]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/kvm_main.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/mm.h>
26 #include <linux/miscdevice.h>
27 #include <linux/vmalloc.h>
28 #include <linux/reboot.h>
29 #include <linux/debugfs.h>
30 #include <linux/highmem.h>
31 #include <linux/file.h>
32 #include <linux/sysdev.h>
33 #include <linux/cpu.h>
34 #include <linux/sched.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49
50 #include <asm/processor.h>
51 #include <asm/io.h>
52 #include <asm/uaccess.h>
53 #include <asm/pgtable.h>
54 #include <asm-generic/bitops/le.h>
55
56 #include "coalesced_mmio.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/kvm.h>
60
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63
64 /*
65 * Ordering of locks:
66 *
67 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
68 */
69
70 DEFINE_SPINLOCK(kvm_lock);
71 LIST_HEAD(vm_list);
72
73 static cpumask_var_t cpus_hardware_enabled;
74 static int kvm_usage_count = 0;
75 static atomic_t hardware_enable_failed;
76
77 struct kmem_cache *kvm_vcpu_cache;
78 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
79
80 static __read_mostly struct preempt_ops kvm_preempt_ops;
81
82 struct dentry *kvm_debugfs_dir;
83
84 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
85 unsigned long arg);
86 static int hardware_enable_all(void);
87 static void hardware_disable_all(void);
88
89 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
90
91 static bool kvm_rebooting;
92
93 static bool largepages_enabled = true;
94
95 inline int kvm_is_mmio_pfn(pfn_t pfn)
96 {
97 if (pfn_valid(pfn)) {
98 struct page *page = compound_head(pfn_to_page(pfn));
99 return PageReserved(page);
100 }
101
102 return true;
103 }
104
105 /*
106 * Switches to specified vcpu, until a matching vcpu_put()
107 */
108 void vcpu_load(struct kvm_vcpu *vcpu)
109 {
110 int cpu;
111
112 mutex_lock(&vcpu->mutex);
113 cpu = get_cpu();
114 preempt_notifier_register(&vcpu->preempt_notifier);
115 kvm_arch_vcpu_load(vcpu, cpu);
116 put_cpu();
117 }
118
119 void vcpu_put(struct kvm_vcpu *vcpu)
120 {
121 preempt_disable();
122 kvm_arch_vcpu_put(vcpu);
123 preempt_notifier_unregister(&vcpu->preempt_notifier);
124 preempt_enable();
125 mutex_unlock(&vcpu->mutex);
126 }
127
128 static void ack_flush(void *_completed)
129 {
130 }
131
132 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
133 {
134 int i, cpu, me;
135 cpumask_var_t cpus;
136 bool called = true;
137 struct kvm_vcpu *vcpu;
138
139 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
140
141 raw_spin_lock(&kvm->requests_lock);
142 me = smp_processor_id();
143 kvm_for_each_vcpu(i, vcpu, kvm) {
144 if (test_and_set_bit(req, &vcpu->requests))
145 continue;
146 cpu = vcpu->cpu;
147 if (cpus != NULL && cpu != -1 && cpu != me)
148 cpumask_set_cpu(cpu, cpus);
149 }
150 if (unlikely(cpus == NULL))
151 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
152 else if (!cpumask_empty(cpus))
153 smp_call_function_many(cpus, ack_flush, NULL, 1);
154 else
155 called = false;
156 raw_spin_unlock(&kvm->requests_lock);
157 free_cpumask_var(cpus);
158 return called;
159 }
160
161 void kvm_flush_remote_tlbs(struct kvm *kvm)
162 {
163 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
164 ++kvm->stat.remote_tlb_flush;
165 }
166
167 void kvm_reload_remote_mmus(struct kvm *kvm)
168 {
169 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
170 }
171
172 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
173 {
174 struct page *page;
175 int r;
176
177 mutex_init(&vcpu->mutex);
178 vcpu->cpu = -1;
179 vcpu->kvm = kvm;
180 vcpu->vcpu_id = id;
181 init_waitqueue_head(&vcpu->wq);
182
183 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
184 if (!page) {
185 r = -ENOMEM;
186 goto fail;
187 }
188 vcpu->run = page_address(page);
189
190 r = kvm_arch_vcpu_init(vcpu);
191 if (r < 0)
192 goto fail_free_run;
193 return 0;
194
195 fail_free_run:
196 free_page((unsigned long)vcpu->run);
197 fail:
198 return r;
199 }
200 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
201
202 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
203 {
204 kvm_arch_vcpu_uninit(vcpu);
205 free_page((unsigned long)vcpu->run);
206 }
207 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
208
209 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
210 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
211 {
212 return container_of(mn, struct kvm, mmu_notifier);
213 }
214
215 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
216 struct mm_struct *mm,
217 unsigned long address)
218 {
219 struct kvm *kvm = mmu_notifier_to_kvm(mn);
220 int need_tlb_flush, idx;
221
222 /*
223 * When ->invalidate_page runs, the linux pte has been zapped
224 * already but the page is still allocated until
225 * ->invalidate_page returns. So if we increase the sequence
226 * here the kvm page fault will notice if the spte can't be
227 * established because the page is going to be freed. If
228 * instead the kvm page fault establishes the spte before
229 * ->invalidate_page runs, kvm_unmap_hva will release it
230 * before returning.
231 *
232 * The sequence increase only need to be seen at spin_unlock
233 * time, and not at spin_lock time.
234 *
235 * Increasing the sequence after the spin_unlock would be
236 * unsafe because the kvm page fault could then establish the
237 * pte after kvm_unmap_hva returned, without noticing the page
238 * is going to be freed.
239 */
240 idx = srcu_read_lock(&kvm->srcu);
241 spin_lock(&kvm->mmu_lock);
242 kvm->mmu_notifier_seq++;
243 need_tlb_flush = kvm_unmap_hva(kvm, address);
244 spin_unlock(&kvm->mmu_lock);
245 srcu_read_unlock(&kvm->srcu, idx);
246
247 /* we've to flush the tlb before the pages can be freed */
248 if (need_tlb_flush)
249 kvm_flush_remote_tlbs(kvm);
250
251 }
252
253 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
254 struct mm_struct *mm,
255 unsigned long address,
256 pte_t pte)
257 {
258 struct kvm *kvm = mmu_notifier_to_kvm(mn);
259 int idx;
260
261 idx = srcu_read_lock(&kvm->srcu);
262 spin_lock(&kvm->mmu_lock);
263 kvm->mmu_notifier_seq++;
264 kvm_set_spte_hva(kvm, address, pte);
265 spin_unlock(&kvm->mmu_lock);
266 srcu_read_unlock(&kvm->srcu, idx);
267 }
268
269 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
270 struct mm_struct *mm,
271 unsigned long start,
272 unsigned long end)
273 {
274 struct kvm *kvm = mmu_notifier_to_kvm(mn);
275 int need_tlb_flush = 0, idx;
276
277 idx = srcu_read_lock(&kvm->srcu);
278 spin_lock(&kvm->mmu_lock);
279 /*
280 * The count increase must become visible at unlock time as no
281 * spte can be established without taking the mmu_lock and
282 * count is also read inside the mmu_lock critical section.
283 */
284 kvm->mmu_notifier_count++;
285 for (; start < end; start += PAGE_SIZE)
286 need_tlb_flush |= kvm_unmap_hva(kvm, start);
287 spin_unlock(&kvm->mmu_lock);
288 srcu_read_unlock(&kvm->srcu, idx);
289
290 /* we've to flush the tlb before the pages can be freed */
291 if (need_tlb_flush)
292 kvm_flush_remote_tlbs(kvm);
293 }
294
295 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
296 struct mm_struct *mm,
297 unsigned long start,
298 unsigned long end)
299 {
300 struct kvm *kvm = mmu_notifier_to_kvm(mn);
301
302 spin_lock(&kvm->mmu_lock);
303 /*
304 * This sequence increase will notify the kvm page fault that
305 * the page that is going to be mapped in the spte could have
306 * been freed.
