_ERR_RO_FAULT;
1558 }
1559
1560 if (kvm_is_error_hva(addr)) {
1561 if (writable)
1562 *writable = false;
1563 return KVM_PFN_NOSLOT;
1564 }
1565
1566 /* Do not map writable pfn in the readonly memslot. */
1567 if (writable && memslot_is_readonly(slot)) {
1568 *writable = false;
1569 writable = NULL;
1570 }
1571
1572 return hva_to_pfn(addr, atomic, async, write_fault,
1573 writable);
1574 }
1575 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1576
1577 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1578 bool *writable)
1579 {
1580 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1581 write_fault, writable);
1582 }
1583 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1584
1585 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1586 {
1587 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1588 }
1589 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1590
1591 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1592 {
1593 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1594 }
1595 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1596
1597 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1598 {
1599 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1600 }
1601 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1602
1603 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1604 {
1605 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1606 }
1607 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1608
1609 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1610 {
1611 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1612 }
1613 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1614
1615 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1616 {
1617 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1618 }
1619 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1620
1621 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1622 struct page **pages, int nr_pages)
1623 {
1624 unsigned long addr;
1625 gfn_t entry = 0;
1626
1627 addr = gfn_to_hva_many(slot, gfn, &entry);
1628 if (kvm_is_error_hva(addr))
1629 return -1;
1630
1631 if (entry < nr_pages)
1632 return 0;
1633
1634 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1635 }
1636 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1637
1638 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1639 {
1640 if (is_error_noslot_pfn(pfn))
1641 return KVM_ERR_PTR_BAD_PAGE;
1642
1643 if (kvm_is_reserved_pfn(pfn)) {
1644 WARN_ON(1);
1645 return KVM_ERR_PTR_BAD_PAGE;
1646 }
1647
1648 return pfn_to_page(pfn);
1649 }
1650
1651 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1652 {
1653 kvm_pfn_t pfn;
1654
1655 pfn = gfn_to_pfn(kvm, gfn);
1656
1657 return kvm_pfn_to_page(pfn);
1658 }
1659 EXPORT_SYMBOL_GPL(gfn_to_page);
1660
1661 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1662 {
1663 kvm_pfn_t pfn;
1664
1665 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1666
1667 return kvm_pfn_to_page(pfn);
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1670
1671 void kvm_release_page_clean(struct page *page)
1672 {
1673 WARN_ON(is_error_page(page));
1674
1675 kvm_release_pfn_clean(page_to_pfn(page));
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1678
1679 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1680 {
1681 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1682 put_page(pfn_to_page(pfn));
1683 }
1684 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1685
1686 void kvm_release_page_dirty(struct page *page)
1687 {
1688 WARN_ON(is_error_page(page));
1689
1690 kvm_release_pfn_dirty(page_to_pfn(page));
1691 }
1692 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1693
1694 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1695 {
1696 kvm_set_pfn_dirty(pfn);
1697 kvm_release_pfn_clean(pfn);
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1700
1701 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1702 {
1703 if (!kvm_is_reserved_pfn(pfn)) {
1704 struct page *page = pfn_to_page(pfn);
1705
1706 if (!PageReserved(page))
1707 SetPageDirty(page);
1708 }
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1711
1712 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1713 {
1714 if (!kvm_is_reserved_pfn(pfn))
1715 mark_page_accessed(pfn_to_page(pfn));
1716 }
1717 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1718
1719 void kvm_get_pfn(kvm_pfn_t pfn)
1720 {
1721 if (!kvm_is_reserved_pfn(pfn))
1722 get_page(pfn_to_page(pfn));
1723 }
1724 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1725
1726 static int next_segment(unsigned long len, int offset)
1727 {
1728 if (len > PAGE_SIZE - offset)
1729 return PAGE_SIZE - offset;
1730 else
1731 return len;
1732 }
1733
1734 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1735 void *data, int offset, int len)
1736 {
1737 int r;
1738 unsigned long addr;
1739
1740 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1741 if (kvm_is_error_hva(addr))
1742 return -EFAULT;
1743 r = __copy_from_user(data, (void __user *)addr + offset, len);
1744 if (r)
1745 return -EFAULT;
1746 return 0;
1747 }
1748
1749 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1750 int len)
1751 {
1752 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1753
1754 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1755 }
1756 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1757
1758 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1759 int offset, int len)
1760 {
1761 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1762
1763 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1764 }
1765 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1766
1767 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1768 {
1769 gfn_t gfn = gpa >> PAGE_SHIFT;
1770 int seg;
1771 int offset = offset_in_page(gpa);
1772 int ret;
1773
1774 while ((seg = next_segment(len, offset)) != 0) {
1775 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1776 if (ret < 0)
1777 return ret;
1778 offset = 0;
1779 len -= seg;
1780 data += seg;
1781 ++gfn;
1782 }
1783 return 0;
1784 }
1785 EXPORT_SYMBOL_GPL(kvm_read_guest);
1786
1787 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1788 {
1789 gfn_t gfn = gpa >> PAGE_SHIFT;
1790 int seg;
1791 int offset = offset_in_page(gpa);
1792 int ret;
1793
1794 while ((seg = next_segment(len, offset)) != 0) {
1795 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1796 if (ret < 0)
1797 return ret;
1798 offset = 0;
1799 len -= seg;
1800 data += seg;
1801 ++gfn;
1802 }
1803 return 0;
1804 }
1805 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1806
1807 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1808 void *data, int offset, unsigned long len)
1809 {
1810 int r;
1811 unsigned long addr;
1812
1813 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1814 if (kvm_is_error_hva(addr))
1815 return -EFAULT;
1816 pagefault_disable();
1817 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1818 pagefault_enable();
1819 if (r)
1820 return -EFAULT;
1821 return 0;
1822 }
1823
1824 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1825 unsigned long len)
1826 {
1827 gfn_t gfn = gpa >> PAGE_SHIFT;
1828 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1829 int offset = offset_in_page(gpa);
1830
1831 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1834
1835 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1836 void *data, unsigned long len)
1837 {
1838 gfn_t gfn = gpa >> PAGE_SHIFT;
1839 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1840 int offset = offset_in_page(gpa);
1841
1842 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1843 }
1844 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1845
1846 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1847 const void *data, int offset, int len)
1848 {
1849 int r;
1850 unsigned long addr;
1851
1852 addr = gfn_to_hva_memslot(memslot, gfn);
1853 if (kvm_is_error_hva(addr))
1854 return -EFAULT;
1855 r = __copy_to_user((void __user *)addr + offset, data, len);
1856 if (r)
1857 return -EFAULT;
1858 mark_page_dirty_in_slot(memslot, gfn);
1859 return 0;
1860 }
1861
1862 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1863 const void *data, int offset, int len)
1864 {
1865 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1866
1867 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1868 }
1869 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1870
1871 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1872 const void *data, int offset, int len)
1873 {
1874 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1875
1876 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1877 }
1878 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1879
1880 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1881 unsigned long len)
1882 {
1883 gfn_t gfn = gpa >> PAGE_SHIFT;
1884 int seg;
1885 int offset = offset_in_page(gpa);
1886 int ret;
1887
1888 while ((seg = next_segment(len, offset)) != 0) {
1889 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1890 if (ret < 0)
1891 return ret;
1892 offset = 0;
1893 len -= seg;
1894 data += seg;
1895 ++gfn;
1896 }
1897 return 0;
1898 }
1899 EXPORT_SYMBOL_GPL(kvm_write_guest);
1900
1901 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1902 unsigned long len)
1903 {
1904 gfn_t gfn = gpa >> PAGE_SHIFT;
1905 int seg;
1906 int offset = offset_in_page(gpa);
1907 int ret;
1908
1909 while ((seg = next_segment(len, offset)) != 0) {
1910 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1911 if (ret < 0)
1912 return ret;
1913 offset = 0;
1914 len -= seg;
1915 data += seg;
1916 ++gfn;
1917 }
1918 return 0;
1919 }
1920 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1921
1922 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1923 struct gfn_to_hva_cache *ghc,
1924 gpa_t gpa, unsigned long len)
1925 {
1926 int offset = offset_in_page(gpa);
1927 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1928 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1929 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1930 gfn_t nr_pages_avail;
1931
1932 ghc->gpa = gpa;
1933 ghc->generation = slots->generation;
1934 ghc->len = len;
1935 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1936 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1937 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1938 ghc->hva += offset;
1939 } else {
1940 /*
1941 * If the requested region crosses two memslots, we still
1942 * verify that the entire region is valid here.
