]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/kvm_main.c
ASoC: max98504: Add missing MAX98504 on SND_SOC_ALL_CODECS
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
79
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
83
84 /*
85 * Ordering of locks:
86 *
87 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
88 */
89
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
93
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
97
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
100
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
102
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
105
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
108
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110 unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113 unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
117
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
119
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
122
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
125
126 static bool largepages_enabled = true;
127
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
129 {
130 if (pfn_valid(pfn))
131 return PageReserved(pfn_to_page(pfn));
132
133 return true;
134 }
135
136 /*
137 * Switches to specified vcpu, until a matching vcpu_put()
138 */
139 int vcpu_load(struct kvm_vcpu *vcpu)
140 {
141 int cpu;
142
143 if (mutex_lock_killable(&vcpu->mutex))
144 return -EINTR;
145 cpu = get_cpu();
146 preempt_notifier_register(&vcpu->preempt_notifier);
147 kvm_arch_vcpu_load(vcpu, cpu);
148 put_cpu();
149 return 0;
150 }
151 EXPORT_SYMBOL_GPL(vcpu_load);
152
153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155 preempt_disable();
156 kvm_arch_vcpu_put(vcpu);
157 preempt_notifier_unregister(&vcpu->preempt_notifier);
158 preempt_enable();
159 mutex_unlock(&vcpu->mutex);
160 }
161 EXPORT_SYMBOL_GPL(vcpu_put);
162
163 static void ack_flush(void *_completed)
164 {
165 }
166
167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
168 {
169 int i, cpu, me;
170 cpumask_var_t cpus;
171 bool called = true;
172 struct kvm_vcpu *vcpu;
173
174 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
175
176 me = get_cpu();
177 kvm_for_each_vcpu(i, vcpu, kvm) {
178 kvm_make_request(req, vcpu);
179 cpu = vcpu->cpu;
180
181 /* Set ->requests bit before we read ->mode. */
182 smp_mb__after_atomic();
183
184 if (cpus != NULL && cpu != -1 && cpu != me &&
185 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
186 cpumask_set_cpu(cpu, cpus);
187 }
188 if (unlikely(cpus == NULL))
189 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
190 else if (!cpumask_empty(cpus))
191 smp_call_function_many(cpus, ack_flush, NULL, 1);
192 else
193 called = false;
194 put_cpu();
195 free_cpumask_var(cpus);
196 return called;
197 }
198
199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 /*
203 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
204 * kvm_make_all_cpus_request.
205 */
206 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
207
208 /*
209 * We want to publish modifications to the page tables before reading
210 * mode. Pairs with a memory barrier in arch-specific code.
211 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
212 * and smp_mb in walk_shadow_page_lockless_begin/end.
213 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
214 *
215 * There is already an smp_mb__after_atomic() before
216 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
217 * barrier here.
218 */
219 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
220 ++kvm->stat.remote_tlb_flush;
221 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
222 }
223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
224 #endif
225
226 void kvm_reload_remote_mmus(struct kvm *kvm)
227 {
228 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
229 }
230
231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
232 {
233 struct page *page;
234 int r;
235
236 mutex_init(&vcpu->mutex);
237 vcpu->cpu = -1;
238 vcpu->kvm = kvm;
239 vcpu->vcpu_id = id;
240 vcpu->pid = NULL;
241 init_swait_queue_head(&vcpu->wq);
242 kvm_async_pf_vcpu_init(vcpu);
243
244 vcpu->pre_pcpu = -1;
245 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
246
247 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
248 if (!page) {
249 r = -ENOMEM;
250 goto fail;
251 }
252 vcpu->run = page_address(page);
253
254 kvm_vcpu_set_in_spin_loop(vcpu, false);
255 kvm_vcpu_set_dy_eligible(vcpu, false);
256 vcpu->preempted = false;
257
258 r = kvm_arch_vcpu_init(vcpu);
259 if (r < 0)
260 goto fail_free_run;
261 return 0;
262
263 fail_free_run:
264 free_page((unsigned long)vcpu->run);
265 fail:
266 return r;
267 }
268 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
269
270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
271 {
272 put_pid(vcpu->pid);
273 kvm_arch_vcpu_uninit(vcpu);
274 free_page((unsigned long)vcpu->run);
275 }
276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
277
278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
280 {
281 return container_of(mn, struct kvm, mmu_notifier);
282 }
283
284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
285 struct mm_struct *mm,
286 unsigned long address)
287 {
288 struct kvm *kvm = mmu_notifier_to_kvm(mn);
289 int need_tlb_flush, idx;
290
291 /*
292 * When ->invalidate_page runs, the linux pte has been zapped
293 * already but the page is still allocated until
294 * ->invalidate_page returns. So if we increase the sequence
295 * here the kvm page fault will notice if the spte can't be
296 * established because the page is going to be freed. If
297 * instead the kvm page fault establishes the spte before
298 * ->invalidate_page runs, kvm_unmap_hva will release it
299 * before returning.
300 *
301 * The sequence increase only need to be seen at spin_unlock
302 * time, and not at spin_lock time.
303 *
304 * Increasing the sequence after the spin_unlock would be
305 * unsafe because the kvm page fault could then establish the
306 * pte after kvm_unmap_hva returned, without noticing the page
307 * is going to be freed.
308 */
309 idx = srcu_read_lock(&kvm->srcu);
310 spin_lock(&kvm->mmu_lock);
311
312 kvm->mmu_notifier_seq++;
313 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
314 /* we've to flush the tlb before the pages can be freed */
315 if (need_tlb_flush)
316 kvm_flush_remote_tlbs(kvm);
317
318 spin_unlock(&kvm->mmu_lock);
319
320 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
321
322 srcu_read_unlock(&kvm->srcu, idx);
323 }
324
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326 struct mm_struct *mm,
327 unsigned long address,
328 pte_t pte)
329 {
330 struct kvm *kvm = mmu_notifier_to_kvm(mn);
331 int idx;
332
333 idx = srcu_read_lock(&kvm->srcu);
334 spin_lock(&kvm->mmu_lock);
335 kvm->mmu_notifier_seq++;
336 kvm_set_spte_hva(kvm, address, pte);
337 spin_unlock(&kvm->mmu_lock);
338 srcu_read_unlock(&kvm->srcu, idx);
339 }
340
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342 struct mm_struct *mm,
343 unsigned long start,
344 unsigned long end)
345 {
346 struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 int need_tlb_flush = 0, idx;
348
349 idx = srcu_read_lock(&kvm->srcu);
350 spin_lock(&kvm->mmu_lock);
351 /*
352 * The count increase must become visible at unlock time as no
353 * spte can be established without taking the mmu_lock and
354 * count is also read inside the mmu_lock critical section.
355 */
356 kvm->mmu_notifier_count++;
357 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358 need_tlb_flush |= kvm->tlbs_dirty;
359 /* we've to flush the tlb before the pages can be freed */
360 if (need_tlb_flush)
361 kvm_flush_remote_tlbs(kvm);
362
363 spin_unlock(&kvm->mmu_lock);
364 srcu_read_unlock(&kvm->srcu, idx);
365 }
366
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368 struct mm_struct *mm,
369 unsigned long start,
370 unsigned long end)
371 {
372 struct kvm *kvm = mmu_notifier_to_kvm(mn);
373
374 spin_lock(&kvm->mmu_lock);
375 /*
376 * This sequence increase will notify the kvm page fault that
377 * the page that is going to be mapped in the spte could have
378 * been freed.
379 */
380 kvm->mmu_notifier_seq++;
381 smp_wmb();
382 /*
383 * The above sequence increase must be visible before the
384 * below count decrease, which is ensured by the smp_wmb above
385 * in conjunction with the smp_rmb in mmu_notifier_retry().
386 */
387 kvm->mmu_notifier_count--;
388 spin_unlock(&kvm->mmu_lock);
389
390 BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394 struct mm_struct *mm,
395 unsigned long start,
396 unsigned long end)
397 {
398 struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 int young, idx;
400
401 idx = srcu_read_lock(&kvm->srcu);
402 spin_lock(&kvm->mmu_lock);
403
404 young = kvm_age_hva(kvm, start, end);
405 if (young)
406 kvm_flush_remote_tlbs(kvm);
407
408 spin_unlock(&kvm->mmu_lock);
409 srcu_read_unlock(&kvm->srcu, idx);
410
411 return young;
412 }
413
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415 struct mm_struct *mm,
416 unsigned long start,
417 unsigned long end)
418 {
419 struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 int young, idx;
421
422 idx = srcu_read_lock(&kvm->srcu);
423 spin_lock(&kvm->mmu_lock);
424 /*
425 * Even though we do not flush TLB, this will still adversely
426 * affect performance on pre-Haswell Intel EPT, where there is
427 * no EPT Access Bit to clear so that we have to tear down EPT
428 * tables instead. If we find this unacceptable, we can always
429 * add a parameter to kvm_age_hva so that it effectively doesn't
430 * do anything on clear_young.
431 *
432 * Also note that currently we never issue secondary TLB flushes
433 * from clear_young, leaving this job up to the regular system
434 * cadence. If we find this inaccurate, we might come up with a
435 * more sophisticated heuristic later.
436 */
437 young = kvm_age_hva(kvm, start, end);
438 spin_unlock(&kvm->mmu_lock);
439 srcu_read_unlock(&kvm->srcu, idx);
440
441 return young;
442 }
443
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445 struct mm_struct *mm,
446 unsigned long address)
447 {
448 struct kvm *kvm = mmu_notifier_to_kvm(mn);
449 int young, idx;
450
451 idx = srcu_read_lock(&kvm->srcu);
452 spin_lock(&kvm->mmu_lock);
453 young = kvm_test_age_hva(kvm, address);
454 spin_unlock(&kvm->mmu_lock);
455 srcu_read_unlock(&kvm->srcu, idx);
456
457 return young;
458 }
459
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461 struct mm_struct *mm)
462 {
463 struct kvm *kvm = mmu_notifier_to_kvm(mn);
464 int idx;
465
466 idx = srcu_read_lock(&kvm->srcu);
467 kvm_arch_flush_shadow_all(kvm);
468 srcu_read_unlock(&kvm->srcu, idx);
469 }
470
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472 .invalidate_page = kvm_mmu_notifier_invalidate_page,
473 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
474 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
475 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
476 .clear_young = kvm_mmu_notifier_clear_young,
477 .test_young = kvm_mmu_notifier_test_young,
478 .change_pte = kvm_mmu_notifier_change_pte,
479 .release = kvm_mmu_notifier_release,
480 };
481
482 static int kvm_init_mmu_notifier(struct kvm *kvm)
483 {
484 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
485 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
486 }
487
488 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
489
490 static int kvm_init_mmu_notifier(struct kvm *kvm)
491 {
492 return 0;
493 }
494
495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
496
497 static struct kvm_memslots *kvm_alloc_memslots(void)
498 {
499 int i;
500 struct kvm_memslots *slots;
501
502 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
503 if (!slots)
504 return NULL;
505
506 /*
507 * Init kvm generation close to the maximum to easily test the
508 * code of handling generation number wrap-around.
509 */
510 slots->generation = -150;
511 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512 slots->id_to_index[i] = slots->memslots[i].id = i;
513
514 return slots;
515 }
516
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519 if (!memslot->dirty_bitmap)
520 return;
521
522 kvfree(memslot->dirty_bitmap);
523 memslot->dirty_bitmap = NULL;
524 }
525
526 /*
527 * Free any memory in @free but not in @dont.
