]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - virt/kvm/kvm_main.c
5f0d78c2537bb3f0e8278073fa63f43b36c0fbd1
[mirror_ubuntu-zesty-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 if (pfn_valid(pfn)) {
106 int reserved;
107 struct page *tail = pfn_to_page(pfn);
108 struct page *head = compound_trans_head(tail);
109 reserved = PageReserved(head);
110 if (head != tail) {
111 /*
112 * "head" is not a dangling pointer
113 * (compound_trans_head takes care of that)
114 * but the hugepage may have been splitted
115 * from under us (and we may not hold a
116 * reference count on the head page so it can
117 * be reused before we run PageReferenced), so
118 * we've to check PageTail before returning
119 * what we just read.
120 */
121 smp_rmb();
122 if (PageTail(tail))
123 return reserved;
124 }
125 return PageReserved(tail);
126 }
127
128 return true;
129 }
130
131 /*
132 * Switches to specified vcpu, until a matching vcpu_put()
133 */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 int cpu;
137
138 if (mutex_lock_killable(&vcpu->mutex))
139 return -EINTR;
140 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141 /* The thread running this VCPU changed. */
142 struct pid *oldpid = vcpu->pid;
143 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144 rcu_assign_pointer(vcpu->pid, newpid);
145 synchronize_rcu();
146 put_pid(oldpid);
147 }
148 cpu = get_cpu();
149 preempt_notifier_register(&vcpu->preempt_notifier);
150 kvm_arch_vcpu_load(vcpu, cpu);
151 put_cpu();
152 return 0;
153 }
154
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157 preempt_disable();
158 kvm_arch_vcpu_put(vcpu);
159 preempt_notifier_unregister(&vcpu->preempt_notifier);
160 preempt_enable();
161 mutex_unlock(&vcpu->mutex);
162 }
163
164 static void ack_flush(void *_completed)
165 {
166 }
167
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170 int i, cpu, me;
171 cpumask_var_t cpus;
172 bool called = true;
173 struct kvm_vcpu *vcpu;
174
175 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176
177 me = get_cpu();
178 kvm_for_each_vcpu(i, vcpu, kvm) {
179 kvm_make_request(req, vcpu);
180 cpu = vcpu->cpu;
181
182 /* Set ->requests bit before we read ->mode */
183 smp_mb();
184
185 if (cpus != NULL && cpu != -1 && cpu != me &&
186 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187 cpumask_set_cpu(cpu, cpus);
188 }
189 if (unlikely(cpus == NULL))
190 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191 else if (!cpumask_empty(cpus))
192 smp_call_function_many(cpus, ack_flush, NULL, 1);
193 else
194 called = false;
195 put_cpu();
196 free_cpumask_var(cpus);
197 return called;
198 }
199
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 long dirty_count = kvm->tlbs_dirty;
203
204 smp_mb();
205 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206 ++kvm->stat.remote_tlb_flush;
207 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214
215 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
216 {
217 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
218 }
219
220 void kvm_make_scan_ioapic_request(struct kvm *kvm)
221 {
222 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
223 }
224
225 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
226 {
227 struct page *page;
228 int r;
229
230 mutex_init(&vcpu->mutex);
231 vcpu->cpu = -1;
232 vcpu->kvm = kvm;
233 vcpu->vcpu_id = id;
234 vcpu->pid = NULL;
235 init_waitqueue_head(&vcpu->wq);
236 kvm_async_pf_vcpu_init(vcpu);
237
238 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
239 if (!page) {
240 r = -ENOMEM;
241 goto fail;
242 }
243 vcpu->run = page_address(page);
244
245 kvm_vcpu_set_in_spin_loop(vcpu, false);
246 kvm_vcpu_set_dy_eligible(vcpu, false);
247 vcpu->preempted = false;
248
249 r = kvm_arch_vcpu_init(vcpu);
250 if (r < 0)
251 goto fail_free_run;
252 return 0;
253
254 fail_free_run:
255 free_page((unsigned long)vcpu->run);
256 fail:
257 return r;
258 }
259 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
260
261 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
262 {
263 put_pid(vcpu->pid);
264 kvm_arch_vcpu_uninit(vcpu);
265 free_page((unsigned long)vcpu->run);
266 }
267 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
268
269 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
270 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
271 {
272 return container_of(mn, struct kvm, mmu_notifier);
273 }
274
275 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
276 struct mm_struct *mm,
277 unsigned long address)
278 {
279 struct kvm *kvm = mmu_notifier_to_kvm(mn);
280 int need_tlb_flush, idx;
281
282 /*
283 * When ->invalidate_page runs, the linux pte has been zapped
284 * already but the page is still allocated until
285 * ->invalidate_page returns. So if we increase the sequence
286 * here the kvm page fault will notice if the spte can't be
287 * established because the page is going to be freed. If
288 * instead the kvm page fault establishes the spte before
289 * ->invalidate_page runs, kvm_unmap_hva will release it
290 * before returning.
291 *
292 * The sequence increase only need to be seen at spin_unlock
293 * time, and not at spin_lock time.
294 *
295 * Increasing the sequence after the spin_unlock would be
296 * unsafe because the kvm page fault could then establish the
297 * pte after kvm_unmap_hva returned, without noticing the page
298 * is going to be freed.
299 */
300 idx = srcu_read_lock(&kvm->srcu);
301 spin_lock(&kvm->mmu_lock);
302
303 kvm->mmu_notifier_seq++;
304 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
305 /* we've to flush the tlb before the pages can be freed */
306 if (need_tlb_flush)
307 kvm_flush_remote_tlbs(kvm);
308
309 spin_unlock(&kvm->mmu_lock);
310 srcu_read_unlock(&kvm->srcu, idx);
311 }
312
313 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
314 struct mm_struct *mm,
315 unsigned long address,
316 pte_t pte)
317 {
318 struct kvm *kvm = mmu_notifier_to_kvm(mn);
319 int idx;
320
321 idx = srcu_read_lock(&kvm->srcu);
322 spin_lock(&kvm->mmu_lock);
323 kvm->mmu_notifier_seq++;
324 kvm_set_spte_hva(kvm, address, pte);
325 spin_unlock(&kvm->mmu_lock);
326 srcu_read_unlock(&kvm->srcu, idx);
327 }
328
329 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
330 struct mm_struct *mm,
331 unsigned long start,
332 unsigned long end)
333 {
334 struct kvm *kvm = mmu_notifier_to_kvm(mn);
335 int need_tlb_flush = 0, idx;
336
337 idx = srcu_read_lock(&kvm->srcu);
338 spin_lock(&kvm->mmu_lock);
339 /*
340 * The count increase must become visible at unlock time as no
341 * spte can be established without taking the mmu_lock and
342 * count is also read inside the mmu_lock critical section.
343 */
344 kvm->mmu_notifier_count++;
345 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
346 need_tlb_flush |= kvm->tlbs_dirty;
347 /* we've to flush the tlb before the pages can be freed */
348 if (need_tlb_flush)
349 kvm_flush_remote_tlbs(kvm);
350
351 spin_unlock(&kvm->mmu_lock);
352 srcu_read_unlock(&kvm->srcu, idx);
353 }
354
355 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
356 struct mm_struct *mm,
357 unsigned long start,
358 unsigned long end)
359 {
360 struct kvm *kvm = mmu_notifier_to_kvm(mn);
361
362 spin_lock(&kvm->mmu_lock);
363 /*
364 * This sequence increase will notify the kvm page fault that
365 * the page that is going to be mapped in the spte could have
366 * been freed.
367 */
368 kvm->mmu_notifier_seq++;
369 smp_wmb();
370 /*
371 * The above sequence increase must be visible before the
372 * below count decrease, which is ensured by the smp_wmb above
373 * in conjunction with the smp_rmb in mmu_notifier_retry().
374 */
375 kvm->mmu_notifier_count--;
376 spin_unlock(&kvm->mmu_lock);
377
378 BUG_ON(kvm->mmu_notifier_count < 0);
379 }
380
381 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
382 struct mm_struct *mm,
383 unsigned long address)
384 {
385 struct kvm *kvm = mmu_notifier_to_kvm(mn);
386 int young, idx;
387
388 idx = srcu_read_lock(&kvm->srcu);
389 spin_lock(&kvm->mmu_lock);
390
391 young = kvm_age_hva(kvm, address);
392 if (young)
393 kvm_flush_remote_tlbs(kvm);
394
395 spin_unlock(&kvm->mmu_lock);
396 srcu_read_unlock(&kvm->srcu, idx);
397
398 return young;
399 }
400
401 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
402 struct mm_struct *mm,
403 unsigned long address)
404 {
405 struct kvm *kvm = mmu_notifier_to_kvm(mn);
406 int young, idx;
407
408 idx = srcu_read_lock(&kvm->srcu);
409 spin_lock(&kvm->mmu_lock);
410 young = kvm_test_age_hva(kvm, address);
411 spin_unlock(&kvm->mmu_lock);
412 srcu_read_unlock(&kvm->srcu, idx);
413
414 return young;
415 }
416
417 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
418 struct mm_struct *mm)
419 {
420 struct kvm *kvm = mmu_notifier_to_kvm(mn);
421 int idx;
422
423 idx = srcu_read_lock(&kvm->srcu);
424 kvm_arch_flush_shadow_all(kvm);
425 srcu_read_unlock(&kvm->srcu, idx);
426 }
427
428 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
429 .invalidate_page = kvm_mmu_notifier_invalidate_page,
430 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
431 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
432 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
433 .test_young = kvm_mmu_notifier_test_young,
434 .change_pte = kvm_mmu_notifier_change_pte,
435 .release = kvm_mmu_notifier_release,
436 };
437
438 static int kvm_init_mmu_notifier(struct kvm *kvm)
439 {
440 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
441 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
442 }
443
444 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
445
446 static int kvm_init_mmu_notifier(struct kvm *kvm)
447 {
448 return 0;
449 }
450
451 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
452
453 static void kvm_init_memslots_id(struct kvm *kvm)
454 {
455 int i;
456 struct kvm_memslots *slots = kvm->memslots;
457
458 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
459 slots->id_to_index[i] = slots->memslots[i].id = i;
460 }
461
462 static struct kvm *kvm_create_vm(unsigned long type)
463 {
464 int r, i;
465 struct kvm *kvm = kvm_arch_alloc_vm();
466
467 if (!kvm)
468 return ERR_PTR(-ENOMEM);
469
470 r = kvm_arch_init_vm(kvm, type);
471 if (r)
472 goto out_err_nodisable;
473
474 r = hardware_enable_all();
475 if (r)
476 goto out_err_nodisable;
477
478 #ifdef CONFIG_HAVE_KVM_IRQCHIP
479 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
480 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
481 #endif
482
483 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
484
485 r = -ENOMEM;
486 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
487 if (!kvm->memslots)
488 goto out_err_nosrcu;
489 kvm_init_memslots_id(kvm);
490 if (init_srcu_struct(&kvm->srcu))
491 goto out_err_nosrcu;
492 for (i = 0; i < KVM_NR_BUSES; i++) {
493 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
494 GFP_KERNEL);
495 if (!kvm->buses[i])
496 goto out_err;
497 }
498
499 spin_lock_init(&kvm->mmu_lock);
500 kvm->mm = current->mm;
501 atomic_inc(&kvm->mm->mm_count);
502 kvm_eventfd_init(kvm);
503 mutex_init(&kvm->lock);
504 mutex_init(&kvm->irq_lock);
505 mutex_init(&kvm->slots_lock);
506 atomic_set(&kvm->users_count, 1);
507
508 r = kvm_init_mmu_notifier(kvm);
509 if (r)
510 goto out_err;
511
512 raw_spin_lock(&kvm_lock);
513 list_add(&kvm->vm_list, &vm_list);
514 raw_spin_unlock(&kvm_lock);
515
516 return kvm;
517
518 out_err:
519 cleanup_srcu_struct(&kvm->srcu);
520 out_err_nosrcu:
521 hardware_disable_all();
522 out_err_nodisable:
523 for (i = 0; i < KVM_NR_BUSES; i++)
524 kfree(kvm->buses[i]);
525 kfree(kvm->memslots);
526 kvm_arch_free_vm(kvm);
527 return ERR_PTR(r);
528 }
529
530 /*
531 * Avoid using vmalloc for a small buffer.
