]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/kvm_main.c
6281cc2446d59c109df694757231199b9f4f8649
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90 * Ordering of locks:
91 *
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93 */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
134 {
135 if (pfn_valid(pfn))
136 return PageReserved(pfn_to_page(pfn));
137
138 return true;
139 }
140
141 /*
142 * Switches to specified vcpu, until a matching vcpu_put()
143 */
144 int vcpu_load(struct kvm_vcpu *vcpu)
145 {
146 int cpu;
147
148 if (mutex_lock_killable(&vcpu->mutex))
149 return -EINTR;
150 cpu = get_cpu();
151 preempt_notifier_register(&vcpu->preempt_notifier);
152 kvm_arch_vcpu_load(vcpu, cpu);
153 put_cpu();
154 return 0;
155 }
156 EXPORT_SYMBOL_GPL(vcpu_load);
157
158 void vcpu_put(struct kvm_vcpu *vcpu)
159 {
160 preempt_disable();
161 kvm_arch_vcpu_put(vcpu);
162 preempt_notifier_unregister(&vcpu->preempt_notifier);
163 preempt_enable();
164 mutex_unlock(&vcpu->mutex);
165 }
166 EXPORT_SYMBOL_GPL(vcpu_put);
167
168 /* TODO: merge with kvm_arch_vcpu_should_kick */
169 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
170 {
171 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
172
173 /*
174 * We need to wait for the VCPU to reenable interrupts and get out of
175 * READING_SHADOW_PAGE_TABLES mode.
176 */
177 if (req & KVM_REQUEST_WAIT)
178 return mode != OUTSIDE_GUEST_MODE;
179
180 /*
181 * Need to kick a running VCPU, but otherwise there is nothing to do.
182 */
183 return mode == IN_GUEST_MODE;
184 }
185
186 static void ack_flush(void *_completed)
187 {
188 }
189
190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
191 {
192 int i, cpu, me;
193 cpumask_var_t cpus;
194 bool called = true;
195 bool wait = req & KVM_REQUEST_WAIT;
196 struct kvm_vcpu *vcpu;
197
198 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
199
200 me = get_cpu();
201 kvm_for_each_vcpu(i, vcpu, kvm) {
202 kvm_make_request(req, vcpu);
203 cpu = vcpu->cpu;
204
205 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
206 continue;
207
208 if (cpus != NULL && cpu != -1 && cpu != me &&
209 kvm_request_needs_ipi(vcpu, req))
210 cpumask_set_cpu(cpu, cpus);
211 }
212 if (unlikely(cpus == NULL))
213 smp_call_function_many(cpu_online_mask, ack_flush, NULL, wait);
214 else if (!cpumask_empty(cpus))
215 smp_call_function_many(cpus, ack_flush, NULL, wait);
216 else
217 called = false;
218 put_cpu();
219 free_cpumask_var(cpus);
220 return called;
221 }
222
223 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
224 void kvm_flush_remote_tlbs(struct kvm *kvm)
225 {
226 /*
227 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
228 * kvm_make_all_cpus_request.
229 */
230 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
231
232 /*
233 * We want to publish modifications to the page tables before reading
234 * mode. Pairs with a memory barrier in arch-specific code.
235 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
236 * and smp_mb in walk_shadow_page_lockless_begin/end.
237 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
238 *
239 * There is already an smp_mb__after_atomic() before
240 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
241 * barrier here.
242 */
243 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
244 ++kvm->stat.remote_tlb_flush;
245 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
246 }
247 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
248 #endif
249
250 void kvm_reload_remote_mmus(struct kvm *kvm)
251 {
252 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
253 }
254
255 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
256 {
257 struct page *page;
258 int r;
259
260 mutex_init(&vcpu->mutex);
261 vcpu->cpu = -1;
262 vcpu->kvm = kvm;
263 vcpu->vcpu_id = id;
264 vcpu->pid = NULL;
265 init_swait_queue_head(&vcpu->wq);
266 kvm_async_pf_vcpu_init(vcpu);
267
268 vcpu->pre_pcpu = -1;
269 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
270
271 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
272 if (!page) {
273 r = -ENOMEM;
274 goto fail;
275 }
276 vcpu->run = page_address(page);
277
278 kvm_vcpu_set_in_spin_loop(vcpu, false);
279 kvm_vcpu_set_dy_eligible(vcpu, false);
280 vcpu->preempted = false;
281
282 r = kvm_arch_vcpu_init(vcpu);
283 if (r < 0)
284 goto fail_free_run;
285 return 0;
286
287 fail_free_run:
288 free_page((unsigned long)vcpu->run);
289 fail:
290 return r;
291 }
292 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
293
294 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
295 {
296 put_pid(vcpu->pid);
297 kvm_arch_vcpu_uninit(vcpu);
298 free_page((unsigned long)vcpu->run);
299 }
300 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
301
302 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
303 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
304 {
305 return container_of(mn, struct kvm, mmu_notifier);
306 }
307
308 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
309 struct mm_struct *mm,
310 unsigned long address)
311 {
312 struct kvm *kvm = mmu_notifier_to_kvm(mn);
313 int need_tlb_flush, idx;
314
315 /*
316 * When ->invalidate_page runs, the linux pte has been zapped
317 * already but the page is still allocated until
318 * ->invalidate_page returns. So if we increase the sequence
319 * here the kvm page fault will notice if the spte can't be
320 * established because the page is going to be freed. If
321 * instead the kvm page fault establishes the spte before
322 * ->invalidate_page runs, kvm_unmap_hva will release it
323 * before returning.
324 *
325 * The sequence increase only need to be seen at spin_unlock
326 * time, and not at spin_lock time.
327 *
328 * Increasing the sequence after the spin_unlock would be
329 * unsafe because the kvm page fault could then establish the
330 * pte after kvm_unmap_hva returned, without noticing the page
331 * is going to be freed.
332 */
333 idx = srcu_read_lock(&kvm->srcu);
334 spin_lock(&kvm->mmu_lock);
335
336 kvm->mmu_notifier_seq++;
337 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
338 /* we've to flush the tlb before the pages can be freed */
339 if (need_tlb_flush)
340 kvm_flush_remote_tlbs(kvm);
341
342 spin_unlock(&kvm->mmu_lock);
343
344 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
345
346 srcu_read_unlock(&kvm->srcu, idx);
347 }
348
349 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
350 struct mm_struct *mm,
351 unsigned long address,
352 pte_t pte)
353 {
354 struct kvm *kvm = mmu_notifier_to_kvm(mn);
355 int idx;
356
357 idx = srcu_read_lock(&kvm->srcu);
358 spin_lock(&kvm->mmu_lock);
359 kvm->mmu_notifier_seq++;
360 kvm_set_spte_hva(kvm, address, pte);
361 spin_unlock(&kvm->mmu_lock);
362 srcu_read_unlock(&kvm->srcu, idx);
363 }
364
365 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
366 struct mm_struct *mm,
367 unsigned long start,
368 unsigned long end)
369 {
370 struct kvm *kvm = mmu_notifier_to_kvm(mn);
371 int need_tlb_flush = 0, idx;
372
373 idx = srcu_read_lock(&kvm->srcu);
374 spin_lock(&kvm->mmu_lock);
375 /*
376 * The count increase must become visible at unlock time as no
377 * spte can be established without taking the mmu_lock and
378 * count is also read inside the mmu_lock critical section.
379 */
380 kvm->mmu_notifier_count++;
381 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
382 need_tlb_flush |= kvm->tlbs_dirty;
383 /* we've to flush the tlb before the pages can be freed */
384 if (need_tlb_flush)
385 kvm_flush_remote_tlbs(kvm);
386
387 spin_unlock(&kvm->mmu_lock);
388 srcu_read_unlock(&kvm->srcu, idx);
389 }
390
391 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
392 struct mm_struct *mm,
393 unsigned long start,
394 unsigned long end)
395 {
396 struct kvm *kvm = mmu_notifier_to_kvm(mn);
397
398 spin_lock(&kvm->mmu_lock);
399 /*
400 * This sequence increase will notify the kvm page fault that
401 * the page that is going to be mapped in the spte could have
402 * been freed.
403 */
404 kvm->mmu_notifier_seq++;
405 smp_wmb();
406 /*
407 * The above sequence increase must be visible before the
408 * below count decrease, which is ensured by the smp_wmb above
409 * in conjunction with the smp_rmb in mmu_notifier_retry().
410 */
411 kvm->mmu_notifier_count--;
412 spin_unlock(&kvm->mmu_lock);
413
414 BUG_ON(kvm->mmu_notifier_count < 0);
415 }
416
417 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
418 struct mm_struct *mm,
419 unsigned long start,
420 unsigned long end)
421 {
422 struct kvm *kvm = mmu_notifier_to_kvm(mn);
423 int young, idx;
424
425 idx = srcu_read_lock(&kvm->srcu);
426 spin_lock(&kvm->mmu_lock);
427
428 young = kvm_age_hva(kvm, start, end);
429 if (young)
430 kvm_flush_remote_tlbs(kvm);
431
432 spin_unlock(&kvm->mmu_lock);
433 srcu_read_unlock(&kvm->srcu, idx);
434
435 return young;
436 }
437
438 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
439 struct mm_struct *mm,
440 unsigned long start,
441 unsigned long end)
442 {
443 struct kvm *kvm = mmu_notifier_to_kvm(mn);
444 int young, idx;
445
446 idx = srcu_read_lock(&kvm->srcu);
447 spin_lock(&kvm->mmu_lock);
448 /*
449 * Even though we do not flush TLB, this will still adversely
450 * affect performance on pre-Haswell Intel EPT, where there is
451 * no EPT Access Bit to clear so that we have to tear down EPT
452 * tables instead. If we find this unacceptable, we can always
453 * add a parameter to kvm_age_hva so that it effectively doesn't
454 * do anything on clear_young.
455 *
456 * Also note that currently we never issue secondary TLB flushes
457 * from clear_young, leaving this job up to the regular system
458 * cadence. If we find this inaccurate, we might come up with a
459 * more sophisticated heuristic later.
460 */
461 young = kvm_age_hva(kvm, start, end);
462 spin_unlock(&kvm->mmu_lock);
463 srcu_read_unlock(&kvm->srcu, idx);
464
465 return young;
466 }
467
468 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
469 struct mm_struct *mm,
470 unsigned long address)
471 {
472 struct kvm *kvm = mmu_notifier_to_kvm(mn);
473 int young, idx;
474
475 idx = srcu_read_lock(&kvm->srcu);
476 spin_lock(&kvm->mmu_lock);
477 young = kvm_test_age_hva(kvm, address);
478 spin_unlock(&kvm->mmu_lock);
479 srcu_read_unlock(&kvm->srcu, idx);
480
481 return young;
482 }
483
484 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
485 struct mm_struct *mm)
486 {
487 struct kvm *kvm = mmu_notifier_to_kvm(mn);
488 int idx;
489
490 idx = srcu_read_lock(&kvm->srcu);
491 kvm_arch_flush_shadow_all(kvm);
492 srcu_read_unlock(&kvm->srcu, idx);
493 }
494
495 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
496 .invalidate_page = kvm_mmu_notifier_invalidate_page,
497 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
498 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
499 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
500 .clear_young = kvm_mmu_notifier_clear_young,
501 .test_young = kvm_mmu_notifier_test_young,
502 .change_pte = kvm_mmu_notifier_change_pte,
503 .release = kvm_mmu_notifier_release,
504 };
505
506 static int kvm_init_mmu_notifier(struct kvm *kvm)
507 {
508 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
509 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
510 }
511
512 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
513
514 static int kvm_init_mmu_notifier(struct kvm *kvm)
515 {
516 return 0;
517 }
518
519 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
520
521 static struct kvm_memslots *kvm_alloc_memslots(void)
522 {
523 int i;
524 struct kvm_memslots *slots;
525
526 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
527 if (!slots)
528 return NULL;
529
530 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
531 slots->id_to_index[i] = slots->memslots[i].id = i;
532
533 return slots;
534 }
535
536 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
537 {
538 if (!memslot->dirty_bitmap)
539 return;
540
541 kvfree(memslot->dirty_bitmap);
542 memslot->dirty_bitmap = NULL;
543 }
544
545 /*
546 * Free any memory in @free but not in @dont.