528 */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530 struct kvm_memory_slot *dont)
531 {
532 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533 kvm_destroy_dirty_bitmap(free);
534
535 kvm_arch_free_memslot(kvm, free, dont);
536
537 free->npages = 0;
538 }
539
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542 struct kvm_memory_slot *memslot;
543
544 if (!slots)
545 return;
546
547 kvm_for_each_memslot(memslot, slots)
548 kvm_free_memslot(kvm, memslot, NULL);
549
550 kvfree(slots);
551 }
552
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555 int i;
556
557 if (!kvm->debugfs_dentry)
558 return;
559
560 debugfs_remove_recursive(kvm->debugfs_dentry);
561
562 if (kvm->debugfs_stat_data) {
563 for (i = 0; i < kvm_debugfs_num_entries; i++)
564 kfree(kvm->debugfs_stat_data[i]);
565 kfree(kvm->debugfs_stat_data);
566 }
567 }
568
569 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
570 {
571 char dir_name[ITOA_MAX_LEN * 2];
572 struct kvm_stat_data *stat_data;
573 struct kvm_stats_debugfs_item *p;
574
575 if (!debugfs_initialized())
576 return 0;
577
578 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
579 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
580 kvm_debugfs_dir);
581 if (!kvm->debugfs_dentry)
582 return -ENOMEM;
583
584 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
585 sizeof(*kvm->debugfs_stat_data),
586 GFP_KERNEL);
587 if (!kvm->debugfs_stat_data)
588 return -ENOMEM;
589
590 for (p = debugfs_entries; p->name; p++) {
591 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
592 if (!stat_data)
593 return -ENOMEM;
594
595 stat_data->kvm = kvm;
596 stat_data->offset = p->offset;
597 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
598 if (!debugfs_create_file(p->name, 0444,
599 kvm->debugfs_dentry,
600 stat_data,
601 stat_fops_per_vm[p->kind]))
602 return -ENOMEM;
603 }
604 return 0;
605 }
606
607 static struct kvm *kvm_create_vm(unsigned long type)
608 {
609 int r, i;
610 struct kvm *kvm = kvm_arch_alloc_vm();
611
612 if (!kvm)
613 return ERR_PTR(-ENOMEM);
614
615 spin_lock_init(&kvm->mmu_lock);
616 atomic_inc(&current->mm->mm_count);
617 kvm->mm = current->mm;
618 kvm_eventfd_init(kvm);
619 mutex_init(&kvm->lock);
620 mutex_init(&kvm->irq_lock);
621 mutex_init(&kvm->slots_lock);
622 atomic_set(&kvm->users_count, 1);
623 INIT_LIST_HEAD(&kvm->devices);
624
625 r = kvm_arch_init_vm(kvm, type);
626 if (r)
627 goto out_err_no_disable;
628
629 r = hardware_enable_all();
630 if (r)
631 goto out_err_no_disable;
632
633 #ifdef CONFIG_HAVE_KVM_IRQFD
634 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
635 #endif
636
637 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
638
639 r = -ENOMEM;
640 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
641 kvm->memslots[i] = kvm_alloc_memslots();
642 if (!kvm->memslots[i])
643 goto out_err_no_srcu;
644 }
645
646 if (init_srcu_struct(&kvm->srcu))
647 goto out_err_no_srcu;
648 if (init_srcu_struct(&kvm->irq_srcu))
649 goto out_err_no_irq_srcu;
650 for (i = 0; i < KVM_NR_BUSES; i++) {
651 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
652 GFP_KERNEL);
653 if (!kvm->buses[i])
654 goto out_err;
655 }
656
657 r = kvm_init_mmu_notifier(kvm);
658 if (r)
659 goto out_err;
660
661 spin_lock(&kvm_lock);
662 list_add(&kvm->vm_list, &vm_list);
663 spin_unlock(&kvm_lock);
664
665 preempt_notifier_inc();
666
667 return kvm;
668
669 out_err:
670 cleanup_srcu_struct(&kvm->irq_srcu);
671 out_err_no_irq_srcu:
672 cleanup_srcu_struct(&kvm->srcu);
673 out_err_no_srcu:
674 hardware_disable_all();
675 out_err_no_disable:
676 for (i = 0; i < KVM_NR_BUSES; i++)
677 kfree(kvm->buses[i]);
678 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
679 kvm_free_memslots(kvm, kvm->memslots[i]);
680 kvm_arch_free_vm(kvm);
681 mmdrop(current->mm);
682 return ERR_PTR(r);
683 }
684
685 /*
686 * Avoid using vmalloc for a small buffer.
687 * Should not be used when the size is statically known.
688 */
689 void *kvm_kvzalloc(unsigned long size)
690 {
691 if (size > PAGE_SIZE)
692 return vzalloc(size);
693 else
694 return kzalloc(size, GFP_KERNEL);
695 }
696
697 static void kvm_destroy_devices(struct kvm *kvm)
698 {
699 struct kvm_device *dev, *tmp;
700
701 /*
702 * We do not need to take the kvm->lock here, because nobody else
703 * has a reference to the struct kvm at this point and therefore
704 * cannot access the devices list anyhow.
705 */
706 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
707 list_del(&dev->vm_node);
708 dev->ops->destroy(dev);
709 }
710 }
711
712 static void kvm_destroy_vm(struct kvm *kvm)
713 {
714 int i;
715 struct mm_struct *mm = kvm->mm;
716
717 kvm_destroy_vm_debugfs(kvm);
718 kvm_arch_sync_events(kvm);
719 spin_lock(&kvm_lock);
720 list_del(&kvm->vm_list);
721 spin_unlock(&kvm_lock);
722 kvm_free_irq_routing(kvm);
723 for (i = 0; i < KVM_NR_BUSES; i++)
724 kvm_io_bus_destroy(kvm->buses[i]);
725 kvm_coalesced_mmio_free(kvm);
726 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
727 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
728 #else
729 kvm_arch_flush_shadow_all(kvm);
730 #endif
731 kvm_arch_destroy_vm(kvm);
732 kvm_destroy_devices(kvm);
733 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
734 kvm_free_memslots(kvm, kvm->memslots[i]);
735 cleanup_srcu_struct(&kvm->irq_srcu);
736 cleanup_srcu_struct(&kvm->srcu);
737 kvm_arch_free_vm(kvm);
738 preempt_notifier_dec();
739 hardware_disable_all();
740 mmdrop(mm);
741 }
742
743 void kvm_get_kvm(struct kvm *kvm)
744 {
745 atomic_inc(&kvm->users_count);
746 }
747 EXPORT_SYMBOL_GPL(kvm_get_kvm);
748
749 void kvm_put_kvm(struct kvm *kvm)
750 {
751 if (atomic_dec_and_test(&kvm->users_count))
752 kvm_destroy_vm(kvm);
753 }
754 EXPORT_SYMBOL_GPL(kvm_put_kvm);
755
756
757 static int kvm_vm_release(struct inode *inode, struct file *filp)
758 {
759 struct kvm *kvm = filp->private_data;
760
761 kvm_irqfd_release(kvm);
762
763 kvm_put_kvm(kvm);
764 return 0;
765 }
766
767 /*
768 * Allocation size is twice as large as the actual dirty bitmap size.
769 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
770 */
771 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
772 {
773 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
774
775 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
776 if (!memslot->dirty_bitmap)
777 return -ENOMEM;
778
779 return 0;
780 }
781
782 /*
783 * Insert memslot and re-sort memslots based on their GFN,
784 * so binary search could be used to lookup GFN.
785 * Sorting algorithm takes advantage of having initially
786 * sorted array and known changed memslot position.
787 */
788 static void update_memslots(struct kvm_memslots *slots,
789 struct kvm_memory_slot *new)
790 {
791 int id = new->id;
792 int i = slots->id_to_index[id];
793 struct kvm_memory_slot *mslots = slots->memslots;
794
795 WARN_ON(mslots[i].id != id);
796 if (!new->npages) {
797 WARN_ON(!mslots[i].npages);
798 if (mslots[i].npages)
799 slots->used_slots--;
800 } else {
801 if (!mslots[i].npages)
802 slots->used_slots++;
803 }
804
805 while (i < KVM_MEM_SLOTS_NUM - 1 &&
806 new->base_gfn <= mslots[i + 1].base_gfn) {
807 if (!mslots[i + 1].npages)
808 break;
809 mslots[i] = mslots[i + 1];
810 slots->id_to_index[mslots[i].id] = i;
811 i++;
812 }
813
814 /*
815 * The ">=" is needed when creating a slot with base_gfn == 0,
816 * so that it moves before all those with base_gfn == npages == 0.
817 *
818 * On the other hand, if new->npages is zero, the above loop has
819 * already left i pointing to the beginning of the empty part of
820 * mslots, and the ">=" would move the hole backwards in this
821 * case---which is wrong. So skip the loop when deleting a slot.
822 */
823 if (new->npages) {
824 while (i > 0 &&
825 new->base_gfn >= mslots[i - 1].base_gfn) {
826 mslots[i] = mslots[i - 1];
827 slots->id_to_index[mslots[i].id] = i;
828 i--;
829 }
830 } else
831 WARN_ON_ONCE(i != slots->used_slots);
832
833 mslots[i] = *new;
834 slots->id_to_index[mslots[i].id] = i;
835 }
836
837 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
838 {
839 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
840
841 #ifdef __KVM_HAVE_READONLY_MEM
842 valid_flags |= KVM_MEM_READONLY;
843 #endif
844
845 if (mem->flags & ~valid_flags)
846 return -EINVAL;
847
848 return 0;
849 }
850
851 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
852 int as_id, struct kvm_memslots *slots)
853 {
854 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
855
856 /*
857 * Set the low bit in the generation, which disables SPTE caching
858 * until the end of synchronize_srcu_expedited.
859 */
860 WARN_ON(old_memslots->generation & 1);
861 slots->generation = old_memslots->generation + 1;
862
863 rcu_assign_pointer(kvm->memslots[as_id], slots);
864 synchronize_srcu_expedited(&kvm->srcu);
865
866 /*
867 * Increment the new memslot generation a second time. This prevents
868 * vm exits that race with memslot updates from caching a memslot
869 * generation that will (potentially) be valid forever.
870 */
871 slots->generation++;
872
873 kvm_arch_memslots_updated(kvm, slots);
874
875 return old_memslots;
876 }
877
878 /*
879 * Allocate some memory and give it an address in the guest physical address
880 * space.
881 *
882 * Discontiguous memory is allowed, mostly for framebuffers.
883 *
884 * Must be called holding kvm->slots_lock for write.
885 */
886 int __kvm_set_memory_region(struct kvm *kvm,
887 const struct kvm_userspace_memory_region *mem)
888 {
889 int r;
890 gfn_t base_gfn;
891 unsigned long npages;
892 struct kvm_memory_slot *slot;
893 struct kvm_memory_slot old, new;
894 struct kvm_memslots *slots = NULL, *old_memslots;
895 int as_id, id;
896 enum kvm_mr_change change;
897
898 r = check_memory_region_flags(mem);
899 if (r)
900 goto out;
901
902 r = -EINVAL;
903 as_id = mem->slot >> 16;
904 id = (u16)mem->slot;
905
906 /* General sanity checks */
907 if (mem->memory_size & (PAGE_SIZE - 1))
908 goto out;
909 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
910 goto out;
911 /* We can read the guest memory with __xxx_user() later on. */
912 if ((id < KVM_USER_MEM_SLOTS) &&
913 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
914 !access_ok(VERIFY_WRITE,
915 (void __user *)(unsigned long)mem->userspace_addr,
916 mem->memory_size)))
917 goto out;
918 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
919 goto out;
920 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
921 goto out;
922
923 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
924 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
925 npages = mem->memory_size >> PAGE_SHIFT;
926
927 if (npages > KVM_MEM_MAX_NR_PAGES)
928 goto out;
929
930 new = old = *slot;
931
932 new.id = id;
933 new.base_gfn = base_gfn;
934 new.npages = npages;
935 new.flags = mem->flags;
936
937 if (npages) {
938 if (!old.npages)
939 change = KVM_MR_CREATE;
940 else { /* Modify an existing slot. */
941 if ((mem->userspace_addr != old.userspace_addr) ||
942 (npages != old.npages) ||
943 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
944 goto out;
945
946 if (base_gfn != old.base_gfn)
947 change = KVM_MR_MOVE;
948 else if (new.flags != old.flags)
949 change = KVM_MR_FLAGS_ONLY;
950 else { /* Nothing to change. */
951 r = 0;
952 goto out;
953 }
954 }
955 } else {
956 if (!old.npages)
957 goto out;
958
959 change = KVM_MR_DELETE;
960 new.base_gfn = 0;
961 new.flags = 0;
962 }
963
964 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
965 /* Check for overlaps */
966 r = -EEXIST;
967 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
968 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
969 (slot->id == id))
970 continue;
971 if (!((base_gfn + npages <= slot->base_gfn) ||
972 (base_gfn >= slot->base_gfn + slot->npages)))
973 goto out;
974 }
975 }
976
977 /* Free page dirty bitmap if unneeded */
978 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
979 new.dirty_bitmap = NULL;
980
981 r = -ENOMEM;
982 if (change == KVM_MR_CREATE) {
983 new.userspace_addr = mem->userspace_addr;
984
985 if (kvm_arch_create_memslot(kvm, &new, npages))
986 goto out_free;
987 }
988
989 /* Allocate page dirty bitmap if needed */
990 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
991 if (kvm_create_dirty_bitmap(&new) < 0)
992 goto out_free;
993 }
994
995 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
996 if (!slots)
997 goto out_free;
998 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
999
1000 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1001 slot = id_to_memslot(slots, id);
1002 slot->flags |= KVM_MEMSLOT_INVALID;
1003
1004 old_memslots = install_new_memslots(kvm, as_id, slots);
1005
1006 /* slot was deleted or moved, clear iommu mapping */
1007 kvm_iommu_unmap_pages(kvm, &old);
1008 /* From this point no new shadow pages pointing to a deleted,
1009 * or moved, memslot will be created.
1010 *
1011 * validation of sp->gfn happens in:
1012 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1013 * - kvm_is_visible_gfn (mmu_check_roots)
1014 */
1015 kvm_arch_flush_shadow_memslot(kvm, slot);
1016
1017 /*
1018 * We can re-use the old_memslots from above, the only difference
1019 * from the currently installed memslots is the invalid flag. This
1020 * will get overwritten by update_memslots anyway.
