]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/kvm_main.c
ACPI / PAD: power_saving_thread() is not freezable
[mirror_ubuntu-artful-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, int, S_IRUGO);
76
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, int, S_IRUGO);
80
81 /*
82 * Ordering of locks:
83 *
84 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85 */
86
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104 unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107 unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114 static void kvm_release_pfn_dirty(pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120 static bool largepages_enabled = true;
121
122 bool kvm_is_reserved_pfn(pfn_t pfn)
123 {
124 if (pfn_valid(pfn))
125 return PageReserved(pfn_to_page(pfn));
126
127 return true;
128 }
129
130 /*
131 * Switches to specified vcpu, until a matching vcpu_put()
132 */
133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135 int cpu;
136
137 if (mutex_lock_killable(&vcpu->mutex))
138 return -EINTR;
139 cpu = get_cpu();
140 preempt_notifier_register(&vcpu->preempt_notifier);
141 kvm_arch_vcpu_load(vcpu, cpu);
142 put_cpu();
143 return 0;
144 }
145
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148 preempt_disable();
149 kvm_arch_vcpu_put(vcpu);
150 preempt_notifier_unregister(&vcpu->preempt_notifier);
151 preempt_enable();
152 mutex_unlock(&vcpu->mutex);
153 }
154
155 static void ack_flush(void *_completed)
156 {
157 }
158
159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161 int i, cpu, me;
162 cpumask_var_t cpus;
163 bool called = true;
164 struct kvm_vcpu *vcpu;
165
166 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167
168 me = get_cpu();
169 kvm_for_each_vcpu(i, vcpu, kvm) {
170 kvm_make_request(req, vcpu);
171 cpu = vcpu->cpu;
172
173 /* Set ->requests bit before we read ->mode */
174 smp_mb();
175
176 if (cpus != NULL && cpu != -1 && cpu != me &&
177 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178 cpumask_set_cpu(cpu, cpus);
179 }
180 if (unlikely(cpus == NULL))
181 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182 else if (!cpumask_empty(cpus))
183 smp_call_function_many(cpus, ack_flush, NULL, 1);
184 else
185 called = false;
186 put_cpu();
187 free_cpumask_var(cpus);
188 return called;
189 }
190
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194 long dirty_count = kvm->tlbs_dirty;
195
196 smp_mb();
197 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198 ++kvm->stat.remote_tlb_flush;
199 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200 }
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202 #endif
203
204 void kvm_reload_remote_mmus(struct kvm *kvm)
205 {
206 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207 }
208
209 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
210 {
211 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
212 }
213
214 void kvm_make_scan_ioapic_request(struct kvm *kvm)
215 {
216 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
217 }
218
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221 struct page *page;
222 int r;
223
224 mutex_init(&vcpu->mutex);
225 vcpu->cpu = -1;
226 vcpu->kvm = kvm;
227 vcpu->vcpu_id = id;
228 vcpu->pid = NULL;
229 vcpu->halt_poll_ns = 0;
230 init_waitqueue_head(&vcpu->wq);
231 kvm_async_pf_vcpu_init(vcpu);
232
233 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
234 if (!page) {
235 r = -ENOMEM;
236 goto fail;
237 }
238 vcpu->run = page_address(page);
239
240 kvm_vcpu_set_in_spin_loop(vcpu, false);
241 kvm_vcpu_set_dy_eligible(vcpu, false);
242 vcpu->preempted = false;
243
244 r = kvm_arch_vcpu_init(vcpu);
245 if (r < 0)
246 goto fail_free_run;
247 return 0;
248
249 fail_free_run:
250 free_page((unsigned long)vcpu->run);
251 fail:
252 return r;
253 }
254 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
255
256 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
257 {
258 put_pid(vcpu->pid);
259 kvm_arch_vcpu_uninit(vcpu);
260 free_page((unsigned long)vcpu->run);
261 }
262 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
263
264 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
265 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
266 {
267 return container_of(mn, struct kvm, mmu_notifier);
268 }
269
270 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
271 struct mm_struct *mm,
272 unsigned long address)
273 {
274 struct kvm *kvm = mmu_notifier_to_kvm(mn);
275 int need_tlb_flush, idx;
276
277 /*
278 * When ->invalidate_page runs, the linux pte has been zapped
279 * already but the page is still allocated until
280 * ->invalidate_page returns. So if we increase the sequence
281 * here the kvm page fault will notice if the spte can't be
282 * established because the page is going to be freed. If
283 * instead the kvm page fault establishes the spte before
284 * ->invalidate_page runs, kvm_unmap_hva will release it
285 * before returning.
286 *
287 * The sequence increase only need to be seen at spin_unlock
288 * time, and not at spin_lock time.
289 *
290 * Increasing the sequence after the spin_unlock would be
291 * unsafe because the kvm page fault could then establish the
292 * pte after kvm_unmap_hva returned, without noticing the page
293 * is going to be freed.
294 */
295 idx = srcu_read_lock(&kvm->srcu);
296 spin_lock(&kvm->mmu_lock);
297
298 kvm->mmu_notifier_seq++;
299 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
300 /* we've to flush the tlb before the pages can be freed */
301 if (need_tlb_flush)
302 kvm_flush_remote_tlbs(kvm);
303
304 spin_unlock(&kvm->mmu_lock);
305
306 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
307
308 srcu_read_unlock(&kvm->srcu, idx);
309 }
310
311 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
312 struct mm_struct *mm,
313 unsigned long address,
314 pte_t pte)
315 {
316 struct kvm *kvm = mmu_notifier_to_kvm(mn);
317 int idx;
318
319 idx = srcu_read_lock(&kvm->srcu);
320 spin_lock(&kvm->mmu_lock);
321 kvm->mmu_notifier_seq++;
322 kvm_set_spte_hva(kvm, address, pte);
323 spin_unlock(&kvm->mmu_lock);
324 srcu_read_unlock(&kvm->srcu, idx);
325 }
326
327 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
328 struct mm_struct *mm,
329 unsigned long start,
330 unsigned long end)
331 {
332 struct kvm *kvm = mmu_notifier_to_kvm(mn);
333 int need_tlb_flush = 0, idx;
334
335 idx = srcu_read_lock(&kvm->srcu);
336 spin_lock(&kvm->mmu_lock);
337 /*
338 * The count increase must become visible at unlock time as no
339 * spte can be established without taking the mmu_lock and
340 * count is also read inside the mmu_lock critical section.
341 */
342 kvm->mmu_notifier_count++;
343 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
344 need_tlb_flush |= kvm->tlbs_dirty;
345 /* we've to flush the tlb before the pages can be freed */
346 if (need_tlb_flush)
347 kvm_flush_remote_tlbs(kvm);
348
349 spin_unlock(&kvm->mmu_lock);
350 srcu_read_unlock(&kvm->srcu, idx);
351 }
352
353 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
354 struct mm_struct *mm,
355 unsigned long start,
356 unsigned long end)
357 {
358 struct kvm *kvm = mmu_notifier_to_kvm(mn);
359
360 spin_lock(&kvm->mmu_lock);
361 /*
362 * This sequence increase will notify the kvm page fault that
363 * the page that is going to be mapped in the spte could have
364 * been freed.
365 */
366 kvm->mmu_notifier_seq++;
367 smp_wmb();
368 /*
369 * The above sequence increase must be visible before the
370 * below count decrease, which is ensured by the smp_wmb above
371 * in conjunction with the smp_rmb in mmu_notifier_retry().
372 */
373 kvm->mmu_notifier_count--;
374 spin_unlock(&kvm->mmu_lock);
375
376 BUG_ON(kvm->mmu_notifier_count < 0);
377 }
378
379 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
380 struct mm_struct *mm,
381 unsigned long start,
382 unsigned long end)
383 {
384 struct kvm *kvm = mmu_notifier_to_kvm(mn);
385 int young, idx;
386
387 idx = srcu_read_lock(&kvm->srcu);
388 spin_lock(&kvm->mmu_lock);
389
390 young = kvm_age_hva(kvm, start, end);
391 if (young)
392 kvm_flush_remote_tlbs(kvm);
393
394 spin_unlock(&kvm->mmu_lock);
395 srcu_read_unlock(&kvm->srcu, idx);
396
397 return young;
398 }
399
400 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
401 struct mm_struct *mm,
402 unsigned long start,
403 unsigned long end)
404 {
405 struct kvm *kvm = mmu_notifier_to_kvm(mn);
406 int young, idx;
407
408 idx = srcu_read_lock(&kvm->srcu);
409 spin_lock(&kvm->mmu_lock);
410 /*
411 * Even though we do not flush TLB, this will still adversely
412 * affect performance on pre-Haswell Intel EPT, where there is
413 * no EPT Access Bit to clear so that we have to tear down EPT
414 * tables instead. If we find this unacceptable, we can always
415 * add a parameter to kvm_age_hva so that it effectively doesn't
416 * do anything on clear_young.
417 *
418 * Also note that currently we never issue secondary TLB flushes
419 * from clear_young, leaving this job up to the regular system
420 * cadence. If we find this inaccurate, we might come up with a
421 * more sophisticated heuristic later.
422 */
423 young = kvm_age_hva(kvm, start, end);
424 spin_unlock(&kvm->mmu_lock);
425 srcu_read_unlock(&kvm->srcu, idx);
426
427 return young;
428 }
429
430 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
431 struct mm_struct *mm,
432 unsigned long address)
433 {
434 struct kvm *kvm = mmu_notifier_to_kvm(mn);
435 int young, idx;
436
437 idx = srcu_read_lock(&kvm->srcu);
438 spin_lock(&kvm->mmu_lock);
439 young = kvm_test_age_hva(kvm, address);
440 spin_unlock(&kvm->mmu_lock);
441 srcu_read_unlock(&kvm->srcu, idx);
442
443 return young;
444 }
445
446 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
447 struct mm_struct *mm)
448 {
449 struct kvm *kvm = mmu_notifier_to_kvm(mn);
450 int idx;
451
452 idx = srcu_read_lock(&kvm->srcu);
453 kvm_arch_flush_shadow_all(kvm);
454 srcu_read_unlock(&kvm->srcu, idx);
455 }
456
457 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
458 .invalidate_page = kvm_mmu_notifier_invalidate_page,
459 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
460 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
461 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
462 .clear_young = kvm_mmu_notifier_clear_young,
463 .test_young = kvm_mmu_notifier_test_young,
464 .change_pte = kvm_mmu_notifier_change_pte,
465 .release = kvm_mmu_notifier_release,
466 };
467
468 static int kvm_init_mmu_notifier(struct kvm *kvm)
469 {
470 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
471 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
472 }
473
474 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
475
476 static int kvm_init_mmu_notifier(struct kvm *kvm)
477 {
478 return 0;
479 }
480
481 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
482
483 static struct kvm_memslots *kvm_alloc_memslots(void)
484 {
485 int i;
486 struct kvm_memslots *slots;
487
488 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
489 if (!slots)
490 return NULL;
491
492 /*
493 * Init kvm generation close to the maximum to easily test the
494 * code of handling generation number wrap-around.
495 */
496 slots->generation = -150;
497 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
498 slots->id_to_index[i] = slots->memslots[i].id = i;
499
500 return slots;
501 }
502
503 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
504 {
505 if (!memslot->dirty_bitmap)
506 return;
507
508 kvfree(memslot->dirty_bitmap);
509 memslot->dirty_bitmap = NULL;
510 }
511
512 /*
513 * Free any memory in @free but not in @dont.