547 */
548 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
549 struct kvm_memory_slot *dont)
550 {
551 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
552 kvm_destroy_dirty_bitmap(free);
553
554 kvm_arch_free_memslot(kvm, free, dont);
555
556 free->npages = 0;
557 }
558
559 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
560 {
561 struct kvm_memory_slot *memslot;
562
563 if (!slots)
564 return;
565
566 kvm_for_each_memslot(memslot, slots)
567 kvm_free_memslot(kvm, memslot, NULL);
568
569 kvfree(slots);
570 }
571
572 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
573 {
574 int i;
575
576 if (!kvm->debugfs_dentry)
577 return;
578
579 debugfs_remove_recursive(kvm->debugfs_dentry);
580
581 if (kvm->debugfs_stat_data) {
582 for (i = 0; i < kvm_debugfs_num_entries; i++)
583 kfree(kvm->debugfs_stat_data[i]);
584 kfree(kvm->debugfs_stat_data);
585 }
586 }
587
588 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
589 {
590 char dir_name[ITOA_MAX_LEN * 2];
591 struct kvm_stat_data *stat_data;
592 struct kvm_stats_debugfs_item *p;
593
594 if (!debugfs_initialized())
595 return 0;
596
597 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
598 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
599 kvm_debugfs_dir);
600 if (!kvm->debugfs_dentry)
601 return -ENOMEM;
602
603 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
604 sizeof(*kvm->debugfs_stat_data),
605 GFP_KERNEL);
606 if (!kvm->debugfs_stat_data)
607 return -ENOMEM;
608
609 for (p = debugfs_entries; p->name; p++) {
610 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
611 if (!stat_data)
612 return -ENOMEM;
613
614 stat_data->kvm = kvm;
615 stat_data->offset = p->offset;
616 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
617 if (!debugfs_create_file(p->name, 0644,
618 kvm->debugfs_dentry,
619 stat_data,
620 stat_fops_per_vm[p->kind]))
621 return -ENOMEM;
622 }
623 return 0;
624 }
625
626 static struct kvm *kvm_create_vm(unsigned long type)
627 {
628 int r, i;
629 struct kvm *kvm = kvm_arch_alloc_vm();
630
631 if (!kvm)
632 return ERR_PTR(-ENOMEM);
633
634 spin_lock_init(&kvm->mmu_lock);
635 mmgrab(current->mm);
636 kvm->mm = current->mm;
637 kvm_eventfd_init(kvm);
638 mutex_init(&kvm->lock);
639 mutex_init(&kvm->irq_lock);
640 mutex_init(&kvm->slots_lock);
641 refcount_set(&kvm->users_count, 1);
642 INIT_LIST_HEAD(&kvm->devices);
643
644 r = kvm_arch_init_vm(kvm, type);
645 if (r)
646 goto out_err_no_disable;
647
648 r = hardware_enable_all();
649 if (r)
650 goto out_err_no_disable;
651
652 #ifdef CONFIG_HAVE_KVM_IRQFD
653 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
654 #endif
655
656 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
657
658 r = -ENOMEM;
659 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
660 struct kvm_memslots *slots = kvm_alloc_memslots();
661 if (!slots)
662 goto out_err_no_srcu;
663 /*
664 * Generations must be different for each address space.
665 * Init kvm generation close to the maximum to easily test the
666 * code of handling generation number wrap-around.
667 */
668 slots->generation = i * 2 - 150;
669 rcu_assign_pointer(kvm->memslots[i], slots);
670 }
671
672 if (init_srcu_struct(&kvm->srcu))
673 goto out_err_no_srcu;
674 if (init_srcu_struct(&kvm->irq_srcu))
675 goto out_err_no_irq_srcu;
676 for (i = 0; i < KVM_NR_BUSES; i++) {
677 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
678 GFP_KERNEL);
679 if (!kvm->buses[i])
680 goto out_err;
681 }
682
683 r = kvm_init_mmu_notifier(kvm);
684 if (r)
685 goto out_err;
686
687 spin_lock(&kvm_lock);
688 list_add(&kvm->vm_list, &vm_list);
689 spin_unlock(&kvm_lock);
690
691 preempt_notifier_inc();
692
693 return kvm;
694
695 out_err:
696 cleanup_srcu_struct(&kvm->irq_srcu);
697 out_err_no_irq_srcu:
698 cleanup_srcu_struct(&kvm->srcu);
699 out_err_no_srcu:
700 hardware_disable_all();
701 out_err_no_disable:
702 for (i = 0; i < KVM_NR_BUSES; i++)
703 kfree(kvm->buses[i]);
704 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
705 kvm_free_memslots(kvm, kvm->memslots[i]);
706 kvm_arch_free_vm(kvm);
707 mmdrop(current->mm);
708 return ERR_PTR(r);
709 }
710
711 /*
712 * Avoid using vmalloc for a small buffer.
713 * Should not be used when the size is statically known.
714 */
715 void *kvm_kvzalloc(unsigned long size)
716 {
717 if (size > PAGE_SIZE)
718 return vzalloc(size);
719 else
720 return kzalloc(size, GFP_KERNEL);
721 }
722
723 static void kvm_destroy_devices(struct kvm *kvm)
724 {
725 struct kvm_device *dev, *tmp;
726
727 /*
728 * We do not need to take the kvm->lock here, because nobody else
729 * has a reference to the struct kvm at this point and therefore
730 * cannot access the devices list anyhow.
731 */
732 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
733 list_del(&dev->vm_node);
734 dev->ops->destroy(dev);
735 }
736 }
737
738 static void kvm_destroy_vm(struct kvm *kvm)
739 {
740 int i;
741 struct mm_struct *mm = kvm->mm;
742
743 kvm_destroy_vm_debugfs(kvm);
744 kvm_arch_sync_events(kvm);
745 spin_lock(&kvm_lock);
746 list_del(&kvm->vm_list);
747 spin_unlock(&kvm_lock);
748 kvm_free_irq_routing(kvm);
749 for (i = 0; i < KVM_NR_BUSES; i++) {
750 if (kvm->buses[i])
751 kvm_io_bus_destroy(kvm->buses[i]);
752 kvm->buses[i] = NULL;
753 }
754 kvm_coalesced_mmio_free(kvm);
755 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
756 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
757 #else
758 kvm_arch_flush_shadow_all(kvm);
759 #endif
760 kvm_arch_destroy_vm(kvm);
761 kvm_destroy_devices(kvm);
762 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
763 kvm_free_memslots(kvm, kvm->memslots[i]);
764 cleanup_srcu_struct(&kvm->irq_srcu);
765 cleanup_srcu_struct(&kvm->srcu);
766 kvm_arch_free_vm(kvm);
767 preempt_notifier_dec();
768 hardware_disable_all();
769 mmdrop(mm);
770 }
771
772 void kvm_get_kvm(struct kvm *kvm)
773 {
774 refcount_inc(&kvm->users_count);
775 }
776 EXPORT_SYMBOL_GPL(kvm_get_kvm);
777
778 void kvm_put_kvm(struct kvm *kvm)
779 {
780 if (refcount_dec_and_test(&kvm->users_count))
781 kvm_destroy_vm(kvm);
782 }
783 EXPORT_SYMBOL_GPL(kvm_put_kvm);
784
785
786 static int kvm_vm_release(struct inode *inode, struct file *filp)
787 {
788 struct kvm *kvm = filp->private_data;
789
790 kvm_irqfd_release(kvm);
791
792 kvm_put_kvm(kvm);
793 return 0;
794 }
795
796 /*
797 * Allocation size is twice as large as the actual dirty bitmap size.
798 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
799 */
800 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
801 {
802 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
803
804 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
805 if (!memslot->dirty_bitmap)
806 return -ENOMEM;
807
808 return 0;
809 }
810
811 /*
812 * Insert memslot and re-sort memslots based on their GFN,
813 * so binary search could be used to lookup GFN.
814 * Sorting algorithm takes advantage of having initially
815 * sorted array and known changed memslot position.
816 */
817 static void update_memslots(struct kvm_memslots *slots,
818 struct kvm_memory_slot *new)
819 {
820 int id = new->id;
821 int i = slots->id_to_index[id];
822 struct kvm_memory_slot *mslots = slots->memslots;
823
824 WARN_ON(mslots[i].id != id);
825 if (!new->npages) {
826 WARN_ON(!mslots[i].npages);
827 if (mslots[i].npages)
828 slots->used_slots--;
829 } else {
830 if (!mslots[i].npages)
831 slots->used_slots++;
832 }
833
834 while (i < KVM_MEM_SLOTS_NUM - 1 &&
835 new->base_gfn <= mslots[i + 1].base_gfn) {
836 if (!mslots[i + 1].npages)
837 break;
838 mslots[i] = mslots[i + 1];
839 slots->id_to_index[mslots[i].id] = i;
840 i++;
841 }
842
843 /*
844 * The ">=" is needed when creating a slot with base_gfn == 0,
845 * so that it moves before all those with base_gfn == npages == 0.
846 *
847 * On the other hand, if new->npages is zero, the above loop has
848 * already left i pointing to the beginning of the empty part of
849 * mslots, and the ">=" would move the hole backwards in this
850 * case---which is wrong. So skip the loop when deleting a slot.
851 */
852 if (new->npages) {
853 while (i > 0 &&
854 new->base_gfn >= mslots[i - 1].base_gfn) {
855 mslots[i] = mslots[i - 1];
856 slots->id_to_index[mslots[i].id] = i;
857 i--;
858 }
859 } else
860 WARN_ON_ONCE(i != slots->used_slots);
861
862 mslots[i] = *new;
863 slots->id_to_index[mslots[i].id] = i;
864 }
865
866 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
867 {
868 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
869
870 #ifdef __KVM_HAVE_READONLY_MEM
871 valid_flags |= KVM_MEM_READONLY;
872 #endif
873
874 if (mem->flags & ~valid_flags)
875 return -EINVAL;
876
877 return 0;
878 }
879
880 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
881 int as_id, struct kvm_memslots *slots)
882 {
883 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
884
885 /*
886 * Set the low bit in the generation, which disables SPTE caching
887 * until the end of synchronize_srcu_expedited.
888 */
889 WARN_ON(old_memslots->generation & 1);
890 slots->generation = old_memslots->generation + 1;
891
892 rcu_assign_pointer(kvm->memslots[as_id], slots);
893 synchronize_srcu_expedited(&kvm->srcu);
894
895 /*
896 * Increment the new memslot generation a second time. This prevents
897 * vm exits that race with memslot updates from caching a memslot
898 * generation that will (potentially) be valid forever.
899 *
900 * Generations must be unique even across address spaces. We do not need
901 * a global counter for that, instead the generation space is evenly split
902 * across address spaces. For example, with two address spaces, address
903 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
904 * use generations 2, 6, 10, 14, ...
905 */
906 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
907
908 kvm_arch_memslots_updated(kvm, slots);
909
910 return old_memslots;
911 }
912
913 /*
914 * Allocate some memory and give it an address in the guest physical address
915 * space.
916 *
917 * Discontiguous memory is allowed, mostly for framebuffers.
918 *
919 * Must be called holding kvm->slots_lock for write.
920 */
921 int __kvm_set_memory_region(struct kvm *kvm,
922 const struct kvm_userspace_memory_region *mem)
923 {
924 int r;
925 gfn_t base_gfn;
926 unsigned long npages;
927 struct kvm_memory_slot *slot;
928 struct kvm_memory_slot old, new;
929 struct kvm_memslots *slots = NULL, *old_memslots;
930 int as_id, id;
931 enum kvm_mr_change change;
932
933 r = check_memory_region_flags(mem);
934 if (r)
935 goto out;
936
937 r = -EINVAL;
938 as_id = mem->slot >> 16;
939 id = (u16)mem->slot;
940
941 /* General sanity checks */
942 if (mem->memory_size & (PAGE_SIZE - 1))
943 goto out;
944 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
945 goto out;
946 /* We can read the guest memory with __xxx_user() later on. */
947 if ((id < KVM_USER_MEM_SLOTS) &&
948 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
949 !access_ok(VERIFY_WRITE,
950 (void __user *)(unsigned long)mem->userspace_addr,
951 mem->memory_size)))
952 goto out;
953 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
954 goto out;
955 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
956 goto out;
957
958 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
959 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
960 npages = mem->memory_size >> PAGE_SHIFT;
961
962 if (npages > KVM_MEM_MAX_NR_PAGES)
963 goto out;
964
965 new = old = *slot;
966
967 new.id = id;
968 new.base_gfn = base_gfn;
969 new.npages = npages;
970 new.flags = mem->flags;
971
972 if (npages) {
973 if (!old.npages)
974 change = KVM_MR_CREATE;
975 else { /* Modify an existing slot. */
976 if ((mem->userspace_addr != old.userspace_addr) ||
977 (npages != old.npages) ||
978 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
979 goto out;
980
981 if (base_gfn != old.base_gfn)
982 change = KVM_MR_MOVE;
983 else if (new.flags != old.flags)
984 change = KVM_MR_FLAGS_ONLY;
985 else { /* Nothing to change. */
986 r = 0;
987 goto out;
988 }
989 }
990 } else {
991 if (!old.npages)
992 goto out;
993
994 change = KVM_MR_DELETE;
995 new.base_gfn = 0;
996 new.flags = 0;
997 }
998
999 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1000 /* Check for overlaps */
1001 r = -EEXIST;
1002 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1003 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
1004 (slot->id == id))
1005 continue;
1006 if (!((base_gfn + npages <= slot->base_gfn) ||
1007 (base_gfn >= slot->base_gfn + slot->npages)))
1008 goto out;
1009 }
1010 }
1011
1012 /* Free page dirty bitmap if unneeded */
1013 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1014 new.dirty_bitmap = NULL;
1015
1016 r = -ENOMEM;
1017 if (change == KVM_MR_CREATE) {
1018 new.userspace_addr = mem->userspace_addr;
1019
1020 if (kvm_arch_create_memslot(kvm, &new, npages))
1021 goto out_free;
1022 }
1023
1024 /* Allocate page dirty bitmap if needed */
1025 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1026 if (kvm_create_dirty_bitmap(&new) < 0)
1027 goto out_free;
1028 }
1029
1030 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
1031 if (!slots)
1032 goto out_free;
1033 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1034
1035 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1036 slot = id_to_memslot(slots, id);
1037 slot->flags |= KVM_MEMSLOT_INVALID;
1038
1039 old_memslots = install_new_memslots(kvm, as_id, slots);
1040
1041 /* From this point no new shadow pages pointing to a deleted,
1042 * or moved, memslot will be created.