1021 */
1022 slots = old_memslots;
1023 }
1024
1025 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1026 if (r)
1027 goto out_slots;
1028
1029 /* actual memory is freed via old in kvm_free_memslot below */
1030 if (change == KVM_MR_DELETE) {
1031 new.dirty_bitmap = NULL;
1032 memset(&new.arch, 0, sizeof(new.arch));
1033 }
1034
1035 update_memslots(slots, &new);
1036 old_memslots = install_new_memslots(kvm, as_id, slots);
1037
1038 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1039
1040 kvm_free_memslot(kvm, &old, &new);
1041 kvfree(old_memslots);
1042
1043 /*
1044 * IOMMU mapping: New slots need to be mapped. Old slots need to be
1045 * un-mapped and re-mapped if their base changes. Since base change
1046 * unmapping is handled above with slot deletion, mapping alone is
1047 * needed here. Anything else the iommu might care about for existing
1048 * slots (size changes, userspace addr changes and read-only flag
1049 * changes) is disallowed above, so any other attribute changes getting
1050 * here can be skipped.
1051 */
1052 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1053 r = kvm_iommu_map_pages(kvm, &new);
1054 return r;
1055 }
1056
1057 return 0;
1058
1059 out_slots:
1060 kvfree(slots);
1061 out_free:
1062 kvm_free_memslot(kvm, &new, &old);
1063 out:
1064 return r;
1065 }
1066 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1067
1068 int kvm_set_memory_region(struct kvm *kvm,
1069 const struct kvm_userspace_memory_region *mem)
1070 {
1071 int r;
1072
1073 mutex_lock(&kvm->slots_lock);
1074 r = __kvm_set_memory_region(kvm, mem);
1075 mutex_unlock(&kvm->slots_lock);
1076 return r;
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1079
1080 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1081 struct kvm_userspace_memory_region *mem)
1082 {
1083 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1084 return -EINVAL;
1085
1086 return kvm_set_memory_region(kvm, mem);
1087 }
1088
1089 int kvm_get_dirty_log(struct kvm *kvm,
1090 struct kvm_dirty_log *log, int *is_dirty)
1091 {
1092 struct kvm_memslots *slots;
1093 struct kvm_memory_slot *memslot;
1094 int r, i, as_id, id;
1095 unsigned long n;
1096 unsigned long any = 0;
1097
1098 r = -EINVAL;
1099 as_id = log->slot >> 16;
1100 id = (u16)log->slot;
1101 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1102 goto out;
1103
1104 slots = __kvm_memslots(kvm, as_id);
1105 memslot = id_to_memslot(slots, id);
1106 r = -ENOENT;
1107 if (!memslot->dirty_bitmap)
1108 goto out;
1109
1110 n = kvm_dirty_bitmap_bytes(memslot);
1111
1112 for (i = 0; !any && i < n/sizeof(long); ++i)
1113 any = memslot->dirty_bitmap[i];
1114
1115 r = -EFAULT;
1116 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1117 goto out;
1118
1119 if (any)
1120 *is_dirty = 1;
1121
1122 r = 0;
1123 out:
1124 return r;
1125 }
1126 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1127
1128 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1129 /**
1130 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1131 * are dirty write protect them for next write.
1132 * @kvm: pointer to kvm instance
1133 * @log: slot id and address to which we copy the log
1134 * @is_dirty: flag set if any page is dirty
1135 *
1136 * We need to keep it in mind that VCPU threads can write to the bitmap
1137 * concurrently. So, to avoid losing track of dirty pages we keep the
1138 * following order:
1139 *
1140 * 1. Take a snapshot of the bit and clear it if needed.
1141 * 2. Write protect the corresponding page.
1142 * 3. Copy the snapshot to the userspace.
1143 * 4. Upon return caller flushes TLB's if needed.
1144 *
1145 * Between 2 and 4, the guest may write to the page using the remaining TLB
1146 * entry. This is not a problem because the page is reported dirty using
1147 * the snapshot taken before and step 4 ensures that writes done after
1148 * exiting to userspace will be logged for the next call.
1149 *
1150 */
1151 int kvm_get_dirty_log_protect(struct kvm *kvm,
1152 struct kvm_dirty_log *log, bool *is_dirty)
1153 {
1154 struct kvm_memslots *slots;
1155 struct kvm_memory_slot *memslot;
1156 int r, i, as_id, id;
1157 unsigned long n;
1158 unsigned long *dirty_bitmap;
1159 unsigned long *dirty_bitmap_buffer;
1160
1161 r = -EINVAL;
1162 as_id = log->slot >> 16;
1163 id = (u16)log->slot;
1164 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1165 goto out;
1166
1167 slots = __kvm_memslots(kvm, as_id);
1168 memslot = id_to_memslot(slots, id);
1169
1170 dirty_bitmap = memslot->dirty_bitmap;
1171 r = -ENOENT;
1172 if (!dirty_bitmap)
1173 goto out;
1174
1175 n = kvm_dirty_bitmap_bytes(memslot);
1176
1177 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1178 memset(dirty_bitmap_buffer, 0, n);
1179
1180 spin_lock(&kvm->mmu_lock);
1181 *is_dirty = false;
1182 for (i = 0; i < n / sizeof(long); i++) {
1183 unsigned long mask;
1184 gfn_t offset;
1185
1186 if (!dirty_bitmap[i])
1187 continue;
1188
1189 *is_dirty = true;
1190
1191 mask = xchg(&dirty_bitmap[i], 0);
1192 dirty_bitmap_buffer[i] = mask;
1193
1194 if (mask) {
1195 offset = i * BITS_PER_LONG;
1196 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1197 offset, mask);
1198 }
1199 }
1200
1201 spin_unlock(&kvm->mmu_lock);
1202
1203 r = -EFAULT;
1204 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1205 goto out;
1206
1207 r = 0;
1208 out:
1209 return r;
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1212 #endif
1213
1214 bool kvm_largepages_enabled(void)
1215 {
1216 return largepages_enabled;
1217 }
1218
1219 void kvm_disable_largepages(void)
1220 {
1221 largepages_enabled = false;
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1224
1225 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1226 {
1227 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1228 }
1229 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1230
1231 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1232 {
1233 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1234 }
1235
1236 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1237 {
1238 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1239
1240 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1241 memslot->flags & KVM_MEMSLOT_INVALID)
1242 return false;
1243
1244 return true;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1247
1248 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1249 {
1250 struct vm_area_struct *vma;
1251 unsigned long addr, size;
1252
1253 size = PAGE_SIZE;
1254
1255 addr = gfn_to_hva(kvm, gfn);
1256 if (kvm_is_error_hva(addr))
1257 return PAGE_SIZE;
1258
1259 down_read(&current->mm->mmap_sem);
1260 vma = find_vma(current->mm, addr);
1261 if (!vma)
1262 goto out;
1263
1264 size = vma_kernel_pagesize(vma);
1265
1266 out:
1267 up_read(&current->mm->mmap_sem);
1268
1269 return size;
1270 }
1271
1272 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1273 {
1274 return slot->flags & KVM_MEM_READONLY;
1275 }
1276
1277 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1278 gfn_t *nr_pages, bool write)
1279 {
1280 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1281 return KVM_HVA_ERR_BAD;
1282
1283 if (memslot_is_readonly(slot) && write)
1284 return KVM_HVA_ERR_RO_BAD;
1285
1286 if (nr_pages)
1287 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1288
1289 return __gfn_to_hva_memslot(slot, gfn);
1290 }
1291
1292 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1293 gfn_t *nr_pages)
1294 {
1295 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1296 }
1297
1298 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1299 gfn_t gfn)
1300 {
1301 return gfn_to_hva_many(slot, gfn, NULL);
1302 }
1303 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1304
1305 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1306 {
1307 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1308 }
1309 EXPORT_SYMBOL_GPL(gfn_to_hva);
1310
1311 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1312 {
1313 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1314 }
1315 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1316
1317 /*
1318 * If writable is set to false, the hva returned by this function is only
1319 * allowed to be read.
1320 */
1321 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1322 gfn_t gfn, bool *writable)
1323 {
1324 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1325
1326 if (!kvm_is_error_hva(hva) && writable)
1327 *writable = !memslot_is_readonly(slot);
1328
1329 return hva;
1330 }
1331
1332 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1333 {
1334 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1335
1336 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338
1339 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1340 {
1341 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1342
1343 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1344 }
1345
1346 static int get_user_page_nowait(unsigned long start, int write,
1347 struct page **page)
1348 {
1349 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1350
1351 if (write)
1352 flags |= FOLL_WRITE;
1353
1354 return __get_user_pages(current, current->mm, start, 1, flags, page,
1355 NULL, NULL);
1356 }
1357
1358 static inline int check_user_page_hwpoison(unsigned long addr)
1359 {
1360 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1361
1362 rc = __get_user_pages(current, current->mm, addr, 1,
1363 flags, NULL, NULL, NULL);
1364 return rc == -EHWPOISON;
1365 }
1366
1367 /*
1368 * The atomic path to get the writable pfn which will be stored in @pfn,
1369 * true indicates success, otherwise false is returned.
1370 */
1371 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1372 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1373 {
1374 struct page *page[1];
1375 int npages;
1376
1377 if (!(async || atomic))
1378 return false;
1379
1380 /*
1381 * Fast pin a writable pfn only if it is a write fault request
1382 * or the caller allows to map a writable pfn for a read fault
1383 * request.
1384 */
1385 if (!(write_fault || writable))
1386 return false;
1387
1388 npages = __get_user_pages_fast(addr, 1, 1, page);
1389 if (npages == 1) {
1390 *pfn = page_to_pfn(page[0]);
1391
1392 if (writable)
1393 *writable = true;
1394 return true;
1395 }
1396
1397 return false;
1398 }
1399
1400 /*
1401 * The slow path to get the pfn of the specified host virtual address,
1402 * 1 indicates success, -errno is returned if error is detected.
1403 */
1404 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1405 bool *writable, kvm_pfn_t *pfn)
1406 {
1407 struct page *page[1];
1408 int npages = 0;
1409
1410 might_sleep();
1411
1412 if (writable)
1413 *writable = write_fault;
1414
1415 if (async) {
1416 down_read(&current->mm->mmap_sem);
1417 npages = get_user_page_nowait(addr, write_fault, page);
1418 up_read(&current->mm->mmap_sem);
1419 } else
1420 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1421 write_fault, 0, page,
1422 FOLL_TOUCH|FOLL_HWPOISON);
1423 if (npages != 1)
1424 return npages;
1425
1426 /* map read fault as writable if possible */
1427 if (unlikely(!write_fault) && writable) {
1428 struct page *wpage[1];
1429
1430 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1431 if (npages == 1) {
1432 *writable = true;
1433 put_page(page[0]);
1434 page[0] = wpage[0];
1435 }
1436
1437 npages = 1;
1438 }
1439 *pfn = page_to_pfn(page[0]);
1440 return npages;
1441 }
1442
1443 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1444 {
1445 if (unlikely(!(vma->vm_flags & VM_READ)))
1446 return false;
1447
1448 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1449 return false;
1450
1451 return true;
1452 }
1453
1454 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1455 unsigned long addr, bool *async,
1456 bool write_fault, kvm_pfn_t *p_pfn)
1457 {
1458 unsigned long pfn;
1459 int r;
1460
1461 r = follow_pfn(vma, addr, &pfn);
1462 if (r) {
1463 /*
1464 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1465 * not call the fault handler, so do it here.
1466 */
1467 bool unlocked = false;
1468 r = fixup_user_fault(current, current->mm, addr,
1469 (write_fault ? FAULT_FLAG_WRITE : 0),
1470 &unlocked);
1471 if (unlocked)
1472 return -EAGAIN;
1473 if (r)
1474 return r;
1475
1476 r = follow_pfn(vma, addr, &pfn);
1477 if (r)
1478 return r;
1479
1480 }
1481
1482
1483 /*
1484 * Get a reference here because callers of *hva_to_pfn* and
1485 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1486 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1487 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1488 * simply do nothing for reserved pfns.
1489 *
1490 * Whoever called remap_pfn_range is also going to call e.g.
1491 * unmap_mapping_range before the underlying pages are freed,
1492 * causing a call to our MMU notifier.
1493 */
1494 kvm_get_pfn(pfn);
1495
1496 *p_pfn = pfn;
1497 return 0;
1498 }
1499
1500 /*
1501 * Pin guest page in memory and return its pfn.
1502 * @addr: host virtual address which maps memory to the guest
1503 * @atomic: whether this function can sleep
1504 * @async: whether this function need to wait IO complete if the
1505 * host page is not in the memory
1506 * @write_fault: whether we should get a writable host page
1507 * @writable: whether it allows to map a writable host page for !@write_fault
1508 *
1509 * The function will map a writable host page for these two cases:
1510 * 1): @write_fault = true
1511 * 2): @write_fault = false && @writable, @writable will tell the caller
1512 * whether the mapping is writable.