1943 */
1944 while (start_gfn <= end_gfn) {
1945 nr_pages_avail = 0;
1946 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1947 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1948 &nr_pages_avail);
1949 if (kvm_is_error_hva(ghc->hva))
1950 return -EFAULT;
1951 start_gfn += nr_pages_avail;
1952 }
1953 /* Use the slow path for cross page reads and writes. */
1954 ghc->memslot = NULL;
1955 }
1956 return 0;
1957 }
1958
1959 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1960 gpa_t gpa, unsigned long len)
1961 {
1962 struct kvm_memslots *slots = kvm_memslots(kvm);
1963 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1964 }
1965 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1966
1967 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1968 void *data, unsigned int offset,
1969 unsigned long len)
1970 {
1971 struct kvm_memslots *slots = kvm_memslots(kvm);
1972 int r;
1973 gpa_t gpa = ghc->gpa + offset;
1974
1975 BUG_ON(len + offset > ghc->len);
1976
1977 if (slots->generation != ghc->generation)
1978 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1979
1980 if (unlikely(!ghc->memslot))
1981 return kvm_write_guest(kvm, gpa, data, len);
1982
1983 if (kvm_is_error_hva(ghc->hva))
1984 return -EFAULT;
1985
1986 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1987 if (r)
1988 return -EFAULT;
1989 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1990
1991 return 0;
1992 }
1993 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1994
1995 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1996 void *data, unsigned long len)
1997 {
1998 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1999 }
2000 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2001
2002 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2003 void *data, unsigned long len)
2004 {
2005 struct kvm_memslots *slots = kvm_memslots(kvm);
2006 int r;
2007
2008 BUG_ON(len > ghc->len);
2009
2010 if (slots->generation != ghc->generation)
2011 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2012
2013 if (unlikely(!ghc->memslot))
2014 return kvm_read_guest(kvm, ghc->gpa, data, len);
2015
2016 if (kvm_is_error_hva(ghc->hva))
2017 return -EFAULT;
2018
2019 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2020 if (r)
2021 return -EFAULT;
2022
2023 return 0;
2024 }
2025 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2026
2027 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2028 {
2029 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2030
2031 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2032 }
2033 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2034
2035 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2036 {
2037 gfn_t gfn = gpa >> PAGE_SHIFT;
2038 int seg;
2039 int offset = offset_in_page(gpa);
2040 int ret;
2041
2042 while ((seg = next_segment(len, offset)) != 0) {
2043 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2044 if (ret < 0)
2045 return ret;
2046 offset = 0;
2047 len -= seg;
2048 ++gfn;
2049 }
2050 return 0;
2051 }
2052 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2053
2054 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2055 gfn_t gfn)
2056 {
2057 if (memslot && memslot->dirty_bitmap) {
2058 unsigned long rel_gfn = gfn - memslot->base_gfn;
2059
2060 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2061 }
2062 }
2063
2064 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2065 {
2066 struct kvm_memory_slot *memslot;
2067
2068 memslot = gfn_to_memslot(kvm, gfn);
2069 mark_page_dirty_in_slot(memslot, gfn);
2070 }
2071 EXPORT_SYMBOL_GPL(mark_page_dirty);
2072
2073 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2074 {
2075 struct kvm_memory_slot *memslot;
2076
2077 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2078 mark_page_dirty_in_slot(memslot, gfn);
2079 }
2080 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2081
2082 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2083 {
2084 if (!vcpu->sigset_active)
2085 return;
2086
2087 /*
2088 * This does a lockless modification of ->real_blocked, which is fine
2089 * because, only current can change ->real_blocked and all readers of
2090 * ->real_blocked don't care as long ->real_blocked is always a subset
2091 * of ->blocked.
2092 */
2093 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2094 }
2095
2096 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2097 {
2098 if (!vcpu->sigset_active)
2099 return;
2100
2101 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2102 sigemptyset(&current->real_blocked);
2103 }
2104
2105 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2106 {
2107 unsigned int old, val, grow;
2108
2109 old = val = vcpu->halt_poll_ns;
2110 grow = READ_ONCE(halt_poll_ns_grow);
2111 /* 10us base */
2112 if (val == 0 && grow)
2113 val = 10000;
2114 else
2115 val *= grow;
2116
2117 if (val > halt_poll_ns)
2118 val = halt_poll_ns;
2119
2120 vcpu->halt_poll_ns = val;
2121 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2122 }
2123
2124 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2125 {
2126 unsigned int old, val, shrink;
2127
2128 old = val = vcpu->halt_poll_ns;
2129 shrink = READ_ONCE(halt_poll_ns_shrink);
2130 if (shrink == 0)
2131 val = 0;
2132 else
2133 val /= shrink;
2134
2135 vcpu->halt_poll_ns = val;
2136 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2137 }
2138
2139 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2140 {
2141 if (kvm_arch_vcpu_runnable(vcpu)) {
2142 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2143 return -EINTR;
2144 }
2145 if (kvm_cpu_has_pending_timer(vcpu))
2146 return -EINTR;
2147 if (signal_pending(current))
2148 return -EINTR;
2149
2150 return 0;
2151 }
2152
2153 /*
2154 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2155 */
2156 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2157 {
2158 ktime_t start, cur;
2159 DECLARE_SWAITQUEUE(wait);
2160 bool waited = false;
2161 u64 block_ns;
2162
2163 start = cur = ktime_get();
2164 if (vcpu->halt_poll_ns) {
2165 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2166
2167 ++vcpu->stat.halt_attempted_poll;
2168 do {
2169 /*
2170 * This sets KVM_REQ_UNHALT if an interrupt
2171 * arrives.
2172 */
2173 if (kvm_vcpu_check_block(vcpu) < 0) {
2174 ++vcpu->stat.halt_successful_poll;
2175 if (!vcpu_valid_wakeup(vcpu))
2176 ++vcpu->stat.halt_poll_invalid;
2177 goto out;
2178 }
2179 cur = ktime_get();
2180 } while (single_task_running() && ktime_before(cur, stop));
2181 }
2182
2183 kvm_arch_vcpu_blocking(vcpu);
2184
2185 for (;;) {
2186 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2187
2188 if (kvm_vcpu_check_block(vcpu) < 0)
2189 break;
2190
2191 waited = true;
2192 schedule();
2193 }
2194
2195 finish_swait(&vcpu->wq, &wait);
2196 cur = ktime_get();
2197
2198 kvm_arch_vcpu_unblocking(vcpu);
2199 out:
2200 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2201
2202 if (!vcpu_valid_wakeup(vcpu))
2203 shrink_halt_poll_ns(vcpu);
2204 else if (halt_poll_ns) {
2205 if (block_ns <= vcpu->halt_poll_ns)
2206 ;
2207 /* we had a long block, shrink polling */
2208 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2209 shrink_halt_poll_ns(vcpu);
2210 /* we had a short halt and our poll time is too small */
2211 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2212 block_ns < halt_poll_ns)
2213 grow_halt_poll_ns(vcpu);
2214 } else
2215 vcpu->halt_poll_ns = 0;
2216
2217 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2218 kvm_arch_vcpu_block_finish(vcpu);
2219 }
2220 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2221
2222 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2223 {
2224 struct swait_queue_head *wqp;
2225
2226 wqp = kvm_arch_vcpu_wq(vcpu);
2227 if (swq_has_sleeper(wqp)) {
2228 swake_up(wqp);
2229 ++vcpu->stat.halt_wakeup;
2230 return true;
2231 }
2232
2233 return false;
2234 }
2235 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2236
2237 #ifndef CONFIG_S390
2238 /*
2239 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2240 */
2241 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2242 {
2243 int me;
2244 int cpu = vcpu->cpu;
2245
2246 if (kvm_vcpu_wake_up(vcpu))
2247 return;
2248
2249 me = get_cpu();
2250 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2251 if (kvm_arch_vcpu_should_kick(vcpu))
2252 smp_send_reschedule(cpu);
2253 put_cpu();
2254 }
2255 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2256 #endif /* !CONFIG_S390 */
2257
2258 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2259 {
2260 struct pid *pid;
2261 struct task_struct *task = NULL;
2262 int ret = 0;
2263
2264 rcu_read_lock();
2265 pid = rcu_dereference(target->pid);
2266 if (pid)
2267 task = get_pid_task(pid, PIDTYPE_PID);
2268 rcu_read_unlock();
2269 if (!task)
2270 return ret;
2271 ret = yield_to(task, 1);
2272 put_task_struct(task);
2273
2274 return ret;
2275 }
2276 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2277
2278 /*
2279 * Helper that checks whether a VCPU is eligible for directed yield.
2280 * Most eligible candidate to yield is decided by following heuristics:
2281 *
2282 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2283 * (preempted lock holder), indicated by @in_spin_loop.
2284 * Set at the beiginning and cleared at the end of interception/PLE handler.