514 */
515 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
516 struct kvm_memory_slot *dont)
517 {
518 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
519 kvm_destroy_dirty_bitmap(free);
520
521 kvm_arch_free_memslot(kvm, free, dont);
522
523 free->npages = 0;
524 }
525
526 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
527 {
528 struct kvm_memory_slot *memslot;
529
530 if (!slots)
531 return;
532
533 kvm_for_each_memslot(memslot, slots)
534 kvm_free_memslot(kvm, memslot, NULL);
535
536 kvfree(slots);
537 }
538
539 static struct kvm *kvm_create_vm(unsigned long type)
540 {
541 int r, i;
542 struct kvm *kvm = kvm_arch_alloc_vm();
543
544 if (!kvm)
545 return ERR_PTR(-ENOMEM);
546
547 r = kvm_arch_init_vm(kvm, type);
548 if (r)
549 goto out_err_no_disable;
550
551 r = hardware_enable_all();
552 if (r)
553 goto out_err_no_disable;
554
555 #ifdef CONFIG_HAVE_KVM_IRQFD
556 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
557 #endif
558
559 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
560
561 r = -ENOMEM;
562 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
563 kvm->memslots[i] = kvm_alloc_memslots();
564 if (!kvm->memslots[i])
565 goto out_err_no_srcu;
566 }
567
568 if (init_srcu_struct(&kvm->srcu))
569 goto out_err_no_srcu;
570 if (init_srcu_struct(&kvm->irq_srcu))
571 goto out_err_no_irq_srcu;
572 for (i = 0; i < KVM_NR_BUSES; i++) {
573 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
574 GFP_KERNEL);
575 if (!kvm->buses[i])
576 goto out_err;
577 }
578
579 spin_lock_init(&kvm->mmu_lock);
580 kvm->mm = current->mm;
581 atomic_inc(&kvm->mm->mm_count);
582 kvm_eventfd_init(kvm);
583 mutex_init(&kvm->lock);
584 mutex_init(&kvm->irq_lock);
585 mutex_init(&kvm->slots_lock);
586 atomic_set(&kvm->users_count, 1);
587 INIT_LIST_HEAD(&kvm->devices);
588
589 r = kvm_init_mmu_notifier(kvm);
590 if (r)
591 goto out_err;
592
593 spin_lock(&kvm_lock);
594 list_add(&kvm->vm_list, &vm_list);
595 spin_unlock(&kvm_lock);
596
597 preempt_notifier_inc();
598
599 return kvm;
600
601 out_err:
602 cleanup_srcu_struct(&kvm->irq_srcu);
603 out_err_no_irq_srcu:
604 cleanup_srcu_struct(&kvm->srcu);
605 out_err_no_srcu:
606 hardware_disable_all();
607 out_err_no_disable:
608 for (i = 0; i < KVM_NR_BUSES; i++)
609 kfree(kvm->buses[i]);
610 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
611 kvm_free_memslots(kvm, kvm->memslots[i]);
612 kvm_arch_free_vm(kvm);
613 return ERR_PTR(r);
614 }
615
616 /*
617 * Avoid using vmalloc for a small buffer.
618 * Should not be used when the size is statically known.
619 */
620 void *kvm_kvzalloc(unsigned long size)
621 {
622 if (size > PAGE_SIZE)
623 return vzalloc(size);
624 else
625 return kzalloc(size, GFP_KERNEL);
626 }
627
628 static void kvm_destroy_devices(struct kvm *kvm)
629 {
630 struct list_head *node, *tmp;
631
632 list_for_each_safe(node, tmp, &kvm->devices) {
633 struct kvm_device *dev =
634 list_entry(node, struct kvm_device, vm_node);
635
636 list_del(node);
637 dev->ops->destroy(dev);
638 }
639 }
640
641 static void kvm_destroy_vm(struct kvm *kvm)
642 {
643 int i;
644 struct mm_struct *mm = kvm->mm;
645
646 kvm_arch_sync_events(kvm);
647 spin_lock(&kvm_lock);
648 list_del(&kvm->vm_list);
649 spin_unlock(&kvm_lock);
650 kvm_free_irq_routing(kvm);
651 for (i = 0; i < KVM_NR_BUSES; i++)
652 kvm_io_bus_destroy(kvm->buses[i]);
653 kvm_coalesced_mmio_free(kvm);
654 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
655 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
656 #else
657 kvm_arch_flush_shadow_all(kvm);
658 #endif
659 kvm_arch_destroy_vm(kvm);
660 kvm_destroy_devices(kvm);
661 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
662 kvm_free_memslots(kvm, kvm->memslots[i]);
663 cleanup_srcu_struct(&kvm->irq_srcu);
664 cleanup_srcu_struct(&kvm->srcu);
665 kvm_arch_free_vm(kvm);
666 preempt_notifier_dec();
667 hardware_disable_all();
668 mmdrop(mm);
669 }
670
671 void kvm_get_kvm(struct kvm *kvm)
672 {
673 atomic_inc(&kvm->users_count);
674 }
675 EXPORT_SYMBOL_GPL(kvm_get_kvm);
676
677 void kvm_put_kvm(struct kvm *kvm)
678 {
679 if (atomic_dec_and_test(&kvm->users_count))
680 kvm_destroy_vm(kvm);
681 }
682 EXPORT_SYMBOL_GPL(kvm_put_kvm);
683
684
685 static int kvm_vm_release(struct inode *inode, struct file *filp)
686 {
687 struct kvm *kvm = filp->private_data;
688
689 kvm_irqfd_release(kvm);
690
691 kvm_put_kvm(kvm);
692 return 0;
693 }
694
695 /*
696 * Allocation size is twice as large as the actual dirty bitmap size.
697 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
698 */
699 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
700 {
701 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
702
703 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
704 if (!memslot->dirty_bitmap)
705 return -ENOMEM;
706
707 return 0;
708 }
709
710 /*
711 * Insert memslot and re-sort memslots based on their GFN,
712 * so binary search could be used to lookup GFN.
713 * Sorting algorithm takes advantage of having initially
714 * sorted array and known changed memslot position.
715 */
716 static void update_memslots(struct kvm_memslots *slots,
717 struct kvm_memory_slot *new)
718 {
719 int id = new->id;
720 int i = slots->id_to_index[id];
721 struct kvm_memory_slot *mslots = slots->memslots;
722
723 WARN_ON(mslots[i].id != id);
724 if (!new->npages) {
725 WARN_ON(!mslots[i].npages);
726 if (mslots[i].npages)
727 slots->used_slots--;
728 } else {
729 if (!mslots[i].npages)
730 slots->used_slots++;
731 }
732
733 while (i < KVM_MEM_SLOTS_NUM - 1 &&
734 new->base_gfn <= mslots[i + 1].base_gfn) {
735 if (!mslots[i + 1].npages)
736 break;
737 mslots[i] = mslots[i + 1];
738 slots->id_to_index[mslots[i].id] = i;
739 i++;
740 }
741
742 /*
743 * The ">=" is needed when creating a slot with base_gfn == 0,
744 * so that it moves before all those with base_gfn == npages == 0.
745 *
746 * On the other hand, if new->npages is zero, the above loop has
747 * already left i pointing to the beginning of the empty part of
748 * mslots, and the ">=" would move the hole backwards in this
749 * case---which is wrong. So skip the loop when deleting a slot.
750 */
751 if (new->npages) {
752 while (i > 0 &&
753 new->base_gfn >= mslots[i - 1].base_gfn) {
754 mslots[i] = mslots[i - 1];
755 slots->id_to_index[mslots[i].id] = i;
756 i--;
757 }
758 } else
759 WARN_ON_ONCE(i != slots->used_slots);
760
761 mslots[i] = *new;
762 slots->id_to_index[mslots[i].id] = i;
763 }
764
765 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
766 {
767 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
768
769 #ifdef __KVM_HAVE_READONLY_MEM
770 valid_flags |= KVM_MEM_READONLY;
771 #endif
772
773 if (mem->flags & ~valid_flags)
774 return -EINVAL;
775
776 return 0;
777 }
778
779 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
780 int as_id, struct kvm_memslots *slots)
781 {
782 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
783
784 /*
785 * Set the low bit in the generation, which disables SPTE caching
786 * until the end of synchronize_srcu_expedited.
787 */
788 WARN_ON(old_memslots->generation & 1);
789 slots->generation = old_memslots->generation + 1;
790
791 rcu_assign_pointer(kvm->memslots[as_id], slots);
792 synchronize_srcu_expedited(&kvm->srcu);
793
794 /*
795 * Increment the new memslot generation a second time. This prevents
796 * vm exits that race with memslot updates from caching a memslot
797 * generation that will (potentially) be valid forever.
798 */
799 slots->generation++;
800
801 kvm_arch_memslots_updated(kvm, slots);
802
803 return old_memslots;
804 }
805
806 /*
807 * Allocate some memory and give it an address in the guest physical address
808 * space.
809 *
810 * Discontiguous memory is allowed, mostly for framebuffers.
811 *
812 * Must be called holding kvm->slots_lock for write.
813 */
814 int __kvm_set_memory_region(struct kvm *kvm,
815 const struct kvm_userspace_memory_region *mem)
816 {
817 int r;
818 gfn_t base_gfn;
819 unsigned long npages;
820 struct kvm_memory_slot *slot;
821 struct kvm_memory_slot old, new;
822 struct kvm_memslots *slots = NULL, *old_memslots;
823 int as_id, id;
824 enum kvm_mr_change change;
825
826 r = check_memory_region_flags(mem);
827 if (r)
828 goto out;
829
830 r = -EINVAL;
831 as_id = mem->slot >> 16;
832 id = (u16)mem->slot;
833
834 /* General sanity checks */
835 if (mem->memory_size & (PAGE_SIZE - 1))
836 goto out;
837 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
838 goto out;
839 /* We can read the guest memory with __xxx_user() later on. */
840 if ((id < KVM_USER_MEM_SLOTS) &&
841 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
842 !access_ok(VERIFY_WRITE,
843 (void __user *)(unsigned long)mem->userspace_addr,
844 mem->memory_size)))
845 goto out;
846 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
847 goto out;
848 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
849 goto out;
850
851 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
852 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
853 npages = mem->memory_size >> PAGE_SHIFT;
854
855 if (npages > KVM_MEM_MAX_NR_PAGES)
856 goto out;
857
858 new = old = *slot;
859
860 new.id = id;
861 new.base_gfn = base_gfn;
862 new.npages = npages;
863 new.flags = mem->flags;
864
865 if (npages) {
866 if (!old.npages)
867 change = KVM_MR_CREATE;
868 else { /* Modify an existing slot. */
869 if ((mem->userspace_addr != old.userspace_addr) ||
870 (npages != old.npages) ||
871 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
872 goto out;
873
874 if (base_gfn != old.base_gfn)
875 change = KVM_MR_MOVE;
876 else if (new.flags != old.flags)
877 change = KVM_MR_FLAGS_ONLY;
878 else { /* Nothing to change. */
879 r = 0;
880 goto out;
881 }
882 }
883 } else {
884 if (!old.npages)
885 goto out;
886
887 change = KVM_MR_DELETE;
888 new.base_gfn = 0;
889 new.flags = 0;
890 }
891
892 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
893 /* Check for overlaps */
894 r = -EEXIST;
895 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
896 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
897 (slot->id == id))
898 continue;
899 if (!((base_gfn + npages <= slot->base_gfn) ||
900 (base_gfn >= slot->base_gfn + slot->npages)))
901 goto out;
902 }
903 }
904
905 /* Free page dirty bitmap if unneeded */
906 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
907 new.dirty_bitmap = NULL;
908
909 r = -ENOMEM;
910 if (change == KVM_MR_CREATE) {
911 new.userspace_addr = mem->userspace_addr;
912
913 if (kvm_arch_create_memslot(kvm, &new, npages))
914 goto out_free;
915 }
916
917 /* Allocate page dirty bitmap if needed */
918 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
919 if (kvm_create_dirty_bitmap(&new) < 0)
920 goto out_free;
921 }
922
923 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
924 if (!slots)
925 goto out_free;
926 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
927
928 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
929 slot = id_to_memslot(slots, id);
930 slot->flags |= KVM_MEMSLOT_INVALID;
931
932 old_memslots = install_new_memslots(kvm, as_id, slots);
933
934 /* slot was deleted or moved, clear iommu mapping */
935 kvm_iommu_unmap_pages(kvm, &old);
936 /* From this point no new shadow pages pointing to a deleted,
937 * or moved, memslot will be created.
