]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - virt/kvm/kvm_main.c
max17042_battery: Fix build errors caused by missing REGMAP_I2C config
[mirror_ubuntu-jammy-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
75 LIST_HEAD(vm_list);
76
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
80
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
85
86 struct dentry *kvm_debugfs_dir;
87
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89 unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92 unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
96
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98
99 bool kvm_rebooting;
100 EXPORT_SYMBOL_GPL(kvm_rebooting);
101
102 static bool largepages_enabled = true;
103
104 bool kvm_is_mmio_pfn(pfn_t pfn)
105 {
106 if (pfn_valid(pfn))
107 return PageReserved(pfn_to_page(pfn));
108
109 return true;
110 }
111
112 /*
113 * Switches to specified vcpu, until a matching vcpu_put()
114 */
115 int vcpu_load(struct kvm_vcpu *vcpu)
116 {
117 int cpu;
118
119 if (mutex_lock_killable(&vcpu->mutex))
120 return -EINTR;
121 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
122 /* The thread running this VCPU changed. */
123 struct pid *oldpid = vcpu->pid;
124 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
125 rcu_assign_pointer(vcpu->pid, newpid);
126 synchronize_rcu();
127 put_pid(oldpid);
128 }
129 cpu = get_cpu();
130 preempt_notifier_register(&vcpu->preempt_notifier);
131 kvm_arch_vcpu_load(vcpu, cpu);
132 put_cpu();
133 return 0;
134 }
135
136 void vcpu_put(struct kvm_vcpu *vcpu)
137 {
138 preempt_disable();
139 kvm_arch_vcpu_put(vcpu);
140 preempt_notifier_unregister(&vcpu->preempt_notifier);
141 preempt_enable();
142 mutex_unlock(&vcpu->mutex);
143 }
144
145 static void ack_flush(void *_completed)
146 {
147 }
148
149 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
150 {
151 int i, cpu, me;
152 cpumask_var_t cpus;
153 bool called = true;
154 struct kvm_vcpu *vcpu;
155
156 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
157
158 me = get_cpu();
159 kvm_for_each_vcpu(i, vcpu, kvm) {
160 kvm_make_request(req, vcpu);
161 cpu = vcpu->cpu;
162
163 /* Set ->requests bit before we read ->mode */
164 smp_mb();
165
166 if (cpus != NULL && cpu != -1 && cpu != me &&
167 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
168 cpumask_set_cpu(cpu, cpus);
169 }
170 if (unlikely(cpus == NULL))
171 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
172 else if (!cpumask_empty(cpus))
173 smp_call_function_many(cpus, ack_flush, NULL, 1);
174 else
175 called = false;
176 put_cpu();
177 free_cpumask_var(cpus);
178 return called;
179 }
180
181 void kvm_flush_remote_tlbs(struct kvm *kvm)
182 {
183 long dirty_count = kvm->tlbs_dirty;
184
185 smp_mb();
186 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
187 ++kvm->stat.remote_tlb_flush;
188 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
189 }
190 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
191
192 void kvm_reload_remote_mmus(struct kvm *kvm)
193 {
194 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
195 }
196
197 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
198 {
199 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
200 }
201
202 void kvm_make_scan_ioapic_request(struct kvm *kvm)
203 {
204 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
205 }
206
207 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
208 {
209 struct page *page;
210 int r;
211
212 mutex_init(&vcpu->mutex);
213 vcpu->cpu = -1;
214 vcpu->kvm = kvm;
215 vcpu->vcpu_id = id;
216 vcpu->pid = NULL;
217 init_waitqueue_head(&vcpu->wq);
218 kvm_async_pf_vcpu_init(vcpu);
219
220 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
221 if (!page) {
222 r = -ENOMEM;
223 goto fail;
224 }
225 vcpu->run = page_address(page);
226
227 kvm_vcpu_set_in_spin_loop(vcpu, false);
228 kvm_vcpu_set_dy_eligible(vcpu, false);
229 vcpu->preempted = false;
230
231 r = kvm_arch_vcpu_init(vcpu);
232 if (r < 0)
233 goto fail_free_run;
234 return 0;
235
236 fail_free_run:
237 free_page((unsigned long)vcpu->run);
238 fail:
239 return r;
240 }
241 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
242
243 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
244 {
245 put_pid(vcpu->pid);
246 kvm_arch_vcpu_uninit(vcpu);
247 free_page((unsigned long)vcpu->run);
248 }
249 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
250
251 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
252 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
253 {
254 return container_of(mn, struct kvm, mmu_notifier);
255 }
256
257 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
258 struct mm_struct *mm,
259 unsigned long address)
260 {
261 struct kvm *kvm = mmu_notifier_to_kvm(mn);
262 int need_tlb_flush, idx;
263
264 /*
265 * When ->invalidate_page runs, the linux pte has been zapped
266 * already but the page is still allocated until
267 * ->invalidate_page returns. So if we increase the sequence
268 * here the kvm page fault will notice if the spte can't be
269 * established because the page is going to be freed. If
270 * instead the kvm page fault establishes the spte before
271 * ->invalidate_page runs, kvm_unmap_hva will release it
272 * before returning.
273 *
274 * The sequence increase only need to be seen at spin_unlock
275 * time, and not at spin_lock time.
276 *
277 * Increasing the sequence after the spin_unlock would be
278 * unsafe because the kvm page fault could then establish the
279 * pte after kvm_unmap_hva returned, without noticing the page
280 * is going to be freed.
281 */
282 idx = srcu_read_lock(&kvm->srcu);
283 spin_lock(&kvm->mmu_lock);
284
285 kvm->mmu_notifier_seq++;
286 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
287 /* we've to flush the tlb before the pages can be freed */
288 if (need_tlb_flush)
289 kvm_flush_remote_tlbs(kvm);
290
291 spin_unlock(&kvm->mmu_lock);
292 srcu_read_unlock(&kvm->srcu, idx);
293 }
294
295 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
296 struct mm_struct *mm,
297 unsigned long address,
298 pte_t pte)
299 {
300 struct kvm *kvm = mmu_notifier_to_kvm(mn);
301 int idx;
302
303 idx = srcu_read_lock(&kvm->srcu);
304 spin_lock(&kvm->mmu_lock);
305 kvm->mmu_notifier_seq++;
306 kvm_set_spte_hva(kvm, address, pte);
307 spin_unlock(&kvm->mmu_lock);
308 srcu_read_unlock(&kvm->srcu, idx);
309 }
310
311 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
312 struct mm_struct *mm,
313 unsigned long start,
314 unsigned long end)
315 {
316 struct kvm *kvm = mmu_notifier_to_kvm(mn);
317 int need_tlb_flush = 0, idx;
318
319 idx = srcu_read_lock(&kvm->srcu);
320 spin_lock(&kvm->mmu_lock);
321 /*
322 * The count increase must become visible at unlock time as no
323 * spte can be established without taking the mmu_lock and
324 * count is also read inside the mmu_lock critical section.
325 */
326 kvm->mmu_notifier_count++;
327 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
328 need_tlb_flush |= kvm->tlbs_dirty;
329 /* we've to flush the tlb before the pages can be freed */
330 if (need_tlb_flush)
331 kvm_flush_remote_tlbs(kvm);
332
333 spin_unlock(&kvm->mmu_lock);
334 srcu_read_unlock(&kvm->srcu, idx);
335 }
336
337 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
338 struct mm_struct *mm,
339 unsigned long start,
340 unsigned long end)
341 {
342 struct kvm *kvm = mmu_notifier_to_kvm(mn);
343
344 spin_lock(&kvm->mmu_lock);
345 /*
346 * This sequence increase will notify the kvm page fault that
347 * the page that is going to be mapped in the spte could have
348 * been freed.
349 */
350 kvm->mmu_notifier_seq++;
351 smp_wmb();
352 /*
353 * The above sequence increase must be visible before the
354 * below count decrease, which is ensured by the smp_wmb above
355 * in conjunction with the smp_rmb in mmu_notifier_retry().
356 */
357 kvm->mmu_notifier_count--;
358 spin_unlock(&kvm->mmu_lock);
359
360 BUG_ON(kvm->mmu_notifier_count < 0);
361 }
362
363 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
364 struct mm_struct *mm,
365 unsigned long address)
366 {
367 struct kvm *kvm = mmu_notifier_to_kvm(mn);
368 int young, idx;
369
370 idx = srcu_read_lock(&kvm->srcu);
371 spin_lock(&kvm->mmu_lock);
372
373 young = kvm_age_hva(kvm, address);
374 if (young)
375 kvm_flush_remote_tlbs(kvm);
376
377 spin_unlock(&kvm->mmu_lock);
378 srcu_read_unlock(&kvm->srcu, idx);
379
380 return young;
381 }
382
383 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
384 struct mm_struct *mm,
385 unsigned long address)
386 {
387 struct kvm *kvm = mmu_notifier_to_kvm(mn);
388 int young, idx;
389
390 idx = srcu_read_lock(&kvm->srcu);
391 spin_lock(&kvm->mmu_lock);
392 young = kvm_test_age_hva(kvm, address);
393 spin_unlock(&kvm->mmu_lock);
394 srcu_read_unlock(&kvm->srcu, idx);
395
396 return young;
397 }
398
399 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
400 struct mm_struct *mm)
401 {
402 struct kvm *kvm = mmu_notifier_to_kvm(mn);
403 int idx;
404
405 idx = srcu_read_lock(&kvm->srcu);
406 kvm_arch_flush_shadow_all(kvm);
407 srcu_read_unlock(&kvm->srcu, idx);
408 }
409
410 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
411 .invalidate_page = kvm_mmu_notifier_invalidate_page,
412 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
413 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
414 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
415 .test_young = kvm_mmu_notifier_test_young,
416 .change_pte = kvm_mmu_notifier_change_pte,
417 .release = kvm_mmu_notifier_release,
418 };
419
420 static int kvm_init_mmu_notifier(struct kvm *kvm)
421 {
422 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
423 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
424 }
425
426 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
427
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 {
430 return 0;
431 }
432
433 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
434
435 static void kvm_init_memslots_id(struct kvm *kvm)
436 {
437 int i;
438 struct kvm_memslots *slots = kvm->memslots;
439
440 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
441 slots->id_to_index[i] = slots->memslots[i].id = i;
442 }
443
444 static struct kvm *kvm_create_vm(unsigned long type)
445 {
446 int r, i;
447 struct kvm *kvm = kvm_arch_alloc_vm();
448
449 if (!kvm)
450 return ERR_PTR(-ENOMEM);
451
452 r = kvm_arch_init_vm(kvm, type);
453 if (r)
454 goto out_err_nodisable;
455
456 r = hardware_enable_all();
457 if (r)
458 goto out_err_nodisable;
459
460 #ifdef CONFIG_HAVE_KVM_IRQCHIP
461 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
462 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
463 #endif
464
465 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
466
467 r = -ENOMEM;
468 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
469 if (!kvm->memslots)
470 goto out_err_nosrcu;
471 kvm_init_memslots_id(kvm);
472 if (init_srcu_struct(&kvm->srcu))
473 goto out_err_nosrcu;
474 for (i = 0; i < KVM_NR_BUSES; i++) {
475 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
476 GFP_KERNEL);
477 if (!kvm->buses[i])
478 goto out_err;
479 }
480
481 spin_lock_init(&kvm->mmu_lock);
482 kvm->mm = current->mm;
483 atomic_inc(&kvm->mm->mm_count);
484 kvm_eventfd_init(kvm);
485 mutex_init(&kvm->lock);
486 mutex_init(&kvm->irq_lock);
487 mutex_init(&kvm->slots_lock);
488 atomic_set(&kvm->users_count, 1);
489 INIT_LIST_HEAD(&kvm->devices);
490
491 r = kvm_init_mmu_notifier(kvm);
492 if (r)
493 goto out_err;
494
495 spin_lock(&kvm_lock);
496 list_add(&kvm->vm_list, &vm_list);
497 spin_unlock(&kvm_lock);
498
499 return kvm;
500
501 out_err:
502 cleanup_srcu_struct(&kvm->srcu);
503 out_err_nosrcu:
504 hardware_disable_all();
505 out_err_nodisable:
506 for (i = 0; i < KVM_NR_BUSES; i++)
507 kfree(kvm->buses[i]);
508 kfree(kvm->memslots);
509 kvm_arch_free_vm(kvm);
510 return ERR_PTR(r);
511 }
512
513 /*
514 * Avoid using vmalloc for a small buffer.