307 */
308 kvm->mmu_notifier_seq++;
309 /*
310 * The above sequence increase must be visible before the
311 * below count decrease but both values are read by the kvm
312 * page fault under mmu_lock spinlock so we don't need to add
313 * a smb_wmb() here in between the two.
314 */
315 kvm->mmu_notifier_count--;
316 spin_unlock(&kvm->mmu_lock);
317
318 BUG_ON(kvm->mmu_notifier_count < 0);
319 }
320
321 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
322 struct mm_struct *mm,
323 unsigned long address)
324 {
325 struct kvm *kvm = mmu_notifier_to_kvm(mn);
326 int young, idx;
327
328 idx = srcu_read_lock(&kvm->srcu);
329 spin_lock(&kvm->mmu_lock);
330 young = kvm_age_hva(kvm, address);
331 spin_unlock(&kvm->mmu_lock);
332 srcu_read_unlock(&kvm->srcu, idx);
333
334 if (young)
335 kvm_flush_remote_tlbs(kvm);
336
337 return young;
338 }
339
340 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
341 struct mm_struct *mm)
342 {
343 struct kvm *kvm = mmu_notifier_to_kvm(mn);
344 kvm_arch_flush_shadow(kvm);
345 }
346
347 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
348 .invalidate_page = kvm_mmu_notifier_invalidate_page,
349 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
350 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
351 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
352 .change_pte = kvm_mmu_notifier_change_pte,
353 .release = kvm_mmu_notifier_release,
354 };
355
356 static int kvm_init_mmu_notifier(struct kvm *kvm)
357 {
358 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
359 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
360 }
361
362 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
363
364 static int kvm_init_mmu_notifier(struct kvm *kvm)
365 {
366 return 0;
367 }
368
369 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
370
371 static struct kvm *kvm_create_vm(void)
372 {
373 int r = 0, i;
374 struct kvm *kvm = kvm_arch_create_vm();
375
376 if (IS_ERR(kvm))
377 goto out;
378
379 r = hardware_enable_all();
380 if (r)
381 goto out_err_nodisable;
382
383 #ifdef CONFIG_HAVE_KVM_IRQCHIP
384 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
385 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
386 #endif
387
388 r = -ENOMEM;
389 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
390 if (!kvm->memslots)
391 goto out_err;
392 if (init_srcu_struct(&kvm->srcu))
393 goto out_err;
394 for (i = 0; i < KVM_NR_BUSES; i++) {
395 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
396 GFP_KERNEL);
397 if (!kvm->buses[i]) {
398 cleanup_srcu_struct(&kvm->srcu);
399 goto out_err;
400 }
401 }
402
403 r = kvm_init_mmu_notifier(kvm);
404 if (r) {
405 cleanup_srcu_struct(&kvm->srcu);
406 goto out_err;
407 }
408
409 kvm->mm = current->mm;
410 atomic_inc(&kvm->mm->mm_count);
411 spin_lock_init(&kvm->mmu_lock);
412 raw_spin_lock_init(&kvm->requests_lock);
413 kvm_eventfd_init(kvm);
414 mutex_init(&kvm->lock);
415 mutex_init(&kvm->irq_lock);
416 mutex_init(&kvm->slots_lock);
417 atomic_set(&kvm->users_count, 1);
418 spin_lock(&kvm_lock);
419 list_add(&kvm->vm_list, &vm_list);
420 spin_unlock(&kvm_lock);
421 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
422 kvm_coalesced_mmio_init(kvm);
423 #endif
424 out:
425 return kvm;
426
427 out_err:
428 hardware_disable_all();
429 out_err_nodisable:
430 for (i = 0; i < KVM_NR_BUSES; i++)
431 kfree(kvm->buses[i]);
432 kfree(kvm->memslots);
433 kfree(kvm);
434 return ERR_PTR(r);
435 }
436
437 /*
438 * Free any memory in @free but not in @dont.
439 */
440 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
441 struct kvm_memory_slot *dont)
442 {
443 int i;
444
445 if (!dont || free->rmap != dont->rmap)
446 vfree(free->rmap);
447
448 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
449 vfree(free->dirty_bitmap);
450
451
452 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
453 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
454 vfree(free->lpage_info[i]);
455 free->lpage_info[i] = NULL;
456 }
457 }
458
459 free->npages = 0;
460 free->dirty_bitmap = NULL;
461 free->rmap = NULL;
462 }
463
464 void kvm_free_physmem(struct kvm *kvm)
465 {
466 int i;
467 struct kvm_memslots *slots = kvm->memslots;
468
469 for (i = 0; i < slots->nmemslots; ++i)
470 kvm_free_physmem_slot(&slots->memslots[i], NULL);
471
472 kfree(kvm->memslots);
473 }
474
475 static void kvm_destroy_vm(struct kvm *kvm)
476 {
477 int i;
478 struct mm_struct *mm = kvm->mm;
479
480 kvm_arch_sync_events(kvm);
481 spin_lock(&kvm_lock);
482 list_del(&kvm->vm_list);
483 spin_unlock(&kvm_lock);
484 kvm_free_irq_routing(kvm);
485 for (i = 0; i < KVM_NR_BUSES; i++)
486 kvm_io_bus_destroy(kvm->buses[i]);
487 kvm_coalesced_mmio_free(kvm);
488 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
489 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
490 #else
491 kvm_arch_flush_shadow(kvm);
492 #endif
493 kvm_arch_destroy_vm(kvm);
494 hardware_disable_all();
495 mmdrop(mm);
496 }
497
498 void kvm_get_kvm(struct kvm *kvm)
499 {
500 atomic_inc(&kvm->users_count);
501 }
502 EXPORT_SYMBOL_GPL(kvm_get_kvm);
503
504 void kvm_put_kvm(struct kvm *kvm)
505 {
506 if (atomic_dec_and_test(&kvm->users_count))
507 kvm_destroy_vm(kvm);
508 }
509 EXPORT_SYMBOL_GPL(kvm_put_kvm);
510
511
512 static int kvm_vm_release(struct inode *inode, struct file *filp)
513 {
514 struct kvm *kvm = filp->private_data;
515
516 kvm_irqfd_release(kvm);
517
518 kvm_put_kvm(kvm);
519 return 0;
520 }
521
522 /*
523 * Allocate some memory and give it an address in the guest physical address
524 * space.
525 *
526 * Discontiguous memory is allowed, mostly for framebuffers.
527 *
528 * Must be called holding mmap_sem for write.