1043 *
1044 * validation of sp->gfn happens in:
1045 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1046 * - kvm_is_visible_gfn (mmu_check_roots)
1047 */
1048 kvm_arch_flush_shadow_memslot(kvm, slot);
1049
1050 /*
1051 * We can re-use the old_memslots from above, the only difference
1052 * from the currently installed memslots is the invalid flag. This
1053 * will get overwritten by update_memslots anyway.
1054 */
1055 slots = old_memslots;
1056 }
1057
1058 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1059 if (r)
1060 goto out_slots;
1061
1062 /* actual memory is freed via old in kvm_free_memslot below */
1063 if (change == KVM_MR_DELETE) {
1064 new.dirty_bitmap = NULL;
1065 memset(&new.arch, 0, sizeof(new.arch));
1066 }
1067
1068 update_memslots(slots, &new);
1069 old_memslots = install_new_memslots(kvm, as_id, slots);
1070
1071 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1072
1073 kvm_free_memslot(kvm, &old, &new);
1074 kvfree(old_memslots);
1075 return 0;
1076
1077 out_slots:
1078 kvfree(slots);
1079 out_free:
1080 kvm_free_memslot(kvm, &new, &old);
1081 out:
1082 return r;
1083 }
1084 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1085
1086 int kvm_set_memory_region(struct kvm *kvm,
1087 const struct kvm_userspace_memory_region *mem)
1088 {
1089 int r;
1090
1091 mutex_lock(&kvm->slots_lock);
1092 r = __kvm_set_memory_region(kvm, mem);
1093 mutex_unlock(&kvm->slots_lock);
1094 return r;
1095 }
1096 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1097
1098 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1099 struct kvm_userspace_memory_region *mem)
1100 {
1101 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1102 return -EINVAL;
1103
1104 return kvm_set_memory_region(kvm, mem);
1105 }
1106
1107 int kvm_get_dirty_log(struct kvm *kvm,
1108 struct kvm_dirty_log *log, int *is_dirty)
1109 {
1110 struct kvm_memslots *slots;
1111 struct kvm_memory_slot *memslot;
1112 int i, as_id, id;
1113 unsigned long n;
1114 unsigned long any = 0;
1115
1116 as_id = log->slot >> 16;
1117 id = (u16)log->slot;
1118 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1119 return -EINVAL;
1120
1121 slots = __kvm_memslots(kvm, as_id);
1122 memslot = id_to_memslot(slots, id);
1123 if (!memslot->dirty_bitmap)
1124 return -ENOENT;
1125
1126 n = kvm_dirty_bitmap_bytes(memslot);
1127
1128 for (i = 0; !any && i < n/sizeof(long); ++i)
1129 any = memslot->dirty_bitmap[i];
1130
1131 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1132 return -EFAULT;
1133
1134 if (any)
1135 *is_dirty = 1;
1136 return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1139
1140 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1141 /**
1142 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1143 * are dirty write protect them for next write.
1144 * @kvm: pointer to kvm instance
1145 * @log: slot id and address to which we copy the log
1146 * @is_dirty: flag set if any page is dirty
1147 *
1148 * We need to keep it in mind that VCPU threads can write to the bitmap
1149 * concurrently. So, to avoid losing track of dirty pages we keep the
1150 * following order:
1151 *
1152 * 1. Take a snapshot of the bit and clear it if needed.
1153 * 2. Write protect the corresponding page.
1154 * 3. Copy the snapshot to the userspace.
1155 * 4. Upon return caller flushes TLB's if needed.
1156 *
1157 * Between 2 and 4, the guest may write to the page using the remaining TLB
1158 * entry. This is not a problem because the page is reported dirty using
1159 * the snapshot taken before and step 4 ensures that writes done after
1160 * exiting to userspace will be logged for the next call.
1161 *
1162 */
1163 int kvm_get_dirty_log_protect(struct kvm *kvm,
1164 struct kvm_dirty_log *log, bool *is_dirty)
1165 {
1166 struct kvm_memslots *slots;
1167 struct kvm_memory_slot *memslot;
1168 int i, as_id, id;
1169 unsigned long n;
1170 unsigned long *dirty_bitmap;
1171 unsigned long *dirty_bitmap_buffer;
1172
1173 as_id = log->slot >> 16;
1174 id = (u16)log->slot;
1175 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1176 return -EINVAL;
1177
1178 slots = __kvm_memslots(kvm, as_id);
1179 memslot = id_to_memslot(slots, id);
1180
1181 dirty_bitmap = memslot->dirty_bitmap;
1182 if (!dirty_bitmap)
1183 return -ENOENT;
1184
1185 n = kvm_dirty_bitmap_bytes(memslot);
1186
1187 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1188 memset(dirty_bitmap_buffer, 0, n);
1189
1190 spin_lock(&kvm->mmu_lock);
1191 *is_dirty = false;
1192 for (i = 0; i < n / sizeof(long); i++) {
1193 unsigned long mask;
1194 gfn_t offset;
1195
1196 if (!dirty_bitmap[i])
1197 continue;
1198
1199 *is_dirty = true;
1200
1201 mask = xchg(&dirty_bitmap[i], 0);
1202 dirty_bitmap_buffer[i] = mask;
1203
1204 if (mask) {
1205 offset = i * BITS_PER_LONG;
1206 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1207 offset, mask);
1208 }
1209 }
1210
1211 spin_unlock(&kvm->mmu_lock);
1212 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1213 return -EFAULT;
1214 return 0;
1215 }
1216 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1217 #endif
1218
1219 bool kvm_largepages_enabled(void)
1220 {
1221 return largepages_enabled;
1222 }
1223
1224 void kvm_disable_largepages(void)
1225 {
1226 largepages_enabled = false;
1227 }
1228 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1229
1230 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1231 {
1232 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1233 }
1234 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1235
1236 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1237 {
1238 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1239 }
1240
1241 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1242 {
1243 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1244
1245 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1246 memslot->flags & KVM_MEMSLOT_INVALID)
1247 return false;
1248
1249 return true;
1250 }
1251 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1252
1253 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1254 {
1255 struct vm_area_struct *vma;
1256 unsigned long addr, size;
1257
1258 size = PAGE_SIZE;
1259
1260 addr = gfn_to_hva(kvm, gfn);
1261 if (kvm_is_error_hva(addr))
1262 return PAGE_SIZE;
1263
1264 down_read(&current->mm->mmap_sem);
1265 vma = find_vma(current->mm, addr);
1266 if (!vma)
1267 goto out;
1268
1269 size = vma_kernel_pagesize(vma);
1270
1271 out:
1272 up_read(&current->mm->mmap_sem);
1273
1274 return size;
1275 }
1276
1277 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1278 {
1279 return slot->flags & KVM_MEM_READONLY;
1280 }
1281
1282 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1283 gfn_t *nr_pages, bool write)
1284 {
1285 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1286 return KVM_HVA_ERR_BAD;
1287
1288 if (memslot_is_readonly(slot) && write)
1289 return KVM_HVA_ERR_RO_BAD;
1290
1291 if (nr_pages)
1292 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1293
1294 return __gfn_to_hva_memslot(slot, gfn);
1295 }
1296
1297 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1298 gfn_t *nr_pages)
1299 {
1300 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1301 }
1302
1303 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1304 gfn_t gfn)
1305 {
1306 return gfn_to_hva_many(slot, gfn, NULL);
1307 }
1308 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1309
1310 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1311 {
1312 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1313 }
1314 EXPORT_SYMBOL_GPL(gfn_to_hva);
1315
1316 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1317 {
1318 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1319 }
1320 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1321
1322 /*
1323 * If writable is set to false, the hva returned by this function is only
1324 * allowed to be read.
1325 */
1326 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1327 gfn_t gfn, bool *writable)
1328 {
1329 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1330
1331 if (!kvm_is_error_hva(hva) && writable)
1332 *writable = !memslot_is_readonly(slot);
1333
1334 return hva;
1335 }
1336
1337 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1338 {
1339 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1340
1341 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1342 }
1343
1344 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1345 {
1346 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1347
1348 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1349 }
1350
1351 static int get_user_page_nowait(unsigned long start, int write,
1352 struct page **page)
1353 {
1354 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1355
1356 if (write)
1357 flags |= FOLL_WRITE;
1358
1359 return get_user_pages(start, 1, flags, page, NULL);
1360 }
1361
1362 static inline int check_user_page_hwpoison(unsigned long addr)
1363 {
1364 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1365
1366 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1367 return rc == -EHWPOISON;
1368 }
1369
1370 /*
1371 * The atomic path to get the writable pfn which will be stored in @pfn,
1372 * true indicates success, otherwise false is returned.
1373 */
1374 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1375 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1376 {
1377 struct page *page[1];
1378 int npages;
1379
1380 if (!(async || atomic))
1381 return false;
1382
1383 /*
1384 * Fast pin a writable pfn only if it is a write fault request
1385 * or the caller allows to map a writable pfn for a read fault
1386 * request.
1387 */
1388 if (!(write_fault || writable))
1389 return false;
1390
1391 npages = __get_user_pages_fast(addr, 1, 1, page);
1392 if (npages == 1) {
1393 *pfn = page_to_pfn(page[0]);
1394
1395 if (writable)
1396 *writable = true;
1397 return true;
1398 }
1399
1400 return false;
1401 }
1402
1403 /*
1404 * The slow path to get the pfn of the specified host virtual address,
1405 * 1 indicates success, -errno is returned if error is detected.
1406 */
1407 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1408 bool *writable, kvm_pfn_t *pfn)
1409 {
1410 struct page *page[1];
1411 int npages = 0;
1412
1413 might_sleep();
1414
1415 if (writable)
1416 *writable = write_fault;
1417
1418 if (async) {
1419 down_read(&current->mm->mmap_sem);
1420 npages = get_user_page_nowait(addr, write_fault, page);
1421 up_read(&current->mm->mmap_sem);
1422 } else {
1423 unsigned int flags = FOLL_HWPOISON;
1424
1425 if (write_fault)
1426 flags |= FOLL_WRITE;
1427
1428 npages = get_user_pages_unlocked(addr, 1, page, flags);
1429 }
1430 if (npages != 1)
1431 return npages;
1432
1433 /* map read fault as writable if possible */
1434 if (unlikely(!write_fault) && writable) {
1435 struct page *wpage[1];
1436
1437 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1438 if (npages == 1) {
1439 *writable = true;
1440 put_page(page[0]);
1441 page[0] = wpage[0];
1442 }
1443
1444 npages = 1;
1445 }
1446 *pfn = page_to_pfn(page[0]);
1447 return npages;
1448 }
1449
1450 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1451 {
1452 if (unlikely(!(vma->vm_flags & VM_READ)))
1453 return false;
1454
1455 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1456 return false;
1457
1458 return true;
1459 }
1460
1461 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1462 unsigned long addr, bool *async,
1463 bool write_fault, kvm_pfn_t *p_pfn)
1464 {
1465 unsigned long pfn;
1466 int r;
1467
1468 r = follow_pfn(vma, addr, &pfn);
1469 if (r) {
1470 /*
1471 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1472 * not call the fault handler, so do it here.
1473 */
1474 bool unlocked = false;
1475 r = fixup_user_fault(current, current->mm, addr,
1476 (write_fault ? FAULT_FLAG_WRITE : 0),
1477 &unlocked);
1478 if (unlocked)
1479 return -EAGAIN;
1480 if (r)
1481 return r;
1482
1483 r = follow_pfn(vma, addr, &pfn);
1484 if (r)
1485 return r;
1486
1487 }
1488
1489
1490 /*
1491 * Get a reference here because callers of *hva_to_pfn* and
1492 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1493 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1494 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1495 * simply do nothing for reserved pfns.
1496 *
1497 * Whoever called remap_pfn_range is also going to call e.g.
1498 * unmap_mapping_range before the underlying pages are freed,
1499 * causing a call to our MMU notifier.
1500 */
1501 kvm_get_pfn(pfn);
1502
1503 *p_pfn = pfn;
1504 return 0;
1505 }
1506
1507 /*
1508 * Pin guest page in memory and return its pfn.
1509 * @addr: host virtual address which maps memory to the guest
1510 * @atomic: whether this function can sleep
1511 * @async: whether this function need to wait IO complete if the
1512 * host page is not in the memory
1513 * @write_fault: whether we should get a writable host page
1514 * @writable: whether it allows to map a writable host page for !@write_fault
1515 *
1516 * The function will map a writable host page for these two cases:
1517 * 1): @write_fault = true
1518 * 2): @write_fault = false && @writable, @writable will tell the caller
1519 * whether the mapping is writable.