532 * Should not be used when the size is statically known.
533 */
534 void *kvm_kvzalloc(unsigned long size)
535 {
536 if (size > PAGE_SIZE)
537 return vzalloc(size);
538 else
539 return kzalloc(size, GFP_KERNEL);
540 }
541
542 void kvm_kvfree(const void *addr)
543 {
544 if (is_vmalloc_addr(addr))
545 vfree(addr);
546 else
547 kfree(addr);
548 }
549
550 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
551 {
552 if (!memslot->dirty_bitmap)
553 return;
554
555 kvm_kvfree(memslot->dirty_bitmap);
556 memslot->dirty_bitmap = NULL;
557 }
558
559 /*
560 * Free any memory in @free but not in @dont.
561 */
562 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
563 struct kvm_memory_slot *dont)
564 {
565 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
566 kvm_destroy_dirty_bitmap(free);
567
568 kvm_arch_free_memslot(free, dont);
569
570 free->npages = 0;
571 }
572
573 void kvm_free_physmem(struct kvm *kvm)
574 {
575 struct kvm_memslots *slots = kvm->memslots;
576 struct kvm_memory_slot *memslot;
577
578 kvm_for_each_memslot(memslot, slots)
579 kvm_free_physmem_slot(memslot, NULL);
580
581 kfree(kvm->memslots);
582 }
583
584 static void kvm_destroy_vm(struct kvm *kvm)
585 {
586 int i;
587 struct mm_struct *mm = kvm->mm;
588
589 kvm_arch_sync_events(kvm);
590 raw_spin_lock(&kvm_lock);
591 list_del(&kvm->vm_list);
592 raw_spin_unlock(&kvm_lock);
593 kvm_free_irq_routing(kvm);
594 for (i = 0; i < KVM_NR_BUSES; i++)
595 kvm_io_bus_destroy(kvm->buses[i]);
596 kvm_coalesced_mmio_free(kvm);
597 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
598 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
599 #else
600 kvm_arch_flush_shadow_all(kvm);
601 #endif
602 kvm_arch_destroy_vm(kvm);
603 kvm_free_physmem(kvm);
604 cleanup_srcu_struct(&kvm->srcu);
605 kvm_arch_free_vm(kvm);
606 hardware_disable_all();
607 mmdrop(mm);
608 }
609
610 void kvm_get_kvm(struct kvm *kvm)
611 {
612 atomic_inc(&kvm->users_count);
613 }
614 EXPORT_SYMBOL_GPL(kvm_get_kvm);
615
616 void kvm_put_kvm(struct kvm *kvm)
617 {
618 if (atomic_dec_and_test(&kvm->users_count))
619 kvm_destroy_vm(kvm);
620 }
621 EXPORT_SYMBOL_GPL(kvm_put_kvm);
622
623
624 static int kvm_vm_release(struct inode *inode, struct file *filp)
625 {
626 struct kvm *kvm = filp->private_data;
627
628 kvm_irqfd_release(kvm);
629
630 kvm_put_kvm(kvm);
631 return 0;
632 }
633
634 /*
635 * Allocation size is twice as large as the actual dirty bitmap size.
636 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
637 */
638 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
639 {
640 #ifndef CONFIG_S390
641 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
642
643 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
644 if (!memslot->dirty_bitmap)
645 return -ENOMEM;
646
647 #endif /* !CONFIG_S390 */
648 return 0;
649 }
650
651 static int cmp_memslot(const void *slot1, const void *slot2)
652 {
653 struct kvm_memory_slot *s1, *s2;
654
655 s1 = (struct kvm_memory_slot *)slot1;
656 s2 = (struct kvm_memory_slot *)slot2;
657
658 if (s1->npages < s2->npages)
659 return 1;
660 if (s1->npages > s2->npages)
661 return -1;
662
663 return 0;
664 }
665
666 /*
667 * Sort the memslots base on its size, so the larger slots
668 * will get better fit.
669 */
670 static void sort_memslots(struct kvm_memslots *slots)
671 {
672 int i;
673
674 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
675 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
676
677 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
678 slots->id_to_index[slots->memslots[i].id] = i;
679 }
680
681 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
682 u64 last_generation)
683 {
684 if (new) {
685 int id = new->id;
686 struct kvm_memory_slot *old = id_to_memslot(slots, id);
687 unsigned long npages = old->npages;
688
689 *old = *new;
690 if (new->npages != npages)
691 sort_memslots(slots);
692 }
693
694 slots->generation = last_generation + 1;
695 }
696
697 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
698 {
699 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
700
701 #ifdef KVM_CAP_READONLY_MEM
702 valid_flags |= KVM_MEM_READONLY;
703 #endif
704
705 if (mem->flags & ~valid_flags)
706 return -EINVAL;
707
708 return 0;
709 }
710
711 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
712 struct kvm_memslots *slots, struct kvm_memory_slot *new)
713 {
714 struct kvm_memslots *old_memslots = kvm->memslots;
715
716 update_memslots(slots, new, kvm->memslots->generation);
717 rcu_assign_pointer(kvm->memslots, slots);
718 synchronize_srcu_expedited(&kvm->srcu);
719 return old_memslots;
720 }
721
722 /*
723 * Allocate some memory and give it an address in the guest physical address
724 * space.
725 *
726 * Discontiguous memory is allowed, mostly for framebuffers.
727 *
728 * Must be called holding mmap_sem for write.
729 */
730 int __kvm_set_memory_region(struct kvm *kvm,
731 struct kvm_userspace_memory_region *mem)
732 {
733 int r;
734 gfn_t base_gfn;
735 unsigned long npages;
736 struct kvm_memory_slot *slot;
737 struct kvm_memory_slot old, new;
738 struct kvm_memslots *slots = NULL, *old_memslots;
739 enum kvm_mr_change change;
740
741 r = check_memory_region_flags(mem);
742 if (r)
743 goto out;
744
745 r = -EINVAL;
746 /* General sanity checks */
747 if (mem->memory_size & (PAGE_SIZE - 1))
748 goto out;
749 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
750 goto out;
751 /* We can read the guest memory with __xxx_user() later on. */
752 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
753 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
754 !access_ok(VERIFY_WRITE,
755 (void __user *)(unsigned long)mem->userspace_addr,
756 mem->memory_size)))
757 goto out;
758 if (mem->slot >= KVM_MEM_SLOTS_NUM)
759 goto out;
760 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
761 goto out;
762
763 slot = id_to_memslot(kvm->memslots, mem->slot);
764 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
765 npages = mem->memory_size >> PAGE_SHIFT;
766
767 r = -EINVAL;
768 if (npages > KVM_MEM_MAX_NR_PAGES)
769 goto out;
770
771 if (!npages)
772 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
773
774 new = old = *slot;
775
776 new.id = mem->slot;
777 new.base_gfn = base_gfn;
778 new.npages = npages;
779 new.flags = mem->flags;
780
781 r = -EINVAL;
782 if (npages) {
783 if (!old.npages)
784 change = KVM_MR_CREATE;
785 else { /* Modify an existing slot. */
786 if ((mem->userspace_addr != old.userspace_addr) ||
787 (npages != old.npages) ||
788 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
789 goto out;
790
791 if (base_gfn != old.base_gfn)
792 change = KVM_MR_MOVE;
793 else if (new.flags != old.flags)
794 change = KVM_MR_FLAGS_ONLY;
795 else { /* Nothing to change. */
796 r = 0;
797 goto out;
798 }
799 }
800 } else if (old.npages) {
801 change = KVM_MR_DELETE;
802 } else /* Modify a non-existent slot: disallowed. */
803 goto out;
804
805 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
806 /* Check for overlaps */
807 r = -EEXIST;
808 kvm_for_each_memslot(slot, kvm->memslots) {
809 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
810 (slot->id == mem->slot))
811 continue;
812 if (!((base_gfn + npages <= slot->base_gfn) ||
813 (base_gfn >= slot->base_gfn + slot->npages)))
814 goto out;
815 }
816 }
817
818 /* Free page dirty bitmap if unneeded */
819 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
820 new.dirty_bitmap = NULL;
821
822 r = -ENOMEM;
823 if (change == KVM_MR_CREATE) {
824 new.userspace_addr = mem->userspace_addr;
825
826 if (kvm_arch_create_memslot(&new, npages))
827 goto out_free;
828 }
829
830 /* Allocate page dirty bitmap if needed */
831 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
832 if (kvm_create_dirty_bitmap(&new) < 0)
833 goto out_free;
834 }
835
836 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
837 r = -ENOMEM;
838 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
839 GFP_KERNEL);
840 if (!slots)
841 goto out_free;
842 slot = id_to_memslot(slots, mem->slot);
843 slot->flags |= KVM_MEMSLOT_INVALID;
844
845 old_memslots = install_new_memslots(kvm, slots, NULL);
846
847 /* slot was deleted or moved, clear iommu mapping */
848 kvm_iommu_unmap_pages(kvm, &old);
849 /* From this point no new shadow pages pointing to a deleted,
850 * or moved, memslot will be created.