529 */
530 int __kvm_set_memory_region(struct kvm *kvm,
531 struct kvm_userspace_memory_region *mem,
532 int user_alloc)
533 {
534 int r, flush_shadow = 0;
535 gfn_t base_gfn;
536 unsigned long npages;
537 unsigned long i;
538 struct kvm_memory_slot *memslot;
539 struct kvm_memory_slot old, new;
540 struct kvm_memslots *slots, *old_memslots;
541
542 r = -EINVAL;
543 /* General sanity checks */
544 if (mem->memory_size & (PAGE_SIZE - 1))
545 goto out;
546 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
547 goto out;
548 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
549 goto out;
550 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
551 goto out;
552 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
553 goto out;
554
555 memslot = &kvm->memslots->memslots[mem->slot];
556 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
557 npages = mem->memory_size >> PAGE_SHIFT;
558
559 if (!npages)
560 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
561
562 new = old = *memslot;
563
564 new.base_gfn = base_gfn;
565 new.npages = npages;
566 new.flags = mem->flags;
567
568 /* Disallow changing a memory slot's size. */
569 r = -EINVAL;
570 if (npages && old.npages && npages != old.npages)
571 goto out_free;
572
573 /* Check for overlaps */
574 r = -EEXIST;
575 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
576 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
577
578 if (s == memslot || !s->npages)
579 continue;
580 if (!((base_gfn + npages <= s->base_gfn) ||
581 (base_gfn >= s->base_gfn + s->npages)))
582 goto out_free;
583 }
584
585 /* Free page dirty bitmap if unneeded */
586 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
587 new.dirty_bitmap = NULL;
588
589 r = -ENOMEM;
590
591 /* Allocate if a slot is being created */
592 #ifndef CONFIG_S390
593 if (npages && !new.rmap) {
594 new.rmap = vmalloc(npages * sizeof(struct page *));
595
596 if (!new.rmap)
597 goto out_free;
598
599 memset(new.rmap, 0, npages * sizeof(*new.rmap));
600
601 new.user_alloc = user_alloc;
602 new.userspace_addr = mem->userspace_addr;
603 }
604 if (!npages)
605 goto skip_lpage;
606
607 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
608 unsigned long ugfn;
609 unsigned long j;
610 int lpages;
611 int level = i + 2;
612
613 /* Avoid unused variable warning if no large pages */
614 (void)level;
615
616 if (new.lpage_info[i])
617 continue;
618
619 lpages = 1 + (base_gfn + npages - 1) /
620 KVM_PAGES_PER_HPAGE(level);
621 lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
622
623 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
624
625 if (!new.lpage_info[i])
626 goto out_free;
627
628 memset(new.lpage_info[i], 0,
629 lpages * sizeof(*new.lpage_info[i]));
630
631 if (base_gfn % KVM_PAGES_PER_HPAGE(level))
632 new.lpage_info[i][0].write_count = 1;
633 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
634 new.lpage_info[i][lpages - 1].write_count = 1;
635 ugfn = new.userspace_addr >> PAGE_SHIFT;
636 /*
637 * If the gfn and userspace address are not aligned wrt each
638 * other, or if explicitly asked to, disable large page
639 * support for this slot
640 */
641 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
642 !largepages_enabled)
643 for (j = 0; j < lpages; ++j)
644 new.lpage_info[i][j].write_count = 1;
645 }
646
647 skip_lpage:
648
649 /* Allocate page dirty bitmap if needed */
650 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
651 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
652
653 new.dirty_bitmap = vmalloc(dirty_bytes);
654 if (!new.dirty_bitmap)
655 goto out_free;
656 memset(new.dirty_bitmap, 0, dirty_bytes);
657 /* destroy any largepage mappings for dirty tracking */
658 if (old.npages)
659 flush_shadow = 1;
660 }
661 #else /* not defined CONFIG_S390 */
662 new.user_alloc = user_alloc;
663 if (user_alloc)
664 new.userspace_addr = mem->userspace_addr;
665 #endif /* not defined CONFIG_S390 */
666
667 if (!npages) {
668 r = -ENOMEM;
669 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
670 if (!slots)
671 goto out_free;
672 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
673 if (mem->slot >= slots->nmemslots)
674 slots->nmemslots = mem->slot + 1;
675 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
676
677 old_memslots = kvm->memslots;
678 rcu_assign_pointer(kvm->memslots, slots);
679 synchronize_srcu_expedited(&kvm->srcu);
680 /* From this point no new shadow pages pointing to a deleted
681 * memslot will be created.
682 *
683 * validation of sp->gfn happens in:
684 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
685 * - kvm_is_visible_gfn (mmu_check_roots)
686 */
687 kvm_arch_flush_shadow(kvm);
688 kfree(old_memslots);
689 }
690
691 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
692 if (r)
693 goto out_free;
694
695 #ifdef CONFIG_DMAR
696 /* map the pages in iommu page table */
697 if (npages) {
698 r = kvm_iommu_map_pages(kvm, &new);
699 if (r)
700 goto out_free;
701 }
702 #endif
703
704 r = -ENOMEM;
705 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
706 if (!slots)
707 goto out_free;
708 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
709 if (mem->slot >= slots->nmemslots)
710 slots->nmemslots = mem->slot + 1;
711
712 /* actual memory is freed via old in kvm_free_physmem_slot below */
713 if (!npages) {
714 new.rmap = NULL;
715 new.dirty_bitmap = NULL;
716 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
717 new.lpage_info[i] = NULL;
718 }
719
720 slots->memslots[mem->slot] = new;
721 old_memslots = kvm->memslots;
722 rcu_assign_pointer(kvm->memslots, slots);
723 synchronize_srcu_expedited(&kvm->srcu);
724
725 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
726
727 kvm_free_physmem_slot(&old, &new);
728 kfree(old_memslots);
729
730 if (flush_shadow)
731 kvm_arch_flush_shadow(kvm);
732
733 return 0;
734
735 out_free:
736 kvm_free_physmem_slot(&new, &old);
737 out:
738 return r;
739
740 }
741 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
742
743 int kvm_set_memory_region(struct kvm *kvm,
744 struct kvm_userspace_memory_region *mem,
745 int user_alloc)
746 {
747 int r;
748
749 mutex_lock(&kvm->slots_lock);
750 r = __kvm_set_memory_region(kvm, mem, user_alloc);
751 mutex_unlock(&kvm->slots_lock);
752 return r;
753 }
754 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
755
756 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
757 struct
758 kvm_userspace_memory_region *mem,
759 int user_alloc)
760 {
761 if (mem->slot >= KVM_MEMORY_SLOTS)
762 return -EINVAL;
763 return kvm_set_memory_region(kvm, mem, user_alloc);
764 }
765
766 int kvm_get_dirty_log(struct kvm *kvm,
767 struct kvm_dirty_log *log, int *is_dirty)
768 {
769 struct kvm_memory_slot *memslot;
770 int r, i;
771 int n;
772 unsigned long any = 0;
773
774 r = -EINVAL;
775 if (log->slot >= KVM_MEMORY_SLOTS)
776 goto out;
777
778 memslot = &kvm->memslots->memslots[log->slot];
779 r = -ENOENT;
780 if (!memslot->dirty_bitmap)
781 goto out;
782
783 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
784
785 for (i = 0; !any && i < n/sizeof(long); ++i)
786 any = memslot->dirty_bitmap[i];
787
788 r = -EFAULT;