1520 */
1521 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1522 bool write_fault, bool *writable)
1523 {
1524 struct vm_area_struct *vma;
1525 kvm_pfn_t pfn = 0;
1526 int npages, r;
1527
1528 /* we can do it either atomically or asynchronously, not both */
1529 BUG_ON(atomic && async);
1530
1531 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1532 return pfn;
1533
1534 if (atomic)
1535 return KVM_PFN_ERR_FAULT;
1536
1537 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1538 if (npages == 1)
1539 return pfn;
1540
1541 down_read(&current->mm->mmap_sem);
1542 if (npages == -EHWPOISON ||
1543 (!async && check_user_page_hwpoison(addr))) {
1544 pfn = KVM_PFN_ERR_HWPOISON;
1545 goto exit;
1546 }
1547
1548 retry:
1549 vma = find_vma_intersection(current->mm, addr, addr + 1);
1550
1551 if (vma == NULL)
1552 pfn = KVM_PFN_ERR_FAULT;
1553 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1554 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1555 if (r == -EAGAIN)
1556 goto retry;
1557 if (r < 0)
1558 pfn = KVM_PFN_ERR_FAULT;
1559 } else {
1560 if (async && vma_is_valid(vma, write_fault))
1561 *async = true;
1562 pfn = KVM_PFN_ERR_FAULT;
1563 }
1564 exit:
1565 up_read(&current->mm->mmap_sem);
1566 return pfn;
1567 }
1568
1569 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1570 bool atomic, bool *async, bool write_fault,
1571 bool *writable)
1572 {
1573 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1574
1575 if (addr == KVM_HVA_ERR_RO_BAD) {
1576 if (writable)
1577 *writable = false;
1578 return KVM_PFN_ERR_RO_FAULT;
1579 }
1580
1581 if (kvm_is_error_hva(addr)) {
1582 if (writable)
1583 *writable = false;
1584 return KVM_PFN_NOSLOT;
1585 }
1586
1587 /* Do not map writable pfn in the readonly memslot. */
1588 if (writable && memslot_is_readonly(slot)) {
1589 *writable = false;
1590 writable = NULL;
1591 }
1592
1593 return hva_to_pfn(addr, atomic, async, write_fault,
1594 writable);
1595 }
1596 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1597
1598 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1599 bool *writable)
1600 {
1601 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1602 write_fault, writable);
1603 }
1604 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1605
1606 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1607 {
1608 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1609 }
1610 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1611
1612 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1613 {
1614 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1615 }
1616 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1617
1618 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1619 {
1620 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1621 }
1622 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1623
1624 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1625 {
1626 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1627 }
1628 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1629
1630 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1631 {
1632 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1633 }
1634 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1635
1636 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1637 {
1638 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1639 }
1640 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1641
1642 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1643 struct page **pages, int nr_pages)
1644 {
1645 unsigned long addr;
1646 gfn_t entry;
1647
1648 addr = gfn_to_hva_many(slot, gfn, &entry);
1649 if (kvm_is_error_hva(addr))
1650 return -1;
1651
1652 if (entry < nr_pages)
1653 return 0;
1654
1655 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1656 }
1657 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1658
1659 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1660 {
1661 if (is_error_noslot_pfn(pfn))
1662 return KVM_ERR_PTR_BAD_PAGE;
1663
1664 if (kvm_is_reserved_pfn(pfn)) {
1665 WARN_ON(1);
1666 return KVM_ERR_PTR_BAD_PAGE;
1667 }
1668
1669 return pfn_to_page(pfn);
1670 }
1671
1672 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1673 {
1674 kvm_pfn_t pfn;
1675
1676 pfn = gfn_to_pfn(kvm, gfn);
1677
1678 return kvm_pfn_to_page(pfn);
1679 }
1680 EXPORT_SYMBOL_GPL(gfn_to_page);
1681
1682 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1683 {
1684 kvm_pfn_t pfn;
1685
1686 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1687
1688 return kvm_pfn_to_page(pfn);
1689 }
1690 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1691
1692 void kvm_release_page_clean(struct page *page)
1693 {
1694 WARN_ON(is_error_page(page));
1695
1696 kvm_release_pfn_clean(page_to_pfn(page));
1697 }
1698 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1699
1700 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1701 {
1702 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1703 put_page(pfn_to_page(pfn));
1704 }
1705 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1706
1707 void kvm_release_page_dirty(struct page *page)
1708 {
1709 WARN_ON(is_error_page(page));
1710
1711 kvm_release_pfn_dirty(page_to_pfn(page));
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1714
1715 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1716 {
1717 kvm_set_pfn_dirty(pfn);
1718 kvm_release_pfn_clean(pfn);
1719 }
1720
1721 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1722 {
1723 if (!kvm_is_reserved_pfn(pfn)) {
1724 struct page *page = pfn_to_page(pfn);
1725
1726 if (!PageReserved(page))
1727 SetPageDirty(page);
1728 }
1729 }
1730 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1731
1732 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1733 {
1734 if (!kvm_is_reserved_pfn(pfn))
1735 mark_page_accessed(pfn_to_page(pfn));
1736 }
1737 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1738
1739 void kvm_get_pfn(kvm_pfn_t pfn)
1740 {
1741 if (!kvm_is_reserved_pfn(pfn))
1742 get_page(pfn_to_page(pfn));
1743 }
1744 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1745
1746 static int next_segment(unsigned long len, int offset)
1747 {
1748 if (len > PAGE_SIZE - offset)
1749 return PAGE_SIZE - offset;
1750 else
1751 return len;
1752 }
1753
1754 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1755 void *data, int offset, int len)
1756 {
1757 int r;
1758 unsigned long addr;
1759
1760 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1761 if (kvm_is_error_hva(addr))
1762 return -EFAULT;
1763 r = __copy_from_user(data, (void __user *)addr + offset, len);
1764 if (r)
1765 return -EFAULT;
1766 return 0;
1767 }
1768
1769 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1770 int len)
1771 {
1772 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1773
1774 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1775 }
1776 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1777
1778 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1779 int offset, int len)
1780 {
1781 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1782
1783 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1784 }
1785 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1786
1787 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1788 {
1789 gfn_t gfn = gpa >> PAGE_SHIFT;
1790 int seg;
1791 int offset = offset_in_page(gpa);
1792 int ret;
1793
1794 while ((seg = next_segment(len, offset)) != 0) {
1795 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1796 if (ret < 0)
1797 return ret;
1798 offset = 0;
1799 len -= seg;
1800 data += seg;
1801 ++gfn;
1802 }
1803 return 0;
1804 }
1805 EXPORT_SYMBOL_GPL(kvm_read_guest);
1806
1807 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1808 {
1809 gfn_t gfn = gpa >> PAGE_SHIFT;
1810 int seg;
1811 int offset = offset_in_page(gpa);
1812 int ret;
1813
1814 while ((seg = next_segment(len, offset)) != 0) {
1815 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1816 if (ret < 0)
1817 return ret;
1818 offset = 0;
1819 len -= seg;
1820 data += seg;
1821 ++gfn;
1822 }
1823 return 0;
1824 }
1825 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1826
1827 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1828 void *data, int offset, unsigned long len)
1829 {
1830 int r;
1831 unsigned long addr;
1832
1833 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1834 if (kvm_is_error_hva(addr))
1835 return -EFAULT;
1836 pagefault_disable();
1837 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1838 pagefault_enable();
1839 if (r)
1840 return -EFAULT;
1841 return 0;
1842 }
1843
1844 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1845 unsigned long len)
1846 {
1847 gfn_t gfn = gpa >> PAGE_SHIFT;
1848 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1849 int offset = offset_in_page(gpa);
1850
1851 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1852 }
1853 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1854
1855 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1856 void *data, unsigned long len)
1857 {
1858 gfn_t gfn = gpa >> PAGE_SHIFT;
1859 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1860 int offset = offset_in_page(gpa);
1861
1862 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1863 }
1864 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1865
1866 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1867 const void *data, int offset, int len)
1868 {
1869 int r;
1870 unsigned long addr;
1871
1872 addr = gfn_to_hva_memslot(memslot, gfn);
1873 if (kvm_is_error_hva(addr))
1874 return -EFAULT;
1875 r = __copy_to_user((void __user *)addr + offset, data, len);
1876 if (r)
1877 return -EFAULT;
1878 mark_page_dirty_in_slot(memslot, gfn);
1879 return 0;
1880 }
1881
1882 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1883 const void *data, int offset, int len)
1884 {
1885 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1886
1887 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1890
1891 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1892 const void *data, int offset, int len)
1893 {
1894 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1895
1896 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1897 }
1898 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1899
1900 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1901 unsigned long len)
1902 {
1903 gfn_t gfn = gpa >> PAGE_SHIFT;
1904 int seg;
1905 int offset = offset_in_page(gpa);
1906 int ret;
1907
1908 while ((seg = next_segment(len, offset)) != 0) {
1909 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1910 if (ret < 0)
1911 return ret;
1912 offset = 0;
1913 len -= seg;
1914 data += seg;
1915 ++gfn;
1916 }
1917 return 0;
1918 }
1919 EXPORT_SYMBOL_GPL(kvm_write_guest);
1920
1921 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1922 unsigned long len)
1923 {
1924 gfn_t gfn = gpa >> PAGE_SHIFT;
1925 int seg;
1926 int offset = offset_in_page(gpa);
1927 int ret;
1928
1929 while ((seg = next_segment(len, offset)) != 0) {
1930 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1931 if (ret < 0)
1932 return ret;
1933 offset = 0;
1934 len -= seg;
1935 data += seg;
1936 ++gfn;
1937 }
1938 return 0;
1939 }
1940 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1941
1942 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1943 struct gfn_to_hva_cache *ghc,
1944 gpa_t gpa, unsigned long len)
1945 {
1946 int offset = offset_in_page(gpa);
1947 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1948 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1949 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1950 gfn_t nr_pages_avail;
1951
1952 ghc->gpa = gpa;
1953 ghc->generation = slots->generation;
1954 ghc->len = len;
1955 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1956 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1957 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1958 ghc->hva += offset;
1959 } else {
1960 /*
1961 * If the requested region crosses two memslots, we still
1962 * verify that the entire region is valid here.
1963 */
1964 while (start_gfn <= end_gfn) {
1965 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1966 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1967 &nr_pages_avail);
1968 if (kvm_is_error_hva(ghc->hva))
1969 return -EFAULT;
1970 start_gfn += nr_pages_avail;
1971 }
1972 /* Use the slow path for cross page reads and writes. */
1973 ghc->memslot = NULL;
1974 }
1975 return 0;
1976 }
1977
1978 int kvm_vcpu_gfn_to_hva_cache_init(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1979 gpa_t gpa, unsigned long len)
1980 {
1981 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1982 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1983 }
1984 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva_cache_init);
1985
1986 int kvm_vcpu_write_guest_offset_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1987 void *data, int offset, unsigned long len)
1988 {
1989 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1990 int r;
1991 gpa_t gpa = ghc->gpa + offset;
1992
1993 BUG_ON(len + offset > ghc->len);
1994
1995 if (slots->generation != ghc->generation)
1996 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1997
1998 if (unlikely(!ghc->memslot))
1999 return kvm_vcpu_write_guest(vcpu, gpa, data, len);
2000
2001 if (kvm_is_error_hva(ghc->hva))
2002 return -EFAULT;
2003
2004 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2005 if (r)
2006 return -EFAULT;
2007 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2008
2009 return 0;
2010 }
2011 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_offset_cached);
2012
2013 int kvm_vcpu_write_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2014 void *data, unsigned long len)
2015 {
2016 return kvm_vcpu_write_guest_offset_cached(vcpu, ghc, data, 0, len);
2017 }
2018 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_cached);
2019
2020 int kvm_vcpu_read_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2021 void *data, unsigned long len)
2022 {
2023 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2024 int r;
2025
2026 BUG_ON(len > ghc->len);
2027
2028 if (slots->generation != ghc->generation)
2029 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2030
2031 if (unlikely(!ghc->memslot))
2032 return kvm_vcpu_read_guest(vcpu, ghc->gpa, data, len);
2033
2034 if (kvm_is_error_hva(ghc->hva))
2035 return -EFAULT;
2036
2037 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2038 if (r)
2039 return -EFAULT;
2040
2041 return 0;
2042 }
2043 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_cached);
2044
2045 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2046 {
2047 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2048
2049 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2052
2053 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2054 {
2055 gfn_t gfn = gpa >> PAGE_SHIFT;
2056 int seg;
2057 int offset = offset_in_page(gpa);
2058 int ret;
2059
2060 while ((seg = next_segment(len, offset)) != 0) {
2061 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2062 if (ret < 0)
2063 return ret;
2064 offset = 0;
2065 len -= seg;
2066 ++gfn;
2067 }
2068 return 0;
2069 }
2070 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2071
2072 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2073 gfn_t gfn)
2074 {
2075 if (memslot && memslot->dirty_bitmap) {
2076 unsigned long rel_gfn = gfn - memslot->base_gfn;
2077
2078 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2079 }
2080 }
2081
2082 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2083 {
2084 struct kvm_memory_slot *memslot;
2085
2086 memslot = gfn_to_memslot(kvm, gfn);
2087 mark_page_dirty_in_slot(memslot, gfn);
2088 }
2089 EXPORT_SYMBOL_GPL(mark_page_dirty);
2090
2091 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2092 {
2093 struct kvm_memory_slot *memslot;
2094
2095 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2096 mark_page_dirty_in_slot(memslot, gfn);
2097 }
2098 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2099
2100 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2101 {
2102 unsigned int old, val, grow;
2103
2104 old = val = vcpu->halt_poll_ns;
2105 grow = READ_ONCE(halt_poll_ns_grow);
2106 /* 10us base */
2107 if (val == 0 && grow)
2108 val = 10000;
2109 else
2110 val *= grow;
2111
2112 if (val > halt_poll_ns)
2113 val = halt_poll_ns;
2114
2115 vcpu->halt_poll_ns = val;
2116 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2117 }
2118
2119 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2120 {
2121 unsigned int old, val, shrink;
2122
2123 old = val = vcpu->halt_poll_ns;
2124 shrink = READ_ONCE(halt_poll_ns_shrink);
2125 if (shrink == 0)
2126 val = 0;
2127 else
2128 val /= shrink;
2129
2130 vcpu->halt_poll_ns = val;
2131 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2132 }
2133
2134 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2135 {
2136 if (kvm_arch_vcpu_runnable(vcpu)) {
2137 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2138 return -EINTR;
2139 }
2140 if (kvm_cpu_has_pending_timer(vcpu))
2141 return -EINTR;
2142 if (signal_pending(current))
2143 return -EINTR;
2144
2145 return 0;
2146 }
2147
2148 /*
2149 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2150 */
2151 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2152 {
2153 ktime_t start, cur;
2154 DECLARE_SWAITQUEUE(wait);
2155 bool waited = false;
2156 u64 block_ns;
2157
2158 start = cur = ktime_get();
2159 if (vcpu->halt_poll_ns) {
2160 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2161
2162 ++vcpu->stat.halt_attempted_poll;
2163 do {
2164 /*
2165 * This sets KVM_REQ_UNHALT if an interrupt
2166 * arrives.