851 *
852 * validation of sp->gfn happens in:
853 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
854 * - kvm_is_visible_gfn (mmu_check_roots)
855 */
856 kvm_arch_flush_shadow_memslot(kvm, slot);
857 slots = old_memslots;
858 }
859
860 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
861 if (r)
862 goto out_slots;
863
864 r = -ENOMEM;
865 /*
866 * We can re-use the old_memslots from above, the only difference
867 * from the currently installed memslots is the invalid flag. This
868 * will get overwritten by update_memslots anyway.
869 */
870 if (!slots) {
871 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
872 GFP_KERNEL);
873 if (!slots)
874 goto out_free;
875 }
876
877 /*
878 * IOMMU mapping: New slots need to be mapped. Old slots need to be
879 * un-mapped and re-mapped if their base changes. Since base change
880 * unmapping is handled above with slot deletion, mapping alone is
881 * needed here. Anything else the iommu might care about for existing
882 * slots (size changes, userspace addr changes and read-only flag
883 * changes) is disallowed above, so any other attribute changes getting
884 * here can be skipped.
885 */
886 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
887 r = kvm_iommu_map_pages(kvm, &new);
888 if (r)
889 goto out_slots;
890 }
891
892 /* actual memory is freed via old in kvm_free_physmem_slot below */
893 if (change == KVM_MR_DELETE) {
894 new.dirty_bitmap = NULL;
895 memset(&new.arch, 0, sizeof(new.arch));
896 }
897
898 old_memslots = install_new_memslots(kvm, slots, &new);
899
900 kvm_arch_commit_memory_region(kvm, mem, &old, change);
901
902 kvm_free_physmem_slot(&old, &new);
903 kfree(old_memslots);
904
905 return 0;
906
907 out_slots:
908 kfree(slots);
909 out_free:
910 kvm_free_physmem_slot(&new, &old);
911 out:
912 return r;
913 }
914 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
915
916 int kvm_set_memory_region(struct kvm *kvm,
917 struct kvm_userspace_memory_region *mem)
918 {
919 int r;
920
921 mutex_lock(&kvm->slots_lock);
922 r = __kvm_set_memory_region(kvm, mem);
923 mutex_unlock(&kvm->slots_lock);
924 return r;
925 }
926 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
927
928 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
929 struct kvm_userspace_memory_region *mem)
930 {
931 if (mem->slot >= KVM_USER_MEM_SLOTS)
932 return -EINVAL;
933 return kvm_set_memory_region(kvm, mem);
934 }
935
936 int kvm_get_dirty_log(struct kvm *kvm,
937 struct kvm_dirty_log *log, int *is_dirty)
938 {
939 struct kvm_memory_slot *memslot;
940 int r, i;
941 unsigned long n;
942 unsigned long any = 0;
943
944 r = -EINVAL;
945 if (log->slot >= KVM_USER_MEM_SLOTS)
946 goto out;
947
948 memslot = id_to_memslot(kvm->memslots, log->slot);
949 r = -ENOENT;
950 if (!memslot->dirty_bitmap)
951 goto out;
952
953 n = kvm_dirty_bitmap_bytes(memslot);
954
955 for (i = 0; !any && i < n/sizeof(long); ++i)
956 any = memslot->dirty_bitmap[i];
957
958 r = -EFAULT;
959 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
960 goto out;
961
962 if (any)
963 *is_dirty = 1;
964
965 r = 0;
966 out:
967 return r;
968 }
969
970 bool kvm_largepages_enabled(void)
971 {
972 return largepages_enabled;
973 }
974
975 void kvm_disable_largepages(void)
976 {
977 largepages_enabled = false;
978 }
979 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
980
981 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
982 {
983 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
984 }
985 EXPORT_SYMBOL_GPL(gfn_to_memslot);
986
987 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
988 {
989 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
990
991 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
992 memslot->flags & KVM_MEMSLOT_INVALID)
993 return 0;
994
995 return 1;
996 }
997 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
998
999 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1000 {
1001 struct vm_area_struct *vma;
1002 unsigned long addr, size;
1003
1004 size = PAGE_SIZE;
1005
1006 addr = gfn_to_hva(kvm, gfn);
1007 if (kvm_is_error_hva(addr))
1008 return PAGE_SIZE;
1009
1010 down_read(&current->mm->mmap_sem);
1011 vma = find_vma(current->mm, addr);
1012 if (!vma)
1013 goto out;
1014
1015 size = vma_kernel_pagesize(vma);
1016
1017 out:
1018 up_read(&current->mm->mmap_sem);
1019
1020 return size;
1021 }
1022
1023 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1024 {
1025 return slot->flags & KVM_MEM_READONLY;
1026 }
1027
1028 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1029 gfn_t *nr_pages, bool write)
1030 {
1031 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1032 return KVM_HVA_ERR_BAD;
1033
1034 if (memslot_is_readonly(slot) && write)
1035 return KVM_HVA_ERR_RO_BAD;
1036
1037 if (nr_pages)
1038 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1039
1040 return __gfn_to_hva_memslot(slot, gfn);
1041 }
1042
1043 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1044 gfn_t *nr_pages)
1045 {
1046 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1047 }
1048
1049 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1050 gfn_t gfn)
1051 {
1052 return gfn_to_hva_many(slot, gfn, NULL);
1053 }
1054 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1055
1056 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1057 {
1058 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1059 }
1060 EXPORT_SYMBOL_GPL(gfn_to_hva);
1061
1062 /*
1063 * The hva returned by this function is only allowed to be read.
1064 * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1065 */
1066 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1067 {
1068 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1069 }
1070
1071 static int kvm_read_hva(void *data, void __user *hva, int len)
1072 {
1073 return __copy_from_user(data, hva, len);
1074 }
1075
1076 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1077 {
1078 return __copy_from_user_inatomic(data, hva, len);
1079 }
1080
1081 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1082 unsigned long start, int write, struct page **page)
1083 {
1084 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1085
1086 if (write)
1087 flags |= FOLL_WRITE;
1088
1089 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1090 }
1091
1092 static inline int check_user_page_hwpoison(unsigned long addr)
1093 {
1094 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1095
1096 rc = __get_user_pages(current, current->mm, addr, 1,
1097 flags, NULL, NULL, NULL);
1098 return rc == -EHWPOISON;
1099 }
1100
1101 /*
1102 * The atomic path to get the writable pfn which will be stored in @pfn,
1103 * true indicates success, otherwise false is returned.
1104 */
1105 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1106 bool write_fault, bool *writable, pfn_t *pfn)
1107 {
1108 struct page *page[1];
1109 int npages;
1110
1111 if (!(async || atomic))
1112 return false;
1113
1114 /*
1115 * Fast pin a writable pfn only if it is a write fault request
1116 * or the caller allows to map a writable pfn for a read fault
1117 * request.
1118 */
1119 if (!(write_fault || writable))
1120 return false;
1121
1122 npages = __get_user_pages_fast(addr, 1, 1, page);
1123 if (npages == 1) {
1124 *pfn = page_to_pfn(page[0]);
1125
1126 if (writable)
1127 *writable = true;
1128 return true;
1129 }
1130
1131 return false;
1132 }
1133
1134 /*
1135 * The slow path to get the pfn of the specified host virtual address,
1136 * 1 indicates success, -errno is returned if error is detected.
1137 */
1138 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1139 bool *writable, pfn_t *pfn)
1140 {
1141 struct page *page[1];
1142 int npages = 0;
1143
1144 might_sleep();
1145
1146 if (writable)
1147 *writable = write_fault;
1148
1149 if (async) {
1150 down_read(&current->mm->mmap_sem);
1151 npages = get_user_page_nowait(current, current->mm,
1152 addr, write_fault, page);
1153 up_read(&current->mm->mmap_sem);
1154 } else
1155 npages = get_user_pages_fast(addr, 1, write_fault,
1156 page);
1157 if (npages != 1)
1158 return npages;
1159
1160 /* map read fault as writable if possible */
1161 if (unlikely(!write_fault) && writable) {
1162 struct page *wpage[1];
1163
1164 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1165 if (npages == 1) {
1166 *writable = true;
1167 put_page(page[0]);
1168 page[0] = wpage[0];
1169 }
1170
1171 npages = 1;
1172 }
1173 *pfn = page_to_pfn(page[0]);
1174 return npages;
1175 }
1176
1177 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1178 {
1179 if (unlikely(!(vma->vm_flags & VM_READ)))
1180 return false;
1181
1182 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1183 return false;
1184
1185 return true;
1186 }
1187
1188 /*
1189 * Pin guest page in memory and return its pfn.
1190 * @addr: host virtual address which maps memory to the guest
1191 * @atomic: whether this function can sleep
1192 * @async: whether this function need to wait IO complete if the
1193 * host page is not in the memory
1194 * @write_fault: whether we should get a writable host page
1195 * @writable: whether it allows to map a writable host page for !@write_fault
1196 *
1197 * The function will map a writable host page for these two cases:
1198 * 1): @write_fault = true
1199 * 2): @write_fault = false && @writable, @writable will tell the caller
1200 * whether the mapping is writable.