789 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
790 goto out;
791
792 if (any)
793 *is_dirty = 1;
794
795 r = 0;
796 out:
797 return r;
798 }
799
800 void kvm_disable_largepages(void)
801 {
802 largepages_enabled = false;
803 }
804 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
805
806 int is_error_page(struct page *page)
807 {
808 return page == bad_page;
809 }
810 EXPORT_SYMBOL_GPL(is_error_page);
811
812 int is_error_pfn(pfn_t pfn)
813 {
814 return pfn == bad_pfn;
815 }
816 EXPORT_SYMBOL_GPL(is_error_pfn);
817
818 static inline unsigned long bad_hva(void)
819 {
820 return PAGE_OFFSET;
821 }
822
823 int kvm_is_error_hva(unsigned long addr)
824 {
825 return addr == bad_hva();
826 }
827 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
828
829 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
830 {
831 int i;
832 struct kvm_memslots *slots = rcu_dereference(kvm->memslots);
833
834 for (i = 0; i < slots->nmemslots; ++i) {
835 struct kvm_memory_slot *memslot = &slots->memslots[i];
836
837 if (gfn >= memslot->base_gfn
838 && gfn < memslot->base_gfn + memslot->npages)
839 return memslot;
840 }
841 return NULL;
842 }
843 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
844
845 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
846 {
847 gfn = unalias_gfn(kvm, gfn);
848 return gfn_to_memslot_unaliased(kvm, gfn);
849 }
850
851 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
852 {
853 int i;
854 struct kvm_memslots *slots = rcu_dereference(kvm->memslots);
855
856 gfn = unalias_gfn_instantiation(kvm, gfn);
857 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
858 struct kvm_memory_slot *memslot = &slots->memslots[i];
859
860 if (memslot->flags & KVM_MEMSLOT_INVALID)
861 continue;
862
863 if (gfn >= memslot->base_gfn
864 && gfn < memslot->base_gfn + memslot->npages)
865 return 1;
866 }
867 return 0;
868 }
869 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
870
871 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
872 {
873 struct vm_area_struct *vma;
874 unsigned long addr, size;
875
876 size = PAGE_SIZE;
877
878 addr = gfn_to_hva(kvm, gfn);
879 if (kvm_is_error_hva(addr))
880 return PAGE_SIZE;
881
882 down_read(&current->mm->mmap_sem);
883 vma = find_vma(current->mm, addr);
884 if (!vma)
885 goto out;
886
887 size = vma_kernel_pagesize(vma);
888
889 out:
890 up_read(&current->mm->mmap_sem);
891
892 return size;
893 }
894
895 int memslot_id(struct kvm *kvm, gfn_t gfn)
896 {
897 int i;
898 struct kvm_memslots *slots = rcu_dereference(kvm->memslots);
899 struct kvm_memory_slot *memslot = NULL;
900
901 gfn = unalias_gfn(kvm, gfn);
902 for (i = 0; i < slots->nmemslots; ++i) {
903 memslot = &slots->memslots[i];
904
905 if (gfn >= memslot->base_gfn
906 && gfn < memslot->base_gfn + memslot->npages)
907 break;
908 }
909
910 return memslot - slots->memslots;
911 }
912
913 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
914 {
915 struct kvm_memory_slot *slot;
916
917 gfn = unalias_gfn_instantiation(kvm, gfn);
918 slot = gfn_to_memslot_unaliased(kvm, gfn);
919 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
920 return bad_hva();
921 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
922 }
923 EXPORT_SYMBOL_GPL(gfn_to_hva);
924
925 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr)
926 {
927 struct page *page[1];
928 int npages;
929 pfn_t pfn;
930
931 might_sleep();
932
933 npages = get_user_pages_fast(addr, 1, 1, page);
934
935 if (unlikely(npages != 1)) {
936 struct vm_area_struct *vma;
937
938 down_read(&current->mm->mmap_sem);
939 vma = find_vma(current->mm, addr);
940
941 if (vma == NULL || addr < vma->vm_start ||
942 !(vma->vm_flags & VM_PFNMAP)) {
943 up_read(&current->mm->mmap_sem);
944 get_page(bad_page);
945 return page_to_pfn(bad_page);
946 }
947
948 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
949 up_read(&current->mm->mmap_sem);
950 BUG_ON(!kvm_is_mmio_pfn(pfn));
951 } else
952 pfn = page_to_pfn(page[0]);
953
954 return pfn;
955 }
956
957 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
958 {
959 unsigned long addr;
960
961 addr = gfn_to_hva(kvm, gfn);
962 if (kvm_is_error_hva(addr)) {
963 get_page(bad_page);
964 return page_to_pfn(bad_page);
965 }
966
967 return hva_to_pfn(kvm, addr);
968 }
969 EXPORT_SYMBOL_GPL(gfn_to_pfn);
970
971 static unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
972 {
973 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
974 }
975
976 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
977 struct kvm_memory_slot *slot, gfn_t gfn)
978 {
979 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
980 return hva_to_pfn(kvm, addr);
981 }
982
983 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
984 {
985 pfn_t pfn;
986
987 pfn = gfn_to_pfn(kvm, gfn);
988 if (!kvm_is_mmio_pfn(pfn))
989 return pfn_to_page(pfn);
990
991 WARN_ON(kvm_is_mmio_pfn(pfn));
992
993 get_page(bad_page);
994 return bad_page;
995 }
996
997 EXPORT_SYMBOL_GPL(gfn_to_page);
998
999 void kvm_release_page_clean(struct page *page)
1000 {
1001 kvm_release_pfn_clean(page_to_pfn(page));
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1004
1005 void kvm_release_pfn_clean(pfn_t pfn)
1006 {
1007 if (!kvm_is_mmio_pfn(pfn))
1008 put_page(pfn_to_page(pfn));
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1011
1012 void kvm_release_page_dirty(struct page *page)
1013 {
1014 kvm_release_pfn_dirty(page_to_pfn(page));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1017
1018 void kvm_release_pfn_dirty(pfn_t pfn)
1019 {
1020 kvm_set_pfn_dirty(pfn);
1021 kvm_release_pfn_clean(pfn);
1022 }
1023 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1024
1025 void kvm_set_page_dirty(struct page *page)
1026 {
1027 kvm_set_pfn_dirty(page_to_pfn(page));
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1030
1031 void kvm_set_pfn_dirty(pfn_t pfn)
1032 {
1033 if (!kvm_is_mmio_pfn(pfn)) {
1034 struct page *page = pfn_to_page(pfn);
1035 if (!PageReserved(page))
1036 SetPageDirty(page);
1037 }
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1040
1041 void kvm_set_pfn_accessed(pfn_t pfn)
1042 {
1043 if (!kvm_is_mmio_pfn(pfn))
1044 mark_page_accessed(pfn_to_page(pfn));
1045 }
1046 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1047
1048 void kvm_get_pfn(pfn_t pfn)
1049 {
1050 if (!kvm_is_mmio_pfn(pfn))
1051 get_page(pfn_to_page(pfn));
1052 }
1053 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1054
1055 static int next_segment(unsigned long len, int offset)
1056 {
1057 if (len > PAGE_SIZE - offset)
1058 return PAGE_SIZE - offset;
1059 else
1060 return len;
1061 }
1062
1063 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1064 int len)
1065 {
1066 int r;
1067 unsigned long addr;
1068
1069 addr = gfn_to_hva(kvm, gfn);
1070 if (kvm_is_error_hva(addr))
1071 return -EFAULT;
1072 r = copy_from_user(data, (void __user *)addr + offset, len);
1073 if (r)
1074 return -EFAULT;
1075 return 0;
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1078
1079 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1080 {
1081 gfn_t gfn = gpa >> PAGE_SHIFT;
1082 int seg;
1083 int offset = offset_in_page(gpa);