2167 */
2168 if (kvm_vcpu_check_block(vcpu) < 0) {
2169 ++vcpu->stat.halt_successful_poll;
2170 if (!vcpu_valid_wakeup(vcpu))
2171 ++vcpu->stat.halt_poll_invalid;
2172 goto out;
2173 }
2174 cur = ktime_get();
2175 } while (single_task_running() && ktime_before(cur, stop));
2176 }
2177
2178 kvm_arch_vcpu_blocking(vcpu);
2179
2180 for (;;) {
2181 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2182
2183 if (kvm_vcpu_check_block(vcpu) < 0)
2184 break;
2185
2186 waited = true;
2187 schedule();
2188 }
2189
2190 finish_swait(&vcpu->wq, &wait);
2191 cur = ktime_get();
2192
2193 kvm_arch_vcpu_unblocking(vcpu);
2194 out:
2195 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2196
2197 if (!vcpu_valid_wakeup(vcpu))
2198 shrink_halt_poll_ns(vcpu);
2199 else if (halt_poll_ns) {
2200 if (block_ns <= vcpu->halt_poll_ns)
2201 ;
2202 /* we had a long block, shrink polling */
2203 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2204 shrink_halt_poll_ns(vcpu);
2205 /* we had a short halt and our poll time is too small */
2206 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2207 block_ns < halt_poll_ns)
2208 grow_halt_poll_ns(vcpu);
2209 } else
2210 vcpu->halt_poll_ns = 0;
2211
2212 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2213 kvm_arch_vcpu_block_finish(vcpu);
2214 }
2215 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2216
2217 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2218 {
2219 struct swait_queue_head *wqp;
2220
2221 wqp = kvm_arch_vcpu_wq(vcpu);
2222 if (swait_active(wqp)) {
2223 swake_up(wqp);
2224 ++vcpu->stat.halt_wakeup;
2225 return true;
2226 }
2227
2228 return false;
2229 }
2230 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2231
2232 /*
2233 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2234 */
2235 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2236 {
2237 int me;
2238 int cpu = vcpu->cpu;
2239
2240 if (kvm_vcpu_wake_up(vcpu))
2241 return;
2242
2243 me = get_cpu();
2244 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2245 if (kvm_arch_vcpu_should_kick(vcpu))
2246 smp_send_reschedule(cpu);
2247 put_cpu();
2248 }
2249 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2250
2251 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2252 {
2253 struct pid *pid;
2254 struct task_struct *task = NULL;
2255 int ret = 0;
2256
2257 rcu_read_lock();
2258 pid = rcu_dereference(target->pid);
2259 if (pid)
2260 task = get_pid_task(pid, PIDTYPE_PID);
2261 rcu_read_unlock();
2262 if (!task)
2263 return ret;
2264 ret = yield_to(task, 1);
2265 put_task_struct(task);
2266
2267 return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2270
2271 /*
2272 * Helper that checks whether a VCPU is eligible for directed yield.
2273 * Most eligible candidate to yield is decided by following heuristics:
2274 *
2275 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2276 * (preempted lock holder), indicated by @in_spin_loop.
2277 * Set at the beiginning and cleared at the end of interception/PLE handler.
2278 *
2279 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2280 * chance last time (mostly it has become eligible now since we have probably
2281 * yielded to lockholder in last iteration. This is done by toggling
2282 * @dy_eligible each time a VCPU checked for eligibility.)
2283 *
2284 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2285 * to preempted lock-holder could result in wrong VCPU selection and CPU
2286 * burning. Giving priority for a potential lock-holder increases lock
2287 * progress.
2288 *
2289 * Since algorithm is based on heuristics, accessing another VCPU data without
2290 * locking does not harm. It may result in trying to yield to same VCPU, fail
2291 * and continue with next VCPU and so on.
2292 */
2293 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2294 {
2295 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2296 bool eligible;
2297
2298 eligible = !vcpu->spin_loop.in_spin_loop ||
2299 vcpu->spin_loop.dy_eligible;
2300
2301 if (vcpu->spin_loop.in_spin_loop)
2302 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2303
2304 return eligible;
2305 #else
2306 return true;
2307 #endif
2308 }
2309
2310 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2311 {
2312 struct kvm *kvm = me->kvm;
2313 struct kvm_vcpu *vcpu;
2314 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2315 int yielded = 0;
2316 int try = 3;
2317 int pass;
2318 int i;
2319
2320 kvm_vcpu_set_in_spin_loop(me, true);
2321 /*
2322 * We boost the priority of a VCPU that is runnable but not
2323 * currently running, because it got preempted by something
2324 * else and called schedule in __vcpu_run. Hopefully that
2325 * VCPU is holding the lock that we need and will release it.
2326 * We approximate round-robin by starting at the last boosted VCPU.
2327 */
2328 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2329 kvm_for_each_vcpu(i, vcpu, kvm) {
2330 if (!pass && i <= last_boosted_vcpu) {
2331 i = last_boosted_vcpu;
2332 continue;
2333 } else if (pass && i > last_boosted_vcpu)
2334 break;
2335 if (!ACCESS_ONCE(vcpu->preempted))
2336 continue;
2337 if (vcpu == me)
2338 continue;
2339 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2340 continue;
2341 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2342 continue;
2343
2344 yielded = kvm_vcpu_yield_to(vcpu);
2345 if (yielded > 0) {
2346 kvm->last_boosted_vcpu = i;
2347 break;
2348 } else if (yielded < 0) {
2349 try--;
2350 if (!try)
2351 break;
2352 }
2353 }
2354 }
2355 kvm_vcpu_set_in_spin_loop(me, false);
2356
2357 /* Ensure vcpu is not eligible during next spinloop */
2358 kvm_vcpu_set_dy_eligible(me, false);
2359 }
2360 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2361
2362 static int kvm_vcpu_fault(struct vm_fault *vmf)
2363 {
2364 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2365 struct page *page;
2366
2367 if (vmf->pgoff == 0)
2368 page = virt_to_page(vcpu->run);
2369 #ifdef CONFIG_X86
2370 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2371 page = virt_to_page(vcpu->arch.pio_data);
2372 #endif
2373 #ifdef CONFIG_KVM_MMIO
2374 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2375 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2376 #endif
2377 else
2378 return kvm_arch_vcpu_fault(vcpu, vmf);
2379 get_page(page);
2380 vmf->page = page;
2381 return 0;
2382 }
2383
2384 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2385 .fault = kvm_vcpu_fault,
2386 };
2387
2388 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2389 {
2390 vma->vm_ops = &kvm_vcpu_vm_ops;
2391 return 0;
2392 }
2393
2394 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2395 {
2396 struct kvm_vcpu *vcpu = filp->private_data;
2397
2398 debugfs_remove_recursive(vcpu->debugfs_dentry);
2399 kvm_put_kvm(vcpu->kvm);
2400 return 0;
2401 }
2402
2403 static struct file_operations kvm_vcpu_fops = {
2404 .release = kvm_vcpu_release,
2405 .unlocked_ioctl = kvm_vcpu_ioctl,
2406 #ifdef CONFIG_KVM_COMPAT
2407 .compat_ioctl = kvm_vcpu_compat_ioctl,
2408 #endif
2409 .mmap = kvm_vcpu_mmap,
2410 .llseek = noop_llseek,
2411 };
2412
2413 /*
2414 * Allocates an inode for the vcpu.
2415 */
2416 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2417 {
2418 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2419 }
2420
2421 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2422 {
2423 char dir_name[ITOA_MAX_LEN * 2];
2424 int ret;
2425
2426 if (!kvm_arch_has_vcpu_debugfs())
2427 return 0;
2428
2429 if (!debugfs_initialized())
2430 return 0;
2431
2432 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2433 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2434 vcpu->kvm->debugfs_dentry);
2435 if (!vcpu->debugfs_dentry)
2436 return -ENOMEM;
2437
2438 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2439 if (ret < 0) {
2440 debugfs_remove_recursive(vcpu->debugfs_dentry);
2441 return ret;
2442 }
2443
2444 return 0;
2445 }
2446
2447 /*
2448 * Creates some virtual cpus. Good luck creating more than one.
2449 */
2450 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2451 {
2452 int r;
2453 struct kvm_vcpu *vcpu;
2454
2455 if (id >= KVM_MAX_VCPU_ID)
2456 return -EINVAL;
2457
2458 mutex_lock(&kvm->lock);
2459 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2460 mutex_unlock(&kvm->lock);
2461 return -EINVAL;
2462 }
2463
2464 kvm->created_vcpus++;
2465 mutex_unlock(&kvm->lock);
2466
2467 vcpu = kvm_arch_vcpu_create(kvm, id);
2468 if (IS_ERR(vcpu)) {
2469 r = PTR_ERR(vcpu);
2470 goto vcpu_decrement;
2471 }
2472
2473 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2474
2475 r = kvm_arch_vcpu_setup(vcpu);
2476 if (r)
2477 goto vcpu_destroy;
2478
2479 r = kvm_create_vcpu_debugfs(vcpu);
2480 if (r)
2481 goto vcpu_destroy;
2482
2483 mutex_lock(&kvm->lock);
2484 if (kvm_get_vcpu_by_id(kvm, id)) {
2485 r = -EEXIST;
2486 goto unlock_vcpu_destroy;
2487 }
2488
2489 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2490
2491 /* Now it's all set up, let userspace reach it */
2492 kvm_get_kvm(kvm);
2493 r = create_vcpu_fd(vcpu);
2494 if (r < 0) {
2495 kvm_put_kvm(kvm);
2496 goto unlock_vcpu_destroy;
2497 }
2498
2499 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2500
2501 /*
2502 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2503 * before kvm->online_vcpu's incremented value.
2504 */
2505 smp_wmb();
2506 atomic_inc(&kvm->online_vcpus);
2507
2508 mutex_unlock(&kvm->lock);
2509 kvm_arch_vcpu_postcreate(vcpu);
2510 return r;
2511
2512 unlock_vcpu_destroy:
2513 mutex_unlock(&kvm->lock);
2514 debugfs_remove_recursive(vcpu->debugfs_dentry);
2515 vcpu_destroy:
2516 kvm_arch_vcpu_destroy(vcpu);
2517 vcpu_decrement:
2518 mutex_lock(&kvm->lock);
2519 kvm->created_vcpus--;
2520 mutex_unlock(&kvm->lock);
2521 return r;
2522 }
2523
2524 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2525 {
2526 if (sigset) {
2527 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2528 vcpu->sigset_active = 1;
2529 vcpu->sigset = *sigset;
2530 } else
2531 vcpu->sigset_active = 0;
2532 return 0;
2533 }
2534
2535 static long kvm_vcpu_ioctl(struct file *filp,
2536 unsigned int ioctl, unsigned long arg)
2537 {
2538 struct kvm_vcpu *vcpu = filp->private_data;
2539 void __user *argp = (void __user *)arg;
2540 int r;
2541 struct kvm_fpu *fpu = NULL;
2542 struct kvm_sregs *kvm_sregs = NULL;
2543
2544 if (vcpu->kvm->mm != current->mm)
2545 return -EIO;
2546
2547 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2548 return -EINVAL;
2549
2550 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2551 /*
2552 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2553 * so vcpu_load() would break it.