515 * Should not be used when the size is statically known.
516 */
517 void *kvm_kvzalloc(unsigned long size)
518 {
519 if (size > PAGE_SIZE)
520 return vzalloc(size);
521 else
522 return kzalloc(size, GFP_KERNEL);
523 }
524
525 void kvm_kvfree(const void *addr)
526 {
527 if (is_vmalloc_addr(addr))
528 vfree(addr);
529 else
530 kfree(addr);
531 }
532
533 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
534 {
535 if (!memslot->dirty_bitmap)
536 return;
537
538 kvm_kvfree(memslot->dirty_bitmap);
539 memslot->dirty_bitmap = NULL;
540 }
541
542 /*
543 * Free any memory in @free but not in @dont.
544 */
545 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
546 struct kvm_memory_slot *dont)
547 {
548 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
549 kvm_destroy_dirty_bitmap(free);
550
551 kvm_arch_free_memslot(kvm, free, dont);
552
553 free->npages = 0;
554 }
555
556 void kvm_free_physmem(struct kvm *kvm)
557 {
558 struct kvm_memslots *slots = kvm->memslots;
559 struct kvm_memory_slot *memslot;
560
561 kvm_for_each_memslot(memslot, slots)
562 kvm_free_physmem_slot(kvm, memslot, NULL);
563
564 kfree(kvm->memslots);
565 }
566
567 static void kvm_destroy_devices(struct kvm *kvm)
568 {
569 struct list_head *node, *tmp;
570
571 list_for_each_safe(node, tmp, &kvm->devices) {
572 struct kvm_device *dev =
573 list_entry(node, struct kvm_device, vm_node);
574
575 list_del(node);
576 dev->ops->destroy(dev);
577 }
578 }
579
580 static void kvm_destroy_vm(struct kvm *kvm)
581 {
582 int i;
583 struct mm_struct *mm = kvm->mm;
584
585 kvm_arch_sync_events(kvm);
586 spin_lock(&kvm_lock);
587 list_del(&kvm->vm_list);
588 spin_unlock(&kvm_lock);
589 kvm_free_irq_routing(kvm);
590 for (i = 0; i < KVM_NR_BUSES; i++)
591 kvm_io_bus_destroy(kvm->buses[i]);
592 kvm_coalesced_mmio_free(kvm);
593 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
594 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
595 #else
596 kvm_arch_flush_shadow_all(kvm);
597 #endif
598 kvm_arch_destroy_vm(kvm);
599 kvm_destroy_devices(kvm);
600 kvm_free_physmem(kvm);
601 cleanup_srcu_struct(&kvm->srcu);
602 kvm_arch_free_vm(kvm);
603 hardware_disable_all();
604 mmdrop(mm);
605 }
606
607 void kvm_get_kvm(struct kvm *kvm)
608 {
609 atomic_inc(&kvm->users_count);
610 }
611 EXPORT_SYMBOL_GPL(kvm_get_kvm);
612
613 void kvm_put_kvm(struct kvm *kvm)
614 {
615 if (atomic_dec_and_test(&kvm->users_count))
616 kvm_destroy_vm(kvm);
617 }
618 EXPORT_SYMBOL_GPL(kvm_put_kvm);
619
620
621 static int kvm_vm_release(struct inode *inode, struct file *filp)
622 {
623 struct kvm *kvm = filp->private_data;
624
625 kvm_irqfd_release(kvm);
626
627 kvm_put_kvm(kvm);
628 return 0;
629 }
630
631 /*
632 * Allocation size is twice as large as the actual dirty bitmap size.
633 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
634 */
635 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
636 {
637 #ifndef CONFIG_S390
638 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
639
640 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
641 if (!memslot->dirty_bitmap)
642 return -ENOMEM;
643
644 #endif /* !CONFIG_S390 */
645 return 0;
646 }
647
648 static int cmp_memslot(const void *slot1, const void *slot2)
649 {
650 struct kvm_memory_slot *s1, *s2;
651
652 s1 = (struct kvm_memory_slot *)slot1;
653 s2 = (struct kvm_memory_slot *)slot2;
654
655 if (s1->npages < s2->npages)
656 return 1;
657 if (s1->npages > s2->npages)
658 return -1;
659
660 return 0;
661 }
662
663 /*
664 * Sort the memslots base on its size, so the larger slots
665 * will get better fit.
666 */
667 static void sort_memslots(struct kvm_memslots *slots)
668 {
669 int i;
670
671 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
672 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
673
674 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
675 slots->id_to_index[slots->memslots[i].id] = i;
676 }
677
678 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
679 u64 last_generation)
680 {
681 if (new) {
682 int id = new->id;
683 struct kvm_memory_slot *old = id_to_memslot(slots, id);
684 unsigned long npages = old->npages;
685
686 *old = *new;
687 if (new->npages != npages)
688 sort_memslots(slots);
689 }
690
691 slots->generation = last_generation + 1;
692 }
693
694 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
695 {
696 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
697
698 #ifdef KVM_CAP_READONLY_MEM
699 valid_flags |= KVM_MEM_READONLY;
700 #endif
701
702 if (mem->flags & ~valid_flags)
703 return -EINVAL;
704
705 return 0;
706 }
707
708 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
709 struct kvm_memslots *slots, struct kvm_memory_slot *new)
710 {
711 struct kvm_memslots *old_memslots = kvm->memslots;
712
713 update_memslots(slots, new, kvm->memslots->generation);
714 rcu_assign_pointer(kvm->memslots, slots);
715 synchronize_srcu_expedited(&kvm->srcu);
716
717 kvm_arch_memslots_updated(kvm);
718
719 return old_memslots;
720 }
721
722 /*
723 * Allocate some memory and give it an address in the guest physical address
724 * space.
725 *
726 * Discontiguous memory is allowed, mostly for framebuffers.
727 *
728 * Must be called holding mmap_sem for write.
729 */
730 int __kvm_set_memory_region(struct kvm *kvm,
731 struct kvm_userspace_memory_region *mem)
732 {
733 int r;
734 gfn_t base_gfn;
735 unsigned long npages;
736 struct kvm_memory_slot *slot;
737 struct kvm_memory_slot old, new;
738 struct kvm_memslots *slots = NULL, *old_memslots;
739 enum kvm_mr_change change;
740
741 r = check_memory_region_flags(mem);
742 if (r)
743 goto out;
744
745 r = -EINVAL;
746 /* General sanity checks */
747 if (mem->memory_size & (PAGE_SIZE - 1))
748 goto out;
749 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
750 goto out;
751 /* We can read the guest memory with __xxx_user() later on. */
752 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
753 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
754 !access_ok(VERIFY_WRITE,
755 (void __user *)(unsigned long)mem->userspace_addr,
756 mem->memory_size)))
757 goto out;
758 if (mem->slot >= KVM_MEM_SLOTS_NUM)
759 goto out;
760 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
761 goto out;
762
763 slot = id_to_memslot(kvm->memslots, mem->slot);
764 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
765 npages = mem->memory_size >> PAGE_SHIFT;
766
767 r = -EINVAL;
768 if (npages > KVM_MEM_MAX_NR_PAGES)
769 goto out;
770
771 if (!npages)
772 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
773
774 new = old = *slot;
775
776 new.id = mem->slot;
777 new.base_gfn = base_gfn;
778 new.npages = npages;
779 new.flags = mem->flags;
780
781 r = -EINVAL;
782 if (npages) {
783 if (!old.npages)
784 change = KVM_MR_CREATE;
785 else { /* Modify an existing slot. */
786 if ((mem->userspace_addr != old.userspace_addr) ||
787 (npages != old.npages) ||
788 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
789 goto out;
790
791 if (base_gfn != old.base_gfn)
792 change = KVM_MR_MOVE;
793 else if (new.flags != old.flags)
794 change = KVM_MR_FLAGS_ONLY;
795 else { /* Nothing to change. */
796 r = 0;
797 goto out;
798 }
799 }
800 } else if (old.npages) {
801 change = KVM_MR_DELETE;
802 } else /* Modify a non-existent slot: disallowed. */
803 goto out;
804
805 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
806 /* Check for overlaps */
807 r = -EEXIST;
808 kvm_for_each_memslot(slot, kvm->memslots) {
809 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
810 (slot->id == mem->slot))
811 continue;
812 if (!((base_gfn + npages <= slot->base_gfn) ||
813 (base_gfn >= slot->base_gfn + slot->npages)))
814 goto out;
815 }
816 }
817
818 /* Free page dirty bitmap if unneeded */
819 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
820 new.dirty_bitmap = NULL;
821
822 r = -ENOMEM;
823 if (change == KVM_MR_CREATE) {
824 new.userspace_addr = mem->userspace_addr;
825
826 if (kvm_arch_create_memslot(kvm, &new, npages))
827 goto out_free;
828 }
829
830 /* Allocate page dirty bitmap if needed */
831 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
832 if (kvm_create_dirty_bitmap(&new) < 0)
833 goto out_free;
834 }
835
836 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
837 r = -ENOMEM;
838 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
839 GFP_KERNEL);
840 if (!slots)
841 goto out_free;
842 slot = id_to_memslot(slots, mem->slot);
843 slot->flags |= KVM_MEMSLOT_INVALID;
844
845 old_memslots = install_new_memslots(kvm, slots, NULL);
846
847 /* slot was deleted or moved, clear iommu mapping */
848 kvm_iommu_unmap_pages(kvm, &old);
849 /* From this point no new shadow pages pointing to a deleted,
850 * or moved, memslot will be created.