1084 int ret;
1085
1086 while ((seg = next_segment(len, offset)) != 0) {
1087 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1088 if (ret < 0)
1089 return ret;
1090 offset = 0;
1091 len -= seg;
1092 data += seg;
1093 ++gfn;
1094 }
1095 return 0;
1096 }
1097 EXPORT_SYMBOL_GPL(kvm_read_guest);
1098
1099 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1100 unsigned long len)
1101 {
1102 int r;
1103 unsigned long addr;
1104 gfn_t gfn = gpa >> PAGE_SHIFT;
1105 int offset = offset_in_page(gpa);
1106
1107 addr = gfn_to_hva(kvm, gfn);
1108 if (kvm_is_error_hva(addr))
1109 return -EFAULT;
1110 pagefault_disable();
1111 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1112 pagefault_enable();
1113 if (r)
1114 return -EFAULT;
1115 return 0;
1116 }
1117 EXPORT_SYMBOL(kvm_read_guest_atomic);
1118
1119 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1120 int offset, int len)
1121 {
1122 int r;
1123 unsigned long addr;
1124
1125 addr = gfn_to_hva(kvm, gfn);
1126 if (kvm_is_error_hva(addr))
1127 return -EFAULT;
1128 r = copy_to_user((void __user *)addr + offset, data, len);
1129 if (r)
1130 return -EFAULT;
1131 mark_page_dirty(kvm, gfn);
1132 return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1135
1136 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1137 unsigned long len)
1138 {
1139 gfn_t gfn = gpa >> PAGE_SHIFT;
1140 int seg;
1141 int offset = offset_in_page(gpa);
1142 int ret;
1143
1144 while ((seg = next_segment(len, offset)) != 0) {
1145 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1146 if (ret < 0)
1147 return ret;
1148 offset = 0;
1149 len -= seg;
1150 data += seg;
1151 ++gfn;
1152 }
1153 return 0;
1154 }
1155
1156 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1157 {
1158 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1159 }
1160 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1161
1162 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1163 {
1164 gfn_t gfn = gpa >> PAGE_SHIFT;
1165 int seg;
1166 int offset = offset_in_page(gpa);
1167 int ret;
1168
1169 while ((seg = next_segment(len, offset)) != 0) {
1170 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1171 if (ret < 0)
1172 return ret;
1173 offset = 0;
1174 len -= seg;
1175 ++gfn;
1176 }
1177 return 0;
1178 }
1179 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1180
1181 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1182 {
1183 struct kvm_memory_slot *memslot;
1184
1185 gfn = unalias_gfn(kvm, gfn);
1186 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1187 if (memslot && memslot->dirty_bitmap) {
1188 unsigned long rel_gfn = gfn - memslot->base_gfn;
1189
1190 /* avoid RMW */
1191 if (!generic_test_le_bit(rel_gfn, memslot->dirty_bitmap))
1192 generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1193 }
1194 }
1195
1196 /*
1197 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1198 */
1199 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1200 {
1201 DEFINE_WAIT(wait);
1202
1203 for (;;) {
1204 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1205
1206 if (kvm_arch_vcpu_runnable(vcpu)) {
1207 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1208 break;
1209 }
1210 if (kvm_cpu_has_pending_timer(vcpu))
1211 break;
1212 if (signal_pending(current))
1213 break;
1214
1215 schedule();
1216 }
1217
1218 finish_wait(&vcpu->wq, &wait);
1219 }
1220
1221 void kvm_resched(struct kvm_vcpu *vcpu)
1222 {
1223 if (!need_resched())
1224 return;
1225 cond_resched();
1226 }
1227 EXPORT_SYMBOL_GPL(kvm_resched);
1228
1229 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1230 {
1231 ktime_t expires;
1232 DEFINE_WAIT(wait);
1233
1234 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1235
1236 /* Sleep for 100 us, and hope lock-holder got scheduled */
1237 expires = ktime_add_ns(ktime_get(), 100000UL);
1238 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1239
1240 finish_wait(&vcpu->wq, &wait);
1241 }
1242 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1243
1244 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1245 {
1246 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1247 struct page *page;
1248
1249 if (vmf->pgoff == 0)
1250 page = virt_to_page(vcpu->run);
1251 #ifdef CONFIG_X86
1252 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1253 page = virt_to_page(vcpu->arch.pio_data);
1254 #endif
1255 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1256 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1257 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1258 #endif
1259 else
1260 return VM_FAULT_SIGBUS;
1261 get_page(page);
1262 vmf->page = page;
1263 return 0;
1264 }
1265
1266 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1267 .fault = kvm_vcpu_fault,
1268 };
1269
1270 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1271 {
1272 vma->vm_ops = &kvm_vcpu_vm_ops;
1273 return 0;
1274 }
1275
1276 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1277 {
1278 struct kvm_vcpu *vcpu = filp->private_data;
1279
1280 kvm_put_kvm(vcpu->kvm);
1281 return 0;
1282 }
1283
1284 static struct file_operations kvm_vcpu_fops = {
1285 .release = kvm_vcpu_release,
1286 .unlocked_ioctl = kvm_vcpu_ioctl,
1287 .compat_ioctl = kvm_vcpu_ioctl,
1288 .mmap = kvm_vcpu_mmap,
1289 };
1290
1291 /*
1292 * Allocates an inode for the vcpu.
1293 */
1294 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1295 {
1296 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1297 }
1298
1299 /*
1300 * Creates some virtual cpus. Good luck creating more than one.
1301 */
1302 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1303 {
1304 int r;
1305 struct kvm_vcpu *vcpu, *v;
1306
1307 vcpu = kvm_arch_vcpu_create(kvm, id);
1308 if (IS_ERR(vcpu))
1309 return PTR_ERR(vcpu);
1310
1311 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1312
1313 r = kvm_arch_vcpu_setup(vcpu);
1314 if (r)
1315 return r;
1316
1317 mutex_lock(&kvm->lock);
1318 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1319 r = -EINVAL;
1320 goto vcpu_destroy;
1321 }
1322
1323 kvm_for_each_vcpu(r, v, kvm)
1324 if (v->vcpu_id == id) {
1325 r = -EEXIST;
1326 goto vcpu_destroy;
1327 }
1328
1329 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1330
1331 /* Now it's all set up, let userspace reach it */
1332 kvm_get_kvm(kvm);
1333 r = create_vcpu_fd(vcpu);
1334 if (r < 0) {
1335 kvm_put_kvm(kvm);
1336 goto vcpu_destroy;
1337 }
1338
1339 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1340 smp_wmb();
1341 atomic_inc(&kvm->online_vcpus);
1342
1343 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1344 if (kvm->bsp_vcpu_id == id)
1345 kvm->bsp_vcpu = vcpu;
1346 #endif
1347 mutex_unlock(&kvm->lock);
1348 return r;
1349
1350 vcpu_destroy:
1351 mutex_unlock(&kvm->lock);
1352 kvm_arch_vcpu_destroy(vcpu);
1353 return r;
1354 }
1355
1356 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1357 {
1358 if (sigset) {
1359 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1360 vcpu->sigset_active = 1;
1361 vcpu->sigset = *sigset;
1362 } else
1363 vcpu->sigset_active = 0;
1364 return 0;
1365 }
1366
1367 static long kvm_vcpu_ioctl(struct file *filp,
1368 unsigned int ioctl, unsigned long arg)