1513 */
1514 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1515 bool write_fault, bool *writable)
1516 {
1517 struct vm_area_struct *vma;
1518 kvm_pfn_t pfn = 0;
1519 int npages, r;
1520
1521 /* we can do it either atomically or asynchronously, not both */
1522 BUG_ON(atomic && async);
1523
1524 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1525 return pfn;
1526
1527 if (atomic)
1528 return KVM_PFN_ERR_FAULT;
1529
1530 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1531 if (npages == 1)
1532 return pfn;
1533
1534 down_read(&current->mm->mmap_sem);
1535 if (npages == -EHWPOISON ||
1536 (!async && check_user_page_hwpoison(addr))) {
1537 pfn = KVM_PFN_ERR_HWPOISON;
1538 goto exit;
1539 }
1540
1541 retry:
1542 vma = find_vma_intersection(current->mm, addr, addr + 1);
1543
1544 if (vma == NULL)
1545 pfn = KVM_PFN_ERR_FAULT;
1546 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1547 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1548 if (r == -EAGAIN)
1549 goto retry;
1550 if (r < 0)
1551 pfn = KVM_PFN_ERR_FAULT;
1552 } else {
1553 if (async && vma_is_valid(vma, write_fault))
1554 *async = true;
1555 pfn = KVM_PFN_ERR_FAULT;
1556 }
1557 exit:
1558 up_read(&current->mm->mmap_sem);
1559 return pfn;
1560 }
1561
1562 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1563 bool atomic, bool *async, bool write_fault,
1564 bool *writable)
1565 {
1566 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1567
1568 if (addr == KVM_HVA_ERR_RO_BAD) {
1569 if (writable)
1570 *writable = false;
1571 return KVM_PFN_ERR_RO_FAULT;
1572 }
1573
1574 if (kvm_is_error_hva(addr)) {
1575 if (writable)
1576 *writable = false;
1577 return KVM_PFN_NOSLOT;
1578 }
1579
1580 /* Do not map writable pfn in the readonly memslot. */
1581 if (writable && memslot_is_readonly(slot)) {
1582 *writable = false;
1583 writable = NULL;
1584 }
1585
1586 return hva_to_pfn(addr, atomic, async, write_fault,
1587 writable);
1588 }
1589 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1590
1591 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1592 bool *writable)
1593 {
1594 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1595 write_fault, writable);
1596 }
1597 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1598
1599 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1600 {
1601 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1602 }
1603 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1604
1605 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1606 {
1607 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1608 }
1609 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1610
1611 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1612 {
1613 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1614 }
1615 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1616
1617 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1618 {
1619 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1620 }
1621 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1622
1623 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1624 {
1625 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1626 }
1627 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1628
1629 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1630 {
1631 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1632 }
1633 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1634
1635 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1636 struct page **pages, int nr_pages)
1637 {
1638 unsigned long addr;
1639 gfn_t entry;
1640
1641 addr = gfn_to_hva_many(slot, gfn, &entry);
1642 if (kvm_is_error_hva(addr))
1643 return -1;
1644
1645 if (entry < nr_pages)
1646 return 0;
1647
1648 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1649 }
1650 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1651
1652 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1653 {
1654 if (is_error_noslot_pfn(pfn))
1655 return KVM_ERR_PTR_BAD_PAGE;
1656
1657 if (kvm_is_reserved_pfn(pfn)) {
1658 WARN_ON(1);
1659 return KVM_ERR_PTR_BAD_PAGE;
1660 }
1661
1662 return pfn_to_page(pfn);
1663 }
1664
1665 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1666 {
1667 kvm_pfn_t pfn;
1668
1669 pfn = gfn_to_pfn(kvm, gfn);
1670
1671 return kvm_pfn_to_page(pfn);
1672 }
1673 EXPORT_SYMBOL_GPL(gfn_to_page);
1674
1675 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1676 {
1677 kvm_pfn_t pfn;
1678
1679 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1680
1681 return kvm_pfn_to_page(pfn);
1682 }
1683 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1684
1685 void kvm_release_page_clean(struct page *page)
1686 {
1687 WARN_ON(is_error_page(page));
1688
1689 kvm_release_pfn_clean(page_to_pfn(page));
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1692
1693 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1694 {
1695 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1696 put_page(pfn_to_page(pfn));
1697 }
1698 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1699
1700 void kvm_release_page_dirty(struct page *page)
1701 {
1702 WARN_ON(is_error_page(page));
1703
1704 kvm_release_pfn_dirty(page_to_pfn(page));
1705 }
1706 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1707
1708 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1709 {
1710 kvm_set_pfn_dirty(pfn);
1711 kvm_release_pfn_clean(pfn);
1712 }
1713
1714 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1715 {
1716 if (!kvm_is_reserved_pfn(pfn)) {
1717 struct page *page = pfn_to_page(pfn);
1718
1719 if (!PageReserved(page))
1720 SetPageDirty(page);
1721 }
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1724
1725 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1726 {
1727 if (!kvm_is_reserved_pfn(pfn))
1728 mark_page_accessed(pfn_to_page(pfn));
1729 }
1730 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1731
1732 void kvm_get_pfn(kvm_pfn_t pfn)
1733 {
1734 if (!kvm_is_reserved_pfn(pfn))
1735 get_page(pfn_to_page(pfn));
1736 }
1737 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1738
1739 static int next_segment(unsigned long len, int offset)
1740 {
1741 if (len > PAGE_SIZE - offset)
1742 return PAGE_SIZE - offset;
1743 else
1744 return len;
1745 }
1746
1747 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1748 void *data, int offset, int len)
1749 {
1750 int r;
1751 unsigned long addr;
1752
1753 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1754 if (kvm_is_error_hva(addr))
1755 return -EFAULT;
1756 r = __copy_from_user(data, (void __user *)addr + offset, len);
1757 if (r)
1758 return -EFAULT;
1759 return 0;
1760 }
1761
1762 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1763 int len)
1764 {
1765 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1766
1767 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1768 }
1769 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1770
1771 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1772 int offset, int len)
1773 {
1774 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1775
1776 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1779
1780 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1781 {
1782 gfn_t gfn = gpa >> PAGE_SHIFT;
1783 int seg;
1784 int offset = offset_in_page(gpa);
1785 int ret;
1786
1787 while ((seg = next_segment(len, offset)) != 0) {
1788 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1789 if (ret < 0)
1790 return ret;
1791 offset = 0;
1792 len -= seg;
1793 data += seg;
1794 ++gfn;
1795 }
1796 return 0;
1797 }
1798 EXPORT_SYMBOL_GPL(kvm_read_guest);
1799
1800 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1801 {
1802 gfn_t gfn = gpa >> PAGE_SHIFT;
1803 int seg;
1804 int offset = offset_in_page(gpa);
1805 int ret;
1806
1807 while ((seg = next_segment(len, offset)) != 0) {
1808 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1809 if (ret < 0)
1810 return ret;
1811 offset = 0;
1812 len -= seg;
1813 data += seg;
1814 ++gfn;
1815 }
1816 return 0;
1817 }
1818 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1819
1820 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1821 void *data, int offset, unsigned long len)
1822 {
1823 int r;
1824 unsigned long addr;
1825
1826 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1827 if (kvm_is_error_hva(addr))
1828 return -EFAULT;
1829 pagefault_disable();
1830 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1831 pagefault_enable();
1832 if (r)
1833 return -EFAULT;
1834 return 0;
1835 }
1836
1837 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1838 unsigned long len)
1839 {
1840 gfn_t gfn = gpa >> PAGE_SHIFT;
1841 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1842 int offset = offset_in_page(gpa);
1843
1844 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1845 }
1846 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1847
1848 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1849 void *data, unsigned long len)
1850 {
1851 gfn_t gfn = gpa >> PAGE_SHIFT;
1852 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1853 int offset = offset_in_page(gpa);
1854
1855 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1856 }
1857 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1858
1859 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1860 const void *data, int offset, int len)
1861 {
1862 int r;
1863 unsigned long addr;
1864
1865 addr = gfn_to_hva_memslot(memslot, gfn);
1866 if (kvm_is_error_hva(addr))
1867 return -EFAULT;
1868 r = __copy_to_user((void __user *)addr + offset, data, len);
1869 if (r)
1870 return -EFAULT;
1871 mark_page_dirty_in_slot(memslot, gfn);
1872 return 0;
1873 }
1874
1875 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1876 const void *data, int offset, int len)
1877 {
1878 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1879
1880 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1881 }
1882 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1883
1884 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1885 const void *data, int offset, int len)
1886 {
1887 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1888
1889 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1890 }
1891 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1892
1893 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1894 unsigned long len)
1895 {
1896 gfn_t gfn = gpa >> PAGE_SHIFT;
1897 int seg;
1898 int offset = offset_in_page(gpa);
1899 int ret;
1900
1901 while ((seg = next_segment(len, offset)) != 0) {
1902 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1903 if (ret < 0)
1904 return ret;
1905 offset = 0;
1906 len -= seg;
1907 data += seg;
1908 ++gfn;
1909 }
1910 return 0;
1911 }
1912 EXPORT_SYMBOL_GPL(kvm_write_guest);
1913
1914 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1915 unsigned long len)
1916 {
1917 gfn_t gfn = gpa >> PAGE_SHIFT;
1918 int seg;
1919 int offset = offset_in_page(gpa);
1920 int ret;
1921
1922 while ((seg = next_segment(len, offset)) != 0) {
1923 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1924 if (ret < 0)
1925 return ret;
1926 offset = 0;
1927 len -= seg;
1928 data += seg;
1929 ++gfn;
1930 }
1931 return 0;
1932 }
1933 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1934
1935 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1936 gpa_t gpa, unsigned long len)
1937 {
1938 struct kvm_memslots *slots = kvm_memslots(kvm);
1939 int offset = offset_in_page(gpa);
1940 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1941 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1942 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1943 gfn_t nr_pages_avail;
1944
1945 ghc->gpa = gpa;
1946 ghc->generation = slots->generation;
1947 ghc->len = len;
1948 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1949 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1950 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1951 ghc->hva += offset;
1952 } else {
1953 /*
1954 * If the requested region crosses two memslots, we still
1955 * verify that the entire region is valid here.
1956 */
1957 while (start_gfn <= end_gfn) {
1958 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1959 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1960 &nr_pages_avail);
1961 if (kvm_is_error_hva(ghc->hva))
1962 return -EFAULT;
1963 start_gfn += nr_pages_avail;
1964 }
1965 /* Use the slow path for cross page reads and writes. */
1966 ghc->memslot = NULL;
1967 }
1968 return 0;
1969 }
1970 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1971
1972 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1973 void *data, unsigned long len)
1974 {
1975 struct kvm_memslots *slots = kvm_memslots(kvm);
1976 int r;
1977
1978 BUG_ON(len > ghc->len);
1979
1980 if (slots->generation != ghc->generation)
1981 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1982
1983 if (unlikely(!ghc->memslot))
1984 return kvm_write_guest(kvm, ghc->gpa, data, len);
1985
1986 if (kvm_is_error_hva(ghc->hva))
1987 return -EFAULT;
1988
1989 r = __copy_to_user((void __user *)ghc->hva, data, len);
1990 if (r)
1991 return -EFAULT;
1992 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1993
1994 return 0;
1995 }
1996 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1997
1998 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1999 void *data, unsigned long len)
2000 {
2001 struct kvm_memslots *slots = kvm_memslots(kvm);
2002 int r;
2003
2004 BUG_ON(len > ghc->len);
2005
2006 if (slots->generation != ghc->generation)
2007 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2008
2009 if (unlikely(!ghc->memslot))
2010 return kvm_read_guest(kvm, ghc->gpa, data, len);
2011
2012 if (kvm_is_error_hva(ghc->hva))
2013 return -EFAULT;
2014
2015 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2016 if (r)
2017 return -EFAULT;
2018
2019 return 0;
2020 }
2021 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2022
2023 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2024 {
2025 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2026
2027 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2028 }
2029 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2030
2031 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2032 {
2033 gfn_t gfn = gpa >> PAGE_SHIFT;
2034 int seg;
2035 int offset = offset_in_page(gpa);
2036 int ret;
2037
2038 while ((seg = next_segment(len, offset)) != 0) {
2039 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2040 if (ret < 0)
2041 return ret;
2042 offset = 0;
2043 len -= seg;
2044 ++gfn;
2045 }
2046 return 0;
2047 }
2048 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2049
2050 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2051 gfn_t gfn)
2052 {
2053 if (memslot && memslot->dirty_bitmap) {
2054 unsigned long rel_gfn = gfn - memslot->base_gfn;
2055
2056 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2057 }
2058 }
2059
2060 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2061 {
2062 struct kvm_memory_slot *memslot;
2063
2064 memslot = gfn_to_memslot(kvm, gfn);
2065 mark_page_dirty_in_slot(memslot, gfn);
2066 }
2067 EXPORT_SYMBOL_GPL(mark_page_dirty);
2068
2069 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2070 {
2071 struct kvm_memory_slot *memslot;
2072
2073 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2074 mark_page_dirty_in_slot(memslot, gfn);
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2077
2078 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2079 {
2080 unsigned int old, val, grow;
2081
2082 old = val = vcpu->halt_poll_ns;
2083 grow = READ_ONCE(halt_poll_ns_grow);
2084 /* 10us base */
2085 if (val == 0 && grow)
2086 val = 10000;
2087 else
2088 val *= grow;
2089
2090 if (val > halt_poll_ns)
2091 val = halt_poll_ns;
2092
2093 vcpu->halt_poll_ns = val;
2094 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2095 }
2096
2097 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2098 {
2099 unsigned int old, val, shrink;
2100
2101 old = val = vcpu->halt_poll_ns;
2102 shrink = READ_ONCE(halt_poll_ns_shrink);
2103 if (shrink == 0)
2104 val = 0;
2105 else
2106 val /= shrink;
2107
2108 vcpu->halt_poll_ns = val;
2109 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2110 }
2111
2112 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2113 {
2114 if (kvm_arch_vcpu_runnable(vcpu)) {
2115 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2116 return -EINTR;
2117 }
2118 if (kvm_cpu_has_pending_timer(vcpu))
2119 return -EINTR;
2120 if (signal_pending(current))
2121 return -EINTR;
2122
2123 return 0;
2124 }
2125
2126 /*
2127 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2128 */
2129 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2130 {
2131 ktime_t start, cur;
2132 DECLARE_SWAITQUEUE(wait);
2133 bool waited = false;
2134 u64 block_ns;
2135
2136 start = cur = ktime_get();
2137 if (vcpu->halt_poll_ns) {
2138 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2139
2140 ++vcpu->stat.halt_attempted_poll;
2141 do {
2142 /*
2143 * This sets KVM_REQ_UNHALT if an interrupt
2144 * arrives.