851 *
852 * validation of sp->gfn happens in:
853 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
854 * - kvm_is_visible_gfn (mmu_check_roots)
855 */
856 kvm_arch_flush_shadow_memslot(kvm, slot);
857 slots = old_memslots;
858 }
859
860 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
861 if (r)
862 goto out_slots;
863
864 r = -ENOMEM;
865 /*
866 * We can re-use the old_memslots from above, the only difference
867 * from the currently installed memslots is the invalid flag. This
868 * will get overwritten by update_memslots anyway.
869 */
870 if (!slots) {
871 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
872 GFP_KERNEL);
873 if (!slots)
874 goto out_free;
875 }
876
877 /* actual memory is freed via old in kvm_free_physmem_slot below */
878 if (change == KVM_MR_DELETE) {
879 new.dirty_bitmap = NULL;
880 memset(&new.arch, 0, sizeof(new.arch));
881 }
882
883 old_memslots = install_new_memslots(kvm, slots, &new);
884
885 kvm_arch_commit_memory_region(kvm, mem, &old, change);
886
887 kvm_free_physmem_slot(kvm, &old, &new);
888 kfree(old_memslots);
889
890 /*
891 * IOMMU mapping: New slots need to be mapped. Old slots need to be
892 * un-mapped and re-mapped if their base changes. Since base change
893 * unmapping is handled above with slot deletion, mapping alone is
894 * needed here. Anything else the iommu might care about for existing
895 * slots (size changes, userspace addr changes and read-only flag
896 * changes) is disallowed above, so any other attribute changes getting
897 * here can be skipped.
898 */
899 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
900 r = kvm_iommu_map_pages(kvm, &new);
901 return r;
902 }
903
904 return 0;
905
906 out_slots:
907 kfree(slots);
908 out_free:
909 kvm_free_physmem_slot(kvm, &new, &old);
910 out:
911 return r;
912 }
913 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
914
915 int kvm_set_memory_region(struct kvm *kvm,
916 struct kvm_userspace_memory_region *mem)
917 {
918 int r;
919
920 mutex_lock(&kvm->slots_lock);
921 r = __kvm_set_memory_region(kvm, mem);
922 mutex_unlock(&kvm->slots_lock);
923 return r;
924 }
925 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
926
927 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
928 struct kvm_userspace_memory_region *mem)
929 {
930 if (mem->slot >= KVM_USER_MEM_SLOTS)
931 return -EINVAL;
932 return kvm_set_memory_region(kvm, mem);
933 }
934
935 int kvm_get_dirty_log(struct kvm *kvm,
936 struct kvm_dirty_log *log, int *is_dirty)
937 {
938 struct kvm_memory_slot *memslot;
939 int r, i;
940 unsigned long n;
941 unsigned long any = 0;
942
943 r = -EINVAL;
944 if (log->slot >= KVM_USER_MEM_SLOTS)
945 goto out;
946
947 memslot = id_to_memslot(kvm->memslots, log->slot);
948 r = -ENOENT;
949 if (!memslot->dirty_bitmap)
950 goto out;
951
952 n = kvm_dirty_bitmap_bytes(memslot);
953
954 for (i = 0; !any && i < n/sizeof(long); ++i)
955 any = memslot->dirty_bitmap[i];
956
957 r = -EFAULT;
958 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
959 goto out;
960
961 if (any)
962 *is_dirty = 1;
963
964 r = 0;
965 out:
966 return r;
967 }
968 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
969
970 bool kvm_largepages_enabled(void)
971 {
972 return largepages_enabled;
973 }
974
975 void kvm_disable_largepages(void)
976 {
977 largepages_enabled = false;
978 }
979 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
980
981 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
982 {
983 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
984 }
985 EXPORT_SYMBOL_GPL(gfn_to_memslot);
986
987 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
988 {
989 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
990
991 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
992 memslot->flags & KVM_MEMSLOT_INVALID)
993 return 0;
994
995 return 1;
996 }
997 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
998
999 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1000 {
1001 struct vm_area_struct *vma;
1002 unsigned long addr, size;
1003
1004 size = PAGE_SIZE;
1005
1006 addr = gfn_to_hva(kvm, gfn);
1007 if (kvm_is_error_hva(addr))
1008 return PAGE_SIZE;
1009
1010 down_read(&current->mm->mmap_sem);
1011 vma = find_vma(current->mm, addr);
1012 if (!vma)
1013 goto out;
1014
1015 size = vma_kernel_pagesize(vma);
1016
1017 out:
1018 up_read(&current->mm->mmap_sem);
1019
1020 return size;
1021 }
1022
1023 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1024 {
1025 return slot->flags & KVM_MEM_READONLY;
1026 }
1027
1028 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1029 gfn_t *nr_pages, bool write)
1030 {
1031 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1032 return KVM_HVA_ERR_BAD;
1033
1034 if (memslot_is_readonly(slot) && write)
1035 return KVM_HVA_ERR_RO_BAD;
1036
1037 if (nr_pages)
1038 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1039
1040 return __gfn_to_hva_memslot(slot, gfn);
1041 }
1042
1043 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1044 gfn_t *nr_pages)
1045 {
1046 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1047 }
1048
1049 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1050 gfn_t gfn)
1051 {
1052 return gfn_to_hva_many(slot, gfn, NULL);
1053 }
1054 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1055
1056 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1057 {
1058 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1059 }
1060 EXPORT_SYMBOL_GPL(gfn_to_hva);
1061
1062 /*
1063 * If writable is set to false, the hva returned by this function is only
1064 * allowed to be read.
1065 */
1066 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1067 {
1068 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1069 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1070
1071 if (!kvm_is_error_hva(hva) && writable)
1072 *writable = !memslot_is_readonly(slot);
1073
1074 return hva;
1075 }
1076
1077 static int kvm_read_hva(void *data, void __user *hva, int len)
1078 {
1079 return __copy_from_user(data, hva, len);
1080 }
1081
1082 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1083 {
1084 return __copy_from_user_inatomic(data, hva, len);
1085 }
1086
1087 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1088 unsigned long start, int write, struct page **page)
1089 {
1090 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1091
1092 if (write)
1093 flags |= FOLL_WRITE;
1094
1095 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1096 }
1097
1098 static inline int check_user_page_hwpoison(unsigned long addr)
1099 {
1100 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1101
1102 rc = __get_user_pages(current, current->mm, addr, 1,
1103 flags, NULL, NULL, NULL);
1104 return rc == -EHWPOISON;
1105 }
1106
1107 /*
1108 * The atomic path to get the writable pfn which will be stored in @pfn,
1109 * true indicates success, otherwise false is returned.
1110 */
1111 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1112 bool write_fault, bool *writable, pfn_t *pfn)
1113 {
1114 struct page *page[1];
1115 int npages;
1116
1117 if (!(async || atomic))
1118 return false;
1119
1120 /*
1121 * Fast pin a writable pfn only if it is a write fault request
1122 * or the caller allows to map a writable pfn for a read fault
1123 * request.
1124 */
1125 if (!(write_fault || writable))
1126 return false;
1127
1128 npages = __get_user_pages_fast(addr, 1, 1, page);
1129 if (npages == 1) {
1130 *pfn = page_to_pfn(page[0]);
1131
1132 if (writable)
1133 *writable = true;
1134 return true;
1135 }
1136
1137 return false;
1138 }
1139
1140 /*
1141 * The slow path to get the pfn of the specified host virtual address,
1142 * 1 indicates success, -errno is returned if error is detected.
1143 */
1144 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1145 bool *writable, pfn_t *pfn)
1146 {
1147 struct page *page[1];
1148 int npages = 0;
1149
1150 might_sleep();
1151
1152 if (writable)
1153 *writable = write_fault;
1154
1155 if (async) {
1156 down_read(&current->mm->mmap_sem);
1157 npages = get_user_page_nowait(current, current->mm,
1158 addr, write_fault, page);
1159 up_read(&current->mm->mmap_sem);
1160 } else
1161 npages = get_user_pages_fast(addr, 1, write_fault,
1162 page);
1163 if (npages != 1)
1164 return npages;
1165
1166 /* map read fault as writable if possible */
1167 if (unlikely(!write_fault) && writable) {
1168 struct page *wpage[1];
1169
1170 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1171 if (npages == 1) {
1172 *writable = true;
1173 put_page(page[0]);
1174 page[0] = wpage[0];
1175 }
1176
1177 npages = 1;
1178 }
1179 *pfn = page_to_pfn(page[0]);
1180 return npages;
1181 }
1182
1183 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1184 {
1185 if (unlikely(!(vma->vm_flags & VM_READ)))
1186 return false;
1187
1188 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1189 return false;
1190
1191 return true;
1192 }
1193
1194 /*
1195 * Pin guest page in memory and return its pfn.
1196 * @addr: host virtual address which maps memory to the guest
1197 * @atomic: whether this function can sleep
1198 * @async: whether this function need to wait IO complete if the
1199 * host page is not in the memory
1200 * @write_fault: whether we should get a writable host page
1201 * @writable: whether it allows to map a writable host page for !@write_fault
1202 *
1203 * The function will map a writable host page for these two cases:
1204 * 1): @write_fault = true
1205 * 2): @write_fault = false && @writable, @writable will tell the caller
1206 * whether the mapping is writable.