1201 */
1202 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1203 bool write_fault, bool *writable)
1204 {
1205 struct vm_area_struct *vma;
1206 pfn_t pfn = 0;
1207 int npages;
1208
1209 /* we can do it either atomically or asynchronously, not both */
1210 BUG_ON(atomic && async);
1211
1212 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1213 return pfn;
1214
1215 if (atomic)
1216 return KVM_PFN_ERR_FAULT;
1217
1218 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1219 if (npages == 1)
1220 return pfn;
1221
1222 down_read(&current->mm->mmap_sem);
1223 if (npages == -EHWPOISON ||
1224 (!async && check_user_page_hwpoison(addr))) {
1225 pfn = KVM_PFN_ERR_HWPOISON;
1226 goto exit;
1227 }
1228
1229 vma = find_vma_intersection(current->mm, addr, addr + 1);
1230
1231 if (vma == NULL)
1232 pfn = KVM_PFN_ERR_FAULT;
1233 else if ((vma->vm_flags & VM_PFNMAP)) {
1234 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1235 vma->vm_pgoff;
1236 BUG_ON(!kvm_is_mmio_pfn(pfn));
1237 } else {
1238 if (async && vma_is_valid(vma, write_fault))
1239 *async = true;
1240 pfn = KVM_PFN_ERR_FAULT;
1241 }
1242 exit:
1243 up_read(&current->mm->mmap_sem);
1244 return pfn;
1245 }
1246
1247 static pfn_t
1248 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1249 bool *async, bool write_fault, bool *writable)
1250 {
1251 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1252
1253 if (addr == KVM_HVA_ERR_RO_BAD)
1254 return KVM_PFN_ERR_RO_FAULT;
1255
1256 if (kvm_is_error_hva(addr))
1257 return KVM_PFN_NOSLOT;
1258
1259 /* Do not map writable pfn in the readonly memslot. */
1260 if (writable && memslot_is_readonly(slot)) {
1261 *writable = false;
1262 writable = NULL;
1263 }
1264
1265 return hva_to_pfn(addr, atomic, async, write_fault,
1266 writable);
1267 }
1268
1269 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1270 bool write_fault, bool *writable)
1271 {
1272 struct kvm_memory_slot *slot;
1273
1274 if (async)
1275 *async = false;
1276
1277 slot = gfn_to_memslot(kvm, gfn);
1278
1279 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1280 writable);
1281 }
1282
1283 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1284 {
1285 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1286 }
1287 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1288
1289 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1290 bool write_fault, bool *writable)
1291 {
1292 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1293 }
1294 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1295
1296 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1297 {
1298 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1299 }
1300 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1301
1302 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1303 bool *writable)
1304 {
1305 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1306 }
1307 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1308
1309 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1310 {
1311 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1312 }
1313
1314 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1315 {
1316 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1317 }
1318 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1319
1320 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1321 int nr_pages)
1322 {
1323 unsigned long addr;
1324 gfn_t entry;
1325
1326 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1327 if (kvm_is_error_hva(addr))
1328 return -1;
1329
1330 if (entry < nr_pages)
1331 return 0;
1332
1333 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1334 }
1335 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1336
1337 static struct page *kvm_pfn_to_page(pfn_t pfn)
1338 {
1339 if (is_error_noslot_pfn(pfn))
1340 return KVM_ERR_PTR_BAD_PAGE;
1341
1342 if (kvm_is_mmio_pfn(pfn)) {
1343 WARN_ON(1);
1344 return KVM_ERR_PTR_BAD_PAGE;
1345 }
1346
1347 return pfn_to_page(pfn);
1348 }
1349
1350 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1351 {
1352 pfn_t pfn;
1353
1354 pfn = gfn_to_pfn(kvm, gfn);
1355
1356 return kvm_pfn_to_page(pfn);
1357 }
1358
1359 EXPORT_SYMBOL_GPL(gfn_to_page);
1360
1361 void kvm_release_page_clean(struct page *page)
1362 {
1363 WARN_ON(is_error_page(page));
1364
1365 kvm_release_pfn_clean(page_to_pfn(page));
1366 }
1367 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1368
1369 void kvm_release_pfn_clean(pfn_t pfn)
1370 {
1371 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1372 put_page(pfn_to_page(pfn));
1373 }
1374 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1375
1376 void kvm_release_page_dirty(struct page *page)
1377 {
1378 WARN_ON(is_error_page(page));
1379
1380 kvm_release_pfn_dirty(page_to_pfn(page));
1381 }
1382 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1383
1384 void kvm_release_pfn_dirty(pfn_t pfn)
1385 {
1386 kvm_set_pfn_dirty(pfn);
1387 kvm_release_pfn_clean(pfn);
1388 }
1389 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1390
1391 void kvm_set_page_dirty(struct page *page)
1392 {
1393 kvm_set_pfn_dirty(page_to_pfn(page));
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1396
1397 void kvm_set_pfn_dirty(pfn_t pfn)
1398 {
1399 if (!kvm_is_mmio_pfn(pfn)) {
1400 struct page *page = pfn_to_page(pfn);
1401 if (!PageReserved(page))
1402 SetPageDirty(page);
1403 }
1404 }
1405 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1406
1407 void kvm_set_pfn_accessed(pfn_t pfn)
1408 {
1409 if (!kvm_is_mmio_pfn(pfn))
1410 mark_page_accessed(pfn_to_page(pfn));
1411 }
1412 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1413
1414 void kvm_get_pfn(pfn_t pfn)
1415 {
1416 if (!kvm_is_mmio_pfn(pfn))
1417 get_page(pfn_to_page(pfn));
1418 }
1419 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1420
1421 static int next_segment(unsigned long len, int offset)
1422 {
1423 if (len > PAGE_SIZE - offset)
1424 return PAGE_SIZE - offset;
1425 else
1426 return len;
1427 }
1428
1429 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1430 int len)
1431 {
1432 int r;
1433 unsigned long addr;
1434
1435 addr = gfn_to_hva_read(kvm, gfn);
1436 if (kvm_is_error_hva(addr))
1437 return -EFAULT;
1438 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1439 if (r)
1440 return -EFAULT;
1441 return 0;
1442 }
1443 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1444
1445 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1446 {
1447 gfn_t gfn = gpa >> PAGE_SHIFT;
1448 int seg;
1449 int offset = offset_in_page(gpa);
1450 int ret;
1451
1452 while ((seg = next_segment(len, offset)) != 0) {
1453 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1454 if (ret < 0)
1455 return ret;
1456 offset = 0;
1457 len -= seg;
1458 data += seg;
1459 ++gfn;
1460 }
1461 return 0;
1462 }
1463 EXPORT_SYMBOL_GPL(kvm_read_guest);
1464
1465 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1466 unsigned long len)
1467 {
1468 int r;
1469 unsigned long addr;
1470 gfn_t gfn = gpa >> PAGE_SHIFT;
1471 int offset = offset_in_page(gpa);
1472
1473 addr = gfn_to_hva_read(kvm, gfn);
1474 if (kvm_is_error_hva(addr))
1475 return -EFAULT;
1476 pagefault_disable();
1477 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1478 pagefault_enable();
1479 if (r)
1480 return -EFAULT;
1481 return 0;
1482 }
1483 EXPORT_SYMBOL(kvm_read_guest_atomic);
1484
1485 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1486 int offset, int len)
1487 {
1488 int r;
1489 unsigned long addr;
1490
1491 addr = gfn_to_hva(kvm, gfn);
1492 if (kvm_is_error_hva(addr))
1493 return -EFAULT;
1494 r = __copy_to_user((void __user *)addr + offset, data, len);
1495 if (r)
1496 return -EFAULT;
1497 mark_page_dirty(kvm, gfn);
1498 return 0;
1499 }
1500 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1501
1502 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1503 unsigned long len)
1504 {
1505 gfn_t gfn = gpa >> PAGE_SHIFT;
1506 int seg;
1507 int offset = offset_in_page(gpa);
1508 int ret;
1509
1510 while ((seg = next_segment(len, offset)) != 0) {
1511 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1512 if (ret < 0)
1513 return ret;
1514 offset = 0;
1515 len -= seg;
1516 data += seg;
1517 ++gfn;
1518 }
1519 return 0;
1520 }
1521
1522 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1523 gpa_t gpa)
1524 {
1525 struct kvm_memslots *slots = kvm_memslots(kvm);
1526 int offset = offset_in_page(gpa);
1527 gfn_t gfn = gpa >> PAGE_SHIFT;
1528
1529 ghc->gpa = gpa;
1530 ghc->generation = slots->generation;
1531 ghc->memslot = gfn_to_memslot(kvm, gfn);
1532 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1533 if (!kvm_is_error_hva(ghc->hva))
1534 ghc->hva += offset;
1535 else
1536 return -EFAULT;
1537
1538 return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1541
1542 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1543 void *data, unsigned long len)
1544 {
1545 struct kvm_memslots *slots = kvm_memslots(kvm);
1546 int r;
1547
1548 if (slots->generation != ghc->generation)
1549 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1550
1551 if (kvm_is_error_hva(ghc->hva))
1552 return -EFAULT;
1553
1554 r = __copy_to_user((void __user *)ghc->hva, data, len);
1555 if (r)
1556 return -EFAULT;
1557 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1558
1559 return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1562
1563 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1564 void *data, unsigned long len)
1565 {
1566 struct kvm_memslots *slots = kvm_memslots(kvm);
1567 int r;
1568
1569 if (slots->generation != ghc->generation)
1570 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1571
1572 if (kvm_is_error_hva(ghc->hva))
1573 return -EFAULT;
1574
1575 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1576 if (r)
1577 return -EFAULT;
1578
1579 return 0;
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1582
1583 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1584 {
1585 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1586 offset, len);
1587 }
1588 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1589
1590 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1591 {
1592 gfn_t gfn = gpa >> PAGE_SHIFT;
1593 int seg;
1594 int offset = offset_in_page(gpa);
1595 int ret;
1596
1597 while ((seg = next_segment(len, offset)) != 0) {
1598 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1599 if (ret < 0)
1600 return ret;
1601 offset = 0;
1602 len -= seg;
1603 ++gfn;
1604 }
1605 return 0;
1606 }
1607 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1608
1609 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1610 gfn_t gfn)
1611 {
1612 if (memslot && memslot->dirty_bitmap) {
1613 unsigned long rel_gfn = gfn - memslot->base_gfn;
1614
1615 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1616 }
1617 }
1618
1619 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1620 {
1621 struct kvm_memory_slot *memslot;
1622
1623 memslot = gfn_to_memslot(kvm, gfn);
1624 mark_page_dirty_in_slot(kvm, memslot, gfn);
1625 }
1626
1627 /*
1628 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1629 */
1630 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1631 {
1632 DEFINE_WAIT(wait);
1633
1634 for (;;) {
1635 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1636
1637 if (kvm_arch_vcpu_runnable(vcpu)) {
1638 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1639 break;
1640 }
1641 if (kvm_cpu_has_pending_timer(vcpu))
1642 break;
1643 if (signal_pending(current))
1644 break;
1645
1646 schedule();
1647 }
1648
1649 finish_wait(&vcpu->wq, &wait);
1650 }
1651
1652 #ifndef CONFIG_S390
1653 /*
1654 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1655 */
1656 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1657 {
1658 int me;
1659 int cpu = vcpu->cpu;
1660 wait_queue_head_t *wqp;
1661
1662 wqp = kvm_arch_vcpu_wq(vcpu);
1663 if (waitqueue_active(wqp)) {
1664 wake_up_interruptible(wqp);
1665 ++vcpu->stat.halt_wakeup;
1666 }
1667
1668 me = get_cpu();
1669 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1670 if (kvm_arch_vcpu_should_kick(vcpu))
1671 smp_send_reschedule(cpu);
1672 put_cpu();
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1675 #endif /* !CONFIG_S390 */
1676
1677 void kvm_resched(struct kvm_vcpu *vcpu)
1678 {
1679 if (!need_resched())
1680 return;
1681 cond_resched();
1682 }
1683 EXPORT_SYMBOL_GPL(kvm_resched);
1684
1685 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1686 {
1687 struct pid *pid;
1688 struct task_struct *task = NULL;
1689 bool ret = false;
1690
1691 rcu_read_lock();
1692 pid = rcu_dereference(target->pid);
1693 if (pid)
1694 task = get_pid_task(target->pid, PIDTYPE_PID);
1695 rcu_read_unlock();
1696 if (!task)
1697 return ret;
1698 if (task->flags & PF_VCPU) {
1699 put_task_struct(task);
1700 return ret;
1701 }
1702 ret = yield_to(task, 1);
1703 put_task_struct(task);
1704
1705 return ret;
1706 }
1707 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1708
1709 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1710 /*
1711 * Helper that checks whether a VCPU is eligible for directed yield.