938 *
939 * validation of sp->gfn happens in:
940 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
941 * - kvm_is_visible_gfn (mmu_check_roots)
942 */
943 kvm_arch_flush_shadow_memslot(kvm, slot);
944
945 /*
946 * We can re-use the old_memslots from above, the only difference
947 * from the currently installed memslots is the invalid flag. This
948 * will get overwritten by update_memslots anyway.
949 */
950 slots = old_memslots;
951 }
952
953 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
954 if (r)
955 goto out_slots;
956
957 /* actual memory is freed via old in kvm_free_memslot below */
958 if (change == KVM_MR_DELETE) {
959 new.dirty_bitmap = NULL;
960 memset(&new.arch, 0, sizeof(new.arch));
961 }
962
963 update_memslots(slots, &new);
964 old_memslots = install_new_memslots(kvm, as_id, slots);
965
966 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
967
968 kvm_free_memslot(kvm, &old, &new);
969 kvfree(old_memslots);
970
971 /*
972 * IOMMU mapping: New slots need to be mapped. Old slots need to be
973 * un-mapped and re-mapped if their base changes. Since base change
974 * unmapping is handled above with slot deletion, mapping alone is
975 * needed here. Anything else the iommu might care about for existing
976 * slots (size changes, userspace addr changes and read-only flag
977 * changes) is disallowed above, so any other attribute changes getting
978 * here can be skipped.
979 */
980 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
981 r = kvm_iommu_map_pages(kvm, &new);
982 return r;
983 }
984
985 return 0;
986
987 out_slots:
988 kvfree(slots);
989 out_free:
990 kvm_free_memslot(kvm, &new, &old);
991 out:
992 return r;
993 }
994 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
995
996 int kvm_set_memory_region(struct kvm *kvm,
997 const struct kvm_userspace_memory_region *mem)
998 {
999 int r;
1000
1001 mutex_lock(&kvm->slots_lock);
1002 r = __kvm_set_memory_region(kvm, mem);
1003 mutex_unlock(&kvm->slots_lock);
1004 return r;
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1007
1008 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1009 struct kvm_userspace_memory_region *mem)
1010 {
1011 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1012 return -EINVAL;
1013
1014 return kvm_set_memory_region(kvm, mem);
1015 }
1016
1017 int kvm_get_dirty_log(struct kvm *kvm,
1018 struct kvm_dirty_log *log, int *is_dirty)
1019 {
1020 struct kvm_memslots *slots;
1021 struct kvm_memory_slot *memslot;
1022 int r, i, as_id, id;
1023 unsigned long n;
1024 unsigned long any = 0;
1025
1026 r = -EINVAL;
1027 as_id = log->slot >> 16;
1028 id = (u16)log->slot;
1029 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1030 goto out;
1031
1032 slots = __kvm_memslots(kvm, as_id);
1033 memslot = id_to_memslot(slots, id);
1034 r = -ENOENT;
1035 if (!memslot->dirty_bitmap)
1036 goto out;
1037
1038 n = kvm_dirty_bitmap_bytes(memslot);
1039
1040 for (i = 0; !any && i < n/sizeof(long); ++i)
1041 any = memslot->dirty_bitmap[i];
1042
1043 r = -EFAULT;
1044 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1045 goto out;
1046
1047 if (any)
1048 *is_dirty = 1;
1049
1050 r = 0;
1051 out:
1052 return r;
1053 }
1054 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1055
1056 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1057 /**
1058 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1059 * are dirty write protect them for next write.
1060 * @kvm: pointer to kvm instance
1061 * @log: slot id and address to which we copy the log
1062 * @is_dirty: flag set if any page is dirty
1063 *
1064 * We need to keep it in mind that VCPU threads can write to the bitmap
1065 * concurrently. So, to avoid losing track of dirty pages we keep the
1066 * following order:
1067 *
1068 * 1. Take a snapshot of the bit and clear it if needed.
1069 * 2. Write protect the corresponding page.
1070 * 3. Copy the snapshot to the userspace.
1071 * 4. Upon return caller flushes TLB's if needed.
1072 *
1073 * Between 2 and 4, the guest may write to the page using the remaining TLB
1074 * entry. This is not a problem because the page is reported dirty using
1075 * the snapshot taken before and step 4 ensures that writes done after
1076 * exiting to userspace will be logged for the next call.
1077 *
1078 */
1079 int kvm_get_dirty_log_protect(struct kvm *kvm,
1080 struct kvm_dirty_log *log, bool *is_dirty)
1081 {
1082 struct kvm_memslots *slots;
1083 struct kvm_memory_slot *memslot;
1084 int r, i, as_id, id;
1085 unsigned long n;
1086 unsigned long *dirty_bitmap;
1087 unsigned long *dirty_bitmap_buffer;
1088
1089 r = -EINVAL;
1090 as_id = log->slot >> 16;
1091 id = (u16)log->slot;
1092 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1093 goto out;
1094
1095 slots = __kvm_memslots(kvm, as_id);
1096 memslot = id_to_memslot(slots, id);
1097
1098 dirty_bitmap = memslot->dirty_bitmap;
1099 r = -ENOENT;
1100 if (!dirty_bitmap)
1101 goto out;
1102
1103 n = kvm_dirty_bitmap_bytes(memslot);
1104
1105 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1106 memset(dirty_bitmap_buffer, 0, n);
1107
1108 spin_lock(&kvm->mmu_lock);
1109 *is_dirty = false;
1110 for (i = 0; i < n / sizeof(long); i++) {
1111 unsigned long mask;
1112 gfn_t offset;
1113
1114 if (!dirty_bitmap[i])
1115 continue;
1116
1117 *is_dirty = true;
1118
1119 mask = xchg(&dirty_bitmap[i], 0);
1120 dirty_bitmap_buffer[i] = mask;
1121
1122 if (mask) {
1123 offset = i * BITS_PER_LONG;
1124 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1125 offset, mask);
1126 }
1127 }
1128
1129 spin_unlock(&kvm->mmu_lock);
1130
1131 r = -EFAULT;
1132 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1133 goto out;
1134
1135 r = 0;
1136 out:
1137 return r;
1138 }
1139 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1140 #endif
1141
1142 bool kvm_largepages_enabled(void)
1143 {
1144 return largepages_enabled;
1145 }
1146
1147 void kvm_disable_largepages(void)
1148 {
1149 largepages_enabled = false;
1150 }
1151 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1152
1153 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1154 {
1155 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1156 }
1157 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1158
1159 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1160 {
1161 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1162 }
1163
1164 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1165 {
1166 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1167
1168 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1169 memslot->flags & KVM_MEMSLOT_INVALID)
1170 return 0;
1171
1172 return 1;
1173 }
1174 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1175
1176 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1177 {
1178 struct vm_area_struct *vma;
1179 unsigned long addr, size;
1180
1181 size = PAGE_SIZE;
1182
1183 addr = gfn_to_hva(kvm, gfn);
1184 if (kvm_is_error_hva(addr))
1185 return PAGE_SIZE;
1186
1187 down_read(&current->mm->mmap_sem);
1188 vma = find_vma(current->mm, addr);
1189 if (!vma)
1190 goto out;
1191
1192 size = vma_kernel_pagesize(vma);
1193
1194 out:
1195 up_read(&current->mm->mmap_sem);
1196
1197 return size;
1198 }
1199
1200 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1201 {
1202 return slot->flags & KVM_MEM_READONLY;
1203 }
1204
1205 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1206 gfn_t *nr_pages, bool write)
1207 {
1208 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1209 return KVM_HVA_ERR_BAD;
1210
1211 if (memslot_is_readonly(slot) && write)
1212 return KVM_HVA_ERR_RO_BAD;
1213
1214 if (nr_pages)
1215 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1216
1217 return __gfn_to_hva_memslot(slot, gfn);
1218 }
1219
1220 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1221 gfn_t *nr_pages)
1222 {
1223 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1224 }
1225
1226 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1227 gfn_t gfn)
1228 {
1229 return gfn_to_hva_many(slot, gfn, NULL);
1230 }
1231 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1232
1233 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1234 {
1235 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1236 }
1237 EXPORT_SYMBOL_GPL(gfn_to_hva);
1238
1239 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1240 {
1241 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1242 }
1243 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1244
1245 /*
1246 * If writable is set to false, the hva returned by this function is only
1247 * allowed to be read.
1248 */
1249 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1250 gfn_t gfn, bool *writable)
1251 {
1252 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1253
1254 if (!kvm_is_error_hva(hva) && writable)
1255 *writable = !memslot_is_readonly(slot);
1256
1257 return hva;
1258 }
1259
1260 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1261 {
1262 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1263
1264 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1265 }
1266
1267 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1268 {
1269 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1270
1271 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1272 }
1273
1274 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1275 unsigned long start, int write, struct page **page)
1276 {
1277 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1278
1279 if (write)
1280 flags |= FOLL_WRITE;
1281
1282 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1283 }
1284
1285 static inline int check_user_page_hwpoison(unsigned long addr)
1286 {
1287 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1288
1289 rc = __get_user_pages(current, current->mm, addr, 1,
1290 flags, NULL, NULL, NULL);
1291 return rc == -EHWPOISON;
1292 }
1293
1294 /*
1295 * The atomic path to get the writable pfn which will be stored in @pfn,
1296 * true indicates success, otherwise false is returned.
1297 */
1298 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1299 bool write_fault, bool *writable, pfn_t *pfn)
1300 {
1301 struct page *page[1];
1302 int npages;
1303
1304 if (!(async || atomic))
1305 return false;
1306
1307 /*
1308 * Fast pin a writable pfn only if it is a write fault request
1309 * or the caller allows to map a writable pfn for a read fault
1310 * request.
1311 */
1312 if (!(write_fault || writable))
1313 return false;
1314
1315 npages = __get_user_pages_fast(addr, 1, 1, page);
1316 if (npages == 1) {
1317 *pfn = page_to_pfn(page[0]);
1318
1319 if (writable)
1320 *writable = true;
1321 return true;
1322 }
1323
1324 return false;
1325 }
1326
1327 /*
1328 * The slow path to get the pfn of the specified host virtual address,
1329 * 1 indicates success, -errno is returned if error is detected.
1330 */
1331 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1332 bool *writable, pfn_t *pfn)
1333 {
1334 struct page *page[1];
1335 int npages = 0;
1336
1337 might_sleep();
1338
1339 if (writable)
1340 *writable = write_fault;
1341
1342 if (async) {
1343 down_read(&current->mm->mmap_sem);
1344 npages = get_user_page_nowait(current, current->mm,
1345 addr, write_fault, page);
1346 up_read(&current->mm->mmap_sem);
1347 } else
1348 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1349 write_fault, 0, page,
1350 FOLL_TOUCH|FOLL_HWPOISON);
1351 if (npages != 1)
1352 return npages;
1353
1354 /* map read fault as writable if possible */
1355 if (unlikely(!write_fault) && writable) {
1356 struct page *wpage[1];
1357
1358 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1359 if (npages == 1) {
1360 *writable = true;
1361 put_page(page[0]);
1362 page[0] = wpage[0];
1363 }
1364
1365 npages = 1;
1366 }
1367 *pfn = page_to_pfn(page[0]);
1368 return npages;
1369 }
1370
1371 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1372 {
1373 if (unlikely(!(vma->vm_flags & VM_READ)))
1374 return false;
1375
1376 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1377 return false;
1378
1379 return true;
1380 }
1381
1382 /*
1383 * Pin guest page in memory and return its pfn.
1384 * @addr: host virtual address which maps memory to the guest
1385 * @atomic: whether this function can sleep
1386 * @async: whether this function need to wait IO complete if the
1387 * host page is not in the memory
1388 * @write_fault: whether we should get a writable host page
1389 * @writable: whether it allows to map a writable host page for !@write_fault
1390 *
1391 * The function will map a writable host page for these two cases:
1392 * 1): @write_fault = true
1393 * 2): @write_fault = false && @writable, @writable will tell the caller
1394 * whether the mapping is writable.