1207 */
1208 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1209 bool write_fault, bool *writable)
1210 {
1211 struct vm_area_struct *vma;
1212 pfn_t pfn = 0;
1213 int npages;
1214
1215 /* we can do it either atomically or asynchronously, not both */
1216 BUG_ON(atomic && async);
1217
1218 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1219 return pfn;
1220
1221 if (atomic)
1222 return KVM_PFN_ERR_FAULT;
1223
1224 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1225 if (npages == 1)
1226 return pfn;
1227
1228 down_read(&current->mm->mmap_sem);
1229 if (npages == -EHWPOISON ||
1230 (!async && check_user_page_hwpoison(addr))) {
1231 pfn = KVM_PFN_ERR_HWPOISON;
1232 goto exit;
1233 }
1234
1235 vma = find_vma_intersection(current->mm, addr, addr + 1);
1236
1237 if (vma == NULL)
1238 pfn = KVM_PFN_ERR_FAULT;
1239 else if ((vma->vm_flags & VM_PFNMAP)) {
1240 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1241 vma->vm_pgoff;
1242 BUG_ON(!kvm_is_mmio_pfn(pfn));
1243 } else {
1244 if (async && vma_is_valid(vma, write_fault))
1245 *async = true;
1246 pfn = KVM_PFN_ERR_FAULT;
1247 }
1248 exit:
1249 up_read(&current->mm->mmap_sem);
1250 return pfn;
1251 }
1252
1253 static pfn_t
1254 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1255 bool *async, bool write_fault, bool *writable)
1256 {
1257 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1258
1259 if (addr == KVM_HVA_ERR_RO_BAD)
1260 return KVM_PFN_ERR_RO_FAULT;
1261
1262 if (kvm_is_error_hva(addr))
1263 return KVM_PFN_NOSLOT;
1264
1265 /* Do not map writable pfn in the readonly memslot. */
1266 if (writable && memslot_is_readonly(slot)) {
1267 *writable = false;
1268 writable = NULL;
1269 }
1270
1271 return hva_to_pfn(addr, atomic, async, write_fault,
1272 writable);
1273 }
1274
1275 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1276 bool write_fault, bool *writable)
1277 {
1278 struct kvm_memory_slot *slot;
1279
1280 if (async)
1281 *async = false;
1282
1283 slot = gfn_to_memslot(kvm, gfn);
1284
1285 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1286 writable);
1287 }
1288
1289 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1290 {
1291 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1292 }
1293 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1294
1295 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1296 bool write_fault, bool *writable)
1297 {
1298 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1299 }
1300 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1301
1302 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1303 {
1304 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1305 }
1306 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1307
1308 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1309 bool *writable)
1310 {
1311 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1312 }
1313 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1314
1315 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1316 {
1317 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1318 }
1319
1320 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1321 {
1322 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1323 }
1324 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1325
1326 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1327 int nr_pages)
1328 {
1329 unsigned long addr;
1330 gfn_t entry;
1331
1332 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1333 if (kvm_is_error_hva(addr))
1334 return -1;
1335
1336 if (entry < nr_pages)
1337 return 0;
1338
1339 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1340 }
1341 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1342
1343 static struct page *kvm_pfn_to_page(pfn_t pfn)
1344 {
1345 if (is_error_noslot_pfn(pfn))
1346 return KVM_ERR_PTR_BAD_PAGE;
1347
1348 if (kvm_is_mmio_pfn(pfn)) {
1349 WARN_ON(1);
1350 return KVM_ERR_PTR_BAD_PAGE;
1351 }
1352
1353 return pfn_to_page(pfn);
1354 }
1355
1356 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1357 {
1358 pfn_t pfn;
1359
1360 pfn = gfn_to_pfn(kvm, gfn);
1361
1362 return kvm_pfn_to_page(pfn);
1363 }
1364
1365 EXPORT_SYMBOL_GPL(gfn_to_page);
1366
1367 void kvm_release_page_clean(struct page *page)
1368 {
1369 WARN_ON(is_error_page(page));
1370
1371 kvm_release_pfn_clean(page_to_pfn(page));
1372 }
1373 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1374
1375 void kvm_release_pfn_clean(pfn_t pfn)
1376 {
1377 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1378 put_page(pfn_to_page(pfn));
1379 }
1380 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1381
1382 void kvm_release_page_dirty(struct page *page)
1383 {
1384 WARN_ON(is_error_page(page));
1385
1386 kvm_release_pfn_dirty(page_to_pfn(page));
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1389
1390 void kvm_release_pfn_dirty(pfn_t pfn)
1391 {
1392 kvm_set_pfn_dirty(pfn);
1393 kvm_release_pfn_clean(pfn);
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1396
1397 void kvm_set_page_dirty(struct page *page)
1398 {
1399 kvm_set_pfn_dirty(page_to_pfn(page));
1400 }
1401 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1402
1403 void kvm_set_pfn_dirty(pfn_t pfn)
1404 {
1405 if (!kvm_is_mmio_pfn(pfn)) {
1406 struct page *page = pfn_to_page(pfn);
1407 if (!PageReserved(page))
1408 SetPageDirty(page);
1409 }
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1412
1413 void kvm_set_pfn_accessed(pfn_t pfn)
1414 {
1415 if (!kvm_is_mmio_pfn(pfn))
1416 mark_page_accessed(pfn_to_page(pfn));
1417 }
1418 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1419
1420 void kvm_get_pfn(pfn_t pfn)
1421 {
1422 if (!kvm_is_mmio_pfn(pfn))
1423 get_page(pfn_to_page(pfn));
1424 }
1425 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1426
1427 static int next_segment(unsigned long len, int offset)
1428 {
1429 if (len > PAGE_SIZE - offset)
1430 return PAGE_SIZE - offset;
1431 else
1432 return len;
1433 }
1434
1435 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1436 int len)
1437 {
1438 int r;
1439 unsigned long addr;
1440
1441 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1442 if (kvm_is_error_hva(addr))
1443 return -EFAULT;
1444 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1445 if (r)
1446 return -EFAULT;
1447 return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1450
1451 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1452 {
1453 gfn_t gfn = gpa >> PAGE_SHIFT;
1454 int seg;
1455 int offset = offset_in_page(gpa);
1456 int ret;
1457
1458 while ((seg = next_segment(len, offset)) != 0) {
1459 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1460 if (ret < 0)
1461 return ret;
1462 offset = 0;
1463 len -= seg;
1464 data += seg;
1465 ++gfn;
1466 }
1467 return 0;
1468 }
1469 EXPORT_SYMBOL_GPL(kvm_read_guest);
1470
1471 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1472 unsigned long len)
1473 {
1474 int r;
1475 unsigned long addr;
1476 gfn_t gfn = gpa >> PAGE_SHIFT;
1477 int offset = offset_in_page(gpa);
1478
1479 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1480 if (kvm_is_error_hva(addr))
1481 return -EFAULT;
1482 pagefault_disable();
1483 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1484 pagefault_enable();
1485 if (r)
1486 return -EFAULT;
1487 return 0;
1488 }
1489 EXPORT_SYMBOL(kvm_read_guest_atomic);
1490
1491 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1492 int offset, int len)
1493 {
1494 int r;
1495 unsigned long addr;
1496
1497 addr = gfn_to_hva(kvm, gfn);
1498 if (kvm_is_error_hva(addr))
1499 return -EFAULT;
1500 r = __copy_to_user((void __user *)addr + offset, data, len);
1501 if (r)
1502 return -EFAULT;
1503 mark_page_dirty(kvm, gfn);
1504 return 0;
1505 }
1506 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1507
1508 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1509 unsigned long len)
1510 {
1511 gfn_t gfn = gpa >> PAGE_SHIFT;
1512 int seg;
1513 int offset = offset_in_page(gpa);
1514 int ret;
1515
1516 while ((seg = next_segment(len, offset)) != 0) {
1517 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1518 if (ret < 0)
1519 return ret;
1520 offset = 0;
1521 len -= seg;
1522 data += seg;
1523 ++gfn;
1524 }
1525 return 0;
1526 }
1527
1528 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1529 gpa_t gpa, unsigned long len)
1530 {
1531 struct kvm_memslots *slots = kvm_memslots(kvm);
1532 int offset = offset_in_page(gpa);
1533 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1534 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1535 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1536 gfn_t nr_pages_avail;
1537
1538 ghc->gpa = gpa;
1539 ghc->generation = slots->generation;
1540 ghc->len = len;
1541 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1542 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1543 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1544 ghc->hva += offset;
1545 } else {
1546 /*
1547 * If the requested region crosses two memslots, we still
1548 * verify that the entire region is valid here.
1549 */
1550 while (start_gfn <= end_gfn) {
1551 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1552 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1553 &nr_pages_avail);
1554 if (kvm_is_error_hva(ghc->hva))
1555 return -EFAULT;
1556 start_gfn += nr_pages_avail;
1557 }
1558 /* Use the slow path for cross page reads and writes. */
1559 ghc->memslot = NULL;
1560 }
1561 return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1564
1565 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1566 void *data, unsigned long len)
1567 {
1568 struct kvm_memslots *slots = kvm_memslots(kvm);
1569 int r;
1570
1571 BUG_ON(len > ghc->len);
1572
1573 if (slots->generation != ghc->generation)
1574 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1575
1576 if (unlikely(!ghc->memslot))
1577 return kvm_write_guest(kvm, ghc->gpa, data, len);
1578
1579 if (kvm_is_error_hva(ghc->hva))
1580 return -EFAULT;
1581
1582 r = __copy_to_user((void __user *)ghc->hva, data, len);
1583 if (r)
1584 return -EFAULT;
1585 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1586
1587 return 0;
1588 }
1589 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1590
1591 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1592 void *data, unsigned long len)
1593 {
1594 struct kvm_memslots *slots = kvm_memslots(kvm);
1595 int r;
1596
1597 BUG_ON(len > ghc->len);
1598
1599 if (slots->generation != ghc->generation)
1600 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1601
1602 if (unlikely(!ghc->memslot))
1603 return kvm_read_guest(kvm, ghc->gpa, data, len);
1604
1605 if (kvm_is_error_hva(ghc->hva))
1606 return -EFAULT;
1607
1608 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1609 if (r)
1610 return -EFAULT;
1611
1612 return 0;
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1615
1616 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1617 {
1618 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1619
1620 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1621 }
1622 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1623
1624 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1625 {
1626 gfn_t gfn = gpa >> PAGE_SHIFT;
1627 int seg;
1628 int offset = offset_in_page(gpa);
1629 int ret;
1630
1631 while ((seg = next_segment(len, offset)) != 0) {
1632 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1633 if (ret < 0)
1634 return ret;
1635 offset = 0;
1636 len -= seg;
1637 ++gfn;
1638 }
1639 return 0;
1640 }
1641 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1642
1643 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1644 gfn_t gfn)
1645 {
1646 if (memslot && memslot->dirty_bitmap) {
1647 unsigned long rel_gfn = gfn - memslot->base_gfn;
1648
1649 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1650 }
1651 }
1652
1653 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1654 {
1655 struct kvm_memory_slot *memslot;
1656
1657 memslot = gfn_to_memslot(kvm, gfn);
1658 mark_page_dirty_in_slot(kvm, memslot, gfn);
1659 }
1660 EXPORT_SYMBOL_GPL(mark_page_dirty);
1661
1662 /*
1663 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1664 */
1665 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1666 {
1667 DEFINE_WAIT(wait);
1668
1669 for (;;) {
1670 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1671
1672 if (kvm_arch_vcpu_runnable(vcpu)) {
1673 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1674 break;
1675 }
1676 if (kvm_cpu_has_pending_timer(vcpu))
1677 break;
1678 if (signal_pending(current))
1679 break;
1680
1681 schedule();
1682 }
1683
1684 finish_wait(&vcpu->wq, &wait);
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1687
1688 #ifndef CONFIG_S390
1689 /*
1690 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1691 */
1692 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1693 {
1694 int me;
1695 int cpu = vcpu->cpu;
1696 wait_queue_head_t *wqp;
1697
1698 wqp = kvm_arch_vcpu_wq(vcpu);
1699 if (waitqueue_active(wqp)) {
1700 wake_up_interruptible(wqp);
1701 ++vcpu->stat.halt_wakeup;
1702 }
1703
1704 me = get_cpu();
1705 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1706 if (kvm_arch_vcpu_should_kick(vcpu))
1707 smp_send_reschedule(cpu);
1708 put_cpu();
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1711 #endif /* !CONFIG_S390 */
1712
1713 void kvm_resched(struct kvm_vcpu *vcpu)
1714 {
1715 if (!need_resched())
1716 return;
1717 cond_resched();
1718 }
1719 EXPORT_SYMBOL_GPL(kvm_resched);
1720
1721 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1722 {
1723 struct pid *pid;
1724 struct task_struct *task = NULL;
1725 bool ret = false;
1726
1727 rcu_read_lock();
1728 pid = rcu_dereference(target->pid);
1729 if (pid)
1730 task = get_pid_task(target->pid, PIDTYPE_PID);
1731 rcu_read_unlock();
1732 if (!task)
1733 return ret;
1734 if (task->flags & PF_VCPU) {
1735 put_task_struct(task);
1736 return ret;
1737 }
1738 ret = yield_to(task, 1);
1739 put_task_struct(task);
1740
1741 return ret;
1742 }
1743 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1744
1745 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1746 /*
1747 * Helper that checks whether a VCPU is eligible for directed yield.