2285 *
2286 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2287 * chance last time (mostly it has become eligible now since we have probably
2288 * yielded to lockholder in last iteration. This is done by toggling
2289 * @dy_eligible each time a VCPU checked for eligibility.)
2290 *
2291 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2292 * to preempted lock-holder could result in wrong VCPU selection and CPU
2293 * burning. Giving priority for a potential lock-holder increases lock
2294 * progress.
2295 *
2296 * Since algorithm is based on heuristics, accessing another VCPU data without
2297 * locking does not harm. It may result in trying to yield to same VCPU, fail
2298 * and continue with next VCPU and so on.
2299 */
2300 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2301 {
2302 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2303 bool eligible;
2304
2305 eligible = !vcpu->spin_loop.in_spin_loop ||
2306 vcpu->spin_loop.dy_eligible;
2307
2308 if (vcpu->spin_loop.in_spin_loop)
2309 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2310
2311 return eligible;
2312 #else
2313 return true;
2314 #endif
2315 }
2316
2317 /*
2318 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2319 * a vcpu_load/vcpu_put pair. However, for most architectures
2320 * kvm_arch_vcpu_runnable does not require vcpu_load.
2321 */
2322 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2323 {
2324 return kvm_arch_vcpu_runnable(vcpu);
2325 }
2326
2327 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2328 {
2329 if (kvm_arch_dy_runnable(vcpu))
2330 return true;
2331
2332 #ifdef CONFIG_KVM_ASYNC_PF
2333 if (!list_empty_careful(&vcpu->async_pf.done))
2334 return true;
2335 #endif
2336
2337 return false;
2338 }
2339
2340 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2341 {
2342 struct kvm *kvm = me->kvm;
2343 struct kvm_vcpu *vcpu;
2344 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2345 int yielded = 0;
2346 int try = 3;
2347 int pass;
2348 int i;
2349
2350 kvm_vcpu_set_in_spin_loop(me, true);
2351 /*
2352 * We boost the priority of a VCPU that is runnable but not
2353 * currently running, because it got preempted by something
2354 * else and called schedule in __vcpu_run. Hopefully that
2355 * VCPU is holding the lock that we need and will release it.
2356 * We approximate round-robin by starting at the last boosted VCPU.
2357 */
2358 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2359 kvm_for_each_vcpu(i, vcpu, kvm) {
2360 if (!pass && i <= last_boosted_vcpu) {
2361 i = last_boosted_vcpu;
2362 continue;
2363 } else if (pass && i > last_boosted_vcpu)
2364 break;
2365 if (!READ_ONCE(vcpu->preempted))
2366 continue;
2367 if (vcpu == me)
2368 continue;
2369 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2370 continue;
2371 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2372 continue;
2373 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2374 continue;
2375
2376 yielded = kvm_vcpu_yield_to(vcpu);
2377 if (yielded > 0) {
2378 kvm->last_boosted_vcpu = i;
2379 break;
2380 } else if (yielded < 0) {
2381 try--;
2382 if (!try)
2383 break;
2384 }
2385 }
2386 }
2387 kvm_vcpu_set_in_spin_loop(me, false);
2388
2389 /* Ensure vcpu is not eligible during next spinloop */
2390 kvm_vcpu_set_dy_eligible(me, false);
2391 }
2392 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2393
2394 static int kvm_vcpu_fault(struct vm_fault *vmf)
2395 {
2396 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2397 struct page *page;
2398
2399 if (vmf->pgoff == 0)
2400 page = virt_to_page(vcpu->run);
2401 #ifdef CONFIG_X86
2402 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2403 page = virt_to_page(vcpu->arch.pio_data);
2404 #endif
2405 #ifdef CONFIG_KVM_MMIO
2406 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2407 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2408 #endif
2409 else
2410 return kvm_arch_vcpu_fault(vcpu, vmf);
2411 get_page(page);
2412 vmf->page = page;
2413 return 0;
2414 }
2415
2416 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2417 .fault = kvm_vcpu_fault,
2418 };
2419
2420 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2421 {
2422 vma->vm_ops = &kvm_vcpu_vm_ops;
2423 return 0;
2424 }
2425
2426 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2427 {
2428 struct kvm_vcpu *vcpu = filp->private_data;
2429
2430 debugfs_remove_recursive(vcpu->debugfs_dentry);
2431 kvm_put_kvm(vcpu->kvm);
2432 return 0;
2433 }
2434
2435 static struct file_operations kvm_vcpu_fops = {
2436 .release = kvm_vcpu_release,
2437 .unlocked_ioctl = kvm_vcpu_ioctl,
2438 #ifdef CONFIG_KVM_COMPAT
2439 .compat_ioctl = kvm_vcpu_compat_ioctl,
2440 #endif
2441 .mmap = kvm_vcpu_mmap,
2442 .llseek = noop_llseek,
2443 };
2444
2445 /*
2446 * Allocates an inode for the vcpu.
2447 */
2448 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2449 {
2450 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2451 }
2452
2453 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2454 {
2455 char dir_name[ITOA_MAX_LEN * 2];
2456 int ret;
2457
2458 if (!kvm_arch_has_vcpu_debugfs())
2459 return 0;
2460
2461 if (!debugfs_initialized())
2462 return 0;
2463
2464 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2465 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2466 vcpu->kvm->debugfs_dentry);
2467 if (!vcpu->debugfs_dentry)
2468 return -ENOMEM;
2469
2470 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2471 if (ret < 0) {
2472 debugfs_remove_recursive(vcpu->debugfs_dentry);
2473 return ret;
2474 }
2475
2476 return 0;
2477 }
2478
2479 /*
2480 * Creates some virtual cpus. Good luck creating more than one.
2481 */
2482 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2483 {
2484 int r;
2485 struct kvm_vcpu *vcpu;
2486
2487 if (id >= KVM_MAX_VCPU_ID)
2488 return -EINVAL;
2489
2490 mutex_lock(&kvm->lock);
2491 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2492 mutex_unlock(&kvm->lock);
2493 return -EINVAL;
2494 }
2495
2496 kvm->created_vcpus++;
2497 mutex_unlock(&kvm->lock);
2498
2499 vcpu = kvm_arch_vcpu_create(kvm, id);
2500 if (IS_ERR(vcpu)) {
2501 r = PTR_ERR(vcpu);
2502 goto vcpu_decrement;
2503 }
2504
2505 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2506
2507 r = kvm_arch_vcpu_setup(vcpu);
2508 if (r)
2509 goto vcpu_destroy;
2510
2511 r = kvm_create_vcpu_debugfs(vcpu);
2512 if (r)
2513 goto vcpu_destroy;
2514
2515 mutex_lock(&kvm->lock);
2516 if (kvm_get_vcpu_by_id(kvm, id)) {
2517 r = -EEXIST;
2518 goto unlock_vcpu_destroy;
2519 }
2520
2521 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2522
2523 /* Now it's all set up, let userspace reach it */
2524 kvm_get_kvm(kvm);
2525 r = create_vcpu_fd(vcpu);
2526 if (r < 0) {
2527 kvm_put_kvm(kvm);
2528 goto unlock_vcpu_destroy;
2529 }
2530
2531 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2532
2533 /*
2534 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2535 * before kvm->online_vcpu's incremented value.
2536 */
2537 smp_wmb();
2538 atomic_inc(&kvm->online_vcpus);
2539
2540 mutex_unlock(&kvm->lock);
2541 kvm_arch_vcpu_postcreate(vcpu);
2542 return r;
2543
2544 unlock_vcpu_destroy:
2545 mutex_unlock(&kvm->lock);
2546 debugfs_remove_recursive(vcpu->debugfs_dentry);
2547 vcpu_destroy:
2548 kvm_arch_vcpu_destroy(vcpu);
2549 vcpu_decrement:
2550 mutex_lock(&kvm->lock);
2551 kvm->created_vcpus--;
2552 mutex_unlock(&kvm->lock);
2553 return r;
2554 }
2555
2556 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2557 {
2558 if (sigset) {
2559 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2560 vcpu->sigset_active = 1;
2561 vcpu->sigset = *sigset;
2562 } else
2563 vcpu->sigset_active = 0;
2564 return 0;
2565 }
2566
2567 static long kvm_vcpu_ioctl(struct file *filp,
2568 unsigned int ioctl, unsigned long arg)
2569 {
2570 struct kvm_vcpu *vcpu = filp->private_data;
2571 void __user *argp = (void __user *)arg;
2572 int r;
2573 struct kvm_fpu *fpu = NULL;
2574 struct kvm_sregs *kvm_sregs = NULL;
2575
2576 if (vcpu->kvm->mm != current->mm)
2577 return -EIO;
2578
2579 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2580 return -EINVAL;
2581
2582 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2583 /*
2584 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2585 * so vcpu_load() would break it.