1395 */
1396 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1397 bool write_fault, bool *writable)
1398 {
1399 struct vm_area_struct *vma;
1400 pfn_t pfn = 0;
1401 int npages;
1402
1403 /* we can do it either atomically or asynchronously, not both */
1404 BUG_ON(atomic && async);
1405
1406 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1407 return pfn;
1408
1409 if (atomic)
1410 return KVM_PFN_ERR_FAULT;
1411
1412 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1413 if (npages == 1)
1414 return pfn;
1415
1416 down_read(&current->mm->mmap_sem);
1417 if (npages == -EHWPOISON ||
1418 (!async && check_user_page_hwpoison(addr))) {
1419 pfn = KVM_PFN_ERR_HWPOISON;
1420 goto exit;
1421 }
1422
1423 vma = find_vma_intersection(current->mm, addr, addr + 1);
1424
1425 if (vma == NULL)
1426 pfn = KVM_PFN_ERR_FAULT;
1427 else if ((vma->vm_flags & VM_PFNMAP)) {
1428 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1429 vma->vm_pgoff;
1430 BUG_ON(!kvm_is_reserved_pfn(pfn));
1431 } else {
1432 if (async && vma_is_valid(vma, write_fault))
1433 *async = true;
1434 pfn = KVM_PFN_ERR_FAULT;
1435 }
1436 exit:
1437 up_read(&current->mm->mmap_sem);
1438 return pfn;
1439 }
1440
1441 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1442 bool *async, bool write_fault, bool *writable)
1443 {
1444 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1445
1446 if (addr == KVM_HVA_ERR_RO_BAD)
1447 return KVM_PFN_ERR_RO_FAULT;
1448
1449 if (kvm_is_error_hva(addr))
1450 return KVM_PFN_NOSLOT;
1451
1452 /* Do not map writable pfn in the readonly memslot. */
1453 if (writable && memslot_is_readonly(slot)) {
1454 *writable = false;
1455 writable = NULL;
1456 }
1457
1458 return hva_to_pfn(addr, atomic, async, write_fault,
1459 writable);
1460 }
1461 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1462
1463 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1464 bool *writable)
1465 {
1466 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1467 write_fault, writable);
1468 }
1469 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1470
1471 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1472 {
1473 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1474 }
1475 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1476
1477 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1478 {
1479 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1480 }
1481 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1482
1483 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1484 {
1485 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1486 }
1487 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1488
1489 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1490 {
1491 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1492 }
1493 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1494
1495 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1496 {
1497 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1498 }
1499 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1500
1501 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1502 {
1503 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1504 }
1505 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1506
1507 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1508 struct page **pages, int nr_pages)
1509 {
1510 unsigned long addr;
1511 gfn_t entry;
1512
1513 addr = gfn_to_hva_many(slot, gfn, &entry);
1514 if (kvm_is_error_hva(addr))
1515 return -1;
1516
1517 if (entry < nr_pages)
1518 return 0;
1519
1520 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1521 }
1522 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1523
1524 static struct page *kvm_pfn_to_page(pfn_t pfn)
1525 {
1526 if (is_error_noslot_pfn(pfn))
1527 return KVM_ERR_PTR_BAD_PAGE;
1528
1529 if (kvm_is_reserved_pfn(pfn)) {
1530 WARN_ON(1);
1531 return KVM_ERR_PTR_BAD_PAGE;
1532 }
1533
1534 return pfn_to_page(pfn);
1535 }
1536
1537 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1538 {
1539 pfn_t pfn;
1540
1541 pfn = gfn_to_pfn(kvm, gfn);
1542
1543 return kvm_pfn_to_page(pfn);
1544 }
1545 EXPORT_SYMBOL_GPL(gfn_to_page);
1546
1547 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1548 {
1549 pfn_t pfn;
1550
1551 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1552
1553 return kvm_pfn_to_page(pfn);
1554 }
1555 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1556
1557 void kvm_release_page_clean(struct page *page)
1558 {
1559 WARN_ON(is_error_page(page));
1560
1561 kvm_release_pfn_clean(page_to_pfn(page));
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1564
1565 void kvm_release_pfn_clean(pfn_t pfn)
1566 {
1567 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1568 put_page(pfn_to_page(pfn));
1569 }
1570 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1571
1572 void kvm_release_page_dirty(struct page *page)
1573 {
1574 WARN_ON(is_error_page(page));
1575
1576 kvm_release_pfn_dirty(page_to_pfn(page));
1577 }
1578 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1579
1580 static void kvm_release_pfn_dirty(pfn_t pfn)
1581 {
1582 kvm_set_pfn_dirty(pfn);
1583 kvm_release_pfn_clean(pfn);
1584 }
1585
1586 void kvm_set_pfn_dirty(pfn_t pfn)
1587 {
1588 if (!kvm_is_reserved_pfn(pfn)) {
1589 struct page *page = pfn_to_page(pfn);
1590
1591 if (!PageReserved(page))
1592 SetPageDirty(page);
1593 }
1594 }
1595 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1596
1597 void kvm_set_pfn_accessed(pfn_t pfn)
1598 {
1599 if (!kvm_is_reserved_pfn(pfn))
1600 mark_page_accessed(pfn_to_page(pfn));
1601 }
1602 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1603
1604 void kvm_get_pfn(pfn_t pfn)
1605 {
1606 if (!kvm_is_reserved_pfn(pfn))
1607 get_page(pfn_to_page(pfn));
1608 }
1609 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1610
1611 static int next_segment(unsigned long len, int offset)
1612 {
1613 if (len > PAGE_SIZE - offset)
1614 return PAGE_SIZE - offset;
1615 else
1616 return len;
1617 }
1618
1619 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1620 void *data, int offset, int len)
1621 {
1622 int r;
1623 unsigned long addr;
1624
1625 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1626 if (kvm_is_error_hva(addr))
1627 return -EFAULT;
1628 r = __copy_from_user(data, (void __user *)addr + offset, len);
1629 if (r)
1630 return -EFAULT;
1631 return 0;
1632 }
1633
1634 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1635 int len)
1636 {
1637 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1638
1639 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1640 }
1641 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1642
1643 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1644 int offset, int len)
1645 {
1646 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1647
1648 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1649 }
1650 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1651
1652 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1653 {
1654 gfn_t gfn = gpa >> PAGE_SHIFT;
1655 int seg;
1656 int offset = offset_in_page(gpa);
1657 int ret;
1658
1659 while ((seg = next_segment(len, offset)) != 0) {
1660 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1661 if (ret < 0)
1662 return ret;
1663 offset = 0;
1664 len -= seg;
1665 data += seg;
1666 ++gfn;
1667 }
1668 return 0;
1669 }
1670 EXPORT_SYMBOL_GPL(kvm_read_guest);
1671
1672 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1673 {
1674 gfn_t gfn = gpa >> PAGE_SHIFT;
1675 int seg;
1676 int offset = offset_in_page(gpa);
1677 int ret;
1678
1679 while ((seg = next_segment(len, offset)) != 0) {
1680 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1681 if (ret < 0)
1682 return ret;
1683 offset = 0;
1684 len -= seg;
1685 data += seg;
1686 ++gfn;
1687 }
1688 return 0;
1689 }
1690 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1691
1692 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1693 void *data, int offset, unsigned long len)
1694 {
1695 int r;
1696 unsigned long addr;
1697
1698 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1699 if (kvm_is_error_hva(addr))
1700 return -EFAULT;
1701 pagefault_disable();
1702 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1703 pagefault_enable();
1704 if (r)
1705 return -EFAULT;
1706 return 0;
1707 }
1708
1709 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1710 unsigned long len)
1711 {
1712 gfn_t gfn = gpa >> PAGE_SHIFT;
1713 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1714 int offset = offset_in_page(gpa);
1715
1716 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1719
1720 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1721 void *data, unsigned long len)
1722 {
1723 gfn_t gfn = gpa >> PAGE_SHIFT;
1724 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1725 int offset = offset_in_page(gpa);
1726
1727 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1728 }
1729 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1730
1731 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1732 const void *data, int offset, int len)
1733 {
1734 int r;
1735 unsigned long addr;
1736
1737 addr = gfn_to_hva_memslot(memslot, gfn);
1738 if (kvm_is_error_hva(addr))
1739 return -EFAULT;
1740 r = __copy_to_user((void __user *)addr + offset, data, len);
1741 if (r)
1742 return -EFAULT;
1743 mark_page_dirty_in_slot(memslot, gfn);
1744 return 0;
1745 }
1746
1747 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1748 const void *data, int offset, int len)
1749 {
1750 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1751
1752 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1753 }
1754 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1755
1756 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1757 const void *data, int offset, int len)
1758 {
1759 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1760
1761 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1762 }
1763 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1764
1765 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1766 unsigned long len)
1767 {
1768 gfn_t gfn = gpa >> PAGE_SHIFT;
1769 int seg;
1770 int offset = offset_in_page(gpa);
1771 int ret;
1772
1773 while ((seg = next_segment(len, offset)) != 0) {
1774 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1775 if (ret < 0)
1776 return ret;
1777 offset = 0;
1778 len -= seg;
1779 data += seg;
1780 ++gfn;
1781 }
1782 return 0;
1783 }
1784 EXPORT_SYMBOL_GPL(kvm_write_guest);
1785
1786 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1787 unsigned long len)
1788 {
1789 gfn_t gfn = gpa >> PAGE_SHIFT;
1790 int seg;
1791 int offset = offset_in_page(gpa);
1792 int ret;
1793
1794 while ((seg = next_segment(len, offset)) != 0) {
1795 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1796 if (ret < 0)
1797 return ret;
1798 offset = 0;
1799 len -= seg;
1800 data += seg;
1801 ++gfn;
1802 }
1803 return 0;
1804 }
1805 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1806
1807 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1808 gpa_t gpa, unsigned long len)
1809 {
1810 struct kvm_memslots *slots = kvm_memslots(kvm);
1811 int offset = offset_in_page(gpa);
1812 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1813 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1814 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1815 gfn_t nr_pages_avail;
1816
1817 ghc->gpa = gpa;
1818 ghc->generation = slots->generation;
1819 ghc->len = len;
1820 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1821 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1822 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1823 ghc->hva += offset;
1824 } else {
1825 /*
1826 * If the requested region crosses two memslots, we still
1827 * verify that the entire region is valid here.