1748 * Most eligible candidate to yield is decided by following heuristics:
1749 *
1750 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1751 * (preempted lock holder), indicated by @in_spin_loop.
1752 * Set at the beiginning and cleared at the end of interception/PLE handler.
1753 *
1754 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1755 * chance last time (mostly it has become eligible now since we have probably
1756 * yielded to lockholder in last iteration. This is done by toggling
1757 * @dy_eligible each time a VCPU checked for eligibility.)
1758 *
1759 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1760 * to preempted lock-holder could result in wrong VCPU selection and CPU
1761 * burning. Giving priority for a potential lock-holder increases lock
1762 * progress.
1763 *
1764 * Since algorithm is based on heuristics, accessing another VCPU data without
1765 * locking does not harm. It may result in trying to yield to same VCPU, fail
1766 * and continue with next VCPU and so on.
1767 */
1768 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1769 {
1770 bool eligible;
1771
1772 eligible = !vcpu->spin_loop.in_spin_loop ||
1773 (vcpu->spin_loop.in_spin_loop &&
1774 vcpu->spin_loop.dy_eligible);
1775
1776 if (vcpu->spin_loop.in_spin_loop)
1777 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1778
1779 return eligible;
1780 }
1781 #endif
1782
1783 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1784 {
1785 struct kvm *kvm = me->kvm;
1786 struct kvm_vcpu *vcpu;
1787 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1788 int yielded = 0;
1789 int try = 3;
1790 int pass;
1791 int i;
1792
1793 kvm_vcpu_set_in_spin_loop(me, true);
1794 /*
1795 * We boost the priority of a VCPU that is runnable but not
1796 * currently running, because it got preempted by something
1797 * else and called schedule in __vcpu_run. Hopefully that
1798 * VCPU is holding the lock that we need and will release it.
1799 * We approximate round-robin by starting at the last boosted VCPU.
1800 */
1801 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1802 kvm_for_each_vcpu(i, vcpu, kvm) {
1803 if (!pass && i <= last_boosted_vcpu) {
1804 i = last_boosted_vcpu;
1805 continue;
1806 } else if (pass && i > last_boosted_vcpu)
1807 break;
1808 if (!ACCESS_ONCE(vcpu->preempted))
1809 continue;
1810 if (vcpu == me)
1811 continue;
1812 if (waitqueue_active(&vcpu->wq))
1813 continue;
1814 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1815 continue;
1816
1817 yielded = kvm_vcpu_yield_to(vcpu);
1818 if (yielded > 0) {
1819 kvm->last_boosted_vcpu = i;
1820 break;
1821 } else if (yielded < 0) {
1822 try--;
1823 if (!try)
1824 break;
1825 }
1826 }
1827 }
1828 kvm_vcpu_set_in_spin_loop(me, false);
1829
1830 /* Ensure vcpu is not eligible during next spinloop */
1831 kvm_vcpu_set_dy_eligible(me, false);
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1834
1835 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1836 {
1837 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1838 struct page *page;
1839
1840 if (vmf->pgoff == 0)
1841 page = virt_to_page(vcpu->run);
1842 #ifdef CONFIG_X86
1843 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1844 page = virt_to_page(vcpu->arch.pio_data);
1845 #endif
1846 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1847 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1848 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1849 #endif
1850 else
1851 return kvm_arch_vcpu_fault(vcpu, vmf);
1852 get_page(page);
1853 vmf->page = page;
1854 return 0;
1855 }
1856
1857 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1858 .fault = kvm_vcpu_fault,
1859 };
1860
1861 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1862 {
1863 vma->vm_ops = &kvm_vcpu_vm_ops;
1864 return 0;
1865 }
1866
1867 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1868 {
1869 struct kvm_vcpu *vcpu = filp->private_data;
1870
1871 kvm_put_kvm(vcpu->kvm);
1872 return 0;
1873 }
1874
1875 static struct file_operations kvm_vcpu_fops = {
1876 .release = kvm_vcpu_release,
1877 .unlocked_ioctl = kvm_vcpu_ioctl,
1878 #ifdef CONFIG_COMPAT
1879 .compat_ioctl = kvm_vcpu_compat_ioctl,
1880 #endif
1881 .mmap = kvm_vcpu_mmap,
1882 .llseek = noop_llseek,
1883 };
1884
1885 /*
1886 * Allocates an inode for the vcpu.
1887 */
1888 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1889 {
1890 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1891 }
1892
1893 /*
1894 * Creates some virtual cpus. Good luck creating more than one.
1895 */
1896 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1897 {
1898 int r;
1899 struct kvm_vcpu *vcpu, *v;
1900
1901 vcpu = kvm_arch_vcpu_create(kvm, id);
1902 if (IS_ERR(vcpu))
1903 return PTR_ERR(vcpu);
1904
1905 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1906
1907 r = kvm_arch_vcpu_setup(vcpu);
1908 if (r)
1909 goto vcpu_destroy;
1910
1911 mutex_lock(&kvm->lock);
1912 if (!kvm_vcpu_compatible(vcpu)) {
1913 r = -EINVAL;
1914 goto unlock_vcpu_destroy;
1915 }
1916 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1917 r = -EINVAL;
1918 goto unlock_vcpu_destroy;
1919 }
1920
1921 kvm_for_each_vcpu(r, v, kvm)
1922 if (v->vcpu_id == id) {
1923 r = -EEXIST;
1924 goto unlock_vcpu_destroy;
1925 }
1926
1927 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1928
1929 /* Now it's all set up, let userspace reach it */
1930 kvm_get_kvm(kvm);
1931 r = create_vcpu_fd(vcpu);
1932 if (r < 0) {
1933 kvm_put_kvm(kvm);
1934 goto unlock_vcpu_destroy;
1935 }
1936
1937 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1938 smp_wmb();
1939 atomic_inc(&kvm->online_vcpus);
1940
1941 mutex_unlock(&kvm->lock);
1942 kvm_arch_vcpu_postcreate(vcpu);
1943 return r;
1944
1945 unlock_vcpu_destroy:
1946 mutex_unlock(&kvm->lock);
1947 vcpu_destroy:
1948 kvm_arch_vcpu_destroy(vcpu);
1949 return r;
1950 }
1951
1952 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1953 {
1954 if (sigset) {
1955 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1956 vcpu->sigset_active = 1;
1957 vcpu->sigset = *sigset;
1958 } else
1959 vcpu->sigset_active = 0;
1960 return 0;
1961 }
1962
1963 static long kvm_vcpu_ioctl(struct file *filp,
1964 unsigned int ioctl, unsigned long arg)
1965 {
1966 struct kvm_vcpu *vcpu = filp->private_data;
1967 void __user *argp = (void __user *)arg;
1968 int r;
1969 struct kvm_fpu *fpu = NULL;
1970 struct kvm_sregs *kvm_sregs = NULL;
1971
1972 if (vcpu->kvm->mm != current->mm)
1973 return -EIO;
1974
1975 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1976 /*
1977 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1978 * so vcpu_load() would break it.