2586 */
2587 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2588 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2589 #endif
2590
2591
2592 r = vcpu_load(vcpu);
2593 if (r)
2594 return r;
2595 switch (ioctl) {
2596 case KVM_RUN: {
2597 struct pid *oldpid;
2598 r = -EINVAL;
2599 if (arg)
2600 goto out;
2601 oldpid = rcu_access_pointer(vcpu->pid);
2602 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2603 /* The thread running this VCPU changed. */
2604 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2605
2606 rcu_assign_pointer(vcpu->pid, newpid);
2607 if (oldpid)
2608 synchronize_rcu();
2609 put_pid(oldpid);
2610 }
2611 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2612 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2613 break;
2614 }
2615 case KVM_GET_REGS: {
2616 struct kvm_regs *kvm_regs;
2617
2618 r = -ENOMEM;
2619 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2620 if (!kvm_regs)
2621 goto out;
2622 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2623 if (r)
2624 goto out_free1;
2625 r = -EFAULT;
2626 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2627 goto out_free1;
2628 r = 0;
2629 out_free1:
2630 kfree(kvm_regs);
2631 break;
2632 }
2633 case KVM_SET_REGS: {
2634 struct kvm_regs *kvm_regs;
2635
2636 r = -ENOMEM;
2637 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2638 if (IS_ERR(kvm_regs)) {
2639 r = PTR_ERR(kvm_regs);
2640 goto out;
2641 }
2642 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2643 kfree(kvm_regs);
2644 break;
2645 }
2646 case KVM_GET_SREGS: {
2647 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2648 r = -ENOMEM;
2649 if (!kvm_sregs)
2650 goto out;
2651 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2652 if (r)
2653 goto out;
2654 r = -EFAULT;
2655 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2656 goto out;
2657 r = 0;
2658 break;
2659 }
2660 case KVM_SET_SREGS: {
2661 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2662 if (IS_ERR(kvm_sregs)) {
2663 r = PTR_ERR(kvm_sregs);
2664 kvm_sregs = NULL;
2665 goto out;
2666 }
2667 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2668 break;
2669 }
2670 case KVM_GET_MP_STATE: {
2671 struct kvm_mp_state mp_state;
2672
2673 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2674 if (r)
2675 goto out;
2676 r = -EFAULT;
2677 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2678 goto out;
2679 r = 0;
2680 break;
2681 }
2682 case KVM_SET_MP_STATE: {
2683 struct kvm_mp_state mp_state;
2684
2685 r = -EFAULT;
2686 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2687 goto out;
2688 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2689 break;
2690 }
2691 case KVM_TRANSLATE: {
2692 struct kvm_translation tr;
2693
2694 r = -EFAULT;
2695 if (copy_from_user(&tr, argp, sizeof(tr)))
2696 goto out;
2697 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2698 if (r)
2699 goto out;
2700 r = -EFAULT;
2701 if (copy_to_user(argp, &tr, sizeof(tr)))
2702 goto out;
2703 r = 0;
2704 break;
2705 }
2706 case KVM_SET_GUEST_DEBUG: {
2707 struct kvm_guest_debug dbg;
2708
2709 r = -EFAULT;
2710 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2711 goto out;
2712 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2713 break;
2714 }
2715 case KVM_SET_SIGNAL_MASK: {
2716 struct kvm_signal_mask __user *sigmask_arg = argp;
2717 struct kvm_signal_mask kvm_sigmask;
2718 sigset_t sigset, *p;
2719
2720 p = NULL;
2721 if (argp) {
2722 r = -EFAULT;
2723 if (copy_from_user(&kvm_sigmask, argp,
2724 sizeof(kvm_sigmask)))
2725 goto out;
2726 r = -EINVAL;
2727 if (kvm_sigmask.len != sizeof(sigset))
2728 goto out;
2729 r = -EFAULT;
2730 if (copy_from_user(&sigset, sigmask_arg->sigset,
2731 sizeof(sigset)))
2732 goto out;
2733 p = &sigset;
2734 }
2735 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2736 break;
2737 }
2738 case KVM_GET_FPU: {
2739 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2740 r = -ENOMEM;
2741 if (!fpu)
2742 goto out;
2743 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2744 if (r)
2745 goto out;
2746 r = -EFAULT;
2747 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2748 goto out;
2749 r = 0;
2750 break;
2751 }
2752 case KVM_SET_FPU: {
2753 fpu = memdup_user(argp, sizeof(*fpu));
2754 if (IS_ERR(fpu)) {
2755 r = PTR_ERR(fpu);
2756 fpu = NULL;
2757 goto out;
2758 }
2759 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2760 break;
2761 }
2762 default:
2763 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2764 }
2765 out:
2766 vcpu_put(vcpu);
2767 kfree(fpu);
2768 kfree(kvm_sregs);
2769 return r;
2770 }
2771
2772 #ifdef CONFIG_KVM_COMPAT
2773 static long kvm_vcpu_compat_ioctl(struct file *filp,
2774 unsigned int ioctl, unsigned long arg)
2775 {
2776 struct kvm_vcpu *vcpu = filp->private_data;
2777 void __user *argp = compat_ptr(arg);
2778 int r;
2779
2780 if (vcpu->kvm->mm != current->mm)
2781 return -EIO;
2782
2783 switch (ioctl) {
2784 case KVM_SET_SIGNAL_MASK: {
2785 struct kvm_signal_mask __user *sigmask_arg = argp;
2786 struct kvm_signal_mask kvm_sigmask;
2787 sigset_t sigset;
2788
2789 if (argp) {
2790 r = -EFAULT;
2791 if (copy_from_user(&kvm_sigmask, argp,
2792 sizeof(kvm_sigmask)))
2793 goto out;
2794 r = -EINVAL;
2795 if (kvm_sigmask.len != sizeof(compat_sigset_t))
2796 goto out;
2797 r = -EFAULT;
2798 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2799 goto out;
2800 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2801 } else
2802 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2803 break;
2804 }
2805 default:
2806 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2807 }
2808
2809 out:
2810 return r;
2811 }
2812 #endif
2813
2814 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2815 int (*accessor)(struct kvm_device *dev,
2816 struct kvm_device_attr *attr),
2817 unsigned long arg)
2818 {
2819 struct kvm_device_attr attr;
2820
2821 if (!accessor)
2822 return -EPERM;
2823
2824 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2825 return -EFAULT;
2826
2827 return accessor(dev, &attr);
2828 }
2829
2830 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2831 unsigned long arg)
2832 {
2833 struct kvm_device *dev = filp->private_data;
2834
2835 if (dev->kvm->mm != current->mm)
2836 return -EIO;
2837
2838 switch (ioctl) {
2839 case KVM_SET_DEVICE_ATTR:
2840 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2841 case KVM_GET_DEVICE_ATTR:
2842 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2843 case KVM_HAS_DEVICE_ATTR:
2844 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2845 default:
2846 if (dev->ops->ioctl)
2847 return dev->ops->ioctl(dev, ioctl, arg);
2848
2849 return -ENOTTY;
2850 }
2851 }
2852
2853 static int kvm_device_release(struct inode *inode, struct file *filp)
2854 {
2855 struct kvm_device *dev = filp->private_data;
2856 struct kvm *kvm = dev->kvm;
2857
2858 kvm_put_kvm(kvm);
2859 return 0;
2860 }
2861
2862 static const struct file_operations kvm_device_fops = {
2863 .unlocked_ioctl = kvm_device_ioctl,
2864 #ifdef CONFIG_KVM_COMPAT
2865 .compat_ioctl = kvm_device_ioctl,
2866 #endif
2867 .release = kvm_device_release,
2868 };
2869
2870 struct kvm_device *kvm_device_from_filp(struct file *filp)
2871 {
2872 if (filp->f_op != &kvm_device_fops)
2873 return NULL;
2874
2875 return filp->private_data;
2876 }
2877
2878 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2879 #ifdef CONFIG_KVM_MPIC
2880 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2881 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2882 #endif
2883 };
2884
2885 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2886 {
2887 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2888 return -ENOSPC;
2889
2890 if (kvm_device_ops_table[type] != NULL)
2891 return -EEXIST;
2892
2893 kvm_device_ops_table[type] = ops;
2894 return 0;
2895 }
2896
2897 void kvm_unregister_device_ops(u32 type)
2898 {
2899 if (kvm_device_ops_table[type] != NULL)
2900 kvm_device_ops_table[type] = NULL;
2901 }
2902
2903 static int kvm_ioctl_create_device(struct kvm *kvm,
2904 struct kvm_create_device *cd)
2905 {
2906 struct kvm_device_ops *ops = NULL;
2907 struct kvm_device *dev;
2908 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2909 int type;
2910 int ret;
2911
2912 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2913 return -ENODEV;
2914