1369 {
1370 struct kvm_vcpu *vcpu = filp->private_data;
1371 void __user *argp = (void __user *)arg;
1372 int r;
1373 struct kvm_fpu *fpu = NULL;
1374 struct kvm_sregs *kvm_sregs = NULL;
1375
1376 if (vcpu->kvm->mm != current->mm)
1377 return -EIO;
1378 switch (ioctl) {
1379 case KVM_RUN:
1380 r = -EINVAL;
1381 if (arg)
1382 goto out;
1383 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1384 break;
1385 case KVM_GET_REGS: {
1386 struct kvm_regs *kvm_regs;
1387
1388 r = -ENOMEM;
1389 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1390 if (!kvm_regs)
1391 goto out;
1392 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1393 if (r)
1394 goto out_free1;
1395 r = -EFAULT;
1396 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1397 goto out_free1;
1398 r = 0;
1399 out_free1:
1400 kfree(kvm_regs);
1401 break;
1402 }
1403 case KVM_SET_REGS: {
1404 struct kvm_regs *kvm_regs;
1405
1406 r = -ENOMEM;
1407 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1408 if (!kvm_regs)
1409 goto out;
1410 r = -EFAULT;
1411 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1412 goto out_free2;
1413 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1414 if (r)
1415 goto out_free2;
1416 r = 0;
1417 out_free2:
1418 kfree(kvm_regs);
1419 break;
1420 }
1421 case KVM_GET_SREGS: {
1422 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1423 r = -ENOMEM;
1424 if (!kvm_sregs)
1425 goto out;
1426 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1427 if (r)
1428 goto out;
1429 r = -EFAULT;
1430 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1431 goto out;
1432 r = 0;
1433 break;
1434 }
1435 case KVM_SET_SREGS: {
1436 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1437 r = -ENOMEM;
1438 if (!kvm_sregs)
1439 goto out;
1440 r = -EFAULT;
1441 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1442 goto out;
1443 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1444 if (r)
1445 goto out;
1446 r = 0;
1447 break;
1448 }
1449 case KVM_GET_MP_STATE: {
1450 struct kvm_mp_state mp_state;
1451
1452 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1453 if (r)
1454 goto out;
1455 r = -EFAULT;
1456 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1457 goto out;
1458 r = 0;
1459 break;
1460 }
1461 case KVM_SET_MP_STATE: {
1462 struct kvm_mp_state mp_state;
1463
1464 r = -EFAULT;
1465 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1466 goto out;
1467 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1468 if (r)
1469 goto out;
1470 r = 0;
1471 break;
1472 }
1473 case KVM_TRANSLATE: {
1474 struct kvm_translation tr;
1475
1476 r = -EFAULT;
1477 if (copy_from_user(&tr, argp, sizeof tr))
1478 goto out;
1479 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1480 if (r)
1481 goto out;
1482 r = -EFAULT;
1483 if (copy_to_user(argp, &tr, sizeof tr))
1484 goto out;
1485 r = 0;
1486 break;
1487 }
1488 case KVM_SET_GUEST_DEBUG: {
1489 struct kvm_guest_debug dbg;
1490
1491 r = -EFAULT;
1492 if (copy_from_user(&dbg, argp, sizeof dbg))
1493 goto out;
1494 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1495 if (r)
1496 goto out;
1497 r = 0;
1498 break;
1499 }
1500 case KVM_SET_SIGNAL_MASK: {
1501 struct kvm_signal_mask __user *sigmask_arg = argp;
1502 struct kvm_signal_mask kvm_sigmask;
1503 sigset_t sigset, *p;
1504
1505 p = NULL;
1506 if (argp) {
1507 r = -EFAULT;
1508 if (copy_from_user(&kvm_sigmask, argp,
1509 sizeof kvm_sigmask))
1510 goto out;
1511 r = -EINVAL;
1512 if (kvm_sigmask.len != sizeof sigset)
1513 goto out;
1514 r = -EFAULT;
1515 if (copy_from_user(&sigset, sigmask_arg->sigset,
1516 sizeof sigset))
1517 goto out;
1518 p = &sigset;
1519 }
1520 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1521 break;
1522 }
1523 case KVM_GET_FPU: {
1524 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1525 r = -ENOMEM;
1526 if (!fpu)
1527 goto out;
1528 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1529 if (r)
1530 goto out;
1531 r = -EFAULT;
1532 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1533 goto out;
1534 r = 0;
1535 break;
1536 }
1537 case KVM_SET_FPU: {
1538 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1539 r = -ENOMEM;
1540 if (!fpu)
1541 goto out;
1542 r = -EFAULT;
1543 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1544 goto out;
1545 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1546 if (r)
1547 goto out;
1548 r = 0;
1549 break;
1550 }
1551 default:
1552 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1553 }
1554 out:
1555 kfree(fpu);
1556 kfree(kvm_sregs);
1557 return r;
1558 }
1559
1560 static long kvm_vm_ioctl(struct file *filp,
1561 unsigned int ioctl, unsigned long arg)
1562 {
1563 struct kvm *kvm = filp->private_data;
1564 void __user *argp = (void __user *)arg;
1565 int r;
1566
1567 if (kvm->mm != current->mm)
1568 return -EIO;
1569 switch (ioctl) {
1570 case KVM_CREATE_VCPU:
1571 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1572 if (r < 0)
1573 goto out;
1574 break;
1575 case KVM_SET_USER_MEMORY_REGION: {
1576 struct kvm_userspace_memory_region kvm_userspace_mem;
1577
1578 r = -EFAULT;
1579 if (copy_from_user(&kvm_userspace_mem, argp,
1580 sizeof kvm_userspace_mem))
1581 goto out;
1582
1583 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1584 if (r)
1585 goto out;
1586 break;
1587 }
1588 case KVM_GET_DIRTY_LOG: {
1589 struct kvm_dirty_log log;
1590
1591 r = -EFAULT;
1592 if (copy_from_user(&log, argp, sizeof log))
1593 goto out;
1594 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1595 if (r)
1596 goto out;
1597 break;
1598 }
1599 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1600 case KVM_REGISTER_COALESCED_MMIO: {
1601 struct kvm_coalesced_mmio_zone zone;
1602 r = -EFAULT;
1603 if (copy_from_user(&zone, argp, sizeof zone))
1604 goto out;
1605 r = -ENXIO;
1606 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1607 if (r)
1608 goto out;
1609 r = 0;
1610 break;
1611 }
1612 case KVM_UNREGISTER_COALESCED_MMIO: {
1613 struct kvm_coalesced_mmio_zone zone;
1614 r = -EFAULT;
1615 if (copy_from_user(&zone, argp, sizeof zone))
1616 goto out;
1617 r = -ENXIO;
1618 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1619 if (r)
1620 goto out;
1621 r = 0;
1622 break;
1623 }
1624 #endif
1625 case KVM_IRQFD: {
1626 struct kvm_irqfd data;
1627
1628 r = -EFAULT;
1629 if (copy_from_user(&data, argp, sizeof data))
1630 goto out;
1631 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1632 break;
1633 }
1634 case KVM_IOEVENTFD: {
1635 struct kvm_ioeventfd data;
1636
1637 r = -EFAULT;
1638 if (copy_from_user(&data, argp, sizeof data))
1639 goto out;
1640 r = kvm_ioeventfd(kvm, &data);
1641 break;
1642 }
1643 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1644 case KVM_SET_BOOT_CPU_ID:
1645 r = 0;
1646 mutex_lock(&kvm->lock);
1647 if (atomic_read(&kvm->online_vcpus) != 0)
1648 r = -EBUSY;
1649 else
1650 kvm->bsp_vcpu_id = arg;
1651 mutex_unlock(&kvm->lock);
1652 break;
1653 #endif
1654 default:
1655 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1656 if (r == -ENOTTY)
1657 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1658 }
1659 out:
1660 return r;
1661 }