1979 */
1980 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1981 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1982 #endif
1983
1984
1985 r = vcpu_load(vcpu);
1986 if (r)
1987 return r;
1988 switch (ioctl) {
1989 case KVM_RUN:
1990 r = -EINVAL;
1991 if (arg)
1992 goto out;
1993 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1994 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1995 break;
1996 case KVM_GET_REGS: {
1997 struct kvm_regs *kvm_regs;
1998
1999 r = -ENOMEM;
2000 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2001 if (!kvm_regs)
2002 goto out;
2003 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2004 if (r)
2005 goto out_free1;
2006 r = -EFAULT;
2007 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2008 goto out_free1;
2009 r = 0;
2010 out_free1:
2011 kfree(kvm_regs);
2012 break;
2013 }
2014 case KVM_SET_REGS: {
2015 struct kvm_regs *kvm_regs;
2016
2017 r = -ENOMEM;
2018 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2019 if (IS_ERR(kvm_regs)) {
2020 r = PTR_ERR(kvm_regs);
2021 goto out;
2022 }
2023 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2024 kfree(kvm_regs);
2025 break;
2026 }
2027 case KVM_GET_SREGS: {
2028 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2029 r = -ENOMEM;
2030 if (!kvm_sregs)
2031 goto out;
2032 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2033 if (r)
2034 goto out;
2035 r = -EFAULT;
2036 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2037 goto out;
2038 r = 0;
2039 break;
2040 }
2041 case KVM_SET_SREGS: {
2042 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2043 if (IS_ERR(kvm_sregs)) {
2044 r = PTR_ERR(kvm_sregs);
2045 kvm_sregs = NULL;
2046 goto out;
2047 }
2048 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2049 break;
2050 }
2051 case KVM_GET_MP_STATE: {
2052 struct kvm_mp_state mp_state;
2053
2054 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2055 if (r)
2056 goto out;
2057 r = -EFAULT;
2058 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2059 goto out;
2060 r = 0;
2061 break;
2062 }
2063 case KVM_SET_MP_STATE: {
2064 struct kvm_mp_state mp_state;
2065
2066 r = -EFAULT;
2067 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2068 goto out;
2069 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2070 break;
2071 }
2072 case KVM_TRANSLATE: {
2073 struct kvm_translation tr;
2074
2075 r = -EFAULT;
2076 if (copy_from_user(&tr, argp, sizeof tr))
2077 goto out;
2078 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2079 if (r)
2080 goto out;
2081 r = -EFAULT;
2082 if (copy_to_user(argp, &tr, sizeof tr))
2083 goto out;
2084 r = 0;
2085 break;
2086 }
2087 case KVM_SET_GUEST_DEBUG: {
2088 struct kvm_guest_debug dbg;
2089
2090 r = -EFAULT;
2091 if (copy_from_user(&dbg, argp, sizeof dbg))
2092 goto out;
2093 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2094 break;
2095 }
2096 case KVM_SET_SIGNAL_MASK: {
2097 struct kvm_signal_mask __user *sigmask_arg = argp;
2098 struct kvm_signal_mask kvm_sigmask;
2099 sigset_t sigset, *p;
2100
2101 p = NULL;
2102 if (argp) {
2103 r = -EFAULT;
2104 if (copy_from_user(&kvm_sigmask, argp,
2105 sizeof kvm_sigmask))
2106 goto out;
2107 r = -EINVAL;
2108 if (kvm_sigmask.len != sizeof sigset)
2109 goto out;
2110 r = -EFAULT;
2111 if (copy_from_user(&sigset, sigmask_arg->sigset,
2112 sizeof sigset))
2113 goto out;
2114 p = &sigset;
2115 }
2116 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2117 break;
2118 }
2119 case KVM_GET_FPU: {
2120 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2121 r = -ENOMEM;
2122 if (!fpu)
2123 goto out;
2124 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2125 if (r)
2126 goto out;
2127 r = -EFAULT;
2128 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2129 goto out;
2130 r = 0;
2131 break;
2132 }
2133 case KVM_SET_FPU: {
2134 fpu = memdup_user(argp, sizeof(*fpu));
2135 if (IS_ERR(fpu)) {
2136 r = PTR_ERR(fpu);
2137 fpu = NULL;
2138 goto out;
2139 }
2140 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2141 break;
2142 }
2143 default:
2144 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2145 }
2146 out:
2147 vcpu_put(vcpu);
2148 kfree(fpu);
2149 kfree(kvm_sregs);
2150 return r;
2151 }
2152
2153 #ifdef CONFIG_COMPAT
2154 static long kvm_vcpu_compat_ioctl(struct file *filp,
2155 unsigned int ioctl, unsigned long arg)
2156 {
2157 struct kvm_vcpu *vcpu = filp->private_data;
2158 void __user *argp = compat_ptr(arg);
2159 int r;
2160
2161 if (vcpu->kvm->mm != current->mm)
2162 return -EIO;
2163
2164 switch (ioctl) {
2165 case KVM_SET_SIGNAL_MASK: {
2166 struct kvm_signal_mask __user *sigmask_arg = argp;
2167 struct kvm_signal_mask kvm_sigmask;
2168 compat_sigset_t csigset;
2169 sigset_t sigset;
2170
2171 if (argp) {
2172 r = -EFAULT;
2173 if (copy_from_user(&kvm_sigmask, argp,
2174 sizeof kvm_sigmask))
2175 goto out;
2176 r = -EINVAL;
2177 if (kvm_sigmask.len != sizeof csigset)
2178 goto out;
2179 r = -EFAULT;
2180 if (copy_from_user(&csigset, sigmask_arg->sigset,
2181 sizeof csigset))
2182 goto out;
2183 sigset_from_compat(&sigset, &csigset);
2184 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2185 } else
2186 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2187 break;
2188 }
2189 default:
2190 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2191 }
2192
2193 out:
2194 return r;
2195 }
2196 #endif
2197
2198 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2199 int (*accessor)(struct kvm_device *dev,
2200 struct kvm_device_attr *attr),
2201 unsigned long arg)
2202 {
2203 struct kvm_device_attr attr;
2204
2205 if (!accessor)
2206 return -EPERM;
2207
2208 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2209 return -EFAULT;
2210
2211 return accessor(dev, &attr);
2212 }
2213
2214 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2215 unsigned long arg)
2216 {
2217 struct kvm_device *dev = filp->private_data;
2218
2219 switch (ioctl) {
2220 case KVM_SET_DEVICE_ATTR:
2221 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2222 case KVM_GET_DEVICE_ATTR:
2223 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2224 case KVM_HAS_DEVICE_ATTR:
2225 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2226 default:
2227 if (dev->ops->ioctl)
2228 return dev->ops->ioctl(dev, ioctl, arg);
2229
2230 return -ENOTTY;
2231 }
2232 }
2233
2234 static int kvm_device_release(struct inode *inode, struct file *filp)
2235 {
2236 struct kvm_device *dev = filp->private_data;
2237 struct kvm *kvm = dev->kvm;
2238
2239 kvm_put_kvm(kvm);
2240 return 0;
2241 }
2242
2243 static const struct file_operations kvm_device_fops = {
2244 .unlocked_ioctl = kvm_device_ioctl,
2245 #ifdef CONFIG_COMPAT
2246 .compat_ioctl = kvm_device_ioctl,
2247 #endif
2248 .release = kvm_device_release,
2249 };
2250
2251 struct kvm_device *kvm_device_from_filp(struct file *filp)
2252 {
2253 if (filp->f_op != &kvm_device_fops)
2254 return NULL;
2255
2256 return filp->private_data;
2257 }
2258
2259 static int kvm_ioctl_create_device(struct kvm *kvm,
2260 struct kvm_create_device *cd)
2261 {
2262 struct kvm_device_ops *ops = NULL;
2263 struct kvm_device *dev;
2264 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2265 int ret;
2266
2267 switch (cd->type) {
2268 #ifdef CONFIG_KVM_MPIC
2269 case KVM_DEV_TYPE_FSL_MPIC_20:
2270 case KVM_DEV_TYPE_FSL_MPIC_42:
2271 ops = &kvm_mpic_ops;
2272 break;
2273 #endif
2274 #ifdef CONFIG_KVM_XICS
2275 case KVM_DEV_TYPE_XICS:
2276 ops = &kvm_xics_ops;
2277 break;
2278 #endif
2279 #ifdef CONFIG_KVM_VFIO
2280 case KVM_DEV_TYPE_VFIO:
2281 ops = &kvm_vfio_ops;
2282 break;
2283 #endif
2284 default:
2285 return -ENODEV;
2286 }
2287
2288 if (test)
2289 return 0;
2290
2291 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2292 if (!dev)
2293 return -ENOMEM;
2294
2295 dev->ops = ops;
2296 dev->kvm = kvm;
2297
2298 ret = ops->create(dev, cd->type);
2299 if (ret < 0) {
2300 kfree(dev);
2301 return ret;
2302 }
2303
2304 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2305 if (ret < 0) {
2306 ops->destroy(dev);
2307 return ret;
2308 }
2309
2310 list_add(&dev->vm_node, &kvm->devices);
2311 kvm_get_kvm(kvm);
2312 cd->fd = ret;
2313 return 0;
2314 }
2315
2316 static long kvm_vm_ioctl(struct file *filp,
2317 unsigned int ioctl, unsigned long arg)
2318 {
2319 struct kvm *kvm = filp->private_data;
2320 void __user *argp = (void __user *)arg;
2321 int r;
2322
2323 if (kvm->mm != current->mm)
2324 return -EIO;
2325 switch (ioctl) {
2326 case KVM_CREATE_VCPU:
2327 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2328 break;
2329 case KVM_SET_USER_MEMORY_REGION: {
2330 struct kvm_userspace_memory_region kvm_userspace_mem;
2331
2332 r = -EFAULT;
2333 if (copy_from_user(&kvm_userspace_mem, argp,
2334 sizeof kvm_userspace_mem))
2335 goto out;
2336
2337 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2338 break;
2339 }
2340 case KVM_GET_DIRTY_LOG: {
2341 struct kvm_dirty_log log;
2342
2343 r = -EFAULT;
2344 if (copy_from_user(&log, argp, sizeof log))
2345 goto out;
2346 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2347 break;
2348 }
2349 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2350 case KVM_REGISTER_COALESCED_MMIO: {
2351 struct kvm_coalesced_mmio_zone zone;
2352 r = -EFAULT;
2353 if (copy_from_user(&zone, argp, sizeof zone))
2354 goto out;
2355 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2356 break;
2357 }
2358 case KVM_UNREGISTER_COALESCED_MMIO: {
2359 struct kvm_coalesced_mmio_zone zone;
2360 r = -EFAULT;
2361 if (copy_from_user(&zone, argp, sizeof zone))
2362 goto out;
2363 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2364 break;