2915 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
2916 ops = kvm_device_ops_table[type];
2917 if (ops == NULL)
2918 return -ENODEV;
2919
2920 if (test)
2921 return 0;
2922
2923 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2924 if (!dev)
2925 return -ENOMEM;
2926
2927 dev->ops = ops;
2928 dev->kvm = kvm;
2929
2930 mutex_lock(&kvm->lock);
2931 ret = ops->create(dev, type);
2932 if (ret < 0) {
2933 mutex_unlock(&kvm->lock);
2934 kfree(dev);
2935 return ret;
2936 }
2937 list_add(&dev->vm_node, &kvm->devices);
2938 mutex_unlock(&kvm->lock);
2939
2940 if (ops->init)
2941 ops->init(dev);
2942
2943 kvm_get_kvm(kvm);
2944 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2945 if (ret < 0) {
2946 kvm_put_kvm(kvm);
2947 mutex_lock(&kvm->lock);
2948 list_del(&dev->vm_node);
2949 mutex_unlock(&kvm->lock);
2950 ops->destroy(dev);
2951 return ret;
2952 }
2953
2954 cd->fd = ret;
2955 return 0;
2956 }
2957
2958 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2959 {
2960 switch (arg) {
2961 case KVM_CAP_USER_MEMORY:
2962 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2963 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2964 case KVM_CAP_INTERNAL_ERROR_DATA:
2965 #ifdef CONFIG_HAVE_KVM_MSI
2966 case KVM_CAP_SIGNAL_MSI:
2967 #endif
2968 #ifdef CONFIG_HAVE_KVM_IRQFD
2969 case KVM_CAP_IRQFD:
2970 case KVM_CAP_IRQFD_RESAMPLE:
2971 #endif
2972 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2973 case KVM_CAP_CHECK_EXTENSION_VM:
2974 return 1;
2975 #ifdef CONFIG_KVM_MMIO
2976 case KVM_CAP_COALESCED_MMIO:
2977 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2978 #endif
2979 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2980 case KVM_CAP_IRQ_ROUTING:
2981 return KVM_MAX_IRQ_ROUTES;
2982 #endif
2983 #if KVM_ADDRESS_SPACE_NUM > 1
2984 case KVM_CAP_MULTI_ADDRESS_SPACE:
2985 return KVM_ADDRESS_SPACE_NUM;
2986 #endif
2987 default:
2988 break;
2989 }
2990 return kvm_vm_ioctl_check_extension(kvm, arg);
2991 }
2992
2993 static long kvm_vm_ioctl(struct file *filp,
2994 unsigned int ioctl, unsigned long arg)
2995 {
2996 struct kvm *kvm = filp->private_data;
2997 void __user *argp = (void __user *)arg;
2998 int r;
2999
3000 if (kvm->mm != current->mm)
3001 return -EIO;
3002 switch (ioctl) {
3003 case KVM_CREATE_VCPU:
3004 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3005 break;
3006 case KVM_SET_USER_MEMORY_REGION: {
3007 struct kvm_userspace_memory_region kvm_userspace_mem;
3008
3009 r = -EFAULT;
3010 if (copy_from_user(&kvm_userspace_mem, argp,
3011 sizeof(kvm_userspace_mem)))
3012 goto out;
3013
3014 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3015 break;
3016 }
3017 case KVM_GET_DIRTY_LOG: {
3018 struct kvm_dirty_log log;
3019
3020 r = -EFAULT;
3021 if (copy_from_user(&log, argp, sizeof(log)))
3022 goto out;
3023 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3024 break;
3025 }
3026 #ifdef CONFIG_KVM_MMIO
3027 case KVM_REGISTER_COALESCED_MMIO: {
3028 struct kvm_coalesced_mmio_zone zone;
3029
3030 r = -EFAULT;
3031 if (copy_from_user(&zone, argp, sizeof(zone)))
3032 goto out;
3033 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3034 break;
3035 }
3036 case KVM_UNREGISTER_COALESCED_MMIO: {
3037 struct kvm_coalesced_mmio_zone zone;
3038
3039 r = -EFAULT;
3040 if (copy_from_user(&zone, argp, sizeof(zone)))
3041 goto out;
3042 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3043 break;
3044 }
3045 #endif
3046 case KVM_IRQFD: {
3047 struct kvm_irqfd data;
3048
3049 r = -EFAULT;
3050 if (copy_from_user(&data, argp, sizeof(data)))
3051 goto out;
3052 r = kvm_irqfd(kvm, &data);
3053 break;
3054 }
3055 case KVM_IOEVENTFD: {
3056 struct kvm_ioeventfd data;
3057
3058 r = -EFAULT;
3059 if (copy_from_user(&data, argp, sizeof(data)))
3060 goto out;
3061 r = kvm_ioeventfd(kvm, &data);
3062 break;
3063 }
3064 #ifdef CONFIG_HAVE_KVM_MSI
3065 case KVM_SIGNAL_MSI: {
3066 struct kvm_msi msi;
3067
3068 r = -EFAULT;
3069 if (copy_from_user(&msi, argp, sizeof(msi)))
3070 goto out;
3071 r = kvm_send_userspace_msi(kvm, &msi);
3072 break;
3073 }
3074 #endif
3075 #ifdef __KVM_HAVE_IRQ_LINE
3076 case KVM_IRQ_LINE_STATUS:
3077 case KVM_IRQ_LINE: {
3078 struct kvm_irq_level irq_event;
3079
3080 r = -EFAULT;
3081 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3082 goto out;
3083
3084 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3085 ioctl == KVM_IRQ_LINE_STATUS);
3086 if (r)
3087 goto out;
3088
3089 r = -EFAULT;
3090 if (ioctl == KVM_IRQ_LINE_STATUS) {
3091 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3092 goto out;
3093 }
3094
3095 r = 0;
3096 break;
3097 }
3098 #endif
3099 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3100 case KVM_SET_GSI_ROUTING: {
3101 struct kvm_irq_routing routing;
3102 struct kvm_irq_routing __user *urouting;
3103 struct kvm_irq_routing_entry *entries = NULL;
3104
3105 r = -EFAULT;
3106 if (copy_from_user(&routing, argp, sizeof(routing)))
3107 goto out;
3108 r = -EINVAL;
3109 if (!kvm_arch_can_set_irq_routing(kvm))
3110 goto out;
3111 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3112 goto out;
3113 if (routing.flags)
3114 goto out;
3115 if (routing.nr) {
3116 r = -ENOMEM;
3117 entries = vmalloc(routing.nr * sizeof(*entries));
3118 if (!entries)
3119 goto out;
3120 r = -EFAULT;
3121 urouting = argp;
3122 if (copy_from_user(entries, urouting->entries,
3123 routing.nr * sizeof(*entries)))
3124 goto out_free_irq_routing;
3125 }
3126 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3127 routing.flags);
3128 out_free_irq_routing:
3129 vfree(entries);
3130 break;
3131 }
3132 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3133 case KVM_CREATE_DEVICE: {
3134 struct kvm_create_device cd;
3135
3136 r = -EFAULT;
3137 if (copy_from_user(&cd, argp, sizeof(cd)))
3138 goto out;
3139
3140 r = kvm_ioctl_create_device(kvm, &cd);
3141 if (r)
3142 goto out;
3143
3144 r = -EFAULT;
3145 if (copy_to_user(argp, &cd, sizeof(cd)))
3146 goto out;
3147
3148 r = 0;
3149 break;
3150 }
3151 case KVM_CHECK_EXTENSION:
3152 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3153 break;
3154 default:
3155 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3156 }
3157 out:
3158 return r;
3159 }
3160
3161 #ifdef CONFIG_KVM_COMPAT
3162 struct compat_kvm_dirty_log {
3163 __u32 slot;
3164 __u32 padding1;
3165 union {
3166 compat_uptr_t dirty_bitmap; /* one bit per page */
3167 __u64 padding2;
3168 };
3169 };
3170
3171 static long kvm_vm_compat_ioctl(struct file *filp,
3172 unsigned int ioctl, unsigned long arg)
3173 {
3174 struct kvm *kvm = filp->private_data;
3175 int r;
3176
3177 if (kvm->mm != current->mm)
3178 return -EIO;
3179 switch (ioctl) {
3180 case KVM_GET_DIRTY_LOG: {
3181 struct compat_kvm_dirty_log compat_log;
3182 struct kvm_dirty_log log;
3183
3184 if (copy_from_user(&compat_log, (void __user *)arg,
3185 sizeof(compat_log)))
3186 return -EFAULT;
3187 log.slot = compat_log.slot;
3188 log.padding1 = compat_log.padding1;
3189 log.padding2 = compat_log.padding2;
3190 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3191
3192 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3193 break;
3194 }
3195 default:
3196 r = kvm_vm_ioctl(filp, ioctl, arg);
3197 }
3198 return r;
3199 }
3200 #endif
3201
3202 static struct file_operations kvm_vm_fops = {
3203 .release = kvm_vm_release,
3204 .unlocked_ioctl = kvm_vm_ioctl,
3205 #ifdef CONFIG_KVM_COMPAT
3206 .compat_ioctl = kvm_vm_compat_ioctl,
3207 #endif
3208 .llseek = noop_llseek,
3209 };
3210
3211 static int kvm_dev_ioctl_create_vm(unsigned long type)
3212 {
3213 int r;
3214 struct kvm *kvm;
3215 struct file *file;
3216
3217 kvm = kvm_create_vm(type);
3218 if (IS_ERR(kvm))
3219 return PTR_ERR(kvm);
3220 #ifdef CONFIG_KVM_MMIO
3221 r = kvm_coalesced_mmio_init(kvm);
3222 if (r < 0) {
3223 kvm_put_kvm(kvm);
3224 return r;
3225 }
3226 #endif
3227 r = get_unused_fd_flags(O_CLOEXEC);
3228 if (r < 0) {
3229 kvm_put_kvm(kvm);
3230 return r;
3231 }
3232 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3233 if (IS_ERR(file)) {
3234 put_unused_fd(r);
3235 kvm_put_kvm(kvm);
3236 return PTR_ERR(file);
3237 }
3238
3239 /*
3240 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3241 * already set, with ->release() being kvm_vm_release(). In error
3242 * cases it will be called by the final fput(file) and will take
3243 * care of doing kvm_put_kvm(kvm).