1712 * Most eligible candidate to yield is decided by following heuristics:
1713 *
1714 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1715 * (preempted lock holder), indicated by @in_spin_loop.
1716 * Set at the beiginning and cleared at the end of interception/PLE handler.
1717 *
1718 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1719 * chance last time (mostly it has become eligible now since we have probably
1720 * yielded to lockholder in last iteration. This is done by toggling
1721 * @dy_eligible each time a VCPU checked for eligibility.)
1722 *
1723 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1724 * to preempted lock-holder could result in wrong VCPU selection and CPU
1725 * burning. Giving priority for a potential lock-holder increases lock
1726 * progress.
1727 *
1728 * Since algorithm is based on heuristics, accessing another VCPU data without
1729 * locking does not harm. It may result in trying to yield to same VCPU, fail
1730 * and continue with next VCPU and so on.
1731 */
1732 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1733 {
1734 bool eligible;
1735
1736 eligible = !vcpu->spin_loop.in_spin_loop ||
1737 (vcpu->spin_loop.in_spin_loop &&
1738 vcpu->spin_loop.dy_eligible);
1739
1740 if (vcpu->spin_loop.in_spin_loop)
1741 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1742
1743 return eligible;
1744 }
1745 #endif
1746
1747 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1748 {
1749 struct kvm *kvm = me->kvm;
1750 struct kvm_vcpu *vcpu;
1751 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1752 int yielded = 0;
1753 int try = 3;
1754 int pass;
1755 int i;
1756
1757 kvm_vcpu_set_in_spin_loop(me, true);
1758 /*
1759 * We boost the priority of a VCPU that is runnable but not
1760 * currently running, because it got preempted by something
1761 * else and called schedule in __vcpu_run. Hopefully that
1762 * VCPU is holding the lock that we need and will release it.
1763 * We approximate round-robin by starting at the last boosted VCPU.
1764 */
1765 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1766 kvm_for_each_vcpu(i, vcpu, kvm) {
1767 if (!pass && i <= last_boosted_vcpu) {
1768 i = last_boosted_vcpu;
1769 continue;
1770 } else if (pass && i > last_boosted_vcpu)
1771 break;
1772 if (!ACCESS_ONCE(vcpu->preempted))
1773 continue;
1774 if (vcpu == me)
1775 continue;
1776 if (waitqueue_active(&vcpu->wq))
1777 continue;
1778 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1779 continue;
1780
1781 yielded = kvm_vcpu_yield_to(vcpu);
1782 if (yielded > 0) {
1783 kvm->last_boosted_vcpu = i;
1784 break;
1785 } else if (yielded < 0) {
1786 try--;
1787 if (!try)
1788 break;
1789 }
1790 }
1791 }
1792 kvm_vcpu_set_in_spin_loop(me, false);
1793
1794 /* Ensure vcpu is not eligible during next spinloop */
1795 kvm_vcpu_set_dy_eligible(me, false);
1796 }
1797 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1798
1799 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1800 {
1801 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1802 struct page *page;
1803
1804 if (vmf->pgoff == 0)
1805 page = virt_to_page(vcpu->run);
1806 #ifdef CONFIG_X86
1807 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1808 page = virt_to_page(vcpu->arch.pio_data);
1809 #endif
1810 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1811 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1812 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1813 #endif
1814 else
1815 return kvm_arch_vcpu_fault(vcpu, vmf);
1816 get_page(page);
1817 vmf->page = page;
1818 return 0;
1819 }
1820
1821 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1822 .fault = kvm_vcpu_fault,
1823 };
1824
1825 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1826 {
1827 vma->vm_ops = &kvm_vcpu_vm_ops;
1828 return 0;
1829 }
1830
1831 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1832 {
1833 struct kvm_vcpu *vcpu = filp->private_data;
1834
1835 kvm_put_kvm(vcpu->kvm);
1836 return 0;
1837 }
1838
1839 static struct file_operations kvm_vcpu_fops = {
1840 .release = kvm_vcpu_release,
1841 .unlocked_ioctl = kvm_vcpu_ioctl,
1842 #ifdef CONFIG_COMPAT
1843 .compat_ioctl = kvm_vcpu_compat_ioctl,
1844 #endif
1845 .mmap = kvm_vcpu_mmap,
1846 .llseek = noop_llseek,
1847 };
1848
1849 /*
1850 * Allocates an inode for the vcpu.
1851 */
1852 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1853 {
1854 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1855 }
1856
1857 /*
1858 * Creates some virtual cpus. Good luck creating more than one.
1859 */
1860 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1861 {
1862 int r;
1863 struct kvm_vcpu *vcpu, *v;
1864
1865 vcpu = kvm_arch_vcpu_create(kvm, id);
1866 if (IS_ERR(vcpu))
1867 return PTR_ERR(vcpu);
1868
1869 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1870
1871 r = kvm_arch_vcpu_setup(vcpu);
1872 if (r)
1873 goto vcpu_destroy;
1874
1875 mutex_lock(&kvm->lock);
1876 if (!kvm_vcpu_compatible(vcpu)) {
1877 r = -EINVAL;
1878 goto unlock_vcpu_destroy;
1879 }
1880 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1881 r = -EINVAL;
1882 goto unlock_vcpu_destroy;
1883 }
1884
1885 kvm_for_each_vcpu(r, v, kvm)
1886 if (v->vcpu_id == id) {
1887 r = -EEXIST;
1888 goto unlock_vcpu_destroy;
1889 }
1890
1891 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1892
1893 /* Now it's all set up, let userspace reach it */
1894 kvm_get_kvm(kvm);
1895 r = create_vcpu_fd(vcpu);
1896 if (r < 0) {
1897 kvm_put_kvm(kvm);
1898 goto unlock_vcpu_destroy;
1899 }
1900
1901 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1902 smp_wmb();
1903 atomic_inc(&kvm->online_vcpus);
1904
1905 mutex_unlock(&kvm->lock);
1906 kvm_arch_vcpu_postcreate(vcpu);
1907 return r;
1908
1909 unlock_vcpu_destroy:
1910 mutex_unlock(&kvm->lock);
1911 vcpu_destroy:
1912 kvm_arch_vcpu_destroy(vcpu);
1913 return r;
1914 }
1915
1916 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1917 {
1918 if (sigset) {
1919 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1920 vcpu->sigset_active = 1;
1921 vcpu->sigset = *sigset;
1922 } else
1923 vcpu->sigset_active = 0;
1924 return 0;
1925 }
1926
1927 static long kvm_vcpu_ioctl(struct file *filp,
1928 unsigned int ioctl, unsigned long arg)
1929 {
1930 struct kvm_vcpu *vcpu = filp->private_data;
1931 void __user *argp = (void __user *)arg;
1932 int r;
1933 struct kvm_fpu *fpu = NULL;
1934 struct kvm_sregs *kvm_sregs = NULL;
1935
1936 if (vcpu->kvm->mm != current->mm)
1937 return -EIO;
1938
1939 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1940 /*
1941 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1942 * so vcpu_load() would break it.