2554 */
2555 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2556 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2557 #endif
2558
2559
2560 r = vcpu_load(vcpu);
2561 if (r)
2562 return r;
2563 switch (ioctl) {
2564 case KVM_RUN:
2565 r = -EINVAL;
2566 if (arg)
2567 goto out;
2568 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2569 /* The thread running this VCPU changed. */
2570 struct pid *oldpid = vcpu->pid;
2571 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2572
2573 rcu_assign_pointer(vcpu->pid, newpid);
2574 if (oldpid)
2575 synchronize_rcu();
2576 put_pid(oldpid);
2577 }
2578 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2579 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2580 break;
2581 case KVM_GET_REGS: {
2582 struct kvm_regs *kvm_regs;
2583
2584 r = -ENOMEM;
2585 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2586 if (!kvm_regs)
2587 goto out;
2588 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2589 if (r)
2590 goto out_free1;
2591 r = -EFAULT;
2592 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2593 goto out_free1;
2594 r = 0;
2595 out_free1:
2596 kfree(kvm_regs);
2597 break;
2598 }
2599 case KVM_SET_REGS: {
2600 struct kvm_regs *kvm_regs;
2601
2602 r = -ENOMEM;
2603 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2604 if (IS_ERR(kvm_regs)) {
2605 r = PTR_ERR(kvm_regs);
2606 goto out;
2607 }
2608 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2609 kfree(kvm_regs);
2610 break;
2611 }
2612 case KVM_GET_SREGS: {
2613 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2614 r = -ENOMEM;
2615 if (!kvm_sregs)
2616 goto out;
2617 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2618 if (r)
2619 goto out;
2620 r = -EFAULT;
2621 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2622 goto out;
2623 r = 0;
2624 break;
2625 }
2626 case KVM_SET_SREGS: {
2627 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2628 if (IS_ERR(kvm_sregs)) {
2629 r = PTR_ERR(kvm_sregs);
2630 kvm_sregs = NULL;
2631 goto out;
2632 }
2633 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2634 break;
2635 }
2636 case KVM_GET_MP_STATE: {
2637 struct kvm_mp_state mp_state;
2638
2639 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2640 if (r)
2641 goto out;
2642 r = -EFAULT;
2643 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2644 goto out;
2645 r = 0;
2646 break;
2647 }
2648 case KVM_SET_MP_STATE: {
2649 struct kvm_mp_state mp_state;
2650
2651 r = -EFAULT;
2652 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2653 goto out;
2654 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2655 break;
2656 }
2657 case KVM_TRANSLATE: {
2658 struct kvm_translation tr;
2659
2660 r = -EFAULT;
2661 if (copy_from_user(&tr, argp, sizeof(tr)))
2662 goto out;
2663 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2664 if (r)
2665 goto out;
2666 r = -EFAULT;
2667 if (copy_to_user(argp, &tr, sizeof(tr)))
2668 goto out;
2669 r = 0;
2670 break;
2671 }
2672 case KVM_SET_GUEST_DEBUG: {
2673 struct kvm_guest_debug dbg;
2674
2675 r = -EFAULT;
2676 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2677 goto out;
2678 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2679 break;
2680 }
2681 case KVM_SET_SIGNAL_MASK: {
2682 struct kvm_signal_mask __user *sigmask_arg = argp;
2683 struct kvm_signal_mask kvm_sigmask;
2684 sigset_t sigset, *p;
2685
2686 p = NULL;
2687 if (argp) {
2688 r = -EFAULT;
2689 if (copy_from_user(&kvm_sigmask, argp,
2690 sizeof(kvm_sigmask)))
2691 goto out;
2692 r = -EINVAL;
2693 if (kvm_sigmask.len != sizeof(sigset))
2694 goto out;
2695 r = -EFAULT;
2696 if (copy_from_user(&sigset, sigmask_arg->sigset,
2697 sizeof(sigset)))
2698 goto out;
2699 p = &sigset;
2700 }
2701 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2702 break;
2703 }
2704 case KVM_GET_FPU: {
2705 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2706 r = -ENOMEM;
2707 if (!fpu)
2708 goto out;
2709 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2710 if (r)
2711 goto out;
2712 r = -EFAULT;
2713 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2714 goto out;
2715 r = 0;
2716 break;
2717 }
2718 case KVM_SET_FPU: {
2719 fpu = memdup_user(argp, sizeof(*fpu));
2720 if (IS_ERR(fpu)) {
2721 r = PTR_ERR(fpu);
2722 fpu = NULL;
2723 goto out;
2724 }
2725 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2726 break;
2727 }
2728 default:
2729 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2730 }
2731 out:
2732 vcpu_put(vcpu);
2733 kfree(fpu);
2734 kfree(kvm_sregs);
2735 return r;
2736 }
2737
2738 #ifdef CONFIG_KVM_COMPAT
2739 static long kvm_vcpu_compat_ioctl(struct file *filp,
2740 unsigned int ioctl, unsigned long arg)
2741 {
2742 struct kvm_vcpu *vcpu = filp->private_data;
2743 void __user *argp = compat_ptr(arg);
2744 int r;
2745
2746 if (vcpu->kvm->mm != current->mm)
2747 return -EIO;
2748
2749 switch (ioctl) {
2750 case KVM_SET_SIGNAL_MASK: {
2751 struct kvm_signal_mask __user *sigmask_arg = argp;
2752 struct kvm_signal_mask kvm_sigmask;
2753 compat_sigset_t csigset;
2754 sigset_t sigset;
2755
2756 if (argp) {
2757 r = -EFAULT;
2758 if (copy_from_user(&kvm_sigmask, argp,
2759 sizeof(kvm_sigmask)))
2760 goto out;
2761 r = -EINVAL;
2762 if (kvm_sigmask.len != sizeof(csigset))
2763 goto out;
2764 r = -EFAULT;
2765 if (copy_from_user(&csigset, sigmask_arg->sigset,
2766 sizeof(csigset)))
2767 goto out;
2768 sigset_from_compat(&sigset, &csigset);
2769 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2770 } else
2771 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2772 break;
2773 }
2774 default:
2775 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2776 }
2777
2778 out:
2779 return r;
2780 }
2781 #endif
2782
2783 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2784 int (*accessor)(struct kvm_device *dev,
2785 struct kvm_device_attr *attr),
2786 unsigned long arg)
2787 {
2788 struct kvm_device_attr attr;
2789
2790 if (!accessor)
2791 return -EPERM;
2792
2793 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2794 return -EFAULT;
2795
2796 return accessor(dev, &attr);
2797 }
2798
2799 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2800 unsigned long arg)
2801 {
2802 struct kvm_device *dev = filp->private_data;
2803
2804 switch (ioctl) {
2805 case KVM_SET_DEVICE_ATTR:
2806 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2807 case KVM_GET_DEVICE_ATTR:
2808 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2809 case KVM_HAS_DEVICE_ATTR:
2810 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2811 default:
2812 if (dev->ops->ioctl)
2813 return dev->ops->ioctl(dev, ioctl, arg);
2814
2815 return -ENOTTY;
2816 }
2817 }
2818
2819 static int kvm_device_release(struct inode *inode, struct file *filp)
2820 {
2821 struct kvm_device *dev = filp->private_data;
2822 struct kvm *kvm = dev->kvm;
2823
2824 kvm_put_kvm(kvm);
2825 return 0;
2826 }
2827
2828 static const struct file_operations kvm_device_fops = {
2829 .unlocked_ioctl = kvm_device_ioctl,
2830 #ifdef CONFIG_KVM_COMPAT
2831 .compat_ioctl = kvm_device_ioctl,
2832 #endif
2833 .release = kvm_device_release,
2834 };
2835
2836 struct kvm_device *kvm_device_from_filp(struct file *filp)
2837 {
2838 if (filp->f_op != &kvm_device_fops)
2839 return NULL;
2840
2841 return filp->private_data;
2842 }
2843
2844 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2845 #ifdef CONFIG_KVM_MPIC
2846 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2847 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2848 #endif
2849
2850 #ifdef CONFIG_KVM_XICS
2851 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2852 #endif
2853 };
2854
2855 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2856 {
2857 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2858 return -ENOSPC;
2859
2860 if (kvm_device_ops_table[type] != NULL)
2861 return -EEXIST;
2862
2863 kvm_device_ops_table[type] = ops;
2864 return 0;
2865 }
2866
2867 void kvm_unregister_device_ops(u32 type)
2868 {
2869 if (kvm_device_ops_table[type] != NULL)
2870 kvm_device_ops_table[type] = NULL;
2871 }
2872
2873 static int kvm_ioctl_create_device(struct kvm *kvm,
2874 struct kvm_create_device *cd)
2875 {
2876 struct kvm_device_ops *ops = NULL;
2877 struct kvm_device *dev;
2878 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2879 int ret;
2880
2881 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2882 return -ENODEV;
2883
2884 ops = kvm_device_ops_table[cd->type];
2885 if (ops == NULL)
2886 return -ENODEV;
2887
2888 if (test)
2889 return 0;
2890
2891 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2892 if (!dev)
2893 return -ENOMEM;
2894
2895 dev->ops = ops;
2896 dev->kvm = kvm;
2897
2898 mutex_lock(&kvm->lock);
2899 ret = ops->create(dev, cd->type);
2900 if (ret < 0) {
2901 mutex_unlock(&kvm->lock);
2902 kfree(dev);
2903 return ret;
2904 }
2905 list_add(&dev->vm_node, &kvm->devices);
2906 mutex_unlock(&kvm->lock);
2907
2908 if (ops->init)
2909 ops->init(dev);
2910
2911 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2912 if (ret < 0) {
2913 mutex_lock(&kvm->lock);
2914 list_del(&dev->vm_node);
2915 mutex_unlock(&kvm->lock);
2916 ops->destroy(dev);
2917 return ret;
2918 }
2919
2920 kvm_get_kvm(kvm);
2921 cd->fd = ret;
2922 return 0;
2923 }
2924
2925 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2926 {
2927 switch (arg) {
2928 case KVM_CAP_USER_MEMORY:
2929 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2930 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2931 case KVM_CAP_INTERNAL_ERROR_DATA:
2932 #ifdef CONFIG_HAVE_KVM_MSI
2933 case KVM_CAP_SIGNAL_MSI:
2934 #endif
2935 #ifdef CONFIG_HAVE_KVM_IRQFD
2936 case KVM_CAP_IRQFD:
2937 case KVM_CAP_IRQFD_RESAMPLE:
2938 #endif
2939 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2940 case KVM_CAP_CHECK_EXTENSION_VM:
2941 return 1;
2942 #ifdef CONFIG_KVM_MMIO
2943 case KVM_CAP_COALESCED_MMIO:
2944 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2945 #endif
2946 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2947 case KVM_CAP_IRQ_ROUTING:
2948 return KVM_MAX_IRQ_ROUTES;
2949 #endif
2950 #if KVM_ADDRESS_SPACE_NUM > 1
2951 case KVM_CAP_MULTI_ADDRESS_SPACE:
2952 return KVM_ADDRESS_SPACE_NUM;
2953 #endif
2954 case KVM_CAP_MAX_VCPU_ID:
2955 return KVM_MAX_VCPU_ID;
2956 default:
2957 break;
2958 }
2959 return kvm_vm_ioctl_check_extension(kvm, arg);
2960 }
2961
2962 static long kvm_vm_ioctl(struct file *filp,
2963 unsigned int ioctl, unsigned long arg)
2964 {
2965 struct kvm *kvm = filp->private_data;
2966 void __user *argp = (void __user *)arg;
2967 int r;
2968
2969 if (kvm->mm != current->mm)
2970 return -EIO;
2971 switch (ioctl) {
2972 case KVM_CREATE_VCPU:
2973 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2974 break;
2975 case KVM_SET_USER_MEMORY_REGION: {
2976 struct kvm_userspace_memory_region kvm_userspace_mem;
2977
2978 r = -EFAULT;
2979 if (copy_from_user(&kvm_userspace_mem, argp,
2980 sizeof(kvm_userspace_mem)))
2981 goto out;
2982
2983 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2984 break;
2985 }
2986 case KVM_GET_DIRTY_LOG: {
2987 struct kvm_dirty_log log;
2988
2989 r = -EFAULT;
2990 if (copy_from_user(&log, argp, sizeof(log)))
2991 goto out;
2992 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2993 break;
2994 }
2995 #ifdef CONFIG_KVM_MMIO
2996 case KVM_REGISTER_COALESCED_MMIO: {
2997 struct kvm_coalesced_mmio_zone zone;
2998
2999 r = -EFAULT;
3000 if (copy_from_user(&zone, argp, sizeof(zone)))
3001 goto out;
3002 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3003 break;
3004 }
3005 case KVM_UNREGISTER_COALESCED_MMIO: {
3006 struct kvm_coalesced_mmio_zone zone;
3007
3008 r = -EFAULT;
3009 if (copy_from_user(&zone, argp, sizeof(zone)))
3010 goto out;
3011 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3012 break;
3013 }
3014 #endif
3015 case KVM_IRQFD: {
3016 struct kvm_irqfd data;
3017
3018 r = -EFAULT;
3019 if (copy_from_user(&data, argp, sizeof(data)))
3020 goto out;
3021 r = kvm_irqfd(kvm, &data);
3022 break;
3023 }
3024 case KVM_IOEVENTFD: {
3025 struct kvm_ioeventfd data;
3026
3027 r = -EFAULT;