3244 */
3245 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3246 put_unused_fd(r);
3247 fput(file);
3248 return -ENOMEM;
3249 }
3250 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3251
3252 fd_install(r, file);
3253 return r;
3254 }
3255
3256 static long kvm_dev_ioctl(struct file *filp,
3257 unsigned int ioctl, unsigned long arg)
3258 {
3259 long r = -EINVAL;
3260
3261 switch (ioctl) {
3262 case KVM_GET_API_VERSION:
3263 if (arg)
3264 goto out;
3265 r = KVM_API_VERSION;
3266 break;
3267 case KVM_CREATE_VM:
3268 r = kvm_dev_ioctl_create_vm(arg);
3269 break;
3270 case KVM_CHECK_EXTENSION:
3271 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3272 break;
3273 case KVM_GET_VCPU_MMAP_SIZE:
3274 if (arg)
3275 goto out;
3276 r = PAGE_SIZE; /* struct kvm_run */
3277 #ifdef CONFIG_X86
3278 r += PAGE_SIZE; /* pio data page */
3279 #endif
3280 #ifdef CONFIG_KVM_MMIO
3281 r += PAGE_SIZE; /* coalesced mmio ring page */
3282 #endif
3283 break;
3284 case KVM_TRACE_ENABLE:
3285 case KVM_TRACE_PAUSE:
3286 case KVM_TRACE_DISABLE:
3287 r = -EOPNOTSUPP;
3288 break;
3289 default:
3290 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3291 }
3292 out:
3293 return r;
3294 }
3295
3296 static struct file_operations kvm_chardev_ops = {
3297 .unlocked_ioctl = kvm_dev_ioctl,
3298 .compat_ioctl = kvm_dev_ioctl,
3299 .llseek = noop_llseek,
3300 };
3301
3302 static struct miscdevice kvm_dev = {
3303 KVM_MINOR,
3304 "kvm",
3305 &kvm_chardev_ops,
3306 };
3307
3308 static void hardware_enable_nolock(void *junk)
3309 {
3310 int cpu = raw_smp_processor_id();
3311 int r;
3312
3313 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3314 return;
3315
3316 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3317
3318 r = kvm_arch_hardware_enable();
3319
3320 if (r) {
3321 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3322 atomic_inc(&hardware_enable_failed);
3323 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3324 }
3325 }
3326
3327 static int kvm_starting_cpu(unsigned int cpu)
3328 {
3329 raw_spin_lock(&kvm_count_lock);
3330 if (kvm_usage_count)
3331 hardware_enable_nolock(NULL);
3332 raw_spin_unlock(&kvm_count_lock);
3333 return 0;
3334 }
3335
3336 static void hardware_disable_nolock(void *junk)
3337 {
3338 int cpu = raw_smp_processor_id();
3339
3340 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3341 return;
3342 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3343 kvm_arch_hardware_disable();
3344 }
3345
3346 static int kvm_dying_cpu(unsigned int cpu)
3347 {
3348 raw_spin_lock(&kvm_count_lock);
3349 if (kvm_usage_count)
3350 hardware_disable_nolock(NULL);
3351 raw_spin_unlock(&kvm_count_lock);
3352 return 0;
3353 }
3354
3355 static void hardware_disable_all_nolock(void)
3356 {
3357 BUG_ON(!kvm_usage_count);
3358
3359 kvm_usage_count--;
3360 if (!kvm_usage_count)
3361 on_each_cpu(hardware_disable_nolock, NULL, 1);
3362 }
3363
3364 static void hardware_disable_all(void)
3365 {
3366 raw_spin_lock(&kvm_count_lock);
3367 hardware_disable_all_nolock();
3368 raw_spin_unlock(&kvm_count_lock);
3369 }
3370
3371 static int hardware_enable_all(void)
3372 {
3373 int r = 0;
3374
3375 raw_spin_lock(&kvm_count_lock);
3376
3377 kvm_usage_count++;
3378 if (kvm_usage_count == 1) {
3379 atomic_set(&hardware_enable_failed, 0);
3380 on_each_cpu(hardware_enable_nolock, NULL, 1);
3381
3382 if (atomic_read(&hardware_enable_failed)) {
3383 hardware_disable_all_nolock();
3384 r = -EBUSY;
3385 }
3386 }
3387
3388 raw_spin_unlock(&kvm_count_lock);
3389
3390 return r;
3391 }
3392
3393 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3394 void *v)
3395 {
3396 /*
3397 * Some (well, at least mine) BIOSes hang on reboot if
3398 * in vmx root mode.
3399 *
3400 * And Intel TXT required VMX off for all cpu when system shutdown.
3401 */
3402 pr_info("kvm: exiting hardware virtualization\n");
3403 kvm_rebooting = true;
3404 on_each_cpu(hardware_disable_nolock, NULL, 1);
3405 return NOTIFY_OK;
3406 }
3407
3408 static struct notifier_block kvm_reboot_notifier = {
3409 .notifier_call = kvm_reboot,
3410 .priority = 0,
3411 };
3412
3413 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3414 {
3415 int i;
3416
3417 for (i = 0; i < bus->dev_count; i++) {
3418 struct kvm_io_device *pos = bus->range[i].dev;
3419
3420 kvm_iodevice_destructor(pos);
3421 }
3422 kfree(bus);
3423 }
3424
3425 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3426 const struct kvm_io_range *r2)
3427 {
3428 gpa_t addr1 = r1->addr;
3429 gpa_t addr2 = r2->addr;
3430
3431 if (addr1 < addr2)
3432 return -1;
3433
3434 /* If r2->len == 0, match the exact address. If r2->len != 0,
3435 * accept any overlapping write. Any order is acceptable for
3436 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3437 * we process all of them.
3438 */
3439 if (r2->len) {
3440 addr1 += r1->len;
3441 addr2 += r2->len;
3442 }
3443
3444 if (addr1 > addr2)
3445 return 1;
3446
3447 return 0;
3448 }
3449
3450 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3451 {
3452 return kvm_io_bus_cmp(p1, p2);
3453 }
3454
3455 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3456 gpa_t addr, int len)
3457 {
3458 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3459 .addr = addr,
3460 .len = len,
3461 .dev = dev,
3462 };
3463
3464 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3465 kvm_io_bus_sort_cmp, NULL);
3466
3467 return 0;
3468 }
3469
3470 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3471 gpa_t addr, int len)
3472 {
3473 struct kvm_io_range *range, key;
3474 int off;
3475
3476 key = (struct kvm_io_range) {
3477 .addr = addr,
3478 .len = len,
3479 };
3480
3481 range = bsearch(&key, bus->range, bus->dev_count,
3482 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3483 if (range == NULL)
3484 return -ENOENT;
3485
3486 off = range - bus->range;
3487
3488 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3489 off--;
3490
3491 return off;
3492 }
3493
3494 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3495 struct kvm_io_range *range, const void *val)
3496 {
3497 int idx;
3498
3499 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3500 if (idx < 0)
3501 return -EOPNOTSUPP;
3502
3503 while (idx < bus->dev_count &&
3504 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3505 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3506 range->len, val))
3507 return idx;
3508 idx++;
3509 }
3510
3511 return -EOPNOTSUPP;
3512 }
3513
3514 /* kvm_io_bus_write - called under kvm->slots_lock */
3515 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3516 int len, const void *val)
3517 {
3518 struct kvm_io_bus *bus;
3519 struct kvm_io_range range;
3520 int r;
3521
3522 range = (struct kvm_io_range) {
3523 .addr = addr,
3524 .len = len,
3525 };
3526
3527 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3528 if (!bus)
3529 return -ENOMEM;
3530 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3531 return r < 0 ? r : 0;
3532 }
3533
3534 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3535 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3536 gpa_t addr, int len, const void *val, long cookie)
3537 {
3538 struct kvm_io_bus *bus;
3539 struct kvm_io_range range;
3540
3541 range = (struct kvm_io_range) {
3542 .addr = addr,
3543 .len = len,
3544 };
3545
3546 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3547 if (!bus)
3548 return -ENOMEM;
3549
3550 /* First try the device referenced by cookie. */
3551 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3552 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3553 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3554 val))
3555 return cookie;
3556
3557 /*
3558 * cookie contained garbage; fall back to search and return the
3559 * correct cookie value.