1828 */
1829 while (start_gfn <= end_gfn) {
1830 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1831 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1832 &nr_pages_avail);
1833 if (kvm_is_error_hva(ghc->hva))
1834 return -EFAULT;
1835 start_gfn += nr_pages_avail;
1836 }
1837 /* Use the slow path for cross page reads and writes. */
1838 ghc->memslot = NULL;
1839 }
1840 return 0;
1841 }
1842 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1843
1844 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1845 void *data, unsigned long len)
1846 {
1847 struct kvm_memslots *slots = kvm_memslots(kvm);
1848 int r;
1849
1850 BUG_ON(len > ghc->len);
1851
1852 if (slots->generation != ghc->generation)
1853 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1854
1855 if (unlikely(!ghc->memslot))
1856 return kvm_write_guest(kvm, ghc->gpa, data, len);
1857
1858 if (kvm_is_error_hva(ghc->hva))
1859 return -EFAULT;
1860
1861 r = __copy_to_user((void __user *)ghc->hva, data, len);
1862 if (r)
1863 return -EFAULT;
1864 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1865
1866 return 0;
1867 }
1868 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1869
1870 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1871 void *data, unsigned long len)
1872 {
1873 struct kvm_memslots *slots = kvm_memslots(kvm);
1874 int r;
1875
1876 BUG_ON(len > ghc->len);
1877
1878 if (slots->generation != ghc->generation)
1879 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1880
1881 if (unlikely(!ghc->memslot))
1882 return kvm_read_guest(kvm, ghc->gpa, data, len);
1883
1884 if (kvm_is_error_hva(ghc->hva))
1885 return -EFAULT;
1886
1887 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1888 if (r)
1889 return -EFAULT;
1890
1891 return 0;
1892 }
1893 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1894
1895 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1896 {
1897 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1898
1899 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1900 }
1901 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1902
1903 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1904 {
1905 gfn_t gfn = gpa >> PAGE_SHIFT;
1906 int seg;
1907 int offset = offset_in_page(gpa);
1908 int ret;
1909
1910 while ((seg = next_segment(len, offset)) != 0) {
1911 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1912 if (ret < 0)
1913 return ret;
1914 offset = 0;
1915 len -= seg;
1916 ++gfn;
1917 }
1918 return 0;
1919 }
1920 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1921
1922 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1923 gfn_t gfn)
1924 {
1925 if (memslot && memslot->dirty_bitmap) {
1926 unsigned long rel_gfn = gfn - memslot->base_gfn;
1927
1928 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1929 }
1930 }
1931
1932 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1933 {
1934 struct kvm_memory_slot *memslot;
1935
1936 memslot = gfn_to_memslot(kvm, gfn);
1937 mark_page_dirty_in_slot(memslot, gfn);
1938 }
1939 EXPORT_SYMBOL_GPL(mark_page_dirty);
1940
1941 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1942 {
1943 struct kvm_memory_slot *memslot;
1944
1945 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1946 mark_page_dirty_in_slot(memslot, gfn);
1947 }
1948 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1949
1950 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1951 {
1952 int old, val;
1953
1954 old = val = vcpu->halt_poll_ns;
1955 /* 10us base */
1956 if (val == 0 && halt_poll_ns_grow)
1957 val = 10000;
1958 else
1959 val *= halt_poll_ns_grow;
1960
1961 vcpu->halt_poll_ns = val;
1962 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1963 }
1964
1965 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1966 {
1967 int old, val;
1968
1969 old = val = vcpu->halt_poll_ns;
1970 if (halt_poll_ns_shrink == 0)
1971 val = 0;
1972 else
1973 val /= halt_poll_ns_shrink;
1974
1975 vcpu->halt_poll_ns = val;
1976 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1977 }
1978
1979 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1980 {
1981 if (kvm_arch_vcpu_runnable(vcpu)) {
1982 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1983 return -EINTR;
1984 }
1985 if (kvm_cpu_has_pending_timer(vcpu))
1986 return -EINTR;
1987 if (signal_pending(current))
1988 return -EINTR;
1989
1990 return 0;
1991 }
1992
1993 /*
1994 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1995 */
1996 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1997 {
1998 ktime_t start, cur;
1999 DEFINE_WAIT(wait);
2000 bool waited = false;
2001 u64 block_ns;
2002
2003 start = cur = ktime_get();
2004 if (vcpu->halt_poll_ns) {
2005 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2006
2007 ++vcpu->stat.halt_attempted_poll;
2008 do {
2009 /*
2010 * This sets KVM_REQ_UNHALT if an interrupt
2011 * arrives.
2012 */
2013 if (kvm_vcpu_check_block(vcpu) < 0) {
2014 ++vcpu->stat.halt_successful_poll;
2015 goto out;
2016 }
2017 cur = ktime_get();
2018 } while (single_task_running() && ktime_before(cur, stop));
2019 }
2020
2021 for (;;) {
2022 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2023
2024 if (kvm_vcpu_check_block(vcpu) < 0)
2025 break;
2026
2027 waited = true;
2028 schedule();
2029 }
2030
2031 finish_wait(&vcpu->wq, &wait);
2032 cur = ktime_get();
2033
2034 out:
2035 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2036
2037 if (halt_poll_ns) {
2038 if (block_ns <= vcpu->halt_poll_ns)
2039 ;
2040 /* we had a long block, shrink polling */
2041 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2042 shrink_halt_poll_ns(vcpu);
2043 /* we had a short halt and our poll time is too small */
2044 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2045 block_ns < halt_poll_ns)
2046 grow_halt_poll_ns(vcpu);
2047 } else
2048 vcpu->halt_poll_ns = 0;
2049
2050 trace_kvm_vcpu_wakeup(block_ns, waited);
2051 }
2052 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2053
2054 #ifndef CONFIG_S390
2055 /*
2056 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2057 */
2058 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2059 {
2060 int me;
2061 int cpu = vcpu->cpu;
2062 wait_queue_head_t *wqp;
2063
2064 wqp = kvm_arch_vcpu_wq(vcpu);
2065 if (waitqueue_active(wqp)) {
2066 wake_up_interruptible(wqp);
2067 ++vcpu->stat.halt_wakeup;
2068 }
2069
2070 me = get_cpu();
2071 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2072 if (kvm_arch_vcpu_should_kick(vcpu))
2073 smp_send_reschedule(cpu);
2074 put_cpu();
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2077 #endif /* !CONFIG_S390 */
2078
2079 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2080 {
2081 struct pid *pid;
2082 struct task_struct *task = NULL;
2083 int ret = 0;
2084
2085 rcu_read_lock();
2086 pid = rcu_dereference(target->pid);
2087 if (pid)
2088 task = get_pid_task(pid, PIDTYPE_PID);
2089 rcu_read_unlock();
2090 if (!task)
2091 return ret;
2092 ret = yield_to(task, 1);
2093 put_task_struct(task);
2094
2095 return ret;
2096 }
2097 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2098
2099 /*
2100 * Helper that checks whether a VCPU is eligible for directed yield.
2101 * Most eligible candidate to yield is decided by following heuristics:
2102 *
2103 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2104 * (preempted lock holder), indicated by @in_spin_loop.
2105 * Set at the beiginning and cleared at the end of interception/PLE handler.
2106 *
2107 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2108 * chance last time (mostly it has become eligible now since we have probably
2109 * yielded to lockholder in last iteration. This is done by toggling
2110 * @dy_eligible each time a VCPU checked for eligibility.)
2111 *
2112 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2113 * to preempted lock-holder could result in wrong VCPU selection and CPU
2114 * burning. Giving priority for a potential lock-holder increases lock
2115 * progress.
2116 *
2117 * Since algorithm is based on heuristics, accessing another VCPU data without
2118 * locking does not harm. It may result in trying to yield to same VCPU, fail
2119 * and continue with next VCPU and so on.
2120 */
2121 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2122 {
2123 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2124 bool eligible;
2125
2126 eligible = !vcpu->spin_loop.in_spin_loop ||
2127 vcpu->spin_loop.dy_eligible;
2128
2129 if (vcpu->spin_loop.in_spin_loop)
2130 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2131
2132 return eligible;
2133 #else
2134 return true;
2135 #endif
2136 }
2137
2138 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2139 {
2140 struct kvm *kvm = me->kvm;
2141 struct kvm_vcpu *vcpu;
2142 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2143 int yielded = 0;
2144 int try = 3;
2145 int pass;
2146 int i;
2147
2148 kvm_vcpu_set_in_spin_loop(me, true);
2149 /*
2150 * We boost the priority of a VCPU that is runnable but not
2151 * currently running, because it got preempted by something
2152 * else and called schedule in __vcpu_run. Hopefully that
2153 * VCPU is holding the lock that we need and will release it.
2154 * We approximate round-robin by starting at the last boosted VCPU.
2155 */
2156 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2157 kvm_for_each_vcpu(i, vcpu, kvm) {
2158 if (!pass && i <= last_boosted_vcpu) {
2159 i = last_boosted_vcpu;
2160 continue;
2161 } else if (pass && i > last_boosted_vcpu)
2162 break;
2163 if (!ACCESS_ONCE(vcpu->preempted))
2164 continue;
2165 if (vcpu == me)
2166 continue;
2167 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2168 continue;
2169 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2170 continue;
2171
2172 yielded = kvm_vcpu_yield_to(vcpu);
2173 if (yielded > 0) {
2174 kvm->last_boosted_vcpu = i;
2175 break;
2176 } else if (yielded < 0) {
2177 try--;
2178 if (!try)
2179 break;
2180 }
2181 }
2182 }
2183 kvm_vcpu_set_in_spin_loop(me, false);
2184
2185 /* Ensure vcpu is not eligible during next spinloop */
2186 kvm_vcpu_set_dy_eligible(me, false);
2187 }
2188 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2189
2190 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2191 {
2192 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2193 struct page *page;
2194
2195 if (vmf->pgoff == 0)
2196 page = virt_to_page(vcpu->run);
2197 #ifdef CONFIG_X86
2198 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2199 page = virt_to_page(vcpu->arch.pio_data);
2200 #endif
2201 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2202 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2203 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2204 #endif
2205 else
2206 return kvm_arch_vcpu_fault(vcpu, vmf);
2207 get_page(page);
2208 vmf->page = page;
2209 return 0;
2210 }
2211
2212 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2213 .fault = kvm_vcpu_fault,
2214 };
2215
2216 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2217 {
2218 vma->vm_ops = &kvm_vcpu_vm_ops;
2219 return 0;
2220 }
2221
2222 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2223 {
2224 struct kvm_vcpu *vcpu = filp->private_data;
2225
2226 kvm_put_kvm(vcpu->kvm);
2227 return 0;
2228 }
2229
2230 static struct file_operations kvm_vcpu_fops = {
2231 .release = kvm_vcpu_release,
2232 .unlocked_ioctl = kvm_vcpu_ioctl,
2233 #ifdef CONFIG_KVM_COMPAT
2234 .compat_ioctl = kvm_vcpu_compat_ioctl,
2235 #endif
2236 .mmap = kvm_vcpu_mmap,
2237 .llseek = noop_llseek,
2238 };
2239
2240 /*
2241 * Allocates an inode for the vcpu.
2242 */
2243 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2244 {
2245 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2246 }
2247
2248 /*
2249 * Creates some virtual cpus. Good luck creating more than one.
2250 */
2251 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2252 {
2253 int r;
2254 struct kvm_vcpu *vcpu, *v;
2255
2256 if (id >= KVM_MAX_VCPUS)
2257 return -EINVAL;
2258
2259 vcpu = kvm_arch_vcpu_create(kvm, id);
2260 if (IS_ERR(vcpu))
2261 return PTR_ERR(vcpu);
2262
2263 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2264
2265 r = kvm_arch_vcpu_setup(vcpu);
2266 if (r)
2267 goto vcpu_destroy;
2268
2269 mutex_lock(&kvm->lock);
2270 if (!kvm_vcpu_compatible(vcpu)) {
2271 r = -EINVAL;
2272 goto unlock_vcpu_destroy;
2273 }
2274 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2275 r = -EINVAL;
2276 goto unlock_vcpu_destroy;
2277 }
2278
2279 kvm_for_each_vcpu(r, v, kvm)
2280 if (v->vcpu_id == id) {
2281 r = -EEXIST;
2282 goto unlock_vcpu_destroy;
2283 }
2284
2285 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2286
2287 /* Now it's all set up, let userspace reach it */
2288 kvm_get_kvm(kvm);
2289 r = create_vcpu_fd(vcpu);
2290 if (r < 0) {
2291 kvm_put_kvm(kvm);
2292 goto unlock_vcpu_destroy;
2293 }
2294
2295 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2296
2297 /*
2298 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2299 * before kvm->online_vcpu's incremented value.
2300 */
2301 smp_wmb();
2302 atomic_inc(&kvm->online_vcpus);
2303
2304 mutex_unlock(&kvm->lock);
2305 kvm_arch_vcpu_postcreate(vcpu);
2306 return r;
2307
2308 unlock_vcpu_destroy:
2309 mutex_unlock(&kvm->lock);
2310 vcpu_destroy:
2311 kvm_arch_vcpu_destroy(vcpu);
2312 return r;
2313 }
2314
2315 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2316 {
2317 if (sigset) {
2318 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2319 vcpu->sigset_active = 1;
2320 vcpu->sigset = *sigset;
2321 } else
2322 vcpu->sigset_active = 0;
2323 return 0;
2324 }
2325
2326 static long kvm_vcpu_ioctl(struct file *filp,
2327 unsigned int ioctl, unsigned long arg)
2328 {
2329 struct kvm_vcpu *vcpu = filp->private_data;
2330 void __user *argp = (void __user *)arg;
2331 int r;
2332 struct kvm_fpu *fpu = NULL;
2333 struct kvm_sregs *kvm_sregs = NULL;
2334
2335 if (vcpu->kvm->mm != current->mm)
2336 return -EIO;
2337
2338 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2339 return -EINVAL;
2340
2341 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2342 /*
2343 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2344 * so vcpu_load() would break it.