1662
1663 #ifdef CONFIG_COMPAT
1664 struct compat_kvm_dirty_log {
1665 __u32 slot;
1666 __u32 padding1;
1667 union {
1668 compat_uptr_t dirty_bitmap; /* one bit per page */
1669 __u64 padding2;
1670 };
1671 };
1672
1673 static long kvm_vm_compat_ioctl(struct file *filp,
1674 unsigned int ioctl, unsigned long arg)
1675 {
1676 struct kvm *kvm = filp->private_data;
1677 int r;
1678
1679 if (kvm->mm != current->mm)
1680 return -EIO;
1681 switch (ioctl) {
1682 case KVM_GET_DIRTY_LOG: {
1683 struct compat_kvm_dirty_log compat_log;
1684 struct kvm_dirty_log log;
1685
1686 r = -EFAULT;
1687 if (copy_from_user(&compat_log, (void __user *)arg,
1688 sizeof(compat_log)))
1689 goto out;
1690 log.slot = compat_log.slot;
1691 log.padding1 = compat_log.padding1;
1692 log.padding2 = compat_log.padding2;
1693 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1694
1695 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1696 if (r)
1697 goto out;
1698 break;
1699 }
1700 default:
1701 r = kvm_vm_ioctl(filp, ioctl, arg);
1702 }
1703
1704 out:
1705 return r;
1706 }
1707 #endif
1708
1709 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1710 {
1711 struct page *page[1];
1712 unsigned long addr;
1713 int npages;
1714 gfn_t gfn = vmf->pgoff;
1715 struct kvm *kvm = vma->vm_file->private_data;
1716
1717 addr = gfn_to_hva(kvm, gfn);
1718 if (kvm_is_error_hva(addr))
1719 return VM_FAULT_SIGBUS;
1720
1721 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1722 NULL);
1723 if (unlikely(npages != 1))
1724 return VM_FAULT_SIGBUS;
1725
1726 vmf->page = page[0];
1727 return 0;
1728 }
1729
1730 static const struct vm_operations_struct kvm_vm_vm_ops = {
1731 .fault = kvm_vm_fault,
1732 };
1733
1734 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1735 {
1736 vma->vm_ops = &kvm_vm_vm_ops;
1737 return 0;
1738 }
1739
1740 static struct file_operations kvm_vm_fops = {
1741 .release = kvm_vm_release,
1742 .unlocked_ioctl = kvm_vm_ioctl,
1743 #ifdef CONFIG_COMPAT
1744 .compat_ioctl = kvm_vm_compat_ioctl,
1745 #endif
1746 .mmap = kvm_vm_mmap,
1747 };
1748
1749 static int kvm_dev_ioctl_create_vm(void)
1750 {
1751 int fd;
1752 struct kvm *kvm;
1753
1754 kvm = kvm_create_vm();
1755 if (IS_ERR(kvm))
1756 return PTR_ERR(kvm);
1757 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
1758 if (fd < 0)
1759 kvm_put_kvm(kvm);
1760
1761 return fd;
1762 }
1763
1764 static long kvm_dev_ioctl_check_extension_generic(long arg)
1765 {
1766 switch (arg) {
1767 case KVM_CAP_USER_MEMORY:
1768 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1769 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1770 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1771 case KVM_CAP_SET_BOOT_CPU_ID:
1772 #endif
1773 case KVM_CAP_INTERNAL_ERROR_DATA:
1774 return 1;
1775 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1776 case KVM_CAP_IRQ_ROUTING:
1777 return KVM_MAX_IRQ_ROUTES;
1778 #endif
1779 default:
1780 break;
1781 }
1782 return kvm_dev_ioctl_check_extension(arg);
1783 }
1784
1785 static long kvm_dev_ioctl(struct file *filp,
1786 unsigned int ioctl, unsigned long arg)
1787 {
1788 long r = -EINVAL;
1789
1790 switch (ioctl) {
1791 case KVM_GET_API_VERSION:
1792 r = -EINVAL;
1793 if (arg)
1794 goto out;
1795 r = KVM_API_VERSION;
1796 break;
1797 case KVM_CREATE_VM:
1798 r = -EINVAL;
1799 if (arg)
1800 goto out;
1801 r = kvm_dev_ioctl_create_vm();
1802 break;
1803 case KVM_CHECK_EXTENSION:
1804 r = kvm_dev_ioctl_check_extension_generic(arg);
1805 break;
1806 case KVM_GET_VCPU_MMAP_SIZE:
1807 r = -EINVAL;
1808 if (arg)
1809 goto out;
1810 r = PAGE_SIZE; /* struct kvm_run */
1811 #ifdef CONFIG_X86
1812 r += PAGE_SIZE; /* pio data page */
1813 #endif
1814 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1815 r += PAGE_SIZE; /* coalesced mmio ring page */
1816 #endif
1817 break;
1818 case KVM_TRACE_ENABLE:
1819 case KVM_TRACE_PAUSE:
1820 case KVM_TRACE_DISABLE:
1821 r = -EOPNOTSUPP;
1822 break;
1823 default:
1824 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1825 }
1826 out:
1827 return r;
1828 }
1829
1830 static struct file_operations kvm_chardev_ops = {
1831 .unlocked_ioctl = kvm_dev_ioctl,
1832 .compat_ioctl = kvm_dev_ioctl,
1833 };
1834
1835 static struct miscdevice kvm_dev = {
1836 KVM_MINOR,
1837 "kvm",
1838 &kvm_chardev_ops,
1839 };
1840
1841 static void hardware_enable(void *junk)
1842 {
1843 int cpu = raw_smp_processor_id();
1844 int r;
1845
1846 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1847 return;
1848
1849 cpumask_set_cpu(cpu, cpus_hardware_enabled);
1850
1851 r = kvm_arch_hardware_enable(NULL);
1852
1853 if (r) {
1854 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1855 atomic_inc(&hardware_enable_failed);
1856 printk(KERN_INFO "kvm: enabling virtualization on "
1857 "CPU%d failed\n", cpu);
1858 }
1859 }
1860
1861 static void hardware_disable(void *junk)
1862 {
1863 int cpu = raw_smp_processor_id();
1864
1865 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1866 return;
1867 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1868 kvm_arch_hardware_disable(NULL);
1869 }
1870
1871 static void hardware_disable_all_nolock(void)
1872 {
1873 BUG_ON(!kvm_usage_count);
1874
1875 kvm_usage_count--;
1876 if (!kvm_usage_count)
1877 on_each_cpu(hardware_disable, NULL, 1);
1878 }
1879
1880 static void hardware_disable_all(void)
1881 {
1882 spin_lock(&kvm_lock);
1883 hardware_disable_all_nolock();
1884 spin_unlock(&kvm_lock);
1885 }
1886
1887 static int hardware_enable_all(void)
1888 {
1889 int r = 0;
1890
1891 spin_lock(&kvm_lock);
1892
1893 kvm_usage_count++;
1894 if (kvm_usage_count == 1) {
1895 atomic_set(&hardware_enable_failed, 0);
1896 on_each_cpu(hardware_enable, NULL, 1);
1897
1898 if (atomic_read(&hardware_enable_failed)) {
1899 hardware_disable_all_nolock();
1900 r = -EBUSY;
1901 }
1902 }
1903
1904 spin_unlock(&kvm_lock);
1905
1906 return r;
1907 }
1908
1909 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1910 void *v)
1911 {
1912 int cpu = (long)v;
1913
1914 if (!kvm_usage_count)
1915 return NOTIFY_OK;
1916
1917 val &= ~CPU_TASKS_FROZEN;
1918 switch (val) {
1919 case CPU_DYING:
1920 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1921 cpu);
1922 hardware_disable(NULL);
1923 break;
1924 case CPU_UP_CANCELED:
1925 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1926 cpu);
1927 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1928 break;
1929 case CPU_ONLINE:
1930 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1931 cpu);
1932 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1933 break;
1934 }
1935 return NOTIFY_OK;
1936 }
1937
1938
1939 asmlinkage void kvm_handle_fault_on_reboot(void)
1940 {
1941 if (kvm_rebooting)
1942 /* spin while reset goes on */
1943 while (true)
1944 ;
1945 /* Fault while not rebooting. We want the trace. */
1946 BUG();
1947 }
1948 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1949
1950 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1951 void *v)
1952 {
1953 /*
1954 * Some (well, at least mine) BIOSes hang on reboot if
1955 * in vmx root mode.
1956 *
1957 * And Intel TXT required VMX off for all cpu when system shutdown.