2145 */
2146 if (kvm_vcpu_check_block(vcpu) < 0) {
2147 ++vcpu->stat.halt_successful_poll;
2148 if (!vcpu_valid_wakeup(vcpu))
2149 ++vcpu->stat.halt_poll_invalid;
2150 goto out;
2151 }
2152 cur = ktime_get();
2153 } while (single_task_running() && ktime_before(cur, stop));
2154 }
2155
2156 kvm_arch_vcpu_blocking(vcpu);
2157
2158 for (;;) {
2159 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2160
2161 if (kvm_vcpu_check_block(vcpu) < 0)
2162 break;
2163
2164 waited = true;
2165 schedule();
2166 }
2167
2168 finish_swait(&vcpu->wq, &wait);
2169 cur = ktime_get();
2170
2171 kvm_arch_vcpu_unblocking(vcpu);
2172 out:
2173 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2174
2175 if (!vcpu_valid_wakeup(vcpu))
2176 shrink_halt_poll_ns(vcpu);
2177 else if (halt_poll_ns) {
2178 if (block_ns <= vcpu->halt_poll_ns)
2179 ;
2180 /* we had a long block, shrink polling */
2181 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2182 shrink_halt_poll_ns(vcpu);
2183 /* we had a short halt and our poll time is too small */
2184 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2185 block_ns < halt_poll_ns)
2186 grow_halt_poll_ns(vcpu);
2187 } else
2188 vcpu->halt_poll_ns = 0;
2189
2190 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2191 kvm_arch_vcpu_block_finish(vcpu);
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2194
2195 #ifndef CONFIG_S390
2196 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2197 {
2198 struct swait_queue_head *wqp;
2199
2200 wqp = kvm_arch_vcpu_wq(vcpu);
2201 if (swait_active(wqp)) {
2202 swake_up(wqp);
2203 ++vcpu->stat.halt_wakeup;
2204 }
2205
2206 }
2207 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2208
2209 /*
2210 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2211 */
2212 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2213 {
2214 int me;
2215 int cpu = vcpu->cpu;
2216
2217 kvm_vcpu_wake_up(vcpu);
2218 me = get_cpu();
2219 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2220 if (kvm_arch_vcpu_should_kick(vcpu))
2221 smp_send_reschedule(cpu);
2222 put_cpu();
2223 }
2224 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2225 #endif /* !CONFIG_S390 */
2226
2227 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2228 {
2229 struct pid *pid;
2230 struct task_struct *task = NULL;
2231 int ret = 0;
2232
2233 rcu_read_lock();
2234 pid = rcu_dereference(target->pid);
2235 if (pid)
2236 task = get_pid_task(pid, PIDTYPE_PID);
2237 rcu_read_unlock();
2238 if (!task)
2239 return ret;
2240 ret = yield_to(task, 1);
2241 put_task_struct(task);
2242
2243 return ret;
2244 }
2245 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2246
2247 /*
2248 * Helper that checks whether a VCPU is eligible for directed yield.
2249 * Most eligible candidate to yield is decided by following heuristics:
2250 *
2251 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2252 * (preempted lock holder), indicated by @in_spin_loop.
2253 * Set at the beiginning and cleared at the end of interception/PLE handler.
2254 *
2255 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2256 * chance last time (mostly it has become eligible now since we have probably
2257 * yielded to lockholder in last iteration. This is done by toggling
2258 * @dy_eligible each time a VCPU checked for eligibility.)
2259 *
2260 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2261 * to preempted lock-holder could result in wrong VCPU selection and CPU
2262 * burning. Giving priority for a potential lock-holder increases lock
2263 * progress.
2264 *
2265 * Since algorithm is based on heuristics, accessing another VCPU data without
2266 * locking does not harm. It may result in trying to yield to same VCPU, fail
2267 * and continue with next VCPU and so on.
2268 */
2269 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2270 {
2271 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2272 bool eligible;
2273
2274 eligible = !vcpu->spin_loop.in_spin_loop ||
2275 vcpu->spin_loop.dy_eligible;
2276
2277 if (vcpu->spin_loop.in_spin_loop)
2278 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2279
2280 return eligible;
2281 #else
2282 return true;
2283 #endif
2284 }
2285
2286 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2287 {
2288 struct kvm *kvm = me->kvm;
2289 struct kvm_vcpu *vcpu;
2290 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2291 int yielded = 0;
2292 int try = 3;
2293 int pass;
2294 int i;
2295
2296 kvm_vcpu_set_in_spin_loop(me, true);
2297 /*
2298 * We boost the priority of a VCPU that is runnable but not
2299 * currently running, because it got preempted by something
2300 * else and called schedule in __vcpu_run. Hopefully that
2301 * VCPU is holding the lock that we need and will release it.
2302 * We approximate round-robin by starting at the last boosted VCPU.
2303 */
2304 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2305 kvm_for_each_vcpu(i, vcpu, kvm) {
2306 if (!pass && i <= last_boosted_vcpu) {
2307 i = last_boosted_vcpu;
2308 continue;
2309 } else if (pass && i > last_boosted_vcpu)
2310 break;
2311 if (!ACCESS_ONCE(vcpu->preempted))
2312 continue;
2313 if (vcpu == me)
2314 continue;
2315 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2316 continue;
2317 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2318 continue;
2319
2320 yielded = kvm_vcpu_yield_to(vcpu);
2321 if (yielded > 0) {
2322 kvm->last_boosted_vcpu = i;
2323 break;
2324 } else if (yielded < 0) {
2325 try--;
2326 if (!try)
2327 break;
2328 }
2329 }
2330 }
2331 kvm_vcpu_set_in_spin_loop(me, false);
2332
2333 /* Ensure vcpu is not eligible during next spinloop */
2334 kvm_vcpu_set_dy_eligible(me, false);
2335 }
2336 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2337
2338 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2339 {
2340 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2341 struct page *page;
2342
2343 if (vmf->pgoff == 0)
2344 page = virt_to_page(vcpu->run);
2345 #ifdef CONFIG_X86
2346 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2347 page = virt_to_page(vcpu->arch.pio_data);
2348 #endif
2349 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2350 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2351 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2352 #endif
2353 else
2354 return kvm_arch_vcpu_fault(vcpu, vmf);
2355 get_page(page);
2356 vmf->page = page;
2357 return 0;
2358 }
2359
2360 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2361 .fault = kvm_vcpu_fault,
2362 };
2363
2364 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2365 {
2366 vma->vm_ops = &kvm_vcpu_vm_ops;
2367 return 0;
2368 }
2369
2370 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2371 {
2372 struct kvm_vcpu *vcpu = filp->private_data;
2373
2374 debugfs_remove_recursive(vcpu->debugfs_dentry);
2375 kvm_put_kvm(vcpu->kvm);
2376 return 0;
2377 }
2378
2379 static struct file_operations kvm_vcpu_fops = {
2380 .release = kvm_vcpu_release,
2381 .unlocked_ioctl = kvm_vcpu_ioctl,
2382 #ifdef CONFIG_KVM_COMPAT
2383 .compat_ioctl = kvm_vcpu_compat_ioctl,
2384 #endif
2385 .mmap = kvm_vcpu_mmap,
2386 .llseek = noop_llseek,
2387 };
2388
2389 /*
2390 * Allocates an inode for the vcpu.
2391 */
2392 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2393 {
2394 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2395 }
2396
2397 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2398 {
2399 char dir_name[ITOA_MAX_LEN * 2];
2400 int ret;
2401
2402 if (!kvm_arch_has_vcpu_debugfs())
2403 return 0;
2404
2405 if (!debugfs_initialized())
2406 return 0;
2407
2408 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2409 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2410 vcpu->kvm->debugfs_dentry);
2411 if (!vcpu->debugfs_dentry)
2412 return -ENOMEM;
2413
2414 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2415 if (ret < 0) {
2416 debugfs_remove_recursive(vcpu->debugfs_dentry);
2417 return ret;
2418 }
2419
2420 return 0;
2421 }
2422
2423 /*
2424 * Creates some virtual cpus. Good luck creating more than one.
2425 */
2426 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2427 {
2428 int r;
2429 struct kvm_vcpu *vcpu;
2430
2431 if (id >= KVM_MAX_VCPU_ID)
2432 return -EINVAL;
2433
2434 mutex_lock(&kvm->lock);
2435 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2436 mutex_unlock(&kvm->lock);
2437 return -EINVAL;
2438 }
2439
2440 kvm->created_vcpus++;
2441 mutex_unlock(&kvm->lock);
2442
2443 vcpu = kvm_arch_vcpu_create(kvm, id);
2444 if (IS_ERR(vcpu)) {
2445 r = PTR_ERR(vcpu);
2446 goto vcpu_decrement;
2447 }
2448
2449 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2450
2451 r = kvm_arch_vcpu_setup(vcpu);
2452 if (r)
2453 goto vcpu_destroy;
2454
2455 r = kvm_create_vcpu_debugfs(vcpu);
2456 if (r)
2457 goto vcpu_destroy;
2458
2459 mutex_lock(&kvm->lock);
2460 if (kvm_get_vcpu_by_id(kvm, id)) {
2461 r = -EEXIST;
2462 goto unlock_vcpu_destroy;
2463 }
2464
2465 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2466
2467 /* Now it's all set up, let userspace reach it */
2468 kvm_get_kvm(kvm);
2469 r = create_vcpu_fd(vcpu);
2470 if (r < 0) {
2471 kvm_put_kvm(kvm);
2472 goto unlock_vcpu_destroy;
2473 }
2474
2475 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2476
2477 /*
2478 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2479 * before kvm->online_vcpu's incremented value.
2480 */
2481 smp_wmb();
2482 atomic_inc(&kvm->online_vcpus);
2483
2484 mutex_unlock(&kvm->lock);
2485 kvm_arch_vcpu_postcreate(vcpu);
2486 return r;
2487
2488 unlock_vcpu_destroy:
2489 mutex_unlock(&kvm->lock);
2490 debugfs_remove_recursive(vcpu->debugfs_dentry);
2491 vcpu_destroy:
2492 kvm_arch_vcpu_destroy(vcpu);
2493 vcpu_decrement:
2494 mutex_lock(&kvm->lock);
2495 kvm->created_vcpus--;
2496 mutex_unlock(&kvm->lock);
2497 return r;
2498 }
2499
2500 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2501 {
2502 if (sigset) {
2503 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2504 vcpu->sigset_active = 1;
2505 vcpu->sigset = *sigset;
2506 } else
2507 vcpu->sigset_active = 0;
2508 return 0;
2509 }
2510
2511 static long kvm_vcpu_ioctl(struct file *filp,
2512 unsigned int ioctl, unsigned long arg)
2513 {
2514 struct kvm_vcpu *vcpu = filp->private_data;
2515 void __user *argp = (void __user *)arg;
2516 int r;
2517 struct kvm_fpu *fpu = NULL;
2518 struct kvm_sregs *kvm_sregs = NULL;
2519
2520 if (vcpu->kvm->mm != current->mm)
2521 return -EIO;
2522
2523 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2524 return -EINVAL;
2525
2526 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2527 /*
2528 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2529 * so vcpu_load() would break it.