2345 */
2346 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2347 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2348 #endif
2349
2350
2351 r = vcpu_load(vcpu);
2352 if (r)
2353 return r;
2354 switch (ioctl) {
2355 case KVM_RUN:
2356 r = -EINVAL;
2357 if (arg)
2358 goto out;
2359 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2360 /* The thread running this VCPU changed. */
2361 struct pid *oldpid = vcpu->pid;
2362 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2363
2364 rcu_assign_pointer(vcpu->pid, newpid);
2365 if (oldpid)
2366 synchronize_rcu();
2367 put_pid(oldpid);
2368 }
2369 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2370 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2371 break;
2372 case KVM_GET_REGS: {
2373 struct kvm_regs *kvm_regs;
2374
2375 r = -ENOMEM;
2376 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2377 if (!kvm_regs)
2378 goto out;
2379 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2380 if (r)
2381 goto out_free1;
2382 r = -EFAULT;
2383 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2384 goto out_free1;
2385 r = 0;
2386 out_free1:
2387 kfree(kvm_regs);
2388 break;
2389 }
2390 case KVM_SET_REGS: {
2391 struct kvm_regs *kvm_regs;
2392
2393 r = -ENOMEM;
2394 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2395 if (IS_ERR(kvm_regs)) {
2396 r = PTR_ERR(kvm_regs);
2397 goto out;
2398 }
2399 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2400 kfree(kvm_regs);
2401 break;
2402 }
2403 case KVM_GET_SREGS: {
2404 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2405 r = -ENOMEM;
2406 if (!kvm_sregs)
2407 goto out;
2408 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2409 if (r)
2410 goto out;
2411 r = -EFAULT;
2412 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2413 goto out;
2414 r = 0;
2415 break;
2416 }
2417 case KVM_SET_SREGS: {
2418 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2419 if (IS_ERR(kvm_sregs)) {
2420 r = PTR_ERR(kvm_sregs);
2421 kvm_sregs = NULL;
2422 goto out;
2423 }
2424 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2425 break;
2426 }
2427 case KVM_GET_MP_STATE: {
2428 struct kvm_mp_state mp_state;
2429
2430 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2431 if (r)
2432 goto out;
2433 r = -EFAULT;
2434 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2435 goto out;
2436 r = 0;
2437 break;
2438 }
2439 case KVM_SET_MP_STATE: {
2440 struct kvm_mp_state mp_state;
2441
2442 r = -EFAULT;
2443 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2444 goto out;
2445 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2446 break;
2447 }
2448 case KVM_TRANSLATE: {
2449 struct kvm_translation tr;
2450
2451 r = -EFAULT;
2452 if (copy_from_user(&tr, argp, sizeof(tr)))
2453 goto out;
2454 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2455 if (r)
2456 goto out;
2457 r = -EFAULT;
2458 if (copy_to_user(argp, &tr, sizeof(tr)))
2459 goto out;
2460 r = 0;
2461 break;
2462 }
2463 case KVM_SET_GUEST_DEBUG: {
2464 struct kvm_guest_debug dbg;
2465
2466 r = -EFAULT;
2467 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2468 goto out;
2469 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2470 break;
2471 }
2472 case KVM_SET_SIGNAL_MASK: {
2473 struct kvm_signal_mask __user *sigmask_arg = argp;
2474 struct kvm_signal_mask kvm_sigmask;
2475 sigset_t sigset, *p;
2476
2477 p = NULL;
2478 if (argp) {
2479 r = -EFAULT;
2480 if (copy_from_user(&kvm_sigmask, argp,
2481 sizeof(kvm_sigmask)))
2482 goto out;
2483 r = -EINVAL;
2484 if (kvm_sigmask.len != sizeof(sigset))
2485 goto out;
2486 r = -EFAULT;
2487 if (copy_from_user(&sigset, sigmask_arg->sigset,
2488 sizeof(sigset)))
2489 goto out;
2490 p = &sigset;
2491 }
2492 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2493 break;
2494 }
2495 case KVM_GET_FPU: {
2496 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2497 r = -ENOMEM;
2498 if (!fpu)
2499 goto out;
2500 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2501 if (r)
2502 goto out;
2503 r = -EFAULT;
2504 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2505 goto out;
2506 r = 0;
2507 break;
2508 }
2509 case KVM_SET_FPU: {
2510 fpu = memdup_user(argp, sizeof(*fpu));
2511 if (IS_ERR(fpu)) {
2512 r = PTR_ERR(fpu);
2513 fpu = NULL;
2514 goto out;
2515 }
2516 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2517 break;
2518 }
2519 default:
2520 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2521 }
2522 out:
2523 vcpu_put(vcpu);
2524 kfree(fpu);
2525 kfree(kvm_sregs);
2526 return r;
2527 }
2528
2529 #ifdef CONFIG_KVM_COMPAT
2530 static long kvm_vcpu_compat_ioctl(struct file *filp,
2531 unsigned int ioctl, unsigned long arg)
2532 {
2533 struct kvm_vcpu *vcpu = filp->private_data;
2534 void __user *argp = compat_ptr(arg);
2535 int r;
2536
2537 if (vcpu->kvm->mm != current->mm)
2538 return -EIO;
2539
2540 switch (ioctl) {
2541 case KVM_SET_SIGNAL_MASK: {
2542 struct kvm_signal_mask __user *sigmask_arg = argp;
2543 struct kvm_signal_mask kvm_sigmask;
2544 compat_sigset_t csigset;
2545 sigset_t sigset;
2546
2547 if (argp) {
2548 r = -EFAULT;
2549 if (copy_from_user(&kvm_sigmask, argp,
2550 sizeof(kvm_sigmask)))
2551 goto out;
2552 r = -EINVAL;
2553 if (kvm_sigmask.len != sizeof(csigset))
2554 goto out;
2555 r = -EFAULT;
2556 if (copy_from_user(&csigset, sigmask_arg->sigset,
2557 sizeof(csigset)))
2558 goto out;
2559 sigset_from_compat(&sigset, &csigset);
2560 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2561 } else
2562 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2563 break;
2564 }
2565 default:
2566 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2567 }
2568
2569 out:
2570 return r;
2571 }
2572 #endif
2573
2574 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2575 int (*accessor)(struct kvm_device *dev,
2576 struct kvm_device_attr *attr),
2577 unsigned long arg)
2578 {
2579 struct kvm_device_attr attr;
2580
2581 if (!accessor)
2582 return -EPERM;
2583
2584 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2585 return -EFAULT;
2586
2587 return accessor(dev, &attr);
2588 }
2589
2590 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2591 unsigned long arg)
2592 {
2593 struct kvm_device *dev = filp->private_data;
2594
2595 switch (ioctl) {
2596 case KVM_SET_DEVICE_ATTR:
2597 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2598 case KVM_GET_DEVICE_ATTR:
2599 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2600 case KVM_HAS_DEVICE_ATTR:
2601 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2602 default:
2603 if (dev->ops->ioctl)
2604 return dev->ops->ioctl(dev, ioctl, arg);
2605
2606 return -ENOTTY;
2607 }
2608 }
2609
2610 static int kvm_device_release(struct inode *inode, struct file *filp)
2611 {
2612 struct kvm_device *dev = filp->private_data;
2613 struct kvm *kvm = dev->kvm;
2614
2615 kvm_put_kvm(kvm);
2616 return 0;
2617 }
2618
2619 static const struct file_operations kvm_device_fops = {
2620 .unlocked_ioctl = kvm_device_ioctl,
2621 #ifdef CONFIG_KVM_COMPAT
2622 .compat_ioctl = kvm_device_ioctl,
2623 #endif
2624 .release = kvm_device_release,
2625 };
2626
2627 struct kvm_device *kvm_device_from_filp(struct file *filp)
2628 {
2629 if (filp->f_op != &kvm_device_fops)
2630 return NULL;
2631
2632 return filp->private_data;
2633 }
2634
2635 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2636 #ifdef CONFIG_KVM_MPIC
2637 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2638 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2639 #endif
2640
2641 #ifdef CONFIG_KVM_XICS
2642 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2643 #endif
2644 };
2645
2646 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2647 {
2648 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2649 return -ENOSPC;
2650
2651 if (kvm_device_ops_table[type] != NULL)
2652 return -EEXIST;
2653
2654 kvm_device_ops_table[type] = ops;
2655 return 0;
2656 }
2657
2658 void kvm_unregister_device_ops(u32 type)
2659 {
2660 if (kvm_device_ops_table[type] != NULL)
2661 kvm_device_ops_table[type] = NULL;
2662 }
2663
2664 static int kvm_ioctl_create_device(struct kvm *kvm,
2665 struct kvm_create_device *cd)
2666 {
2667 struct kvm_device_ops *ops = NULL;
2668 struct kvm_device *dev;
2669 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2670 int ret;
2671
2672 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2673 return -ENODEV;
2674
2675 ops = kvm_device_ops_table[cd->type];
2676 if (ops == NULL)
2677 return -ENODEV;
2678
2679 if (test)
2680 return 0;
2681
2682 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2683 if (!dev)
2684 return -ENOMEM;
2685
2686 dev->ops = ops;
2687 dev->kvm = kvm;
2688
2689 ret = ops->create(dev, cd->type);
2690 if (ret < 0) {
2691 kfree(dev);
2692 return ret;
2693 }
2694
2695 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2696 if (ret < 0) {
2697 ops->destroy(dev);
2698 return ret;
2699 }
2700
2701 list_add(&dev->vm_node, &kvm->devices);
2702 kvm_get_kvm(kvm);
2703 cd->fd = ret;
2704 return 0;
2705 }
2706
2707 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2708 {
2709 switch (arg) {
2710 case KVM_CAP_USER_MEMORY:
2711 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2712 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2713 case KVM_CAP_INTERNAL_ERROR_DATA:
2714 #ifdef CONFIG_HAVE_KVM_MSI
2715 case KVM_CAP_SIGNAL_MSI:
2716 #endif
2717 #ifdef CONFIG_HAVE_KVM_IRQFD
2718 case KVM_CAP_IRQFD:
2719 case KVM_CAP_IRQFD_RESAMPLE:
2720 #endif
2721 case KVM_CAP_CHECK_EXTENSION_VM:
2722 return 1;
2723 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2724 case KVM_CAP_IRQ_ROUTING:
2725 return KVM_MAX_IRQ_ROUTES;
2726 #endif
2727 #if KVM_ADDRESS_SPACE_NUM > 1
2728 case KVM_CAP_MULTI_ADDRESS_SPACE:
2729 return KVM_ADDRESS_SPACE_NUM;
2730 #endif
2731 default:
2732 break;
2733 }
2734 return kvm_vm_ioctl_check_extension(kvm, arg);
2735 }
2736
2737 static long kvm_vm_ioctl(struct file *filp,
2738 unsigned int ioctl, unsigned long arg)
2739 {
2740 struct kvm *kvm = filp->private_data;
2741 void __user *argp = (void __user *)arg;
2742 int r;
2743
2744 if (kvm->mm != current->mm)
2745 return -EIO;
2746 switch (ioctl) {
2747 case KVM_CREATE_VCPU:
2748 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2749 break;
2750 case KVM_SET_USER_MEMORY_REGION: {