1943 */
1944 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1945 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1946 #endif
1947
1948
1949 r = vcpu_load(vcpu);
1950 if (r)
1951 return r;
1952 switch (ioctl) {
1953 case KVM_RUN:
1954 r = -EINVAL;
1955 if (arg)
1956 goto out;
1957 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1958 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1959 break;
1960 case KVM_GET_REGS: {
1961 struct kvm_regs *kvm_regs;
1962
1963 r = -ENOMEM;
1964 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1965 if (!kvm_regs)
1966 goto out;
1967 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1968 if (r)
1969 goto out_free1;
1970 r = -EFAULT;
1971 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1972 goto out_free1;
1973 r = 0;
1974 out_free1:
1975 kfree(kvm_regs);
1976 break;
1977 }
1978 case KVM_SET_REGS: {
1979 struct kvm_regs *kvm_regs;
1980
1981 r = -ENOMEM;
1982 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1983 if (IS_ERR(kvm_regs)) {
1984 r = PTR_ERR(kvm_regs);
1985 goto out;
1986 }
1987 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1988 kfree(kvm_regs);
1989 break;
1990 }
1991 case KVM_GET_SREGS: {
1992 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1993 r = -ENOMEM;
1994 if (!kvm_sregs)
1995 goto out;
1996 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1997 if (r)
1998 goto out;
1999 r = -EFAULT;
2000 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2001 goto out;
2002 r = 0;
2003 break;
2004 }
2005 case KVM_SET_SREGS: {
2006 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2007 if (IS_ERR(kvm_sregs)) {
2008 r = PTR_ERR(kvm_sregs);
2009 kvm_sregs = NULL;
2010 goto out;
2011 }
2012 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2013 break;
2014 }
2015 case KVM_GET_MP_STATE: {
2016 struct kvm_mp_state mp_state;
2017
2018 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2019 if (r)
2020 goto out;
2021 r = -EFAULT;
2022 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2023 goto out;
2024 r = 0;
2025 break;
2026 }
2027 case KVM_SET_MP_STATE: {
2028 struct kvm_mp_state mp_state;
2029
2030 r = -EFAULT;
2031 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2032 goto out;
2033 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2034 break;
2035 }
2036 case KVM_TRANSLATE: {
2037 struct kvm_translation tr;
2038
2039 r = -EFAULT;
2040 if (copy_from_user(&tr, argp, sizeof tr))
2041 goto out;
2042 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2043 if (r)
2044 goto out;
2045 r = -EFAULT;
2046 if (copy_to_user(argp, &tr, sizeof tr))
2047 goto out;
2048 r = 0;
2049 break;
2050 }
2051 case KVM_SET_GUEST_DEBUG: {
2052 struct kvm_guest_debug dbg;
2053
2054 r = -EFAULT;
2055 if (copy_from_user(&dbg, argp, sizeof dbg))
2056 goto out;
2057 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2058 break;
2059 }
2060 case KVM_SET_SIGNAL_MASK: {
2061 struct kvm_signal_mask __user *sigmask_arg = argp;
2062 struct kvm_signal_mask kvm_sigmask;
2063 sigset_t sigset, *p;
2064
2065 p = NULL;
2066 if (argp) {
2067 r = -EFAULT;
2068 if (copy_from_user(&kvm_sigmask, argp,
2069 sizeof kvm_sigmask))
2070 goto out;
2071 r = -EINVAL;
2072 if (kvm_sigmask.len != sizeof sigset)
2073 goto out;
2074 r = -EFAULT;
2075 if (copy_from_user(&sigset, sigmask_arg->sigset,
2076 sizeof sigset))
2077 goto out;
2078 p = &sigset;
2079 }
2080 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2081 break;
2082 }
2083 case KVM_GET_FPU: {
2084 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2085 r = -ENOMEM;
2086 if (!fpu)
2087 goto out;
2088 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2089 if (r)
2090 goto out;
2091 r = -EFAULT;
2092 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2093 goto out;
2094 r = 0;
2095 break;
2096 }
2097 case KVM_SET_FPU: {
2098 fpu = memdup_user(argp, sizeof(*fpu));
2099 if (IS_ERR(fpu)) {
2100 r = PTR_ERR(fpu);
2101 fpu = NULL;
2102 goto out;
2103 }
2104 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2105 break;
2106 }
2107 default:
2108 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2109 }
2110 out:
2111 vcpu_put(vcpu);
2112 kfree(fpu);
2113 kfree(kvm_sregs);
2114 return r;
2115 }
2116
2117 #ifdef CONFIG_COMPAT
2118 static long kvm_vcpu_compat_ioctl(struct file *filp,
2119 unsigned int ioctl, unsigned long arg)
2120 {
2121 struct kvm_vcpu *vcpu = filp->private_data;
2122 void __user *argp = compat_ptr(arg);
2123 int r;
2124
2125 if (vcpu->kvm->mm != current->mm)
2126 return -EIO;
2127
2128 switch (ioctl) {
2129 case KVM_SET_SIGNAL_MASK: {
2130 struct kvm_signal_mask __user *sigmask_arg = argp;
2131 struct kvm_signal_mask kvm_sigmask;
2132 compat_sigset_t csigset;
2133 sigset_t sigset;
2134
2135 if (argp) {
2136 r = -EFAULT;
2137 if (copy_from_user(&kvm_sigmask, argp,
2138 sizeof kvm_sigmask))
2139 goto out;
2140 r = -EINVAL;
2141 if (kvm_sigmask.len != sizeof csigset)
2142 goto out;
2143 r = -EFAULT;
2144 if (copy_from_user(&csigset, sigmask_arg->sigset,
2145 sizeof csigset))
2146 goto out;
2147 sigset_from_compat(&sigset, &csigset);
2148 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2149 } else
2150 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2151 break;
2152 }
2153 default:
2154 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2155 }
2156
2157 out:
2158 return r;
2159 }
2160 #endif
2161
2162 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2163 int (*accessor)(struct kvm_device *dev,
2164 struct kvm_device_attr *attr),
2165 unsigned long arg)
2166 {
2167 struct kvm_device_attr attr;
2168
2169 if (!accessor)
2170 return -EPERM;
2171
2172 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2173 return -EFAULT;
2174
2175 return accessor(dev, &attr);
2176 }
2177
2178 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2179 unsigned long arg)
2180 {
2181 struct kvm_device *dev = filp->private_data;
2182
2183 switch (ioctl) {
2184 case KVM_SET_DEVICE_ATTR:
2185 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2186 case KVM_GET_DEVICE_ATTR:
2187 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2188 case KVM_HAS_DEVICE_ATTR:
2189 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2190 default:
2191 if (dev->ops->ioctl)
2192 return dev->ops->ioctl(dev, ioctl, arg);
2193
2194 return -ENOTTY;
2195 }
2196 }
2197
2198 void kvm_device_get(struct kvm_device *dev)
2199 {
2200 atomic_inc(&dev->users);
2201 }
2202
2203 void kvm_device_put(struct kvm_device *dev)
2204 {
2205 if (atomic_dec_and_test(&dev->users))
2206 dev->ops->destroy(dev);
2207 }
2208
2209 static int kvm_device_release(struct inode *inode, struct file *filp)
2210 {
2211 struct kvm_device *dev = filp->private_data;
2212 struct kvm *kvm = dev->kvm;
2213
2214 kvm_device_put(dev);
2215 kvm_put_kvm(kvm);
2216 return 0;
2217 }
2218
2219 static const struct file_operations kvm_device_fops = {
2220 .unlocked_ioctl = kvm_device_ioctl,
2221 .release = kvm_device_release,
2222 };
2223
2224 struct kvm_device *kvm_device_from_filp(struct file *filp)
2225 {
2226 if (filp->f_op != &kvm_device_fops)
2227 return NULL;
2228
2229 return filp->private_data;
2230 }
2231
2232 static int kvm_ioctl_create_device(struct kvm *kvm,
2233 struct kvm_create_device *cd)
2234 {
2235 struct kvm_device_ops *ops = NULL;
2236 struct kvm_device *dev;
2237 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2238 int ret;
2239
2240 switch (cd->type) {
2241 default:
2242 return -ENODEV;
2243 }
2244
2245 if (test)
2246 return 0;
2247
2248 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2249 if (!dev)
2250 return -ENOMEM;
2251
2252 dev->ops = ops;
2253 dev->kvm = kvm;
2254 atomic_set(&dev->users, 1);
2255
2256 ret = ops->create(dev, cd->type);
2257 if (ret < 0) {
2258 kfree(dev);
2259 return ret;
2260 }
2261
2262 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR);
2263 if (ret < 0) {
2264 ops->destroy(dev);
2265 return ret;
2266 }
2267
2268 kvm_get_kvm(kvm);
2269 cd->fd = ret;
2270 return 0;
2271 }
2272
2273 static long kvm_vm_ioctl(struct file *filp,
2274 unsigned int ioctl, unsigned long arg)
2275 {
2276 struct kvm *kvm = filp->private_data;
2277 void __user *argp = (void __user *)arg;
2278 int r;
2279
2280 if (kvm->mm != current->mm)
2281 return -EIO;
2282 switch (ioctl) {
2283 case KVM_CREATE_VCPU:
2284 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2285 break;
2286 case KVM_SET_USER_MEMORY_REGION: {
2287 struct kvm_userspace_memory_region kvm_userspace_mem;
2288
2289 r = -EFAULT;
2290 if (copy_from_user(&kvm_userspace_mem, argp,
2291 sizeof kvm_userspace_mem))
2292 goto out;
2293
2294 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2295 break;
2296 }
2297 case KVM_GET_DIRTY_LOG: {
2298 struct kvm_dirty_log log;
2299
2300 r = -EFAULT;
2301 if (copy_from_user(&log, argp, sizeof log))
2302 goto out;
2303 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2304 break;
2305 }
2306 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2307 case KVM_REGISTER_COALESCED_MMIO: {
2308 struct kvm_coalesced_mmio_zone zone;
2309 r = -EFAULT;
2310 if (copy_from_user(&zone, argp, sizeof zone))
2311 goto out;
2312 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2313 break;
2314 }
2315 case KVM_UNREGISTER_COALESCED_MMIO: {
2316 struct kvm_coalesced_mmio_zone zone;
2317 r = -EFAULT;
2318 if (copy_from_user(&zone, argp, sizeof zone))
2319 goto out;
2320 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2321 break;
2322 }
2323 #endif
2324 case KVM_IRQFD: {
2325 struct kvm_irqfd data;
2326
2327 r = -EFAULT;
2328 if (copy_from_user(&data, argp, sizeof data))
2329 goto out;
2330 r = kvm_irqfd(kvm, &data);
2331 break;
2332 }
2333 case KVM_IOEVENTFD: {
2334 struct kvm_ioeventfd data;
2335
2336 r = -EFAULT;
2337 if (copy_from_user(&data, argp, sizeof data))
2338 goto out;
2339 r = kvm_ioeventfd(kvm, &data);
2340 break;
2341 }
2342 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2343 case KVM_SET_BOOT_CPU_ID:
2344 r = 0;
2345 mutex_lock(&kvm->lock);
2346 if (atomic_read(&kvm->online_vcpus) != 0)
2347 r = -EBUSY;
2348 else
2349 kvm->bsp_vcpu_id = arg;
2350 mutex_unlock(&kvm->lock);
2351 break;
2352 #endif
2353 #ifdef CONFIG_HAVE_KVM_MSI
2354 case KVM_SIGNAL_MSI: {
2355 struct kvm_msi msi;
2356
2357 r = -EFAULT;
2358 if (copy_from_user(&msi, argp, sizeof msi))
2359 goto out;
2360 r = kvm_send_userspace_msi(kvm, &msi);
2361 break;
2362 }
2363 #endif
2364 #ifdef __KVM_HAVE_IRQ_LINE
2365 case KVM_IRQ_LINE_STATUS:
2366 case KVM_IRQ_LINE: {
2367 struct kvm_irq_level irq_event;
2368
2369 r = -EFAULT;
2370 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2371 goto out;
2372
2373 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2374 ioctl == KVM_IRQ_LINE_STATUS);
2375 if (r)
2376 goto out;
2377
2378 r = -EFAULT;
2379 if (ioctl == KVM_IRQ_LINE_STATUS) {
2380 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2381 goto out;
2382 }
2383
2384 r = 0;
2385 break;
2386 }
2387 #endif
2388 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2389 case KVM_SET_GSI_ROUTING: {
2390 struct kvm_irq_routing routing;
2391 struct kvm_irq_routing __user *urouting;
2392 struct kvm_irq_routing_entry *entries;
2393
2394 r = -EFAULT;
2395 if (copy_from_user(&routing, argp, sizeof(routing)))
2396 goto out;
2397 r = -EINVAL;
2398 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2399 goto out;
2400 if (routing.flags)
2401 goto out;
2402 r = -ENOMEM;
2403 entries = vmalloc(routing.nr * sizeof(*entries));
2404 if (!entries)
2405 goto out;
2406 r = -EFAULT;
2407 urouting = argp;
2408 if (copy_from_user(entries, urouting->entries,
2409 routing.nr * sizeof(*entries)))
2410 goto out_free_irq_routing;
2411 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2412 routing.flags);
2413 out_free_irq_routing:
2414 vfree(entries);
2415 break;
2416 }
2417 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2418 case KVM_CREATE_DEVICE: {
2419 struct kvm_create_device cd;
2420
2421 r = -EFAULT;
2422 if (copy_from_user(&cd, argp, sizeof(cd)))
2423 goto out;
2424
2425 r = kvm_ioctl_create_device(kvm, &cd);
2426 if (r)
2427 goto out;
2428
2429 r = -EFAULT;
2430 if (copy_to_user(argp, &cd, sizeof(cd)))
2431 goto out;
2432
2433 r = 0;
2434 break;
2435 }
2436 default:
2437 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2438 if (r == -ENOTTY)
2439 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2440 }
2441 out:
2442 return r;
2443 }
2444
2445 #ifdef CONFIG_COMPAT
2446 struct compat_kvm_dirty_log {
2447 __u32 slot;
2448 __u32 padding1;
2449 union {
2450 compat_uptr_t dirty_bitmap; /* one bit per page */
2451 __u64 padding2;
2452 };
2453 };
2454
2455 static long kvm_vm_compat_ioctl(struct file *filp,
2456 unsigned int ioctl, unsigned long arg)
2457 {
2458 struct kvm *kvm = filp->private_data;
2459 int r;
2460
2461 if (kvm->mm != current->mm)
2462 return -EIO;
2463 switch (ioctl) {
2464 case KVM_GET_DIRTY_LOG: {
2465 struct compat_kvm_dirty_log compat_log;
2466 struct kvm_dirty_log log;
2467
2468 r = -EFAULT;
2469 if (copy_from_user(&compat_log, (void __user *)arg,
2470 sizeof(compat_log)))
2471 goto out;
2472 log.slot = compat_log.slot;
2473 log.padding1 = compat_log.padding1;
2474 log.padding2 = compat_log.padding2;
2475 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2476
2477 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2478 break;
2479 }
2480 default:
2481 r = kvm_vm_ioctl(filp, ioctl, arg);
2482 }
2483
2484 out:
2485 return r;
2486 }
2487 #endif
2488
2489 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2490 {
2491 struct page *page[1];
2492 unsigned long addr;
2493 int npages;
2494 gfn_t gfn = vmf->pgoff;
2495 struct kvm *kvm = vma->vm_file->private_data;
2496
2497 addr = gfn_to_hva(kvm, gfn);
2498 if (kvm_is_error_hva(addr))
2499 return VM_FAULT_SIGBUS;
2500
2501 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2502 NULL);
2503 if (unlikely(npages != 1))
2504 return VM_FAULT_SIGBUS;
2505
2506 vmf->page = page[0];
2507 return 0;
2508 }
2509
2510 static const struct vm_operations_struct kvm_vm_vm_ops = {
2511 .fault = kvm_vm_fault,
2512 };
2513
2514 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2515 {
2516 vma->vm_ops = &kvm_vm_vm_ops;
2517 return 0;
2518 }
2519
2520 static struct file_operations kvm_vm_fops = {
2521 .release = kvm_vm_release,
2522 .unlocked_ioctl = kvm_vm_ioctl,
2523 #ifdef CONFIG_COMPAT
2524 .compat_ioctl = kvm_vm_compat_ioctl,
2525 #endif
2526 .mmap = kvm_vm_mmap,
2527 .llseek = noop_llseek,
2528 };
2529
2530 static int kvm_dev_ioctl_create_vm(unsigned long type)
2531 {
2532 int r;
2533 struct kvm *kvm;
2534
2535 kvm = kvm_create_vm(type);
2536 if (IS_ERR(kvm))
2537 return PTR_ERR(kvm);
2538 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2539 r = kvm_coalesced_mmio_init(kvm);
2540 if (r < 0) {
2541 kvm_put_kvm(kvm);
2542 return r;
2543 }
2544 #endif
2545 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2546 if (r < 0)
2547 kvm_put_kvm(kvm);
2548
2549 return r;
2550 }
2551
2552 static long kvm_dev_ioctl_check_extension_generic(long arg)
2553 {
2554 switch (arg) {
2555 case KVM_CAP_USER_MEMORY:
2556 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2557 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2558 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2559 case KVM_CAP_SET_BOOT_CPU_ID:
2560 #endif
2561 case KVM_CAP_INTERNAL_ERROR_DATA:
2562 #ifdef CONFIG_HAVE_KVM_MSI
2563 case KVM_CAP_SIGNAL_MSI:
2564 #endif
2565 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2566 case KVM_CAP_IRQFD_RESAMPLE:
2567 #endif
2568 return 1;
2569 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2570 case KVM_CAP_IRQ_ROUTING:
2571 return KVM_MAX_IRQ_ROUTES;
2572 #endif
2573 default:
2574 break;
2575 }
2576 return kvm_dev_ioctl_check_extension(arg);
2577 }
2578
2579 static long kvm_dev_ioctl(struct file *filp,
2580 unsigned int ioctl, unsigned long arg)
2581 {
2582 long r = -EINVAL;
2583
2584 switch (ioctl) {
2585 case KVM_GET_API_VERSION:
2586 r = -EINVAL;
2587 if (arg)
2588 goto out;
2589 r = KVM_API_VERSION;
2590 break;
2591 case KVM_CREATE_VM:
2592 r = kvm_dev_ioctl_create_vm(arg);
2593 break;
2594 case KVM_CHECK_EXTENSION:
2595 r = kvm_dev_ioctl_check_extension_generic(arg);
2596 break;
2597 case KVM_GET_VCPU_MMAP_SIZE:
2598 r = -EINVAL;
2599 if (arg)
2600 goto out;
2601 r = PAGE_SIZE; /* struct kvm_run */
2602 #ifdef CONFIG_X86
2603 r += PAGE_SIZE; /* pio data page */
2604 #endif
2605 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2606 r += PAGE_SIZE; /* coalesced mmio ring page */
2607 #endif
2608 break;
2609 case KVM_TRACE_ENABLE:
2610 case KVM_TRACE_PAUSE:
2611 case KVM_TRACE_DISABLE:
2612 r = -EOPNOTSUPP;
2613 break;
2614 default:
2615 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2616 }
2617 out:
2618 return r;
2619 }
2620
2621 static struct file_operations kvm_chardev_ops = {
2622 .unlocked_ioctl = kvm_dev_ioctl,
2623 .compat_ioctl = kvm_dev_ioctl,
2624 .llseek = noop_llseek,
2625 };
2626
2627 static struct miscdevice kvm_dev = {
2628 KVM_MINOR,
2629 "kvm",
2630 &kvm_chardev_ops,
2631 };
2632
2633 static void hardware_enable_nolock(void *junk)
2634 {
2635 int cpu = raw_smp_processor_id();
2636 int r;
2637
2638 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2639 return;
2640
2641 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2642
2643 r = kvm_arch_hardware_enable(NULL);
2644
2645 if (r) {
2646 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2647 atomic_inc(&hardware_enable_failed);
2648 printk(KERN_INFO "kvm: enabling virtualization on "
2649 "CPU%d failed\n", cpu);
2650 }
2651 }
2652
2653 static void hardware_enable(void *junk)
2654 {
2655 raw_spin_lock(&kvm_lock);
2656 hardware_enable_nolock(junk);
2657 raw_spin_unlock(&kvm_lock);
2658 }
2659
2660 static void hardware_disable_nolock(void *junk)
2661 {
2662 int cpu = raw_smp_processor_id();
2663
2664 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2665 return;
2666 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2667 kvm_arch_hardware_disable(NULL);
2668 }
2669
2670 static void hardware_disable(void *junk)
2671 {
2672 raw_spin_lock(&kvm_lock);
2673 hardware_disable_nolock(junk);
2674 raw_spin_unlock(&kvm_lock);
2675 }
2676
2677 static void hardware_disable_all_nolock(void)
2678 {
2679 BUG_ON(!kvm_usage_count);
2680
2681 kvm_usage_count--;
2682 if (!kvm_usage_count)
2683 on_each_cpu(hardware_disable_nolock, NULL, 1);
2684 }
2685
2686 static void hardware_disable_all(void)
2687 {
2688 raw_spin_lock(&kvm_lock);
2689 hardware_disable_all_nolock();
2690 raw_spin_unlock(&kvm_lock);
2691 }
2692
2693 static int hardware_enable_all(void)
2694 {
2695 int r = 0;
2696
2697 raw_spin_lock(&kvm_lock);
2698
2699 kvm_usage_count++;
2700 if (kvm_usage_count == 1) {
2701 atomic_set(&hardware_enable_failed, 0);
2702 on_each_cpu(hardware_enable_nolock, NULL, 1);
2703
2704 if (atomic_read(&hardware_enable_failed)) {
2705 hardware_disable_all_nolock();
2706 r = -EBUSY;
2707 }
2708 }
2709
2710 raw_spin_unlock(&kvm_lock);
2711
2712 return r;
2713 }
2714
2715 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2716 void *v)
2717 {
2718 int cpu = (long)v;
2719
2720 if (!kvm_usage_count)
2721 return NOTIFY_OK;
2722
2723 val &= ~CPU_TASKS_FROZEN;
2724 switch (val) {
2725 case CPU_DYING:
2726 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2727 cpu);
2728 hardware_disable(NULL);
2729 break;
2730 case CPU_STARTING:
2731 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2732 cpu);
2733 hardware_enable(NULL);
2734 break;
2735 }
2736 return NOTIFY_OK;
2737 }
2738
2739 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2740 void *v)
2741 {
2742 /*
2743 * Some (well, at least mine) BIOSes hang on reboot if
2744 * in vmx root mode.
2745 *
2746 * And Intel TXT required VMX off for all cpu when system shutdown.