2530 */
2531 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2532 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2533 #endif
2534
2535
2536 r = vcpu_load(vcpu);
2537 if (r)
2538 return r;
2539 switch (ioctl) {
2540 case KVM_RUN:
2541 r = -EINVAL;
2542 if (arg)
2543 goto out;
2544 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2545 /* The thread running this VCPU changed. */
2546 struct pid *oldpid = vcpu->pid;
2547 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2548
2549 rcu_assign_pointer(vcpu->pid, newpid);
2550 if (oldpid)
2551 synchronize_rcu();
2552 put_pid(oldpid);
2553 }
2554 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2555 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2556 break;
2557 case KVM_GET_REGS: {
2558 struct kvm_regs *kvm_regs;
2559
2560 r = -ENOMEM;
2561 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2562 if (!kvm_regs)
2563 goto out;
2564 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2565 if (r)
2566 goto out_free1;
2567 r = -EFAULT;
2568 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2569 goto out_free1;
2570 r = 0;
2571 out_free1:
2572 kfree(kvm_regs);
2573 break;
2574 }
2575 case KVM_SET_REGS: {
2576 struct kvm_regs *kvm_regs;
2577
2578 r = -ENOMEM;
2579 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2580 if (IS_ERR(kvm_regs)) {
2581 r = PTR_ERR(kvm_regs);
2582 goto out;
2583 }
2584 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2585 kfree(kvm_regs);
2586 break;
2587 }
2588 case KVM_GET_SREGS: {
2589 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2590 r = -ENOMEM;
2591 if (!kvm_sregs)
2592 goto out;
2593 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2594 if (r)
2595 goto out;
2596 r = -EFAULT;
2597 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2598 goto out;
2599 r = 0;
2600 break;
2601 }
2602 case KVM_SET_SREGS: {
2603 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2604 if (IS_ERR(kvm_sregs)) {
2605 r = PTR_ERR(kvm_sregs);
2606 kvm_sregs = NULL;
2607 goto out;
2608 }
2609 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2610 break;
2611 }
2612 case KVM_GET_MP_STATE: {
2613 struct kvm_mp_state mp_state;
2614
2615 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2616 if (r)
2617 goto out;
2618 r = -EFAULT;
2619 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2620 goto out;
2621 r = 0;
2622 break;
2623 }
2624 case KVM_SET_MP_STATE: {
2625 struct kvm_mp_state mp_state;
2626
2627 r = -EFAULT;
2628 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2629 goto out;
2630 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2631 break;
2632 }
2633 case KVM_TRANSLATE: {
2634 struct kvm_translation tr;
2635
2636 r = -EFAULT;
2637 if (copy_from_user(&tr, argp, sizeof(tr)))
2638 goto out;
2639 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2640 if (r)
2641 goto out;
2642 r = -EFAULT;
2643 if (copy_to_user(argp, &tr, sizeof(tr)))
2644 goto out;
2645 r = 0;
2646 break;
2647 }
2648 case KVM_SET_GUEST_DEBUG: {
2649 struct kvm_guest_debug dbg;
2650
2651 r = -EFAULT;
2652 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2653 goto out;
2654 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2655 break;
2656 }
2657 case KVM_SET_SIGNAL_MASK: {
2658 struct kvm_signal_mask __user *sigmask_arg = argp;
2659 struct kvm_signal_mask kvm_sigmask;
2660 sigset_t sigset, *p;
2661
2662 p = NULL;
2663 if (argp) {
2664 r = -EFAULT;
2665 if (copy_from_user(&kvm_sigmask, argp,
2666 sizeof(kvm_sigmask)))
2667 goto out;
2668 r = -EINVAL;
2669 if (kvm_sigmask.len != sizeof(sigset))
2670 goto out;
2671 r = -EFAULT;
2672 if (copy_from_user(&sigset, sigmask_arg->sigset,
2673 sizeof(sigset)))
2674 goto out;
2675 p = &sigset;
2676 }
2677 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2678 break;
2679 }
2680 case KVM_GET_FPU: {
2681 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2682 r = -ENOMEM;
2683 if (!fpu)
2684 goto out;
2685 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2686 if (r)
2687 goto out;
2688 r = -EFAULT;
2689 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2690 goto out;
2691 r = 0;
2692 break;
2693 }
2694 case KVM_SET_FPU: {
2695 fpu = memdup_user(argp, sizeof(*fpu));
2696 if (IS_ERR(fpu)) {
2697 r = PTR_ERR(fpu);
2698 fpu = NULL;
2699 goto out;
2700 }
2701 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2702 break;
2703 }
2704 default:
2705 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2706 }
2707 out:
2708 vcpu_put(vcpu);
2709 kfree(fpu);
2710 kfree(kvm_sregs);
2711 return r;
2712 }
2713
2714 #ifdef CONFIG_KVM_COMPAT
2715 static long kvm_vcpu_compat_ioctl(struct file *filp,
2716 unsigned int ioctl, unsigned long arg)
2717 {
2718 struct kvm_vcpu *vcpu = filp->private_data;
2719 void __user *argp = compat_ptr(arg);
2720 int r;
2721
2722 if (vcpu->kvm->mm != current->mm)
2723 return -EIO;
2724
2725 switch (ioctl) {
2726 case KVM_SET_SIGNAL_MASK: {
2727 struct kvm_signal_mask __user *sigmask_arg = argp;
2728 struct kvm_signal_mask kvm_sigmask;
2729 compat_sigset_t csigset;
2730 sigset_t sigset;
2731
2732 if (argp) {
2733 r = -EFAULT;
2734 if (copy_from_user(&kvm_sigmask, argp,
2735 sizeof(kvm_sigmask)))
2736 goto out;
2737 r = -EINVAL;
2738 if (kvm_sigmask.len != sizeof(csigset))
2739 goto out;
2740 r = -EFAULT;
2741 if (copy_from_user(&csigset, sigmask_arg->sigset,
2742 sizeof(csigset)))
2743 goto out;
2744 sigset_from_compat(&sigset, &csigset);
2745 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2746 } else
2747 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2748 break;
2749 }
2750 default:
2751 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2752 }
2753
2754 out:
2755 return r;
2756 }
2757 #endif
2758
2759 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2760 int (*accessor)(struct kvm_device *dev,
2761 struct kvm_device_attr *attr),
2762 unsigned long arg)
2763 {
2764 struct kvm_device_attr attr;
2765
2766 if (!accessor)
2767 return -EPERM;
2768
2769 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2770 return -EFAULT;
2771
2772 return accessor(dev, &attr);
2773 }
2774
2775 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2776 unsigned long arg)
2777 {
2778 struct kvm_device *dev = filp->private_data;
2779
2780 switch (ioctl) {
2781 case KVM_SET_DEVICE_ATTR:
2782 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2783 case KVM_GET_DEVICE_ATTR:
2784 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2785 case KVM_HAS_DEVICE_ATTR:
2786 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2787 default:
2788 if (dev->ops->ioctl)
2789 return dev->ops->ioctl(dev, ioctl, arg);
2790
2791 return -ENOTTY;
2792 }
2793 }
2794
2795 static int kvm_device_release(struct inode *inode, struct file *filp)
2796 {
2797 struct kvm_device *dev = filp->private_data;
2798 struct kvm *kvm = dev->kvm;
2799
2800 kvm_put_kvm(kvm);
2801 return 0;
2802 }
2803
2804 static const struct file_operations kvm_device_fops = {
2805 .unlocked_ioctl = kvm_device_ioctl,
2806 #ifdef CONFIG_KVM_COMPAT
2807 .compat_ioctl = kvm_device_ioctl,
2808 #endif
2809 .release = kvm_device_release,
2810 };
2811
2812 struct kvm_device *kvm_device_from_filp(struct file *filp)
2813 {
2814 if (filp->f_op != &kvm_device_fops)
2815 return NULL;
2816
2817 return filp->private_data;
2818 }
2819
2820 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2821 #ifdef CONFIG_KVM_MPIC
2822 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2823 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2824 #endif
2825
2826 #ifdef CONFIG_KVM_XICS
2827 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2828 #endif
2829 };
2830
2831 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2832 {
2833 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2834 return -ENOSPC;
2835
2836 if (kvm_device_ops_table[type] != NULL)
2837 return -EEXIST;
2838
2839 kvm_device_ops_table[type] = ops;
2840 return 0;
2841 }
2842
2843 void kvm_unregister_device_ops(u32 type)
2844 {
2845 if (kvm_device_ops_table[type] != NULL)
2846 kvm_device_ops_table[type] = NULL;
2847 }
2848
2849 static int kvm_ioctl_create_device(struct kvm *kvm,
2850 struct kvm_create_device *cd)
2851 {
2852 struct kvm_device_ops *ops = NULL;
2853 struct kvm_device *dev;
2854 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2855 int ret;
2856
2857 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2858 return -ENODEV;
2859
2860 ops = kvm_device_ops_table[cd->type];
2861 if (ops == NULL)
2862 return -ENODEV;
2863
2864 if (test)
2865 return 0;
2866
2867 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2868 if (!dev)
2869 return -ENOMEM;
2870
2871 dev->ops = ops;
2872 dev->kvm = kvm;
2873
2874 mutex_lock(&kvm->lock);
2875 ret = ops->create(dev, cd->type);
2876 if (ret < 0) {
2877 mutex_unlock(&kvm->lock);
2878 kfree(dev);
2879 return ret;
2880 }
2881 list_add(&dev->vm_node, &kvm->devices);
2882 mutex_unlock(&kvm->lock);
2883
2884 if (ops->init)
2885 ops->init(dev);
2886
2887 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2888 if (ret < 0) {
2889 ops->destroy(dev);
2890 mutex_lock(&kvm->lock);
2891 list_del(&dev->vm_node);
2892 mutex_unlock(&kvm->lock);
2893 return ret;
2894 }
2895
2896 kvm_get_kvm(kvm);
2897 cd->fd = ret;
2898 return 0;
2899 }
2900
2901 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2902 {
2903 switch (arg) {
2904 case KVM_CAP_USER_MEMORY:
2905 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2906 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2907 case KVM_CAP_INTERNAL_ERROR_DATA:
2908 #ifdef CONFIG_HAVE_KVM_MSI
2909 case KVM_CAP_SIGNAL_MSI:
2910 #endif
2911 #ifdef CONFIG_HAVE_KVM_IRQFD
2912 case KVM_CAP_IRQFD:
2913 case KVM_CAP_IRQFD_RESAMPLE:
2914 #endif
2915 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2916 case KVM_CAP_CHECK_EXTENSION_VM:
2917 return 1;
2918 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2919 case KVM_CAP_IRQ_ROUTING:
2920 return KVM_MAX_IRQ_ROUTES;
2921 #endif
2922 #if KVM_ADDRESS_SPACE_NUM > 1
2923 case KVM_CAP_MULTI_ADDRESS_SPACE:
2924 return KVM_ADDRESS_SPACE_NUM;
2925 #endif
2926 case KVM_CAP_MAX_VCPU_ID:
2927 return KVM_MAX_VCPU_ID;
2928 default:
2929 break;
2930 }
2931 return kvm_vm_ioctl_check_extension(kvm, arg);
2932 }
2933
2934 static long kvm_vm_ioctl(struct file *filp,
2935 unsigned int ioctl, unsigned long arg)
2936 {
2937 struct kvm *kvm = filp->private_data;
2938 void __user *argp = (void __user *)arg;
2939 int r;
2940
2941 if (kvm->mm != current->mm)
2942 return -EIO;
2943 switch (ioctl) {
2944 case KVM_CREATE_VCPU:
2945 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2946 break;
2947 case KVM_SET_USER_MEMORY_REGION: {
2948 struct kvm_userspace_memory_region kvm_userspace_mem;
2949
2950 r = -EFAULT;
2951 if (copy_from_user(&kvm_userspace_mem, argp,
2952 sizeof(kvm_userspace_mem)))
2953 goto out;
2954
2955 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2956 break;
2957 }
2958 case KVM_GET_DIRTY_LOG: {
2959 struct kvm_dirty_log log;
2960
2961 r = -EFAULT;
2962 if (copy_from_user(&log, argp, sizeof(log)))
2963 goto out;
2964 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2965 break;
2966 }
2967 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2968 case KVM_REGISTER_COALESCED_MMIO: {
2969 struct kvm_coalesced_mmio_zone zone;
2970
2971 r = -EFAULT;
2972 if (copy_from_user(&zone, argp, sizeof(zone)))
2973 goto out;
2974 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2975 break;
2976 }
2977 case KVM_UNREGISTER_COALESCED_MMIO: {
2978 struct kvm_coalesced_mmio_zone zone;
2979
2980 r = -EFAULT;
2981 if (copy_from_user(&zone, argp, sizeof(zone)))
2982 goto out;
2983 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2984 break;
2985 }
2986 #endif
2987 case KVM_IRQFD: {
2988 struct kvm_irqfd data;
2989
2990 r = -EFAULT;
2991 if (copy_from_user(&data, argp, sizeof(data)))
2992 goto out;
2993 r = kvm_irqfd(kvm, &data);
2994 break;
2995 }
2996 case KVM_IOEVENTFD: {
2997 struct kvm_ioeventfd data;
2998
2999 r = -EFAULT;
3000 if (copy_from_user(&data, argp, sizeof(data)))