2751 struct kvm_userspace_memory_region kvm_userspace_mem;
2752
2753 r = -EFAULT;
2754 if (copy_from_user(&kvm_userspace_mem, argp,
2755 sizeof(kvm_userspace_mem)))
2756 goto out;
2757
2758 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2759 break;
2760 }
2761 case KVM_GET_DIRTY_LOG: {
2762 struct kvm_dirty_log log;
2763
2764 r = -EFAULT;
2765 if (copy_from_user(&log, argp, sizeof(log)))
2766 goto out;
2767 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2768 break;
2769 }
2770 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2771 case KVM_REGISTER_COALESCED_MMIO: {
2772 struct kvm_coalesced_mmio_zone zone;
2773
2774 r = -EFAULT;
2775 if (copy_from_user(&zone, argp, sizeof(zone)))
2776 goto out;
2777 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2778 break;
2779 }
2780 case KVM_UNREGISTER_COALESCED_MMIO: {
2781 struct kvm_coalesced_mmio_zone zone;
2782
2783 r = -EFAULT;
2784 if (copy_from_user(&zone, argp, sizeof(zone)))
2785 goto out;
2786 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2787 break;
2788 }
2789 #endif
2790 case KVM_IRQFD: {
2791 struct kvm_irqfd data;
2792
2793 r = -EFAULT;
2794 if (copy_from_user(&data, argp, sizeof(data)))
2795 goto out;
2796 r = kvm_irqfd(kvm, &data);
2797 break;
2798 }
2799 case KVM_IOEVENTFD: {
2800 struct kvm_ioeventfd data;
2801
2802 r = -EFAULT;
2803 if (copy_from_user(&data, argp, sizeof(data)))
2804 goto out;
2805 r = kvm_ioeventfd(kvm, &data);
2806 break;
2807 }
2808 #ifdef CONFIG_HAVE_KVM_MSI
2809 case KVM_SIGNAL_MSI: {
2810 struct kvm_msi msi;
2811
2812 r = -EFAULT;
2813 if (copy_from_user(&msi, argp, sizeof(msi)))
2814 goto out;
2815 r = kvm_send_userspace_msi(kvm, &msi);
2816 break;
2817 }
2818 #endif
2819 #ifdef __KVM_HAVE_IRQ_LINE
2820 case KVM_IRQ_LINE_STATUS:
2821 case KVM_IRQ_LINE: {
2822 struct kvm_irq_level irq_event;
2823
2824 r = -EFAULT;
2825 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2826 goto out;
2827
2828 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2829 ioctl == KVM_IRQ_LINE_STATUS);
2830 if (r)
2831 goto out;
2832
2833 r = -EFAULT;
2834 if (ioctl == KVM_IRQ_LINE_STATUS) {
2835 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2836 goto out;
2837 }
2838
2839 r = 0;
2840 break;
2841 }
2842 #endif
2843 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2844 case KVM_SET_GSI_ROUTING: {
2845 struct kvm_irq_routing routing;
2846 struct kvm_irq_routing __user *urouting;
2847 struct kvm_irq_routing_entry *entries;
2848
2849 r = -EFAULT;
2850 if (copy_from_user(&routing, argp, sizeof(routing)))
2851 goto out;
2852 r = -EINVAL;
2853 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2854 goto out;
2855 if (routing.flags)
2856 goto out;
2857 r = -ENOMEM;
2858 entries = vmalloc(routing.nr * sizeof(*entries));
2859 if (!entries)
2860 goto out;
2861 r = -EFAULT;
2862 urouting = argp;
2863 if (copy_from_user(entries, urouting->entries,
2864 routing.nr * sizeof(*entries)))
2865 goto out_free_irq_routing;
2866 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2867 routing.flags);
2868 out_free_irq_routing:
2869 vfree(entries);
2870 break;
2871 }
2872 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2873 case KVM_CREATE_DEVICE: {
2874 struct kvm_create_device cd;
2875
2876 r = -EFAULT;
2877 if (copy_from_user(&cd, argp, sizeof(cd)))
2878 goto out;
2879
2880 r = kvm_ioctl_create_device(kvm, &cd);
2881 if (r)
2882 goto out;
2883
2884 r = -EFAULT;
2885 if (copy_to_user(argp, &cd, sizeof(cd)))
2886 goto out;
2887
2888 r = 0;
2889 break;
2890 }
2891 case KVM_CHECK_EXTENSION:
2892 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2893 break;
2894 default:
2895 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2896 }
2897 out:
2898 return r;
2899 }
2900
2901 #ifdef CONFIG_KVM_COMPAT
2902 struct compat_kvm_dirty_log {
2903 __u32 slot;
2904 __u32 padding1;
2905 union {
2906 compat_uptr_t dirty_bitmap; /* one bit per page */
2907 __u64 padding2;
2908 };
2909 };
2910
2911 static long kvm_vm_compat_ioctl(struct file *filp,
2912 unsigned int ioctl, unsigned long arg)
2913 {
2914 struct kvm *kvm = filp->private_data;
2915 int r;
2916
2917 if (kvm->mm != current->mm)
2918 return -EIO;
2919 switch (ioctl) {
2920 case KVM_GET_DIRTY_LOG: {
2921 struct compat_kvm_dirty_log compat_log;
2922 struct kvm_dirty_log log;
2923
2924 r = -EFAULT;
2925 if (copy_from_user(&compat_log, (void __user *)arg,
2926 sizeof(compat_log)))
2927 goto out;
2928 log.slot = compat_log.slot;
2929 log.padding1 = compat_log.padding1;
2930 log.padding2 = compat_log.padding2;
2931 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2932
2933 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2934 break;
2935 }
2936 default:
2937 r = kvm_vm_ioctl(filp, ioctl, arg);
2938 }
2939
2940 out:
2941 return r;
2942 }
2943 #endif
2944
2945 static struct file_operations kvm_vm_fops = {
2946 .release = kvm_vm_release,
2947 .unlocked_ioctl = kvm_vm_ioctl,
2948 #ifdef CONFIG_KVM_COMPAT
2949 .compat_ioctl = kvm_vm_compat_ioctl,
2950 #endif
2951 .llseek = noop_llseek,
2952 };
2953
2954 static int kvm_dev_ioctl_create_vm(unsigned long type)
2955 {
2956 int r;
2957 struct kvm *kvm;
2958
2959 kvm = kvm_create_vm(type);
2960 if (IS_ERR(kvm))
2961 return PTR_ERR(kvm);
2962 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2963 r = kvm_coalesced_mmio_init(kvm);
2964 if (r < 0) {
2965 kvm_put_kvm(kvm);
2966 return r;
2967 }
2968 #endif
2969 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2970 if (r < 0)
2971 kvm_put_kvm(kvm);
2972
2973 return r;
2974 }
2975
2976 static long kvm_dev_ioctl(struct file *filp,
2977 unsigned int ioctl, unsigned long arg)
2978 {
2979 long r = -EINVAL;
2980
2981 switch (ioctl) {
2982 case KVM_GET_API_VERSION:
2983 if (arg)
2984 goto out;
2985 r = KVM_API_VERSION;
2986 break;
2987 case KVM_CREATE_VM:
2988 r = kvm_dev_ioctl_create_vm(arg);
2989 break;
2990 case KVM_CHECK_EXTENSION:
2991 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2992 break;
2993 case KVM_GET_VCPU_MMAP_SIZE:
2994 if (arg)
2995 goto out;
2996 r = PAGE_SIZE; /* struct kvm_run */
2997 #ifdef CONFIG_X86
2998 r += PAGE_SIZE; /* pio data page */
2999 #endif
3000 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3001 r += PAGE_SIZE; /* coalesced mmio ring page */
3002 #endif
3003 break;
3004 case KVM_TRACE_ENABLE:
3005 case KVM_TRACE_PAUSE:
3006 case KVM_TRACE_DISABLE:
3007 r = -EOPNOTSUPP;
3008 break;
3009 default:
3010 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3011 }
3012 out:
3013 return r;
3014 }
3015
3016 static struct file_operations kvm_chardev_ops = {
3017 .unlocked_ioctl = kvm_dev_ioctl,
3018 .compat_ioctl = kvm_dev_ioctl,
3019 .llseek = noop_llseek,
3020 };
3021
3022 static struct miscdevice kvm_dev = {
3023 KVM_MINOR,
3024 "kvm",
3025 &kvm_chardev_ops,
3026 };
3027
3028 static void hardware_enable_nolock(void *junk)
3029 {
3030 int cpu = raw_smp_processor_id();
3031 int r;
3032
3033 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3034 return;
3035
3036 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3037
3038 r = kvm_arch_hardware_enable();
3039
3040 if (r) {
3041 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3042 atomic_inc(&hardware_enable_failed);
3043 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3044 }
3045 }
3046
3047 static void hardware_enable(void)
3048 {
3049 raw_spin_lock(&kvm_count_lock);
3050 if (kvm_usage_count)
3051 hardware_enable_nolock(NULL);
3052 raw_spin_unlock(&kvm_count_lock);
3053 }
3054
3055 static void hardware_disable_nolock(void *junk)
3056 {
3057 int cpu = raw_smp_processor_id();
3058
3059 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3060 return;
3061 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3062 kvm_arch_hardware_disable();
3063 }
3064
3065 static void hardware_disable(void)
3066 {
3067 raw_spin_lock(&kvm_count_lock);
3068 if (kvm_usage_count)
3069 hardware_disable_nolock(NULL);
3070 raw_spin_unlock(&kvm_count_lock);
3071 }
3072
3073 static void hardware_disable_all_nolock(void)
3074 {
3075 BUG_ON(!kvm_usage_count);
3076
3077 kvm_usage_count--;
3078 if (!kvm_usage_count)
3079 on_each_cpu(hardware_disable_nolock, NULL, 1);
3080 }
3081
3082 static void hardware_disable_all(void)
3083 {
3084 raw_spin_lock(&kvm_count_lock);
3085 hardware_disable_all_nolock();
3086 raw_spin_unlock(&kvm_count_lock);
3087 }
3088
3089 static int hardware_enable_all(void)
3090 {
3091 int r = 0;
3092
3093 raw_spin_lock(&kvm_count_lock);
3094
3095 kvm_usage_count++;
3096 if (kvm_usage_count == 1) {
3097 atomic_set(&hardware_enable_failed, 0);
3098 on_each_cpu(hardware_enable_nolock, NULL, 1);
3099
3100 if (atomic_read(&hardware_enable_failed)) {
3101 hardware_disable_all_nolock();
3102 r = -EBUSY;
3103 }
3104 }
3105
3106 raw_spin_unlock(&kvm_count_lock);
3107
3108 return r;
3109 }
3110
3111 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3112 void *v)
3113 {
3114 val &= ~CPU_TASKS_FROZEN;
3115 switch (val) {
3116 case CPU_DYING:
3117 hardware_disable();
3118 break;
3119 case CPU_STARTING:
3120 hardware_enable();
3121 break;
3122 }
3123 return NOTIFY_OK;
3124 }
3125
3126 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3127 void *v)
3128 {
3129 /*
3130 * Some (well, at least mine) BIOSes hang on reboot if
3131 * in vmx root mode.
3132 *
3133 * And Intel TXT required VMX off for all cpu when system shutdown.
3134 */
3135 pr_info("kvm: exiting hardware virtualization\n");
3136 kvm_rebooting = true;
3137 on_each_cpu(hardware_disable_nolock, NULL, 1);
3138 return NOTIFY_OK;
3139 }
3140
3141 static struct notifier_block kvm_reboot_notifier = {
3142 .notifier_call = kvm_reboot,
3143 .priority = 0,
3144 };
3145
3146 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3147 {
3148 int i;
3149
3150 for (i = 0; i < bus->dev_count; i++) {
3151 struct kvm_io_device *pos = bus->range[i].dev;
3152
3153 kvm_iodevice_destructor(pos);
3154 }
3155 kfree(bus);
3156 }
3157
3158 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3159 const struct kvm_io_range *r2)
3160 {
3161 gpa_t addr1 = r1->addr;
3162 gpa_t addr2 = r2->addr;
3163
3164 if (addr1 < addr2)
3165 return -1;
3166
3167 /* If r2->len == 0, match the exact address. If r2->len != 0,
3168 * accept any overlapping write. Any order is acceptable for
3169 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3170 * we process all of them.