3560 */
3561 return __kvm_io_bus_write(vcpu, bus, &range, val);
3562 }
3563
3564 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3565 struct kvm_io_range *range, void *val)
3566 {
3567 int idx;
3568
3569 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3570 if (idx < 0)
3571 return -EOPNOTSUPP;
3572
3573 while (idx < bus->dev_count &&
3574 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3575 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3576 range->len, val))
3577 return idx;
3578 idx++;
3579 }
3580
3581 return -EOPNOTSUPP;
3582 }
3583 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3584
3585 /* kvm_io_bus_read - called under kvm->slots_lock */
3586 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3587 int len, void *val)
3588 {
3589 struct kvm_io_bus *bus;
3590 struct kvm_io_range range;
3591 int r;
3592
3593 range = (struct kvm_io_range) {
3594 .addr = addr,
3595 .len = len,
3596 };
3597
3598 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3599 if (!bus)
3600 return -ENOMEM;
3601 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3602 return r < 0 ? r : 0;
3603 }
3604
3605
3606 /* Caller must hold slots_lock. */
3607 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3608 int len, struct kvm_io_device *dev)
3609 {
3610 struct kvm_io_bus *new_bus, *bus;
3611
3612 bus = kvm_get_bus(kvm, bus_idx);
3613 if (!bus)
3614 return -ENOMEM;
3615
3616 /* exclude ioeventfd which is limited by maximum fd */
3617 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3618 return -ENOSPC;
3619
3620 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3621 sizeof(struct kvm_io_range)), GFP_KERNEL);
3622 if (!new_bus)
3623 return -ENOMEM;
3624 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3625 sizeof(struct kvm_io_range)));
3626 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3627 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3628 synchronize_srcu_expedited(&kvm->srcu);
3629 kfree(bus);
3630
3631 return 0;
3632 }
3633
3634 /* Caller must hold slots_lock. */
3635 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3636 struct kvm_io_device *dev)
3637 {
3638 int i;
3639 struct kvm_io_bus *new_bus, *bus;
3640
3641 bus = kvm_get_bus(kvm, bus_idx);
3642 if (!bus)
3643 return;
3644
3645 for (i = 0; i < bus->dev_count; i++)
3646 if (bus->range[i].dev == dev) {
3647 break;
3648 }
3649
3650 if (i == bus->dev_count)
3651 return;
3652
3653 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3654 sizeof(struct kvm_io_range)), GFP_KERNEL);
3655 if (!new_bus) {
3656 pr_err("kvm: failed to shrink bus, removing it completely\n");
3657 goto broken;
3658 }
3659
3660 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3661 new_bus->dev_count--;
3662 memcpy(new_bus->range + i, bus->range + i + 1,
3663 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3664
3665 broken:
3666 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3667 synchronize_srcu_expedited(&kvm->srcu);
3668 kfree(bus);
3669 return;
3670 }
3671
3672 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3673 gpa_t addr)
3674 {
3675 struct kvm_io_bus *bus;
3676 int dev_idx, srcu_idx;
3677 struct kvm_io_device *iodev = NULL;
3678
3679 srcu_idx = srcu_read_lock(&kvm->srcu);
3680
3681 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3682 if (!bus)
3683 goto out_unlock;
3684
3685 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3686 if (dev_idx < 0)
3687 goto out_unlock;
3688
3689 iodev = bus->range[dev_idx].dev;
3690
3691 out_unlock:
3692 srcu_read_unlock(&kvm->srcu, srcu_idx);
3693
3694 return iodev;
3695 }
3696 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3697
3698 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3699 int (*get)(void *, u64 *), int (*set)(void *, u64),
3700 const char *fmt)
3701 {
3702 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3703 inode->i_private;
3704
3705 /* The debugfs files are a reference to the kvm struct which
3706 * is still valid when kvm_destroy_vm is called.
3707 * To avoid the race between open and the removal of the debugfs
3708 * directory we test against the users count.
3709 */
3710 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3711 return -ENOENT;
3712
3713 if (simple_attr_open(inode, file, get, set, fmt)) {
3714 kvm_put_kvm(stat_data->kvm);
3715 return -ENOMEM;
3716 }
3717
3718 return 0;
3719 }
3720
3721 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3722 {
3723 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3724 inode->i_private;
3725
3726 simple_attr_release(inode, file);
3727 kvm_put_kvm(stat_data->kvm);
3728
3729 return 0;
3730 }
3731
3732 static int vm_stat_get_per_vm(void *data, u64 *val)
3733 {
3734 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3735
3736 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3737
3738 return 0;
3739 }
3740
3741 static int vm_stat_clear_per_vm(void *data, u64 val)
3742 {
3743 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3744
3745 if (val)
3746 return -EINVAL;
3747
3748 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3749
3750 return 0;
3751 }
3752
3753 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3754 {
3755 __simple_attr_check_format("%llu\n", 0ull);
3756 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3757 vm_stat_clear_per_vm, "%llu\n");
3758 }
3759
3760 static const struct file_operations vm_stat_get_per_vm_fops = {
3761 .owner = THIS_MODULE,
3762 .open = vm_stat_get_per_vm_open,
3763 .release = kvm_debugfs_release,
3764 .read = simple_attr_read,
3765 .write = simple_attr_write,
3766 .llseek = no_llseek,
3767 };
3768
3769 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3770 {
3771 int i;
3772 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3773 struct kvm_vcpu *vcpu;
3774
3775 *val = 0;
3776
3777 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3778 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3779
3780 return 0;
3781 }
3782
3783 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3784 {
3785 int i;
3786 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3787 struct kvm_vcpu *vcpu;
3788
3789 if (val)
3790 return -EINVAL;
3791
3792 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3793 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3794
3795 return 0;
3796 }
3797
3798 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3799 {
3800 __simple_attr_check_format("%llu\n", 0ull);
3801 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3802 vcpu_stat_clear_per_vm, "%llu\n");
3803 }
3804
3805 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3806 .owner = THIS_MODULE,
3807 .open = vcpu_stat_get_per_vm_open,
3808 .release = kvm_debugfs_release,
3809 .read = simple_attr_read,
3810 .write = simple_attr_write,
3811 .llseek = no_llseek,
3812 };
3813
3814 static const struct file_operations *stat_fops_per_vm[] = {
3815 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3816 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3817 };
3818
3819 static int vm_stat_get(void *_offset, u64 *val)
3820 {
3821 unsigned offset = (long)_offset;
3822 struct kvm *kvm;
3823 struct kvm_stat_data stat_tmp = {.offset = offset};
3824 u64 tmp_val;
3825
3826 *val = 0;
3827 spin_lock(&kvm_lock);
3828 list_for_each_entry(kvm, &vm_list, vm_list) {
3829 stat_tmp.kvm = kvm;
3830 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3831 *val += tmp_val;
3832 }
3833 spin_unlock(&kvm_lock);
3834 return 0;
3835 }
3836
3837 static int vm_stat_clear(void *_offset, u64 val)
3838 {
3839 unsigned offset = (long)_offset;
3840 struct kvm *kvm;
3841 struct kvm_stat_data stat_tmp = {.offset = offset};
3842
3843 if (val)
3844 return -EINVAL;
3845
3846 spin_lock(&kvm_lock);
3847 list_for_each_entry(kvm, &vm_list, vm_list) {
3848 stat_tmp.kvm = kvm;