3001 goto out;
3002 r = kvm_ioeventfd(kvm, &data);
3003 break;
3004 }
3005 #ifdef CONFIG_HAVE_KVM_MSI
3006 case KVM_SIGNAL_MSI: {
3007 struct kvm_msi msi;
3008
3009 r = -EFAULT;
3010 if (copy_from_user(&msi, argp, sizeof(msi)))
3011 goto out;
3012 r = kvm_send_userspace_msi(kvm, &msi);
3013 break;
3014 }
3015 #endif
3016 #ifdef __KVM_HAVE_IRQ_LINE
3017 case KVM_IRQ_LINE_STATUS:
3018 case KVM_IRQ_LINE: {
3019 struct kvm_irq_level irq_event;
3020
3021 r = -EFAULT;
3022 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3023 goto out;
3024
3025 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3026 ioctl == KVM_IRQ_LINE_STATUS);
3027 if (r)
3028 goto out;
3029
3030 r = -EFAULT;
3031 if (ioctl == KVM_IRQ_LINE_STATUS) {
3032 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3033 goto out;
3034 }
3035
3036 r = 0;
3037 break;
3038 }
3039 #endif
3040 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3041 case KVM_SET_GSI_ROUTING: {
3042 struct kvm_irq_routing routing;
3043 struct kvm_irq_routing __user *urouting;
3044 struct kvm_irq_routing_entry *entries = NULL;
3045
3046 r = -EFAULT;
3047 if (copy_from_user(&routing, argp, sizeof(routing)))
3048 goto out;
3049 r = -EINVAL;
3050 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3051 goto out;
3052 if (routing.flags)
3053 goto out;
3054 if (routing.nr) {
3055 r = -ENOMEM;
3056 entries = vmalloc(routing.nr * sizeof(*entries));
3057 if (!entries)
3058 goto out;
3059 r = -EFAULT;
3060 urouting = argp;
3061 if (copy_from_user(entries, urouting->entries,
3062 routing.nr * sizeof(*entries)))
3063 goto out_free_irq_routing;
3064 }
3065 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3066 routing.flags);
3067 out_free_irq_routing:
3068 vfree(entries);
3069 break;
3070 }
3071 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3072 case KVM_CREATE_DEVICE: {
3073 struct kvm_create_device cd;
3074
3075 r = -EFAULT;
3076 if (copy_from_user(&cd, argp, sizeof(cd)))
3077 goto out;
3078
3079 r = kvm_ioctl_create_device(kvm, &cd);
3080 if (r)
3081 goto out;
3082
3083 r = -EFAULT;
3084 if (copy_to_user(argp, &cd, sizeof(cd)))
3085 goto out;
3086
3087 r = 0;
3088 break;
3089 }
3090 case KVM_CHECK_EXTENSION:
3091 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3092 break;
3093 default:
3094 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3095 }
3096 out:
3097 return r;
3098 }
3099
3100 #ifdef CONFIG_KVM_COMPAT
3101 struct compat_kvm_dirty_log {
3102 __u32 slot;
3103 __u32 padding1;
3104 union {
3105 compat_uptr_t dirty_bitmap; /* one bit per page */
3106 __u64 padding2;
3107 };
3108 };
3109
3110 static long kvm_vm_compat_ioctl(struct file *filp,
3111 unsigned int ioctl, unsigned long arg)
3112 {
3113 struct kvm *kvm = filp->private_data;
3114 int r;
3115
3116 if (kvm->mm != current->mm)
3117 return -EIO;
3118 switch (ioctl) {
3119 case KVM_GET_DIRTY_LOG: {
3120 struct compat_kvm_dirty_log compat_log;
3121 struct kvm_dirty_log log;
3122
3123 r = -EFAULT;
3124 if (copy_from_user(&compat_log, (void __user *)arg,
3125 sizeof(compat_log)))
3126 goto out;
3127 log.slot = compat_log.slot;
3128 log.padding1 = compat_log.padding1;
3129 log.padding2 = compat_log.padding2;
3130 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3131
3132 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3133 break;
3134 }
3135 default:
3136 r = kvm_vm_ioctl(filp, ioctl, arg);
3137 }
3138
3139 out:
3140 return r;
3141 }
3142 #endif
3143
3144 static struct file_operations kvm_vm_fops = {
3145 .release = kvm_vm_release,
3146 .unlocked_ioctl = kvm_vm_ioctl,
3147 #ifdef CONFIG_KVM_COMPAT
3148 .compat_ioctl = kvm_vm_compat_ioctl,
3149 #endif
3150 .llseek = noop_llseek,
3151 };
3152
3153 static int kvm_dev_ioctl_create_vm(unsigned long type)
3154 {
3155 int r;
3156 struct kvm *kvm;
3157 struct file *file;
3158
3159 kvm = kvm_create_vm(type);
3160 if (IS_ERR(kvm))
3161 return PTR_ERR(kvm);
3162 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3163 r = kvm_coalesced_mmio_init(kvm);
3164 if (r < 0) {
3165 kvm_put_kvm(kvm);
3166 return r;
3167 }
3168 #endif
3169 r = get_unused_fd_flags(O_CLOEXEC);
3170 if (r < 0) {
3171 kvm_put_kvm(kvm);
3172 return r;
3173 }
3174 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3175 if (IS_ERR(file)) {
3176 put_unused_fd(r);
3177 kvm_put_kvm(kvm);
3178 return PTR_ERR(file);
3179 }
3180
3181 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3182 put_unused_fd(r);
3183 fput(file);
3184 return -ENOMEM;
3185 }
3186
3187 fd_install(r, file);
3188 return r;
3189 }
3190
3191 static long kvm_dev_ioctl(struct file *filp,
3192 unsigned int ioctl, unsigned long arg)
3193 {
3194 long r = -EINVAL;
3195
3196 switch (ioctl) {
3197 case KVM_GET_API_VERSION:
3198 if (arg)
3199 goto out;
3200 r = KVM_API_VERSION;
3201 break;
3202 case KVM_CREATE_VM:
3203 r = kvm_dev_ioctl_create_vm(arg);
3204 break;
3205 case KVM_CHECK_EXTENSION:
3206 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3207 break;
3208 case KVM_GET_VCPU_MMAP_SIZE:
3209 if (arg)
3210 goto out;
3211 r = PAGE_SIZE; /* struct kvm_run */
3212 #ifdef CONFIG_X86
3213 r += PAGE_SIZE; /* pio data page */
3214 #endif
3215 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3216 r += PAGE_SIZE; /* coalesced mmio ring page */
3217 #endif
3218 break;
3219 case KVM_TRACE_ENABLE:
3220 case KVM_TRACE_PAUSE:
3221 case KVM_TRACE_DISABLE:
3222 r = -EOPNOTSUPP;
3223 break;
3224 default:
3225 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3226 }
3227 out:
3228 return r;
3229 }
3230
3231 static struct file_operations kvm_chardev_ops = {
3232 .unlocked_ioctl = kvm_dev_ioctl,
3233 .compat_ioctl = kvm_dev_ioctl,
3234 .llseek = noop_llseek,
3235 };
3236
3237 static struct miscdevice kvm_dev = {
3238 KVM_MINOR,
3239 "kvm",
3240 &kvm_chardev_ops,
3241 };
3242
3243 static void hardware_enable_nolock(void *junk)
3244 {
3245 int cpu = raw_smp_processor_id();
3246 int r;
3247
3248 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3249 return;
3250
3251 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3252
3253 r = kvm_arch_hardware_enable();
3254
3255 if (r) {
3256 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3257 atomic_inc(&hardware_enable_failed);
3258 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3259 }
3260 }
3261
3262 static int kvm_starting_cpu(unsigned int cpu)
3263 {
3264 raw_spin_lock(&kvm_count_lock);
3265 if (kvm_usage_count)
3266 hardware_enable_nolock(NULL);
3267 raw_spin_unlock(&kvm_count_lock);
3268 return 0;
3269 }
3270
3271 static void hardware_disable_nolock(void *junk)
3272 {
3273 int cpu = raw_smp_processor_id();
3274
3275 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3276 return;
3277 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3278 kvm_arch_hardware_disable();
3279 }
3280
3281 static int kvm_dying_cpu(unsigned int cpu)
3282 {
3283 raw_spin_lock(&kvm_count_lock);
3284 if (kvm_usage_count)
3285 hardware_disable_nolock(NULL);
3286 raw_spin_unlock(&kvm_count_lock);
3287 return 0;
3288 }
3289
3290 static void hardware_disable_all_nolock(void)
3291 {
3292 BUG_ON(!kvm_usage_count);
3293
3294 kvm_usage_count--;
3295 if (!kvm_usage_count)
3296 on_each_cpu(hardware_disable_nolock, NULL, 1);
3297 }
3298
3299 static void hardware_disable_all(void)
3300 {
3301 raw_spin_lock(&kvm_count_lock);
3302 hardware_disable_all_nolock();
3303 raw_spin_unlock(&kvm_count_lock);
3304 }
3305
3306 static int hardware_enable_all(void)
3307 {
3308 int r = 0;
3309
3310 raw_spin_lock(&kvm_count_lock);
3311
3312 kvm_usage_count++;
3313 if (kvm_usage_count == 1) {
3314 atomic_set(&hardware_enable_failed, 0);
3315 on_each_cpu(hardware_enable_nolock, NULL, 1);
3316
3317 if (atomic_read(&hardware_enable_failed)) {
3318 hardware_disable_all_nolock();
3319 r = -EBUSY;
3320 }
3321 }
3322
3323 raw_spin_unlock(&kvm_count_lock);
3324
3325 return r;
3326 }
3327
3328 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3329 void *v)
3330 {
3331 /*
3332 * Some (well, at least mine) BIOSes hang on reboot if
3333 * in vmx root mode.
3334 *
3335 * And Intel TXT required VMX off for all cpu when system shutdown.
3336 */
3337 pr_info("kvm: exiting hardware virtualization\n");
3338 kvm_rebooting = true;
3339 on_each_cpu(hardware_disable_nolock, NULL, 1);
3340 return NOTIFY_OK;
3341 }
3342
3343 static struct notifier_block kvm_reboot_notifier = {
3344 .notifier_call = kvm_reboot,
3345 .priority = 0,
3346 };
3347
3348 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3349 {
3350 int i;
3351
3352 for (i = 0; i < bus->dev_count; i++) {
3353 struct kvm_io_device *pos = bus->range[i].dev;
3354
3355 kvm_iodevice_destructor(pos);
3356 }
3357 kfree(bus);
3358 }
3359
3360 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3361 const struct kvm_io_range *r2)
3362 {
3363 gpa_t addr1 = r1->addr;
3364 gpa_t addr2 = r2->addr;
3365
3366 if (addr1 < addr2)
3367 return -1;
3368
3369 /* If r2->len == 0, match the exact address. If r2->len != 0,
3370 * accept any overlapping write. Any order is acceptable for
3371 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3372 * we process all of them.
3373 */
3374 if (r2->len) {
3375 addr1 += r1->len;
3376 addr2 += r2->len;
3377 }
3378
3379 if (addr1 > addr2)
3380 return 1;
3381
3382 return 0;
3383 }
3384
3385 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3386 {
3387 return kvm_io_bus_cmp(p1, p2);
3388 }
3389
3390 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3391 gpa_t addr, int len)
3392 {
3393 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3394 .addr = addr,
3395 .len = len,
3396 .dev = dev,
3397 };
3398
3399 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3400 kvm_io_bus_sort_cmp, NULL);
3401
3402 return 0;
3403 }
3404
3405 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3406 gpa_t addr, int len)
3407 {
3408 struct kvm_io_range *range, key;
3409 int off;
3410
3411 key = (struct kvm_io_range) {
3412 .addr = addr,
3413 .len = len,
3414 };
3415
3416 range = bsearch(&key, bus->range, bus->dev_count,
3417 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3418 if (range == NULL)
3419 return -ENOENT;
3420
3421 off = range - bus->range;
3422
3423 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3424 off--;
3425
3426 return off;
3427 }
3428
3429 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3430 struct kvm_io_range *range, const void *val)
3431 {
3432 int idx;
3433
3434 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3435 if (idx < 0)
3436 return -EOPNOTSUPP;
3437
3438 while (idx < bus->dev_count &&
3439 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3440 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3441 range->len, val))
3442 return idx;
3443 idx++;
3444 }
3445
3446 return -EOPNOTSUPP;
3447 }
3448
3449 /* kvm_io_bus_write - called under kvm->slots_lock */
3450 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3451 int len, const void *val)
3452 {
3453 struct kvm_io_bus *bus;
3454 struct kvm_io_range range;
3455 int r;
3456
3457 range = (struct kvm_io_range) {
3458 .addr = addr,
3459 .len = len,
3460 };
3461
3462 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3463 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3464 return r < 0 ? r : 0;
3465 }
3466
3467 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3468 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3469 gpa_t addr, int len, const void *val, long cookie)
3470 {
3471 struct kvm_io_bus *bus;
3472 struct kvm_io_range range;
3473
3474 range = (struct kvm_io_range) {
3475 .addr = addr,
3476 .len = len,
3477 };
3478
3479 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3480
3481 /* First try the device referenced by cookie. */
3482 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3483 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3484 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3485 val))
3486 return cookie;
3487
3488 /*
3489 * cookie contained garbage; fall back to search and return the
3490 * correct cookie value.