3028 if (copy_from_user(&data, argp, sizeof(data)))
3029 goto out;
3030 r = kvm_ioeventfd(kvm, &data);
3031 break;
3032 }
3033 #ifdef CONFIG_HAVE_KVM_MSI
3034 case KVM_SIGNAL_MSI: {
3035 struct kvm_msi msi;
3036
3037 r = -EFAULT;
3038 if (copy_from_user(&msi, argp, sizeof(msi)))
3039 goto out;
3040 r = kvm_send_userspace_msi(kvm, &msi);
3041 break;
3042 }
3043 #endif
3044 #ifdef __KVM_HAVE_IRQ_LINE
3045 case KVM_IRQ_LINE_STATUS:
3046 case KVM_IRQ_LINE: {
3047 struct kvm_irq_level irq_event;
3048
3049 r = -EFAULT;
3050 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3051 goto out;
3052
3053 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3054 ioctl == KVM_IRQ_LINE_STATUS);
3055 if (r)
3056 goto out;
3057
3058 r = -EFAULT;
3059 if (ioctl == KVM_IRQ_LINE_STATUS) {
3060 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3061 goto out;
3062 }
3063
3064 r = 0;
3065 break;
3066 }
3067 #endif
3068 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3069 case KVM_SET_GSI_ROUTING: {
3070 struct kvm_irq_routing routing;
3071 struct kvm_irq_routing __user *urouting;
3072 struct kvm_irq_routing_entry *entries = NULL;
3073
3074 r = -EFAULT;
3075 if (copy_from_user(&routing, argp, sizeof(routing)))
3076 goto out;
3077 r = -EINVAL;
3078 if (!kvm_arch_can_set_irq_routing(kvm))
3079 goto out;
3080 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3081 goto out;
3082 if (routing.flags)
3083 goto out;
3084 if (routing.nr) {
3085 r = -ENOMEM;
3086 entries = vmalloc(routing.nr * sizeof(*entries));
3087 if (!entries)
3088 goto out;
3089 r = -EFAULT;
3090 urouting = argp;
3091 if (copy_from_user(entries, urouting->entries,
3092 routing.nr * sizeof(*entries)))
3093 goto out_free_irq_routing;
3094 }
3095 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3096 routing.flags);
3097 out_free_irq_routing:
3098 vfree(entries);
3099 break;
3100 }
3101 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3102 case KVM_CREATE_DEVICE: {
3103 struct kvm_create_device cd;
3104
3105 r = -EFAULT;
3106 if (copy_from_user(&cd, argp, sizeof(cd)))
3107 goto out;
3108
3109 r = kvm_ioctl_create_device(kvm, &cd);
3110 if (r)
3111 goto out;
3112
3113 r = -EFAULT;
3114 if (copy_to_user(argp, &cd, sizeof(cd)))
3115 goto out;
3116
3117 r = 0;
3118 break;
3119 }
3120 case KVM_CHECK_EXTENSION:
3121 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3122 break;
3123 default:
3124 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3125 }
3126 out:
3127 return r;
3128 }
3129
3130 #ifdef CONFIG_KVM_COMPAT
3131 struct compat_kvm_dirty_log {
3132 __u32 slot;
3133 __u32 padding1;
3134 union {
3135 compat_uptr_t dirty_bitmap; /* one bit per page */
3136 __u64 padding2;
3137 };
3138 };
3139
3140 static long kvm_vm_compat_ioctl(struct file *filp,
3141 unsigned int ioctl, unsigned long arg)
3142 {
3143 struct kvm *kvm = filp->private_data;
3144 int r;
3145
3146 if (kvm->mm != current->mm)
3147 return -EIO;
3148 switch (ioctl) {
3149 case KVM_GET_DIRTY_LOG: {
3150 struct compat_kvm_dirty_log compat_log;
3151 struct kvm_dirty_log log;
3152
3153 if (copy_from_user(&compat_log, (void __user *)arg,
3154 sizeof(compat_log)))
3155 return -EFAULT;
3156 log.slot = compat_log.slot;
3157 log.padding1 = compat_log.padding1;
3158 log.padding2 = compat_log.padding2;
3159 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3160
3161 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3162 break;
3163 }
3164 default:
3165 r = kvm_vm_ioctl(filp, ioctl, arg);
3166 }
3167 return r;
3168 }
3169 #endif
3170
3171 static struct file_operations kvm_vm_fops = {
3172 .release = kvm_vm_release,
3173 .unlocked_ioctl = kvm_vm_ioctl,
3174 #ifdef CONFIG_KVM_COMPAT
3175 .compat_ioctl = kvm_vm_compat_ioctl,
3176 #endif
3177 .llseek = noop_llseek,
3178 };
3179
3180 static int kvm_dev_ioctl_create_vm(unsigned long type)
3181 {
3182 int r;
3183 struct kvm *kvm;
3184 struct file *file;
3185
3186 kvm = kvm_create_vm(type);
3187 if (IS_ERR(kvm))
3188 return PTR_ERR(kvm);
3189 #ifdef CONFIG_KVM_MMIO
3190 r = kvm_coalesced_mmio_init(kvm);
3191 if (r < 0) {
3192 kvm_put_kvm(kvm);
3193 return r;
3194 }
3195 #endif
3196 r = get_unused_fd_flags(O_CLOEXEC);
3197 if (r < 0) {
3198 kvm_put_kvm(kvm);
3199 return r;
3200 }
3201 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3202 if (IS_ERR(file)) {
3203 put_unused_fd(r);
3204 kvm_put_kvm(kvm);
3205 return PTR_ERR(file);
3206 }
3207
3208 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3209 put_unused_fd(r);
3210 fput(file);
3211 return -ENOMEM;
3212 }
3213
3214 fd_install(r, file);
3215 return r;
3216 }
3217
3218 static long kvm_dev_ioctl(struct file *filp,
3219 unsigned int ioctl, unsigned long arg)
3220 {
3221 long r = -EINVAL;
3222
3223 switch (ioctl) {
3224 case KVM_GET_API_VERSION:
3225 if (arg)
3226 goto out;
3227 r = KVM_API_VERSION;
3228 break;
3229 case KVM_CREATE_VM:
3230 r = kvm_dev_ioctl_create_vm(arg);
3231 break;
3232 case KVM_CHECK_EXTENSION:
3233 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3234 break;
3235 case KVM_GET_VCPU_MMAP_SIZE:
3236 if (arg)
3237 goto out;
3238 r = PAGE_SIZE; /* struct kvm_run */
3239 #ifdef CONFIG_X86
3240 r += PAGE_SIZE; /* pio data page */
3241 #endif
3242 #ifdef CONFIG_KVM_MMIO
3243 r += PAGE_SIZE; /* coalesced mmio ring page */
3244 #endif
3245 break;
3246 case KVM_TRACE_ENABLE:
3247 case KVM_TRACE_PAUSE:
3248 case KVM_TRACE_DISABLE:
3249 r = -EOPNOTSUPP;
3250 break;
3251 default:
3252 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3253 }
3254 out:
3255 return r;
3256 }
3257
3258 static struct file_operations kvm_chardev_ops = {
3259 .unlocked_ioctl = kvm_dev_ioctl,
3260 .compat_ioctl = kvm_dev_ioctl,
3261 .llseek = noop_llseek,
3262 };
3263
3264 static struct miscdevice kvm_dev = {
3265 KVM_MINOR,
3266 "kvm",
3267 &kvm_chardev_ops,
3268 };
3269
3270 static void hardware_enable_nolock(void *junk)
3271 {
3272 int cpu = raw_smp_processor_id();
3273 int r;
3274
3275 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3276 return;
3277
3278 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3279
3280 r = kvm_arch_hardware_enable();
3281
3282 if (r) {
3283 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3284 atomic_inc(&hardware_enable_failed);
3285 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3286 }
3287 }
3288
3289 static int kvm_starting_cpu(unsigned int cpu)
3290 {
3291 raw_spin_lock(&kvm_count_lock);
3292 if (kvm_usage_count)
3293 hardware_enable_nolock(NULL);
3294 raw_spin_unlock(&kvm_count_lock);
3295 return 0;
3296 }
3297
3298 static void hardware_disable_nolock(void *junk)
3299 {
3300 int cpu = raw_smp_processor_id();
3301
3302 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3303 return;
3304 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3305 kvm_arch_hardware_disable();
3306 }
3307
3308 static int kvm_dying_cpu(unsigned int cpu)
3309 {
3310 raw_spin_lock(&kvm_count_lock);
3311 if (kvm_usage_count)
3312 hardware_disable_nolock(NULL);
3313 raw_spin_unlock(&kvm_count_lock);
3314 return 0;
3315 }
3316
3317 static void hardware_disable_all_nolock(void)
3318 {
3319 BUG_ON(!kvm_usage_count);
3320
3321 kvm_usage_count--;
3322 if (!kvm_usage_count)
3323 on_each_cpu(hardware_disable_nolock, NULL, 1);
3324 }
3325
3326 static void hardware_disable_all(void)
3327 {
3328 raw_spin_lock(&kvm_count_lock);
3329 hardware_disable_all_nolock();
3330 raw_spin_unlock(&kvm_count_lock);
3331 }
3332
3333 static int hardware_enable_all(void)
3334 {
3335 int r = 0;
3336
3337 raw_spin_lock(&kvm_count_lock);
3338
3339 kvm_usage_count++;
3340 if (kvm_usage_count == 1) {
3341 atomic_set(&hardware_enable_failed, 0);
3342 on_each_cpu(hardware_enable_nolock, NULL, 1);
3343
3344 if (atomic_read(&hardware_enable_failed)) {
3345 hardware_disable_all_nolock();
3346 r = -EBUSY;
3347 }
3348 }
3349
3350 raw_spin_unlock(&kvm_count_lock);
3351
3352 return r;
3353 }
3354
3355 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3356 void *v)
3357 {
3358 /*
3359 * Some (well, at least mine) BIOSes hang on reboot if
3360 * in vmx root mode.
3361 *
3362 * And Intel TXT required VMX off for all cpu when system shutdown.
3363 */
3364 pr_info("kvm: exiting hardware virtualization\n");
3365 kvm_rebooting = true;
3366 on_each_cpu(hardware_disable_nolock, NULL, 1);
3367 return NOTIFY_OK;
3368 }
3369
3370 static struct notifier_block kvm_reboot_notifier = {
3371 .notifier_call = kvm_reboot,
3372 .priority = 0,
3373 };
3374
3375 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3376 {
3377 int i;
3378
3379 for (i = 0; i < bus->dev_count; i++) {
3380 struct kvm_io_device *pos = bus->range[i].dev;
3381
3382 kvm_iodevice_destructor(pos);
3383 }
3384 kfree(bus);
3385 }
3386
3387 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3388 const struct kvm_io_range *r2)
3389 {
3390 gpa_t addr1 = r1->addr;
3391 gpa_t addr2 = r2->addr;
3392
3393 if (addr1 < addr2)
3394 return -1;
3395
3396 /* If r2->len == 0, match the exact address. If r2->len != 0,
3397 * accept any overlapping write. Any order is acceptable for
3398 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3399 * we process all of them.
3400 */
3401 if (r2->len) {
3402 addr1 += r1->len;
3403 addr2 += r2->len;
3404 }
3405
3406 if (addr1 > addr2)
3407 return 1;
3408
3409 return 0;
3410 }
3411
3412 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3413 {
3414 return kvm_io_bus_cmp(p1, p2);
3415 }
3416
3417 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3418 gpa_t addr, int len)
3419 {
3420 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3421 .addr = addr,
3422 .len = len,
3423 .dev = dev,
3424 };
3425
3426 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3427 kvm_io_bus_sort_cmp, NULL);
3428
3429 return 0;
3430 }
3431
3432 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3433 gpa_t addr, int len)
3434 {
3435 struct kvm_io_range *range, key;
3436 int off;
3437
3438 key = (struct kvm_io_range) {
3439 .addr = addr,
3440 .len = len,
3441 };
3442
3443 range = bsearch(&key, bus->range, bus->dev_count,
3444 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3445 if (range == NULL)
3446 return -ENOENT;
3447
3448 off = range - bus->range;
3449
3450 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3451 off--;
3452
3453 return off;
3454 }
3455
3456 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3457 struct kvm_io_range *range, const void *val)
3458 {
3459 int idx;
3460
3461 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3462 if (idx < 0)
3463 return -EOPNOTSUPP;
3464
3465 while (idx < bus->dev_count &&
3466 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3467 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3468 range->len, val))
3469 return idx;
3470 idx++;
3471 }
3472
3473 return -EOPNOTSUPP;
3474 }
3475
3476 /* kvm_io_bus_write - called under kvm->slots_lock */
3477 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3478 int len, const void *val)
3479 {
3480 struct kvm_io_bus *bus;
3481 struct kvm_io_range range;
3482 int r;
3483
3484 range = (struct kvm_io_range) {
3485 .addr = addr,
3486 .len = len,
3487 };
3488
3489 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3490 if (!bus)
3491 return -ENOMEM;
3492 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3493 return r < 0 ? r : 0;
3494 }
3495
3496 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3497 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3498 gpa_t addr, int len, const void *val, long cookie)
3499 {
3500 struct kvm_io_bus *bus;
3501 struct kvm_io_range range;
3502
3503 range = (struct kvm_io_range) {
3504 .addr = addr,
3505 .len = len,
3506 };
3507
3508 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3509 if (!bus)
3510 return -ENOMEM;
3511
3512 /* First try the device referenced by cookie. */
3513 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3514 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3515 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3516 val))
3517 return cookie;
3518
3519 /*
3520 * cookie contained garbage; fall back to search and return the
3521 * correct cookie value.