2747 */
2748 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2749 kvm_rebooting = true;
2750 on_each_cpu(hardware_disable_nolock, NULL, 1);
2751 return NOTIFY_OK;
2752 }
2753
2754 static struct notifier_block kvm_reboot_notifier = {
2755 .notifier_call = kvm_reboot,
2756 .priority = 0,
2757 };
2758
2759 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2760 {
2761 int i;
2762
2763 for (i = 0; i < bus->dev_count; i++) {
2764 struct kvm_io_device *pos = bus->range[i].dev;
2765
2766 kvm_iodevice_destructor(pos);
2767 }
2768 kfree(bus);
2769 }
2770
2771 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2772 {
2773 const struct kvm_io_range *r1 = p1;
2774 const struct kvm_io_range *r2 = p2;
2775
2776 if (r1->addr < r2->addr)
2777 return -1;
2778 if (r1->addr + r1->len > r2->addr + r2->len)
2779 return 1;
2780 return 0;
2781 }
2782
2783 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2784 gpa_t addr, int len)
2785 {
2786 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2787 .addr = addr,
2788 .len = len,
2789 .dev = dev,
2790 };
2791
2792 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2793 kvm_io_bus_sort_cmp, NULL);
2794
2795 return 0;
2796 }
2797
2798 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2799 gpa_t addr, int len)
2800 {
2801 struct kvm_io_range *range, key;
2802 int off;
2803
2804 key = (struct kvm_io_range) {
2805 .addr = addr,
2806 .len = len,
2807 };
2808
2809 range = bsearch(&key, bus->range, bus->dev_count,
2810 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2811 if (range == NULL)
2812 return -ENOENT;
2813
2814 off = range - bus->range;
2815
2816 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2817 off--;
2818
2819 return off;
2820 }
2821
2822 /* kvm_io_bus_write - called under kvm->slots_lock */
2823 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2824 int len, const void *val)
2825 {
2826 int idx;
2827 struct kvm_io_bus *bus;
2828 struct kvm_io_range range;
2829
2830 range = (struct kvm_io_range) {
2831 .addr = addr,
2832 .len = len,
2833 };
2834
2835 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2836 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2837 if (idx < 0)
2838 return -EOPNOTSUPP;
2839
2840 while (idx < bus->dev_count &&
2841 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2842 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2843 return 0;
2844 idx++;
2845 }
2846
2847 return -EOPNOTSUPP;
2848 }
2849
2850 /* kvm_io_bus_read - called under kvm->slots_lock */
2851 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2852 int len, void *val)
2853 {
2854 int idx;
2855 struct kvm_io_bus *bus;
2856 struct kvm_io_range range;
2857
2858 range = (struct kvm_io_range) {
2859 .addr = addr,
2860 .len = len,
2861 };
2862
2863 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2864 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2865 if (idx < 0)
2866 return -EOPNOTSUPP;
2867
2868 while (idx < bus->dev_count &&
2869 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2870 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2871 return 0;
2872 idx++;
2873 }
2874
2875 return -EOPNOTSUPP;
2876 }
2877
2878 /* Caller must hold slots_lock. */
2879 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2880 int len, struct kvm_io_device *dev)
2881 {
2882 struct kvm_io_bus *new_bus, *bus;
2883
2884 bus = kvm->buses[bus_idx];
2885 if (bus->dev_count > NR_IOBUS_DEVS - 1)
2886 return -ENOSPC;
2887
2888 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2889 sizeof(struct kvm_io_range)), GFP_KERNEL);
2890 if (!new_bus)
2891 return -ENOMEM;
2892 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2893 sizeof(struct kvm_io_range)));
2894 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2895 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2896 synchronize_srcu_expedited(&kvm->srcu);
2897 kfree(bus);
2898
2899 return 0;
2900 }
2901
2902 /* Caller must hold slots_lock. */
2903 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2904 struct kvm_io_device *dev)
2905 {
2906 int i, r;
2907 struct kvm_io_bus *new_bus, *bus;
2908
2909 bus = kvm->buses[bus_idx];
2910 r = -ENOENT;
2911 for (i = 0; i < bus->dev_count; i++)
2912 if (bus->range[i].dev == dev) {
2913 r = 0;
2914 break;
2915 }
2916
2917 if (r)
2918 return r;
2919
2920 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2921 sizeof(struct kvm_io_range)), GFP_KERNEL);
2922 if (!new_bus)
2923 return -ENOMEM;
2924
2925 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2926 new_bus->dev_count--;
2927 memcpy(new_bus->range + i, bus->range + i + 1,
2928 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2929
2930 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2931 synchronize_srcu_expedited(&kvm->srcu);
2932 kfree(bus);
2933 return r;
2934 }
2935
2936 static struct notifier_block kvm_cpu_notifier = {
2937 .notifier_call = kvm_cpu_hotplug,
2938 };
2939
2940 static int vm_stat_get(void *_offset, u64 *val)
2941 {
2942 unsigned offset = (long)_offset;
2943 struct kvm *kvm;
2944
2945 *val = 0;
2946 raw_spin_lock(&kvm_lock);
2947 list_for_each_entry(kvm, &vm_list, vm_list)
2948 *val += *(u32 *)((void *)kvm + offset);
2949 raw_spin_unlock(&kvm_lock);
2950 return 0;
2951 }
2952
2953 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2954
2955 static int vcpu_stat_get(void *_offset, u64 *val)
2956 {
2957 unsigned offset = (long)_offset;
2958 struct kvm *kvm;
2959 struct kvm_vcpu *vcpu;
2960 int i;
2961
2962 *val = 0;
2963 raw_spin_lock(&kvm_lock);
2964 list_for_each_entry(kvm, &vm_list, vm_list)
2965 kvm_for_each_vcpu(i, vcpu, kvm)
2966 *val += *(u32 *)((void *)vcpu + offset);
2967
2968 raw_spin_unlock(&kvm_lock);
2969 return 0;
2970 }
2971
2972 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2973
2974 static const struct file_operations *stat_fops[] = {
2975 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2976 [KVM_STAT_VM] = &vm_stat_fops,
2977 };
2978
2979 static int kvm_init_debug(void)
2980 {
2981 int r = -EFAULT;
2982 struct kvm_stats_debugfs_item *p;
2983
2984 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2985 if (kvm_debugfs_dir == NULL)
2986 goto out;
2987
2988 for (p = debugfs_entries; p->name; ++p) {
2989 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2990 (void *)(long)p->offset,
2991 stat_fops[p->kind]);
2992 if (p->dentry == NULL)
2993 goto out_dir;
2994 }
2995
2996 return 0;
2997
2998 out_dir:
2999 debugfs_remove_recursive(kvm_debugfs_dir);
3000 out:
3001 return r;
3002 }
3003
3004 static void kvm_exit_debug(void)
3005 {
3006 struct kvm_stats_debugfs_item *p;
3007
3008 for (p = debugfs_entries; p->name; ++p)
3009 debugfs_remove(p->dentry);
3010 debugfs_remove(kvm_debugfs_dir);
3011 }
3012
3013 static int kvm_suspend(void)
3014 {
3015 if (kvm_usage_count)
3016 hardware_disable_nolock(NULL);
3017 return 0;
3018 }
3019
3020 static void kvm_resume(void)
3021 {
3022 if (kvm_usage_count) {
3023 WARN_ON(raw_spin_is_locked(&kvm_lock));
3024 hardware_enable_nolock(NULL);
3025 }
3026 }
3027
3028 static struct syscore_ops kvm_syscore_ops = {
3029 .suspend = kvm_suspend,
3030 .resume = kvm_resume,
3031 };
3032
3033 static inline
3034 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3035 {
3036 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3037 }
3038
3039 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3040 {
3041 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3042 if (vcpu->preempted)
3043 vcpu->preempted = false;
3044
3045 kvm_arch_vcpu_load(vcpu, cpu);
3046 }
3047
3048 static void kvm_sched_out(struct preempt_notifier *pn,
3049 struct task_struct *next)
3050 {
3051 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3052
3053 if (current->state == TASK_RUNNING)
3054 vcpu->preempted = true;
3055 kvm_arch_vcpu_put(vcpu);
3056 }
3057
3058 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3059 struct module *module)
3060 {
3061 int r;
3062 int cpu;
3063
3064 r = kvm_irqfd_init();
3065 if (r)
3066 goto out_irqfd;
3067 r = kvm_arch_init(opaque);
3068 if (r)
3069 goto out_fail;
3070
3071 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3072 r = -ENOMEM;
3073 goto out_free_0;
3074 }
3075
3076 r = kvm_arch_hardware_setup();
3077 if (r < 0)
3078 goto out_free_0a;
3079
3080 for_each_online_cpu(cpu) {
3081 smp_call_function_single(cpu,
3082 kvm_arch_check_processor_compat,
3083 &r, 1);
3084 if (r < 0)
3085 goto out_free_1;
3086 }
3087
3088 r = register_cpu_notifier(&kvm_cpu_notifier);
3089 if (r)
3090 goto out_free_2;
3091 register_reboot_notifier(&kvm_reboot_notifier);
3092
3093 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3094 if (!vcpu_align)
3095 vcpu_align = __alignof__(struct kvm_vcpu);
3096 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3097 0, NULL);
3098 if (!kvm_vcpu_cache) {
3099 r = -ENOMEM;
3100 goto out_free_3;
3101 }
3102
3103 r = kvm_async_pf_init();
3104 if (r)
3105 goto out_free;
3106
3107 kvm_chardev_ops.owner = module;
3108 kvm_vm_fops.owner = module;
3109 kvm_vcpu_fops.owner = module;
3110
3111 r = misc_register(&kvm_dev);
3112 if (r) {
3113 printk(KERN_ERR "kvm: misc device register failed\n");
3114 goto out_unreg;
3115 }
3116
3117 register_syscore_ops(&kvm_syscore_ops);
3118
3119 kvm_preempt_ops.sched_in = kvm_sched_in;
3120 kvm_preempt_ops.sched_out = kvm_sched_out;
3121
3122 r = kvm_init_debug();
3123 if (r) {
3124 printk(KERN_ERR "kvm: create debugfs files failed\n");
3125 goto out_undebugfs;
3126 }
3127
3128 return 0;
3129
3130 out_undebugfs:
3131 unregister_syscore_ops(&kvm_syscore_ops);
3132 out_unreg:
3133 kvm_async_pf_deinit();
3134 out_free:
3135 kmem_cache_destroy(kvm_vcpu_cache);
3136 out_free_3:
3137 unregister_reboot_notifier(&kvm_reboot_notifier);
3138 unregister_cpu_notifier(&kvm_cpu_notifier);
3139 out_free_2:
3140 out_free_1:
3141 kvm_arch_hardware_unsetup();
3142 out_free_0a:
3143 free_cpumask_var(cpus_hardware_enabled);
3144 out_free_0:
3145 kvm_arch_exit();
3146 out_fail:
3147 kvm_irqfd_exit();
3148 out_irqfd:
3149 return r;
3150 }
3151 EXPORT_SYMBOL_GPL(kvm_init);
3152
3153 void kvm_exit(void)
3154 {
3155 kvm_exit_debug();
3156 misc_deregister(&kvm_dev);
3157 kmem_cache_destroy(kvm_vcpu_cache);
3158 kvm_async_pf_deinit();
3159 unregister_syscore_ops(&kvm_syscore_ops);
3160 unregister_reboot_notifier(&kvm_reboot_notifier);
3161 unregister_cpu_notifier(&kvm_cpu_notifier);
3162 on_each_cpu(hardware_disable_nolock, NULL, 1);
3163 kvm_arch_hardware_unsetup();
3164 kvm_arch_exit();
3165 kvm_irqfd_exit();
3166 free_cpumask_var(cpus_hardware_enabled);
3167 }
3168 EXPORT_SYMBOL_GPL(kvm_exit);