3491 */
3492 return __kvm_io_bus_write(vcpu, bus, &range, val);
3493 }
3494
3495 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3496 struct kvm_io_range *range, void *val)
3497 {
3498 int idx;
3499
3500 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3501 if (idx < 0)
3502 return -EOPNOTSUPP;
3503
3504 while (idx < bus->dev_count &&
3505 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3506 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3507 range->len, val))
3508 return idx;
3509 idx++;
3510 }
3511
3512 return -EOPNOTSUPP;
3513 }
3514 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3515
3516 /* kvm_io_bus_read - called under kvm->slots_lock */
3517 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3518 int len, void *val)
3519 {
3520 struct kvm_io_bus *bus;
3521 struct kvm_io_range range;
3522 int r;
3523
3524 range = (struct kvm_io_range) {
3525 .addr = addr,
3526 .len = len,
3527 };
3528
3529 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3530 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3531 return r < 0 ? r : 0;
3532 }
3533
3534
3535 /* Caller must hold slots_lock. */
3536 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3537 int len, struct kvm_io_device *dev)
3538 {
3539 struct kvm_io_bus *new_bus, *bus;
3540
3541 bus = kvm->buses[bus_idx];
3542 /* exclude ioeventfd which is limited by maximum fd */
3543 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3544 return -ENOSPC;
3545
3546 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3547 sizeof(struct kvm_io_range)), GFP_KERNEL);
3548 if (!new_bus)
3549 return -ENOMEM;
3550 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3551 sizeof(struct kvm_io_range)));
3552 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3553 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3554 synchronize_srcu_expedited(&kvm->srcu);
3555 kfree(bus);
3556
3557 return 0;
3558 }
3559
3560 /* Caller must hold slots_lock. */
3561 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3562 struct kvm_io_device *dev)
3563 {
3564 int i, r;
3565 struct kvm_io_bus *new_bus, *bus;
3566
3567 bus = kvm->buses[bus_idx];
3568 r = -ENOENT;
3569 for (i = 0; i < bus->dev_count; i++)
3570 if (bus->range[i].dev == dev) {
3571 r = 0;
3572 break;
3573 }
3574
3575 if (r)
3576 return r;
3577
3578 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3579 sizeof(struct kvm_io_range)), GFP_KERNEL);
3580 if (!new_bus)
3581 return -ENOMEM;
3582
3583 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3584 new_bus->dev_count--;
3585 memcpy(new_bus->range + i, bus->range + i + 1,
3586 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3587
3588 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3589 synchronize_srcu_expedited(&kvm->srcu);
3590 kfree(bus);
3591 return r;
3592 }
3593
3594 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3595 gpa_t addr)
3596 {
3597 struct kvm_io_bus *bus;
3598 int dev_idx, srcu_idx;
3599 struct kvm_io_device *iodev = NULL;
3600
3601 srcu_idx = srcu_read_lock(&kvm->srcu);
3602
3603 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3604
3605 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3606 if (dev_idx < 0)
3607 goto out_unlock;
3608
3609 iodev = bus->range[dev_idx].dev;
3610
3611 out_unlock:
3612 srcu_read_unlock(&kvm->srcu, srcu_idx);
3613
3614 return iodev;
3615 }
3616 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3617
3618 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3619 int (*get)(void *, u64 *), int (*set)(void *, u64),
3620 const char *fmt)
3621 {
3622 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3623 inode->i_private;
3624
3625 /* The debugfs files are a reference to the kvm struct which
3626 * is still valid when kvm_destroy_vm is called.
3627 * To avoid the race between open and the removal of the debugfs
3628 * directory we test against the users count.
3629 */
3630 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3631 return -ENOENT;
3632
3633 if (simple_attr_open(inode, file, get, set, fmt)) {
3634 kvm_put_kvm(stat_data->kvm);
3635 return -ENOMEM;
3636 }
3637
3638 return 0;
3639 }
3640
3641 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3642 {
3643 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3644 inode->i_private;
3645
3646 simple_attr_release(inode, file);
3647 kvm_put_kvm(stat_data->kvm);
3648
3649 return 0;
3650 }
3651
3652 static int vm_stat_get_per_vm(void *data, u64 *val)
3653 {
3654 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3655
3656 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3657
3658 return 0;
3659 }
3660
3661 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3662 {
3663 __simple_attr_check_format("%llu\n", 0ull);
3664 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3665 NULL, "%llu\n");
3666 }
3667
3668 static const struct file_operations vm_stat_get_per_vm_fops = {
3669 .owner = THIS_MODULE,
3670 .open = vm_stat_get_per_vm_open,
3671 .release = kvm_debugfs_release,
3672 .read = simple_attr_read,
3673 .write = simple_attr_write,
3674 .llseek = generic_file_llseek,
3675 };
3676
3677 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3678 {
3679 int i;
3680 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3681 struct kvm_vcpu *vcpu;
3682
3683 *val = 0;
3684
3685 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3686 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3687
3688 return 0;
3689 }
3690
3691 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3692 {
3693 __simple_attr_check_format("%llu\n", 0ull);
3694 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3695 NULL, "%llu\n");
3696 }
3697
3698 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3699 .owner = THIS_MODULE,
3700 .open = vcpu_stat_get_per_vm_open,
3701 .release = kvm_debugfs_release,
3702 .read = simple_attr_read,
3703 .write = simple_attr_write,
3704 .llseek = generic_file_llseek,
3705 };
3706
3707 static const struct file_operations *stat_fops_per_vm[] = {
3708 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3709 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3710 };
3711
3712 static int vm_stat_get(void *_offset, u64 *val)
3713 {
3714 unsigned offset = (long)_offset;
3715 struct kvm *kvm;
3716 struct kvm_stat_data stat_tmp = {.offset = offset};
3717 u64 tmp_val;
3718
3719 *val = 0;
3720 spin_lock(&kvm_lock);
3721 list_for_each_entry(kvm, &vm_list, vm_list) {
3722 stat_tmp.kvm = kvm;
3723 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3724 *val += tmp_val;
3725 }
3726 spin_unlock(&kvm_lock);
3727 return 0;
3728 }
3729
3730 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3731
3732 static int vcpu_stat_get(void *_offset, u64 *val)
3733 {
3734 unsigned offset = (long)_offset;
3735 struct kvm *kvm;
3736 struct kvm_stat_data stat_tmp = {.offset = offset};
3737 u64 tmp_val;
3738
3739 *val = 0;
3740 spin_lock(&kvm_lock);
3741 list_for_each_entry(kvm, &vm_list, vm_list) {
3742 stat_tmp.kvm = kvm;
3743 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3744 *val += tmp_val;
3745 }
3746 spin_unlock(&kvm_lock);
3747 return 0;
3748 }
3749
3750 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3751
3752 static const struct file_operations *stat_fops[] = {
3753 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3754 [KVM_STAT_VM] = &vm_stat_fops,
3755 };
3756
3757 static int kvm_init_debug(void)
3758 {
3759 int r = -EEXIST;
3760 struct kvm_stats_debugfs_item *p;
3761
3762 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3763 if (kvm_debugfs_dir == NULL)
3764 goto out;
3765
3766 kvm_debugfs_num_entries = 0;
3767 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3768 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3769 (void *)(long)p->offset,
3770 stat_fops[p->kind]))
3771 goto out_dir;
3772 }
3773
3774 return 0;
3775
3776 out_dir:
3777 debugfs_remove_recursive(kvm_debugfs_dir);
3778 out:
3779 return r;
3780 }
3781
3782 static int kvm_suspend(void)
3783 {
3784 if (kvm_usage_count)
3785 hardware_disable_nolock(NULL);
3786 return 0;
3787 }
3788
3789 static void kvm_resume(void)
3790 {
3791 if (kvm_usage_count) {
3792 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3793 hardware_enable_nolock(NULL);
3794 }
3795 }
3796
3797 static struct syscore_ops kvm_syscore_ops = {
3798 .suspend = kvm_suspend,
3799 .resume = kvm_resume,
3800 };
3801
3802 static inline
3803 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3804 {
3805 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3806 }
3807
3808 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3809 {
3810 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3811
3812 if (vcpu->preempted)
3813 vcpu->preempted = false;
3814
3815 kvm_arch_sched_in(vcpu, cpu);
3816
3817 kvm_arch_vcpu_load(vcpu, cpu);
3818 }
3819
3820 static void kvm_sched_out(struct preempt_notifier *pn,
3821 struct task_struct *next)
3822 {
3823 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3824
3825 if (current->state == TASK_RUNNING)
3826 vcpu->preempted = true;
3827 kvm_arch_vcpu_put(vcpu);
3828 }
3829
3830 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3831 struct module *module)
3832 {
3833 int r;
3834 int cpu;
3835
3836 r = kvm_arch_init(opaque);
3837 if (r)
3838 goto out_fail;
3839
3840 /*
3841 * kvm_arch_init makes sure there's at most one caller
3842 * for architectures that support multiple implementations,
3843 * like intel and amd on x86.
3844 */
3845
3846 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3847 r = -ENOMEM;
3848 goto out_free_0;
3849 }
3850
3851 r = kvm_arch_hardware_setup();
3852 if (r < 0)
3853 goto out_free_0a;
3854
3855 for_each_online_cpu(cpu) {
3856 smp_call_function_single(cpu,
3857 kvm_arch_check_processor_compat,
3858 &r, 1);
3859 if (r < 0)
3860 goto out_free_1;
3861 }
3862
3863 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3864 kvm_starting_cpu, kvm_dying_cpu);
3865 if (r)
3866 goto out_free_2;
3867 register_reboot_notifier(&kvm_reboot_notifier);
3868
3869 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3870 if (!vcpu_align)
3871 vcpu_align = __alignof__(struct kvm_vcpu);
3872 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3873 0, NULL);
3874 if (!kvm_vcpu_cache) {
3875 r = -ENOMEM;
3876 goto out_free_3;
3877 }
3878
3879 r = kvm_async_pf_init();
3880 if (r)
3881 goto out_free;
3882
3883 kvm_chardev_ops.owner = module;
3884 kvm_vm_fops.owner = module;
3885 kvm_vcpu_fops.owner = module;
3886
3887 r = misc_register(&kvm_dev);
3888 if (r) {
3889 pr_err("kvm: misc device register failed\n");
3890 goto out_unreg;
3891 }
3892
3893 register_syscore_ops(&kvm_syscore_ops);
3894
3895 kvm_preempt_ops.sched_in = kvm_sched_in;
3896 kvm_preempt_ops.sched_out = kvm_sched_out;
3897
3898 r = kvm_init_debug();
3899 if (r) {
3900 pr_err("kvm: create debugfs files failed\n");
3901 goto out_undebugfs;
3902 }
3903
3904 r = kvm_vfio_ops_init();
3905 WARN_ON(r);
3906
3907 return 0;
3908
3909 out_undebugfs:
3910 unregister_syscore_ops(&kvm_syscore_ops);
3911 misc_deregister(&kvm_dev);
3912 out_unreg:
3913 kvm_async_pf_deinit();
3914 out_free:
3915 kmem_cache_destroy(kvm_vcpu_cache);
3916 out_free_3:
3917 unregister_reboot_notifier(&kvm_reboot_notifier);
3918 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3919 out_free_2:
3920 out_free_1:
3921 kvm_arch_hardware_unsetup();
3922 out_free_0a:
3923 free_cpumask_var(cpus_hardware_enabled);
3924 out_free_0:
3925 kvm_irqfd_exit();
3926 kvm_arch_exit();
3927 out_fail:
3928 return r;
3929 }
3930 EXPORT_SYMBOL_GPL(kvm_init);
3931
3932 void kvm_exit(void)
3933 {
3934 debugfs_remove_recursive(kvm_debugfs_dir);
3935 misc_deregister(&kvm_dev);
3936 kmem_cache_destroy(kvm_vcpu_cache);
3937 kvm_async_pf_deinit();
3938 unregister_syscore_ops(&kvm_syscore_ops);
3939 unregister_reboot_notifier(&kvm_reboot_notifier);
3940 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3941 on_each_cpu(hardware_disable_nolock, NULL, 1);
3942 kvm_arch_hardware_unsetup();
3943 kvm_arch_exit();
3944 kvm_irqfd_exit();
3945 free_cpumask_var(cpus_hardware_enabled);
3946 kvm_vfio_ops_exit();
3947 }
3948 EXPORT_SYMBOL_GPL(kvm_exit);