1958 */
1959 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1960 kvm_rebooting = true;
1961 on_each_cpu(hardware_disable, NULL, 1);
1962 return NOTIFY_OK;
1963 }
1964
1965 static struct notifier_block kvm_reboot_notifier = {
1966 .notifier_call = kvm_reboot,
1967 .priority = 0,
1968 };
1969
1970 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1971 {
1972 int i;
1973
1974 for (i = 0; i < bus->dev_count; i++) {
1975 struct kvm_io_device *pos = bus->devs[i];
1976
1977 kvm_iodevice_destructor(pos);
1978 }
1979 kfree(bus);
1980 }
1981
1982 /* kvm_io_bus_write - called under kvm->slots_lock */
1983 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
1984 int len, const void *val)
1985 {
1986 int i;
1987 struct kvm_io_bus *bus = rcu_dereference(kvm->buses[bus_idx]);
1988 for (i = 0; i < bus->dev_count; i++)
1989 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
1990 return 0;
1991 return -EOPNOTSUPP;
1992 }
1993
1994 /* kvm_io_bus_read - called under kvm->slots_lock */
1995 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
1996 int len, void *val)
1997 {
1998 int i;
1999 struct kvm_io_bus *bus = rcu_dereference(kvm->buses[bus_idx]);
2000
2001 for (i = 0; i < bus->dev_count; i++)
2002 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2003 return 0;
2004 return -EOPNOTSUPP;
2005 }
2006
2007 /* Caller must hold slots_lock. */
2008 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2009 struct kvm_io_device *dev)
2010 {
2011 struct kvm_io_bus *new_bus, *bus;
2012
2013 bus = kvm->buses[bus_idx];
2014 if (bus->dev_count > NR_IOBUS_DEVS-1)
2015 return -ENOSPC;
2016
2017 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2018 if (!new_bus)
2019 return -ENOMEM;
2020 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2021 new_bus->devs[new_bus->dev_count++] = dev;
2022 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2023 synchronize_srcu_expedited(&kvm->srcu);
2024 kfree(bus);
2025
2026 return 0;
2027 }
2028
2029 /* Caller must hold slots_lock. */
2030 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2031 struct kvm_io_device *dev)
2032 {
2033 int i, r;
2034 struct kvm_io_bus *new_bus, *bus;
2035
2036 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2037 if (!new_bus)
2038 return -ENOMEM;
2039
2040 bus = kvm->buses[bus_idx];
2041 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2042
2043 r = -ENOENT;
2044 for (i = 0; i < new_bus->dev_count; i++)
2045 if (new_bus->devs[i] == dev) {
2046 r = 0;
2047 new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2048 break;
2049 }
2050
2051 if (r) {
2052 kfree(new_bus);
2053 return r;
2054 }
2055
2056 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2057 synchronize_srcu_expedited(&kvm->srcu);
2058 kfree(bus);
2059 return r;
2060 }
2061
2062 static struct notifier_block kvm_cpu_notifier = {
2063 .notifier_call = kvm_cpu_hotplug,
2064 .priority = 20, /* must be > scheduler priority */
2065 };
2066
2067 static int vm_stat_get(void *_offset, u64 *val)
2068 {
2069 unsigned offset = (long)_offset;
2070 struct kvm *kvm;
2071
2072 *val = 0;
2073 spin_lock(&kvm_lock);
2074 list_for_each_entry(kvm, &vm_list, vm_list)
2075 *val += *(u32 *)((void *)kvm + offset);
2076 spin_unlock(&kvm_lock);
2077 return 0;
2078 }
2079
2080 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2081
2082 static int vcpu_stat_get(void *_offset, u64 *val)
2083 {
2084 unsigned offset = (long)_offset;
2085 struct kvm *kvm;
2086 struct kvm_vcpu *vcpu;
2087 int i;
2088
2089 *val = 0;
2090 spin_lock(&kvm_lock);
2091 list_for_each_entry(kvm, &vm_list, vm_list)
2092 kvm_for_each_vcpu(i, vcpu, kvm)
2093 *val += *(u32 *)((void *)vcpu + offset);
2094
2095 spin_unlock(&kvm_lock);
2096 return 0;
2097 }
2098
2099 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2100
2101 static const struct file_operations *stat_fops[] = {
2102 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2103 [KVM_STAT_VM] = &vm_stat_fops,
2104 };
2105
2106 static void kvm_init_debug(void)
2107 {
2108 struct kvm_stats_debugfs_item *p;
2109
2110 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2111 for (p = debugfs_entries; p->name; ++p)
2112 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2113 (void *)(long)p->offset,
2114 stat_fops[p->kind]);
2115 }
2116
2117 static void kvm_exit_debug(void)
2118 {
2119 struct kvm_stats_debugfs_item *p;
2120
2121 for (p = debugfs_entries; p->name; ++p)
2122 debugfs_remove(p->dentry);
2123 debugfs_remove(kvm_debugfs_dir);
2124 }
2125
2126 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2127 {
2128 if (kvm_usage_count)
2129 hardware_disable(NULL);
2130 return 0;
2131 }
2132
2133 static int kvm_resume(struct sys_device *dev)
2134 {
2135 if (kvm_usage_count)
2136 hardware_enable(NULL);
2137 return 0;
2138 }
2139
2140 static struct sysdev_class kvm_sysdev_class = {
2141 .name = "kvm",
2142 .suspend = kvm_suspend,
2143 .resume = kvm_resume,
2144 };
2145
2146 static struct sys_device kvm_sysdev = {
2147 .id = 0,
2148 .cls = &kvm_sysdev_class,
2149 };
2150
2151 struct page *bad_page;
2152 pfn_t bad_pfn;
2153
2154 static inline
2155 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2156 {
2157 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2158 }
2159
2160 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2161 {
2162 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2163
2164 kvm_arch_vcpu_load(vcpu, cpu);
2165 }
2166
2167 static void kvm_sched_out(struct preempt_notifier *pn,
2168 struct task_struct *next)
2169 {
2170 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2171
2172 kvm_arch_vcpu_put(vcpu);
2173 }
2174
2175 int kvm_init(void *opaque, unsigned int vcpu_size,
2176 struct module *module)
2177 {
2178 int r;
2179 int cpu;
2180
2181 r = kvm_arch_init(opaque);
2182 if (r)
2183 goto out_fail;
2184
2185 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2186
2187 if (bad_page == NULL) {
2188 r = -ENOMEM;
2189 goto out;
2190 }
2191
2192 bad_pfn = page_to_pfn(bad_page);
2193
2194 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2195 r = -ENOMEM;
2196 goto out_free_0;
2197 }
2198
2199 r = kvm_arch_hardware_setup();
2200 if (r < 0)
2201 goto out_free_0a;
2202
2203 for_each_online_cpu(cpu) {
2204 smp_call_function_single(cpu,
2205 kvm_arch_check_processor_compat,
2206 &r, 1);
2207 if (r < 0)
2208 goto out_free_1;
2209 }
2210
2211 r = register_cpu_notifier(&kvm_cpu_notifier);
2212 if (r)
2213 goto out_free_2;
2214 register_reboot_notifier(&kvm_reboot_notifier);
2215
2216 r = sysdev_class_register(&kvm_sysdev_class);
2217 if (r)
2218 goto out_free_3;
2219
2220 r = sysdev_register(&kvm_sysdev);
2221 if (r)
2222 goto out_free_4;
2223
2224 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2225 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2226 __alignof__(struct kvm_vcpu),
2227 0, NULL);
2228 if (!kvm_vcpu_cache) {
2229 r = -ENOMEM;
2230 goto out_free_5;
2231 }
2232
2233 kvm_chardev_ops.owner = module;
2234 kvm_vm_fops.owner = module;
2235 kvm_vcpu_fops.owner = module;
2236
2237 r = misc_register(&kvm_dev);
2238 if (r) {
2239 printk(KERN_ERR "kvm: misc device register failed\n");
2240 goto out_free;
2241 }
2242
2243 kvm_preempt_ops.sched_in = kvm_sched_in;
2244 kvm_preempt_ops.sched_out = kvm_sched_out;
2245
2246 kvm_init_debug();
2247
2248 return 0;
2249
2250 out_free:
2251 kmem_cache_destroy(kvm_vcpu_cache);
2252 out_free_5:
2253 sysdev_unregister(&kvm_sysdev);
2254 out_free_4:
2255 sysdev_class_unregister(&kvm_sysdev_class);
2256 out_free_3:
2257 unregister_reboot_notifier(&kvm_reboot_notifier);
2258 unregister_cpu_notifier(&kvm_cpu_notifier);
2259 out_free_2:
2260 out_free_1:
2261 kvm_arch_hardware_unsetup();
2262 out_free_0a:
2263 free_cpumask_var(cpus_hardware_enabled);
2264 out_free_0:
2265 __free_page(bad_page);
2266 out:
2267 kvm_arch_exit();
2268 out_fail:
2269 return r;
2270 }
2271 EXPORT_SYMBOL_GPL(kvm_init);
2272
2273 void kvm_exit(void)
2274 {
2275 tracepoint_synchronize_unregister();
2276 kvm_exit_debug();
2277 misc_deregister(&kvm_dev);
2278 kmem_cache_destroy(kvm_vcpu_cache);
2279 sysdev_unregister(&kvm_sysdev);
2280 sysdev_class_unregister(&kvm_sysdev_class);
2281 unregister_reboot_notifier(&kvm_reboot_notifier);
2282 unregister_cpu_notifier(&kvm_cpu_notifier);
2283 on_each_cpu(hardware_disable, NULL, 1);
2284 kvm_arch_hardware_unsetup();
2285 kvm_arch_exit();
2286 free_cpumask_var(cpus_hardware_enabled);
2287 __free_page(bad_page);
2288 }
2289 EXPORT_SYMBOL_GPL(kvm_exit);