3849 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3850 }
3851 spin_unlock(&kvm_lock);
3852
3853 return 0;
3854 }
3855
3856 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3857
3858 static int vcpu_stat_get(void *_offset, u64 *val)
3859 {
3860 unsigned offset = (long)_offset;
3861 struct kvm *kvm;
3862 struct kvm_stat_data stat_tmp = {.offset = offset};
3863 u64 tmp_val;
3864
3865 *val = 0;
3866 spin_lock(&kvm_lock);
3867 list_for_each_entry(kvm, &vm_list, vm_list) {
3868 stat_tmp.kvm = kvm;
3869 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3870 *val += tmp_val;
3871 }
3872 spin_unlock(&kvm_lock);
3873 return 0;
3874 }
3875
3876 static int vcpu_stat_clear(void *_offset, u64 val)
3877 {
3878 unsigned offset = (long)_offset;
3879 struct kvm *kvm;
3880 struct kvm_stat_data stat_tmp = {.offset = offset};
3881
3882 if (val)
3883 return -EINVAL;
3884
3885 spin_lock(&kvm_lock);
3886 list_for_each_entry(kvm, &vm_list, vm_list) {
3887 stat_tmp.kvm = kvm;
3888 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3889 }
3890 spin_unlock(&kvm_lock);
3891
3892 return 0;
3893 }
3894
3895 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3896 "%llu\n");
3897
3898 static const struct file_operations *stat_fops[] = {
3899 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3900 [KVM_STAT_VM] = &vm_stat_fops,
3901 };
3902
3903 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3904 {
3905 struct kobj_uevent_env *env;
3906 unsigned long long created, active;
3907
3908 if (!kvm_dev.this_device || !kvm)
3909 return;
3910
3911 spin_lock(&kvm_lock);
3912 if (type == KVM_EVENT_CREATE_VM) {
3913 kvm_createvm_count++;
3914 kvm_active_vms++;
3915 } else if (type == KVM_EVENT_DESTROY_VM) {
3916 kvm_active_vms--;
3917 }
3918 created = kvm_createvm_count;
3919 active = kvm_active_vms;
3920 spin_unlock(&kvm_lock);
3921
3922 env = kzalloc(sizeof(*env), GFP_KERNEL);
3923 if (!env)
3924 return;
3925
3926 add_uevent_var(env, "CREATED=%llu", created);
3927 add_uevent_var(env, "COUNT=%llu", active);
3928
3929 if (type == KVM_EVENT_CREATE_VM) {
3930 add_uevent_var(env, "EVENT=create");
3931 kvm->userspace_pid = task_pid_nr(current);
3932 } else if (type == KVM_EVENT_DESTROY_VM) {
3933 add_uevent_var(env, "EVENT=destroy");
3934 }
3935 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3936
3937 if (kvm->debugfs_dentry) {
3938 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3939
3940 if (p) {
3941 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3942 if (!IS_ERR(tmp))
3943 add_uevent_var(env, "STATS_PATH=%s", tmp);
3944 kfree(p);
3945 }
3946 }
3947 /* no need for checks, since we are adding at most only 5 keys */
3948 env->envp[env->envp_idx++] = NULL;
3949 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3950 kfree(env);
3951 }
3952
3953 static int kvm_init_debug(void)
3954 {
3955 int r = -EEXIST;
3956 struct kvm_stats_debugfs_item *p;
3957
3958 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3959 if (kvm_debugfs_dir == NULL)
3960 goto out;
3961
3962 kvm_debugfs_num_entries = 0;
3963 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3964 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3965 (void *)(long)p->offset,
3966 stat_fops[p->kind]))
3967 goto out_dir;
3968 }
3969
3970 return 0;
3971
3972 out_dir:
3973 debugfs_remove_recursive(kvm_debugfs_dir);
3974 out:
3975 return r;
3976 }
3977
3978 static int kvm_suspend(void)
3979 {
3980 if (kvm_usage_count)
3981 hardware_disable_nolock(NULL);
3982 return 0;
3983 }
3984
3985 static void kvm_resume(void)
3986 {
3987 if (kvm_usage_count) {
3988 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3989 hardware_enable_nolock(NULL);
3990 }
3991 }
3992
3993 static struct syscore_ops kvm_syscore_ops = {
3994 .suspend = kvm_suspend,
3995 .resume = kvm_resume,
3996 };
3997
3998 static inline
3999 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4000 {
4001 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4002 }
4003
4004 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4005 {
4006 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4007
4008 if (vcpu->preempted)
4009 vcpu->preempted = false;
4010
4011 kvm_arch_sched_in(vcpu, cpu);
4012
4013 kvm_arch_vcpu_load(vcpu, cpu);
4014 }
4015
4016 static void kvm_sched_out(struct preempt_notifier *pn,
4017 struct task_struct *next)
4018 {
4019 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4020
4021 if (current->state == TASK_RUNNING)
4022 vcpu->preempted = true;
4023 kvm_arch_vcpu_put(vcpu);
4024 }
4025
4026 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4027 struct module *module)
4028 {
4029 int r;
4030 int cpu;
4031
4032 r = kvm_arch_init(opaque);
4033 if (r)
4034 goto out_fail;
4035
4036 /*
4037 * kvm_arch_init makes sure there's at most one caller
4038 * for architectures that support multiple implementations,
4039 * like intel and amd on x86.
4040 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4041 * conflicts in case kvm is already setup for another implementation.
4042 */
4043 r = kvm_irqfd_init();
4044 if (r)
4045 goto out_irqfd;
4046
4047 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4048 r = -ENOMEM;
4049 goto out_free_0;
4050 }
4051
4052 r = kvm_arch_hardware_setup();
4053 if (r < 0)
4054 goto out_free_0a;
4055
4056 for_each_online_cpu(cpu) {
4057 smp_call_function_single(cpu,
4058 kvm_arch_check_processor_compat,
4059 &r, 1);
4060 if (r < 0)
4061 goto out_free_1;
4062 }
4063
4064 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4065 kvm_starting_cpu, kvm_dying_cpu);
4066 if (r)
4067 goto out_free_2;
4068 register_reboot_notifier(&kvm_reboot_notifier);
4069
4070 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4071 if (!vcpu_align)
4072 vcpu_align = __alignof__(struct kvm_vcpu);
4073 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4074 SLAB_ACCOUNT, NULL);
4075 if (!kvm_vcpu_cache) {
4076 r = -ENOMEM;
4077 goto out_free_3;
4078 }
4079
4080 r = kvm_async_pf_init();
4081 if (r)
4082 goto out_free;
4083
4084 kvm_chardev_ops.owner = module;
4085 kvm_vm_fops.owner = module;
4086 kvm_vcpu_fops.owner = module;
4087
4088 r = misc_register(&kvm_dev);
4089 if (r) {
4090 pr_err("kvm: misc device register failed\n");
4091 goto out_unreg;
4092 }
4093
4094 register_syscore_ops(&kvm_syscore_ops);
4095
4096 kvm_preempt_ops.sched_in = kvm_sched_in;
4097 kvm_preempt_ops.sched_out = kvm_sched_out;
4098
4099 r = kvm_init_debug();
4100 if (r) {
4101 pr_err("kvm: create debugfs files failed\n");
4102 goto out_undebugfs;
4103 }
4104
4105 r = kvm_vfio_ops_init();
4106 WARN_ON(r);
4107
4108 return 0;
4109
4110 out_undebugfs:
4111 unregister_syscore_ops(&kvm_syscore_ops);
4112 misc_deregister(&kvm_dev);
4113 out_unreg:
4114 kvm_async_pf_deinit();
4115 out_free:
4116 kmem_cache_destroy(kvm_vcpu_cache);
4117 out_free_3:
4118 unregister_reboot_notifier(&kvm_reboot_notifier);
4119 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4120 out_free_2:
4121 out_free_1:
4122 kvm_arch_hardware_unsetup();
4123 out_free_0a:
4124 free_cpumask_var(cpus_hardware_enabled);
4125 out_free_0:
4126 kvm_irqfd_exit();
4127 out_irqfd:
4128 kvm_arch_exit();
4129 out_fail:
4130 return r;
4131 }
4132 EXPORT_SYMBOL_GPL(kvm_init);
4133
4134 void kvm_exit(void)
4135 {
4136 debugfs_remove_recursive(kvm_debugfs_dir);
4137 misc_deregister(&kvm_dev);
4138 kmem_cache_destroy(kvm_vcpu_cache);
4139 kvm_async_pf_deinit();
4140 unregister_syscore_ops(&kvm_syscore_ops);
4141 unregister_reboot_notifier(&kvm_reboot_notifier);
4142 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4143 on_each_cpu(hardware_disable_nolock, NULL, 1);
4144 kvm_arch_hardware_unsetup();
4145 kvm_arch_exit();
4146 kvm_irqfd_exit();
4147 free_cpumask_var(cpus_hardware_enabled);
4148 kvm_vfio_ops_exit();
4149 }
4150 EXPORT_SYMBOL_GPL(kvm_exit);