2365 }
2366 #endif
2367 case KVM_IRQFD: {
2368 struct kvm_irqfd data;
2369
2370 r = -EFAULT;
2371 if (copy_from_user(&data, argp, sizeof data))
2372 goto out;
2373 r = kvm_irqfd(kvm, &data);
2374 break;
2375 }
2376 case KVM_IOEVENTFD: {
2377 struct kvm_ioeventfd data;
2378
2379 r = -EFAULT;
2380 if (copy_from_user(&data, argp, sizeof data))
2381 goto out;
2382 r = kvm_ioeventfd(kvm, &data);
2383 break;
2384 }
2385 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2386 case KVM_SET_BOOT_CPU_ID:
2387 r = 0;
2388 mutex_lock(&kvm->lock);
2389 if (atomic_read(&kvm->online_vcpus) != 0)
2390 r = -EBUSY;
2391 else
2392 kvm->bsp_vcpu_id = arg;
2393 mutex_unlock(&kvm->lock);
2394 break;
2395 #endif
2396 #ifdef CONFIG_HAVE_KVM_MSI
2397 case KVM_SIGNAL_MSI: {
2398 struct kvm_msi msi;
2399
2400 r = -EFAULT;
2401 if (copy_from_user(&msi, argp, sizeof msi))
2402 goto out;
2403 r = kvm_send_userspace_msi(kvm, &msi);
2404 break;
2405 }
2406 #endif
2407 #ifdef __KVM_HAVE_IRQ_LINE
2408 case KVM_IRQ_LINE_STATUS:
2409 case KVM_IRQ_LINE: {
2410 struct kvm_irq_level irq_event;
2411
2412 r = -EFAULT;
2413 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2414 goto out;
2415
2416 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2417 ioctl == KVM_IRQ_LINE_STATUS);
2418 if (r)
2419 goto out;
2420
2421 r = -EFAULT;
2422 if (ioctl == KVM_IRQ_LINE_STATUS) {
2423 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2424 goto out;
2425 }
2426
2427 r = 0;
2428 break;
2429 }
2430 #endif
2431 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2432 case KVM_SET_GSI_ROUTING: {
2433 struct kvm_irq_routing routing;
2434 struct kvm_irq_routing __user *urouting;
2435 struct kvm_irq_routing_entry *entries;
2436
2437 r = -EFAULT;
2438 if (copy_from_user(&routing, argp, sizeof(routing)))
2439 goto out;
2440 r = -EINVAL;
2441 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2442 goto out;
2443 if (routing.flags)
2444 goto out;
2445 r = -ENOMEM;
2446 entries = vmalloc(routing.nr * sizeof(*entries));
2447 if (!entries)
2448 goto out;
2449 r = -EFAULT;
2450 urouting = argp;
2451 if (copy_from_user(entries, urouting->entries,
2452 routing.nr * sizeof(*entries)))
2453 goto out_free_irq_routing;
2454 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2455 routing.flags);
2456 out_free_irq_routing:
2457 vfree(entries);
2458 break;
2459 }
2460 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2461 case KVM_CREATE_DEVICE: {
2462 struct kvm_create_device cd;
2463
2464 r = -EFAULT;
2465 if (copy_from_user(&cd, argp, sizeof(cd)))
2466 goto out;
2467
2468 r = kvm_ioctl_create_device(kvm, &cd);
2469 if (r)
2470 goto out;
2471
2472 r = -EFAULT;
2473 if (copy_to_user(argp, &cd, sizeof(cd)))
2474 goto out;
2475
2476 r = 0;
2477 break;
2478 }
2479 default:
2480 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2481 if (r == -ENOTTY)
2482 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2483 }
2484 out:
2485 return r;
2486 }
2487
2488 #ifdef CONFIG_COMPAT
2489 struct compat_kvm_dirty_log {
2490 __u32 slot;
2491 __u32 padding1;
2492 union {
2493 compat_uptr_t dirty_bitmap; /* one bit per page */
2494 __u64 padding2;
2495 };
2496 };
2497
2498 static long kvm_vm_compat_ioctl(struct file *filp,
2499 unsigned int ioctl, unsigned long arg)
2500 {
2501 struct kvm *kvm = filp->private_data;
2502 int r;
2503
2504 if (kvm->mm != current->mm)
2505 return -EIO;
2506 switch (ioctl) {
2507 case KVM_GET_DIRTY_LOG: {
2508 struct compat_kvm_dirty_log compat_log;
2509 struct kvm_dirty_log log;
2510
2511 r = -EFAULT;
2512 if (copy_from_user(&compat_log, (void __user *)arg,
2513 sizeof(compat_log)))
2514 goto out;
2515 log.slot = compat_log.slot;
2516 log.padding1 = compat_log.padding1;
2517 log.padding2 = compat_log.padding2;
2518 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2519
2520 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2521 break;
2522 }
2523 default:
2524 r = kvm_vm_ioctl(filp, ioctl, arg);
2525 }
2526
2527 out:
2528 return r;
2529 }
2530 #endif
2531
2532 static struct file_operations kvm_vm_fops = {
2533 .release = kvm_vm_release,
2534 .unlocked_ioctl = kvm_vm_ioctl,
2535 #ifdef CONFIG_COMPAT
2536 .compat_ioctl = kvm_vm_compat_ioctl,
2537 #endif
2538 .llseek = noop_llseek,
2539 };
2540
2541 static int kvm_dev_ioctl_create_vm(unsigned long type)
2542 {
2543 int r;
2544 struct kvm *kvm;
2545
2546 kvm = kvm_create_vm(type);
2547 if (IS_ERR(kvm))
2548 return PTR_ERR(kvm);
2549 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2550 r = kvm_coalesced_mmio_init(kvm);
2551 if (r < 0) {
2552 kvm_put_kvm(kvm);
2553 return r;
2554 }
2555 #endif
2556 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2557 if (r < 0)
2558 kvm_put_kvm(kvm);
2559
2560 return r;
2561 }
2562
2563 static long kvm_dev_ioctl_check_extension_generic(long arg)
2564 {
2565 switch (arg) {
2566 case KVM_CAP_USER_MEMORY:
2567 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2568 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2569 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2570 case KVM_CAP_SET_BOOT_CPU_ID:
2571 #endif
2572 case KVM_CAP_INTERNAL_ERROR_DATA:
2573 #ifdef CONFIG_HAVE_KVM_MSI
2574 case KVM_CAP_SIGNAL_MSI:
2575 #endif
2576 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2577 case KVM_CAP_IRQFD_RESAMPLE:
2578 #endif
2579 return 1;
2580 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2581 case KVM_CAP_IRQ_ROUTING:
2582 return KVM_MAX_IRQ_ROUTES;
2583 #endif
2584 default:
2585 break;
2586 }
2587 return kvm_dev_ioctl_check_extension(arg);
2588 }
2589
2590 static long kvm_dev_ioctl(struct file *filp,
2591 unsigned int ioctl, unsigned long arg)
2592 {
2593 long r = -EINVAL;
2594
2595 switch (ioctl) {
2596 case KVM_GET_API_VERSION:
2597 r = -EINVAL;
2598 if (arg)
2599 goto out;
2600 r = KVM_API_VERSION;
2601 break;
2602 case KVM_CREATE_VM:
2603 r = kvm_dev_ioctl_create_vm(arg);
2604 break;
2605 case KVM_CHECK_EXTENSION:
2606 r = kvm_dev_ioctl_check_extension_generic(arg);
2607 break;
2608 case KVM_GET_VCPU_MMAP_SIZE:
2609 r = -EINVAL;
2610 if (arg)
2611 goto out;
2612 r = PAGE_SIZE; /* struct kvm_run */
2613 #ifdef CONFIG_X86
2614 r += PAGE_SIZE; /* pio data page */
2615 #endif
2616 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2617 r += PAGE_SIZE; /* coalesced mmio ring page */
2618 #endif
2619 break;
2620 case KVM_TRACE_ENABLE:
2621 case KVM_TRACE_PAUSE:
2622 case KVM_TRACE_DISABLE:
2623 r = -EOPNOTSUPP;
2624 break;
2625 default:
2626 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2627 }
2628 out:
2629 return r;
2630 }
2631
2632 static struct file_operations kvm_chardev_ops = {
2633 .unlocked_ioctl = kvm_dev_ioctl,
2634 .compat_ioctl = kvm_dev_ioctl,
2635 .llseek = noop_llseek,
2636 };
2637
2638 static struct miscdevice kvm_dev = {
2639 KVM_MINOR,
2640 "kvm",
2641 &kvm_chardev_ops,
2642 };
2643
2644 static void hardware_enable_nolock(void *junk)
2645 {
2646 int cpu = raw_smp_processor_id();
2647 int r;
2648
2649 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2650 return;
2651
2652 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2653
2654 r = kvm_arch_hardware_enable(NULL);
2655
2656 if (r) {
2657 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2658 atomic_inc(&hardware_enable_failed);
2659 printk(KERN_INFO "kvm: enabling virtualization on "
2660 "CPU%d failed\n", cpu);
2661 }
2662 }
2663
2664 static void hardware_enable(void)
2665 {
2666 raw_spin_lock(&kvm_count_lock);
2667 if (kvm_usage_count)
2668 hardware_enable_nolock(NULL);
2669 raw_spin_unlock(&kvm_count_lock);
2670 }
2671
2672 static void hardware_disable_nolock(void *junk)
2673 {
2674 int cpu = raw_smp_processor_id();
2675
2676 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2677 return;
2678 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2679 kvm_arch_hardware_disable(NULL);
2680 }
2681
2682 static void hardware_disable(void)
2683 {
2684 raw_spin_lock(&kvm_count_lock);
2685 if (kvm_usage_count)
2686 hardware_disable_nolock(NULL);
2687 raw_spin_unlock(&kvm_count_lock);
2688 }
2689
2690 static void hardware_disable_all_nolock(void)
2691 {
2692 BUG_ON(!kvm_usage_count);
2693
2694 kvm_usage_count--;
2695 if (!kvm_usage_count)
2696 on_each_cpu(hardware_disable_nolock, NULL, 1);
2697 }
2698
2699 static void hardware_disable_all(void)
2700 {
2701 raw_spin_lock(&kvm_count_lock);
2702 hardware_disable_all_nolock();
2703 raw_spin_unlock(&kvm_count_lock);
2704 }
2705
2706 static int hardware_enable_all(void)
2707 {
2708 int r = 0;
2709
2710 raw_spin_lock(&kvm_count_lock);
2711
2712 kvm_usage_count++;
2713 if (kvm_usage_count == 1) {
2714 atomic_set(&hardware_enable_failed, 0);
2715 on_each_cpu(hardware_enable_nolock, NULL, 1);
2716
2717 if (atomic_read(&hardware_enable_failed)) {
2718 hardware_disable_all_nolock();
2719 r = -EBUSY;
2720 }
2721 }
2722
2723 raw_spin_unlock(&kvm_count_lock);
2724
2725 return r;
2726 }
2727
2728 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2729 void *v)
2730 {
2731 int cpu = (long)v;
2732
2733 val &= ~CPU_TASKS_FROZEN;
2734 switch (val) {
2735 case CPU_DYING:
2736 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2737 cpu);
2738 hardware_disable();
2739 break;
2740 case CPU_STARTING:
2741 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2742 cpu);
2743 hardware_enable();
2744 break;
2745 }
2746 return NOTIFY_OK;
2747 }
2748
2749 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2750 void *v)
2751 {
2752 /*
2753 * Some (well, at least mine) BIOSes hang on reboot if
2754 * in vmx root mode.
2755 *
2756 * And Intel TXT required VMX off for all cpu when system shutdown.