3171 */
3172 if (r2->len) {
3173 addr1 += r1->len;
3174 addr2 += r2->len;
3175 }
3176
3177 if (addr1 > addr2)
3178 return 1;
3179
3180 return 0;
3181 }
3182
3183 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3184 {
3185 return kvm_io_bus_cmp(p1, p2);
3186 }
3187
3188 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3189 gpa_t addr, int len)
3190 {
3191 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3192 .addr = addr,
3193 .len = len,
3194 .dev = dev,
3195 };
3196
3197 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3198 kvm_io_bus_sort_cmp, NULL);
3199
3200 return 0;
3201 }
3202
3203 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3204 gpa_t addr, int len)
3205 {
3206 struct kvm_io_range *range, key;
3207 int off;
3208
3209 key = (struct kvm_io_range) {
3210 .addr = addr,
3211 .len = len,
3212 };
3213
3214 range = bsearch(&key, bus->range, bus->dev_count,
3215 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3216 if (range == NULL)
3217 return -ENOENT;
3218
3219 off = range - bus->range;
3220
3221 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3222 off--;
3223
3224 return off;
3225 }
3226
3227 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3228 struct kvm_io_range *range, const void *val)
3229 {
3230 int idx;
3231
3232 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3233 if (idx < 0)
3234 return -EOPNOTSUPP;
3235
3236 while (idx < bus->dev_count &&
3237 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3238 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3239 range->len, val))
3240 return idx;
3241 idx++;
3242 }
3243
3244 return -EOPNOTSUPP;
3245 }
3246
3247 /* kvm_io_bus_write - called under kvm->slots_lock */
3248 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3249 int len, const void *val)
3250 {
3251 struct kvm_io_bus *bus;
3252 struct kvm_io_range range;
3253 int r;
3254
3255 range = (struct kvm_io_range) {
3256 .addr = addr,
3257 .len = len,
3258 };
3259
3260 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3261 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3262 return r < 0 ? r : 0;
3263 }
3264
3265 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3266 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3267 gpa_t addr, int len, const void *val, long cookie)
3268 {
3269 struct kvm_io_bus *bus;
3270 struct kvm_io_range range;
3271
3272 range = (struct kvm_io_range) {
3273 .addr = addr,
3274 .len = len,
3275 };
3276
3277 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3278
3279 /* First try the device referenced by cookie. */
3280 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3281 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3282 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3283 val))
3284 return cookie;
3285
3286 /*
3287 * cookie contained garbage; fall back to search and return the
3288 * correct cookie value.
3289 */
3290 return __kvm_io_bus_write(vcpu, bus, &range, val);
3291 }
3292
3293 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3294 struct kvm_io_range *range, void *val)
3295 {
3296 int idx;
3297
3298 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3299 if (idx < 0)
3300 return -EOPNOTSUPP;
3301
3302 while (idx < bus->dev_count &&
3303 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3304 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3305 range->len, val))
3306 return idx;
3307 idx++;
3308 }
3309
3310 return -EOPNOTSUPP;
3311 }
3312 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3313
3314 /* kvm_io_bus_read - called under kvm->slots_lock */
3315 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3316 int len, void *val)
3317 {
3318 struct kvm_io_bus *bus;
3319 struct kvm_io_range range;
3320 int r;
3321
3322 range = (struct kvm_io_range) {
3323 .addr = addr,
3324 .len = len,
3325 };
3326
3327 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3328 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3329 return r < 0 ? r : 0;
3330 }
3331
3332
3333 /* Caller must hold slots_lock. */
3334 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3335 int len, struct kvm_io_device *dev)
3336 {
3337 struct kvm_io_bus *new_bus, *bus;
3338
3339 bus = kvm->buses[bus_idx];
3340 /* exclude ioeventfd which is limited by maximum fd */
3341 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3342 return -ENOSPC;
3343
3344 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3345 sizeof(struct kvm_io_range)), GFP_KERNEL);
3346 if (!new_bus)
3347 return -ENOMEM;
3348 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3349 sizeof(struct kvm_io_range)));
3350 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3351 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3352 synchronize_srcu_expedited(&kvm->srcu);
3353 kfree(bus);
3354
3355 return 0;
3356 }
3357
3358 /* Caller must hold slots_lock. */
3359 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3360 struct kvm_io_device *dev)
3361 {
3362 int i, r;
3363 struct kvm_io_bus *new_bus, *bus;
3364
3365 bus = kvm->buses[bus_idx];
3366 r = -ENOENT;
3367 for (i = 0; i < bus->dev_count; i++)
3368 if (bus->range[i].dev == dev) {
3369 r = 0;
3370 break;
3371 }
3372
3373 if (r)
3374 return r;
3375
3376 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3377 sizeof(struct kvm_io_range)), GFP_KERNEL);
3378 if (!new_bus)
3379 return -ENOMEM;
3380
3381 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3382 new_bus->dev_count--;
3383 memcpy(new_bus->range + i, bus->range + i + 1,
3384 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3385
3386 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3387 synchronize_srcu_expedited(&kvm->srcu);
3388 kfree(bus);
3389 return r;
3390 }
3391
3392 static struct notifier_block kvm_cpu_notifier = {
3393 .notifier_call = kvm_cpu_hotplug,
3394 };
3395
3396 static int vm_stat_get(void *_offset, u64 *val)
3397 {
3398 unsigned offset = (long)_offset;
3399 struct kvm *kvm;
3400
3401 *val = 0;
3402 spin_lock(&kvm_lock);
3403 list_for_each_entry(kvm, &vm_list, vm_list)
3404 *val += *(u32 *)((void *)kvm + offset);
3405 spin_unlock(&kvm_lock);
3406 return 0;
3407 }
3408
3409 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3410
3411 static int vcpu_stat_get(void *_offset, u64 *val)
3412 {
3413 unsigned offset = (long)_offset;
3414 struct kvm *kvm;
3415 struct kvm_vcpu *vcpu;
3416 int i;
3417
3418 *val = 0;
3419 spin_lock(&kvm_lock);
3420 list_for_each_entry(kvm, &vm_list, vm_list)
3421 kvm_for_each_vcpu(i, vcpu, kvm)
3422 *val += *(u32 *)((void *)vcpu + offset);
3423
3424 spin_unlock(&kvm_lock);
3425 return 0;
3426 }
3427
3428 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3429
3430 static const struct file_operations *stat_fops[] = {
3431 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3432 [KVM_STAT_VM] = &vm_stat_fops,
3433 };
3434
3435 static int kvm_init_debug(void)
3436 {
3437 int r = -EEXIST;
3438 struct kvm_stats_debugfs_item *p;
3439
3440 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3441 if (kvm_debugfs_dir == NULL)
3442 goto out;
3443
3444 for (p = debugfs_entries; p->name; ++p) {
3445 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3446 (void *)(long)p->offset,
3447 stat_fops[p->kind]);
3448 if (p->dentry == NULL)
3449 goto out_dir;
3450 }
3451
3452 return 0;
3453
3454 out_dir:
3455 debugfs_remove_recursive(kvm_debugfs_dir);
3456 out:
3457 return r;
3458 }
3459
3460 static void kvm_exit_debug(void)
3461 {
3462 struct kvm_stats_debugfs_item *p;
3463
3464 for (p = debugfs_entries; p->name; ++p)
3465 debugfs_remove(p->dentry);
3466 debugfs_remove(kvm_debugfs_dir);
3467 }
3468
3469 static int kvm_suspend(void)
3470 {
3471 if (kvm_usage_count)
3472 hardware_disable_nolock(NULL);
3473 return 0;
3474 }
3475
3476 static void kvm_resume(void)
3477 {
3478 if (kvm_usage_count) {
3479 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3480 hardware_enable_nolock(NULL);
3481 }
3482 }
3483
3484 static struct syscore_ops kvm_syscore_ops = {
3485 .suspend = kvm_suspend,
3486 .resume = kvm_resume,
3487 };
3488
3489 static inline
3490 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3491 {
3492 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3493 }
3494
3495 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3496 {
3497 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3498
3499 if (vcpu->preempted)
3500 vcpu->preempted = false;
3501
3502 kvm_arch_sched_in(vcpu, cpu);
3503
3504 kvm_arch_vcpu_load(vcpu, cpu);
3505 }
3506
3507 static void kvm_sched_out(struct preempt_notifier *pn,
3508 struct task_struct *next)
3509 {
3510 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3511
3512 if (current->state == TASK_RUNNING)
3513 vcpu->preempted = true;
3514 kvm_arch_vcpu_put(vcpu);
3515 }
3516
3517 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3518 struct module *module)
3519 {
3520 int r;
3521 int cpu;
3522
3523 r = kvm_arch_init(opaque);
3524 if (r)
3525 goto out_fail;
3526
3527 /*
3528 * kvm_arch_init makes sure there's at most one caller
3529 * for architectures that support multiple implementations,
3530 * like intel and amd on x86.
3531 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3532 * conflicts in case kvm is already setup for another implementation.
3533 */
3534 r = kvm_irqfd_init();
3535 if (r)
3536 goto out_irqfd;
3537
3538 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3539 r = -ENOMEM;
3540 goto out_free_0;
3541 }
3542
3543 r = kvm_arch_hardware_setup();
3544 if (r < 0)
3545 goto out_free_0a;
3546
3547 for_each_online_cpu(cpu) {
3548 smp_call_function_single(cpu,
3549 kvm_arch_check_processor_compat,
3550 &r, 1);
3551 if (r < 0)
3552 goto out_free_1;
3553 }
3554
3555 r = register_cpu_notifier(&kvm_cpu_notifier);
3556 if (r)
3557 goto out_free_2;
3558 register_reboot_notifier(&kvm_reboot_notifier);
3559
3560 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3561 if (!vcpu_align)
3562 vcpu_align = __alignof__(struct kvm_vcpu);
3563 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3564 0, NULL);
3565 if (!kvm_vcpu_cache) {
3566 r = -ENOMEM;
3567 goto out_free_3;
3568 }
3569
3570 r = kvm_async_pf_init();
3571 if (r)
3572 goto out_free;
3573
3574 kvm_chardev_ops.owner = module;
3575 kvm_vm_fops.owner = module;
3576 kvm_vcpu_fops.owner = module;
3577
3578 r = misc_register(&kvm_dev);
3579 if (r) {
3580 pr_err("kvm: misc device register failed\n");
3581 goto out_unreg;
3582 }
3583
3584 register_syscore_ops(&kvm_syscore_ops);
3585
3586 kvm_preempt_ops.sched_in = kvm_sched_in;
3587 kvm_preempt_ops.sched_out = kvm_sched_out;
3588
3589 r = kvm_init_debug();
3590 if (r) {
3591 pr_err("kvm: create debugfs files failed\n");
3592 goto out_undebugfs;
3593 }
3594
3595 r = kvm_vfio_ops_init();
3596 WARN_ON(r);
3597
3598 return 0;
3599
3600 out_undebugfs:
3601 unregister_syscore_ops(&kvm_syscore_ops);
3602 misc_deregister(&kvm_dev);
3603 out_unreg:
3604 kvm_async_pf_deinit();
3605 out_free:
3606 kmem_cache_destroy(kvm_vcpu_cache);
3607 out_free_3:
3608 unregister_reboot_notifier(&kvm_reboot_notifier);
3609 unregister_cpu_notifier(&kvm_cpu_notifier);
3610 out_free_2:
3611 out_free_1:
3612 kvm_arch_hardware_unsetup();
3613 out_free_0a:
3614 free_cpumask_var(cpus_hardware_enabled);
3615 out_free_0:
3616 kvm_irqfd_exit();
3617 out_irqfd:
3618 kvm_arch_exit();
3619 out_fail:
3620 return r;
3621 }
3622 EXPORT_SYMBOL_GPL(kvm_init);
3623
3624 void kvm_exit(void)
3625 {
3626 kvm_exit_debug();
3627 misc_deregister(&kvm_dev);
3628 kmem_cache_destroy(kvm_vcpu_cache);
3629 kvm_async_pf_deinit();
3630 unregister_syscore_ops(&kvm_syscore_ops);
3631 unregister_reboot_notifier(&kvm_reboot_notifier);
3632 unregister_cpu_notifier(&kvm_cpu_notifier);
3633 on_each_cpu(hardware_disable_nolock, NULL, 1);
3634 kvm_arch_hardware_unsetup();
3635 kvm_arch_exit();
3636 kvm_irqfd_exit();
3637 free_cpumask_var(cpus_hardware_enabled);
3638 kvm_vfio_ops_exit();
3639 }
3640 EXPORT_SYMBOL_GPL(kvm_exit);