3522 */
3523 return __kvm_io_bus_write(vcpu, bus, &range, val);
3524 }
3525
3526 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3527 struct kvm_io_range *range, void *val)
3528 {
3529 int idx;
3530
3531 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3532 if (idx < 0)
3533 return -EOPNOTSUPP;
3534
3535 while (idx < bus->dev_count &&
3536 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3537 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3538 range->len, val))
3539 return idx;
3540 idx++;
3541 }
3542
3543 return -EOPNOTSUPP;
3544 }
3545 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3546
3547 /* kvm_io_bus_read - called under kvm->slots_lock */
3548 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3549 int len, void *val)
3550 {
3551 struct kvm_io_bus *bus;
3552 struct kvm_io_range range;
3553 int r;
3554
3555 range = (struct kvm_io_range) {
3556 .addr = addr,
3557 .len = len,
3558 };
3559
3560 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3561 if (!bus)
3562 return -ENOMEM;
3563 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3564 return r < 0 ? r : 0;
3565 }
3566
3567
3568 /* Caller must hold slots_lock. */
3569 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3570 int len, struct kvm_io_device *dev)
3571 {
3572 struct kvm_io_bus *new_bus, *bus;
3573
3574 bus = kvm->buses[bus_idx];
3575 if (!bus)
3576 return -ENOMEM;
3577
3578 /* exclude ioeventfd which is limited by maximum fd */
3579 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3580 return -ENOSPC;
3581
3582 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3583 sizeof(struct kvm_io_range)), GFP_KERNEL);
3584 if (!new_bus)
3585 return -ENOMEM;
3586 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3587 sizeof(struct kvm_io_range)));
3588 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3589 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3590 synchronize_srcu_expedited(&kvm->srcu);
3591 kfree(bus);
3592
3593 return 0;
3594 }
3595
3596 /* Caller must hold slots_lock. */
3597 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3598 struct kvm_io_device *dev)
3599 {
3600 int i;
3601 struct kvm_io_bus *new_bus, *bus;
3602
3603 bus = kvm->buses[bus_idx];
3604 if (!bus)
3605 return;
3606
3607 for (i = 0; i < bus->dev_count; i++)
3608 if (bus->range[i].dev == dev) {
3609 break;
3610 }
3611
3612 if (i == bus->dev_count)
3613 return;
3614
3615 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3616 sizeof(struct kvm_io_range)), GFP_KERNEL);
3617 if (!new_bus) {
3618 pr_err("kvm: failed to shrink bus, removing it completely\n");
3619 goto broken;
3620 }
3621
3622 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3623 new_bus->dev_count--;
3624 memcpy(new_bus->range + i, bus->range + i + 1,
3625 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3626
3627 broken:
3628 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3629 synchronize_srcu_expedited(&kvm->srcu);
3630 kfree(bus);
3631 return;
3632 }
3633
3634 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3635 gpa_t addr)
3636 {
3637 struct kvm_io_bus *bus;
3638 int dev_idx, srcu_idx;
3639 struct kvm_io_device *iodev = NULL;
3640
3641 srcu_idx = srcu_read_lock(&kvm->srcu);
3642
3643 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3644 if (!bus)
3645 goto out_unlock;
3646
3647 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3648 if (dev_idx < 0)
3649 goto out_unlock;
3650
3651 iodev = bus->range[dev_idx].dev;
3652
3653 out_unlock:
3654 srcu_read_unlock(&kvm->srcu, srcu_idx);
3655
3656 return iodev;
3657 }
3658 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3659
3660 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3661 int (*get)(void *, u64 *), int (*set)(void *, u64),
3662 const char *fmt)
3663 {
3664 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3665 inode->i_private;
3666
3667 /* The debugfs files are a reference to the kvm struct which
3668 * is still valid when kvm_destroy_vm is called.
3669 * To avoid the race between open and the removal of the debugfs
3670 * directory we test against the users count.
3671 */
3672 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3673 return -ENOENT;
3674
3675 if (simple_attr_open(inode, file, get, set, fmt)) {
3676 kvm_put_kvm(stat_data->kvm);
3677 return -ENOMEM;
3678 }
3679
3680 return 0;
3681 }
3682
3683 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3684 {
3685 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3686 inode->i_private;
3687
3688 simple_attr_release(inode, file);
3689 kvm_put_kvm(stat_data->kvm);
3690
3691 return 0;
3692 }
3693
3694 static int vm_stat_get_per_vm(void *data, u64 *val)
3695 {
3696 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3697
3698 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3699
3700 return 0;
3701 }
3702
3703 static int vm_stat_clear_per_vm(void *data, u64 val)
3704 {
3705 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3706
3707 if (val)
3708 return -EINVAL;
3709
3710 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3711
3712 return 0;
3713 }
3714
3715 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3716 {
3717 __simple_attr_check_format("%llu\n", 0ull);
3718 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3719 vm_stat_clear_per_vm, "%llu\n");
3720 }
3721
3722 static const struct file_operations vm_stat_get_per_vm_fops = {
3723 .owner = THIS_MODULE,
3724 .open = vm_stat_get_per_vm_open,
3725 .release = kvm_debugfs_release,
3726 .read = simple_attr_read,
3727 .write = simple_attr_write,
3728 .llseek = generic_file_llseek,
3729 };
3730
3731 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3732 {
3733 int i;
3734 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3735 struct kvm_vcpu *vcpu;
3736
3737 *val = 0;
3738
3739 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3740 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3741
3742 return 0;
3743 }
3744
3745 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3746 {
3747 int i;
3748 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3749 struct kvm_vcpu *vcpu;
3750
3751 if (val)
3752 return -EINVAL;
3753
3754 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3755 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3756
3757 return 0;
3758 }
3759
3760 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3761 {
3762 __simple_attr_check_format("%llu\n", 0ull);
3763 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3764 vcpu_stat_clear_per_vm, "%llu\n");
3765 }
3766
3767 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3768 .owner = THIS_MODULE,
3769 .open = vcpu_stat_get_per_vm_open,
3770 .release = kvm_debugfs_release,
3771 .read = simple_attr_read,
3772 .write = simple_attr_write,
3773 .llseek = generic_file_llseek,
3774 };
3775
3776 static const struct file_operations *stat_fops_per_vm[] = {
3777 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3778 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3779 };
3780
3781 static int vm_stat_get(void *_offset, u64 *val)
3782 {
3783 unsigned offset = (long)_offset;
3784 struct kvm *kvm;
3785 struct kvm_stat_data stat_tmp = {.offset = offset};
3786 u64 tmp_val;
3787
3788 *val = 0;
3789 spin_lock(&kvm_lock);
3790 list_for_each_entry(kvm, &vm_list, vm_list) {
3791 stat_tmp.kvm = kvm;
3792 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3793 *val += tmp_val;
3794 }
3795 spin_unlock(&kvm_lock);
3796 return 0;
3797 }
3798
3799 static int vm_stat_clear(void *_offset, u64 val)
3800 {
3801 unsigned offset = (long)_offset;
3802 struct kvm *kvm;
3803 struct kvm_stat_data stat_tmp = {.offset = offset};
3804
3805 if (val)
3806 return -EINVAL;
3807
3808 spin_lock(&kvm_lock);
3809 list_for_each_entry(kvm, &vm_list, vm_list) {
3810 stat_tmp.kvm = kvm;
3811 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3812 }
3813 spin_unlock(&kvm_lock);
3814
3815 return 0;
3816 }
3817
3818 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3819
3820 static int vcpu_stat_get(void *_offset, u64 *val)
3821 {
3822 unsigned offset = (long)_offset;
3823 struct kvm *kvm;
3824 struct kvm_stat_data stat_tmp = {.offset = offset};
3825 u64 tmp_val;
3826
3827 *val = 0;
3828 spin_lock(&kvm_lock);
3829 list_for_each_entry(kvm, &vm_list, vm_list) {
3830 stat_tmp.kvm = kvm;
3831 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3832 *val += tmp_val;
3833 }
3834 spin_unlock(&kvm_lock);
3835 return 0;
3836 }
3837
3838 static int vcpu_stat_clear(void *_offset, u64 val)
3839 {
3840 unsigned offset = (long)_offset;
3841 struct kvm *kvm;
3842 struct kvm_stat_data stat_tmp = {.offset = offset};
3843
3844 if (val)
3845 return -EINVAL;
3846
3847 spin_lock(&kvm_lock);
3848 list_for_each_entry(kvm, &vm_list, vm_list) {
3849 stat_tmp.kvm = kvm;
3850 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3851 }
3852 spin_unlock(&kvm_lock);
3853
3854 return 0;
3855 }
3856
3857 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3858 "%llu\n");
3859
3860 static const struct file_operations *stat_fops[] = {
3861 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3862 [KVM_STAT_VM] = &vm_stat_fops,
3863 };
3864
3865 static int kvm_init_debug(void)
3866 {
3867 int r = -EEXIST;
3868 struct kvm_stats_debugfs_item *p;
3869
3870 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3871 if (kvm_debugfs_dir == NULL)
3872 goto out;
3873
3874 kvm_debugfs_num_entries = 0;
3875 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3876 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3877 (void *)(long)p->offset,
3878 stat_fops[p->kind]))
3879 goto out_dir;
3880 }
3881
3882 return 0;
3883
3884 out_dir:
3885 debugfs_remove_recursive(kvm_debugfs_dir);
3886 out:
3887 return r;
3888 }
3889
3890 static int kvm_suspend(void)
3891 {
3892 if (kvm_usage_count)
3893 hardware_disable_nolock(NULL);
3894 return 0;
3895 }
3896
3897 static void kvm_resume(void)
3898 {
3899 if (kvm_usage_count) {
3900 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3901 hardware_enable_nolock(NULL);
3902 }
3903 }
3904
3905 static struct syscore_ops kvm_syscore_ops = {
3906 .suspend = kvm_suspend,
3907 .resume = kvm_resume,
3908 };
3909
3910 static inline
3911 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3912 {
3913 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3914 }
3915
3916 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3917 {
3918 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3919
3920 if (vcpu->preempted)
3921 vcpu->preempted = false;
3922
3923 kvm_arch_sched_in(vcpu, cpu);
3924
3925 kvm_arch_vcpu_load(vcpu, cpu);
3926 }
3927
3928 static void kvm_sched_out(struct preempt_notifier *pn,
3929 struct task_struct *next)
3930 {
3931 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3932
3933 if (current->state == TASK_RUNNING)
3934 vcpu->preempted = true;
3935 kvm_arch_vcpu_put(vcpu);
3936 }
3937
3938 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3939 struct module *module)
3940 {
3941 int r;
3942 int cpu;
3943
3944 r = kvm_arch_init(opaque);
3945 if (r)
3946 goto out_fail;
3947
3948 /*
3949 * kvm_arch_init makes sure there's at most one caller
3950 * for architectures that support multiple implementations,
3951 * like intel and amd on x86.
3952 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3953 * conflicts in case kvm is already setup for another implementation.
3954 */
3955 r = kvm_irqfd_init();
3956 if (r)
3957 goto out_irqfd;
3958
3959 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3960 r = -ENOMEM;
3961 goto out_free_0;
3962 }
3963
3964 r = kvm_arch_hardware_setup();
3965 if (r < 0)
3966 goto out_free_0a;
3967
3968 for_each_online_cpu(cpu) {
3969 smp_call_function_single(cpu,
3970 kvm_arch_check_processor_compat,
3971 &r, 1);
3972 if (r < 0)
3973 goto out_free_1;
3974 }
3975
3976 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3977 kvm_starting_cpu, kvm_dying_cpu);
3978 if (r)
3979 goto out_free_2;
3980 register_reboot_notifier(&kvm_reboot_notifier);
3981
3982 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3983 if (!vcpu_align)
3984 vcpu_align = __alignof__(struct kvm_vcpu);
3985 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3986 0, NULL);
3987 if (!kvm_vcpu_cache) {
3988 r = -ENOMEM;
3989 goto out_free_3;
3990 }
3991
3992 r = kvm_async_pf_init();
3993 if (r)
3994 goto out_free;
3995
3996 kvm_chardev_ops.owner = module;
3997 kvm_vm_fops.owner = module;
3998 kvm_vcpu_fops.owner = module;
3999
4000 r = misc_register(&kvm_dev);
4001 if (r) {
4002 pr_err("kvm: misc device register failed\n");
4003 goto out_unreg;
4004 }
4005
4006 register_syscore_ops(&kvm_syscore_ops);
4007
4008 kvm_preempt_ops.sched_in = kvm_sched_in;
4009 kvm_preempt_ops.sched_out = kvm_sched_out;
4010
4011 r = kvm_init_debug();
4012 if (r) {
4013 pr_err("kvm: create debugfs files failed\n");
4014 goto out_undebugfs;
4015 }
4016
4017 r = kvm_vfio_ops_init();
4018 WARN_ON(r);
4019
4020 return 0;
4021
4022 out_undebugfs:
4023 unregister_syscore_ops(&kvm_syscore_ops);
4024 misc_deregister(&kvm_dev);
4025 out_unreg:
4026 kvm_async_pf_deinit();
4027 out_free:
4028 kmem_cache_destroy(kvm_vcpu_cache);
4029 out_free_3:
4030 unregister_reboot_notifier(&kvm_reboot_notifier);
4031 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4032 out_free_2:
4033 out_free_1:
4034 kvm_arch_hardware_unsetup();
4035 out_free_0a:
4036 free_cpumask_var(cpus_hardware_enabled);
4037 out_free_0:
4038 kvm_irqfd_exit();
4039 out_irqfd:
4040 kvm_arch_exit();
4041 out_fail:
4042 return r;
4043 }
4044 EXPORT_SYMBOL_GPL(kvm_init);
4045
4046 void kvm_exit(void)
4047 {
4048 debugfs_remove_recursive(kvm_debugfs_dir);
4049 misc_deregister(&kvm_dev);
4050 kmem_cache_destroy(kvm_vcpu_cache);
4051 kvm_async_pf_deinit();
4052 unregister_syscore_ops(&kvm_syscore_ops);
4053 unregister_reboot_notifier(&kvm_reboot_notifier);
4054 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4055 on_each_cpu(hardware_disable_nolock, NULL, 1);
4056 kvm_arch_hardware_unsetup();
4057 kvm_arch_exit();
4058 kvm_irqfd_exit();
4059 free_cpumask_var(cpus_hardware_enabled);
4060 kvm_vfio_ops_exit();
4061 }
4062 EXPORT_SYMBOL_GPL(kvm_exit);