2757 */
2758 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2759 kvm_rebooting = true;
2760 on_each_cpu(hardware_disable_nolock, NULL, 1);
2761 return NOTIFY_OK;
2762 }
2763
2764 static struct notifier_block kvm_reboot_notifier = {
2765 .notifier_call = kvm_reboot,
2766 .priority = 0,
2767 };
2768
2769 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2770 {
2771 int i;
2772
2773 for (i = 0; i < bus->dev_count; i++) {
2774 struct kvm_io_device *pos = bus->range[i].dev;
2775
2776 kvm_iodevice_destructor(pos);
2777 }
2778 kfree(bus);
2779 }
2780
2781 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2782 const struct kvm_io_range *r2)
2783 {
2784 if (r1->addr < r2->addr)
2785 return -1;
2786 if (r1->addr + r1->len > r2->addr + r2->len)
2787 return 1;
2788 return 0;
2789 }
2790
2791 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2792 {
2793 return kvm_io_bus_cmp(p1, p2);
2794 }
2795
2796 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2797 gpa_t addr, int len)
2798 {
2799 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2800 .addr = addr,
2801 .len = len,
2802 .dev = dev,
2803 };
2804
2805 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2806 kvm_io_bus_sort_cmp, NULL);
2807
2808 return 0;
2809 }
2810
2811 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2812 gpa_t addr, int len)
2813 {
2814 struct kvm_io_range *range, key;
2815 int off;
2816
2817 key = (struct kvm_io_range) {
2818 .addr = addr,
2819 .len = len,
2820 };
2821
2822 range = bsearch(&key, bus->range, bus->dev_count,
2823 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2824 if (range == NULL)
2825 return -ENOENT;
2826
2827 off = range - bus->range;
2828
2829 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2830 off--;
2831
2832 return off;
2833 }
2834
2835 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2836 struct kvm_io_range *range, const void *val)
2837 {
2838 int idx;
2839
2840 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2841 if (idx < 0)
2842 return -EOPNOTSUPP;
2843
2844 while (idx < bus->dev_count &&
2845 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2846 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2847 range->len, val))
2848 return idx;
2849 idx++;
2850 }
2851
2852 return -EOPNOTSUPP;
2853 }
2854
2855 /* kvm_io_bus_write - called under kvm->slots_lock */
2856 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2857 int len, const void *val)
2858 {
2859 struct kvm_io_bus *bus;
2860 struct kvm_io_range range;
2861 int r;
2862
2863 range = (struct kvm_io_range) {
2864 .addr = addr,
2865 .len = len,
2866 };
2867
2868 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2869 r = __kvm_io_bus_write(bus, &range, val);
2870 return r < 0 ? r : 0;
2871 }
2872
2873 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2874 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2875 int len, const void *val, long cookie)
2876 {
2877 struct kvm_io_bus *bus;
2878 struct kvm_io_range range;
2879
2880 range = (struct kvm_io_range) {
2881 .addr = addr,
2882 .len = len,
2883 };
2884
2885 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2886
2887 /* First try the device referenced by cookie. */
2888 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2889 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2890 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2891 val))
2892 return cookie;
2893
2894 /*
2895 * cookie contained garbage; fall back to search and return the
2896 * correct cookie value.
2897 */
2898 return __kvm_io_bus_write(bus, &range, val);
2899 }
2900
2901 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2902 void *val)
2903 {
2904 int idx;
2905
2906 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2907 if (idx < 0)
2908 return -EOPNOTSUPP;
2909
2910 while (idx < bus->dev_count &&
2911 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2912 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2913 range->len, val))
2914 return idx;
2915 idx++;
2916 }
2917
2918 return -EOPNOTSUPP;
2919 }
2920
2921 /* kvm_io_bus_read - called under kvm->slots_lock */
2922 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2923 int len, void *val)
2924 {
2925 struct kvm_io_bus *bus;
2926 struct kvm_io_range range;
2927 int r;
2928
2929 range = (struct kvm_io_range) {
2930 .addr = addr,
2931 .len = len,
2932 };
2933
2934 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2935 r = __kvm_io_bus_read(bus, &range, val);
2936 return r < 0 ? r : 0;
2937 }
2938
2939 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */
2940 int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2941 int len, void *val, long cookie)
2942 {
2943 struct kvm_io_bus *bus;
2944 struct kvm_io_range range;
2945
2946 range = (struct kvm_io_range) {
2947 .addr = addr,
2948 .len = len,
2949 };
2950
2951 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2952
2953 /* First try the device referenced by cookie. */
2954 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2955 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2956 if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len,
2957 val))
2958 return cookie;
2959
2960 /*
2961 * cookie contained garbage; fall back to search and return the
2962 * correct cookie value.
2963 */
2964 return __kvm_io_bus_read(bus, &range, val);
2965 }
2966
2967 /* Caller must hold slots_lock. */
2968 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2969 int len, struct kvm_io_device *dev)
2970 {
2971 struct kvm_io_bus *new_bus, *bus;
2972
2973 bus = kvm->buses[bus_idx];
2974 /* exclude ioeventfd which is limited by maximum fd */
2975 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2976 return -ENOSPC;
2977
2978 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2979 sizeof(struct kvm_io_range)), GFP_KERNEL);
2980 if (!new_bus)
2981 return -ENOMEM;
2982 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2983 sizeof(struct kvm_io_range)));
2984 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2985 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2986 synchronize_srcu_expedited(&kvm->srcu);
2987 kfree(bus);
2988
2989 return 0;
2990 }
2991
2992 /* Caller must hold slots_lock. */
2993 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2994 struct kvm_io_device *dev)
2995 {
2996 int i, r;
2997 struct kvm_io_bus *new_bus, *bus;
2998
2999 bus = kvm->buses[bus_idx];
3000 r = -ENOENT;
3001 for (i = 0; i < bus->dev_count; i++)
3002 if (bus->range[i].dev == dev) {
3003 r = 0;
3004 break;
3005 }
3006
3007 if (r)
3008 return r;
3009
3010 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3011 sizeof(struct kvm_io_range)), GFP_KERNEL);
3012 if (!new_bus)
3013 return -ENOMEM;
3014
3015 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3016 new_bus->dev_count--;
3017 memcpy(new_bus->range + i, bus->range + i + 1,
3018 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3019
3020 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3021 synchronize_srcu_expedited(&kvm->srcu);
3022 kfree(bus);
3023 return r;
3024 }
3025
3026 static struct notifier_block kvm_cpu_notifier = {
3027 .notifier_call = kvm_cpu_hotplug,
3028 };
3029
3030 static int vm_stat_get(void *_offset, u64 *val)
3031 {
3032 unsigned offset = (long)_offset;
3033 struct kvm *kvm;
3034
3035 *val = 0;
3036 spin_lock(&kvm_lock);
3037 list_for_each_entry(kvm, &vm_list, vm_list)
3038 *val += *(u32 *)((void *)kvm + offset);
3039 spin_unlock(&kvm_lock);
3040 return 0;
3041 }
3042
3043 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3044
3045 static int vcpu_stat_get(void *_offset, u64 *val)
3046 {
3047 unsigned offset = (long)_offset;
3048 struct kvm *kvm;
3049 struct kvm_vcpu *vcpu;
3050 int i;
3051
3052 *val = 0;
3053 spin_lock(&kvm_lock);
3054 list_for_each_entry(kvm, &vm_list, vm_list)
3055 kvm_for_each_vcpu(i, vcpu, kvm)
3056 *val += *(u32 *)((void *)vcpu + offset);
3057
3058 spin_unlock(&kvm_lock);
3059 return 0;
3060 }
3061
3062 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3063
3064 static const struct file_operations *stat_fops[] = {
3065 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3066 [KVM_STAT_VM] = &vm_stat_fops,
3067 };
3068
3069 static int kvm_init_debug(void)
3070 {
3071 int r = -EEXIST;
3072 struct kvm_stats_debugfs_item *p;
3073
3074 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3075 if (kvm_debugfs_dir == NULL)
3076 goto out;
3077
3078 for (p = debugfs_entries; p->name; ++p) {
3079 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3080 (void *)(long)p->offset,
3081 stat_fops[p->kind]);
3082 if (p->dentry == NULL)
3083 goto out_dir;
3084 }
3085
3086 return 0;
3087
3088 out_dir:
3089 debugfs_remove_recursive(kvm_debugfs_dir);
3090 out:
3091 return r;
3092 }
3093
3094 static void kvm_exit_debug(void)
3095 {
3096 struct kvm_stats_debugfs_item *p;
3097
3098 for (p = debugfs_entries; p->name; ++p)
3099 debugfs_remove(p->dentry);
3100 debugfs_remove(kvm_debugfs_dir);
3101 }
3102
3103 static int kvm_suspend(void)
3104 {
3105 if (kvm_usage_count)
3106 hardware_disable_nolock(NULL);
3107 return 0;
3108 }
3109
3110 static void kvm_resume(void)
3111 {
3112 if (kvm_usage_count) {
3113 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3114 hardware_enable_nolock(NULL);
3115 }
3116 }
3117
3118 static struct syscore_ops kvm_syscore_ops = {
3119 .suspend = kvm_suspend,
3120 .resume = kvm_resume,
3121 };
3122
3123 static inline
3124 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3125 {
3126 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3127 }
3128
3129 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3130 {
3131 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3132 if (vcpu->preempted)
3133 vcpu->preempted = false;
3134
3135 kvm_arch_vcpu_load(vcpu, cpu);
3136 }
3137
3138 static void kvm_sched_out(struct preempt_notifier *pn,
3139 struct task_struct *next)
3140 {
3141 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3142
3143 if (current->state == TASK_RUNNING)
3144 vcpu->preempted = true;
3145 kvm_arch_vcpu_put(vcpu);
3146 }
3147
3148 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3149 struct module *module)
3150 {
3151 int r;
3152 int cpu;
3153
3154 r = kvm_arch_init(opaque);
3155 if (r)
3156 goto out_fail;
3157
3158 /*
3159 * kvm_arch_init makes sure there's at most one caller
3160 * for architectures that support multiple implementations,
3161 * like intel and amd on x86.
3162 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3163 * conflicts in case kvm is already setup for another implementation.
3164 */
3165 r = kvm_irqfd_init();
3166 if (r)
3167 goto out_irqfd;
3168
3169 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3170 r = -ENOMEM;
3171 goto out_free_0;
3172 }
3173
3174 r = kvm_arch_hardware_setup();
3175 if (r < 0)
3176 goto out_free_0a;
3177
3178 for_each_online_cpu(cpu) {
3179 smp_call_function_single(cpu,
3180 kvm_arch_check_processor_compat,
3181 &r, 1);
3182 if (r < 0)
3183 goto out_free_1;
3184 }
3185
3186 r = register_cpu_notifier(&kvm_cpu_notifier);
3187 if (r)
3188 goto out_free_2;
3189 register_reboot_notifier(&kvm_reboot_notifier);
3190
3191 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3192 if (!vcpu_align)
3193 vcpu_align = __alignof__(struct kvm_vcpu);
3194 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3195 0, NULL);
3196 if (!kvm_vcpu_cache) {
3197 r = -ENOMEM;
3198 goto out_free_3;
3199 }
3200
3201 r = kvm_async_pf_init();
3202 if (r)
3203 goto out_free;
3204
3205 kvm_chardev_ops.owner = module;
3206 kvm_vm_fops.owner = module;
3207 kvm_vcpu_fops.owner = module;
3208
3209 r = misc_register(&kvm_dev);
3210 if (r) {
3211 printk(KERN_ERR "kvm: misc device register failed\n");
3212 goto out_unreg;
3213 }
3214
3215 register_syscore_ops(&kvm_syscore_ops);
3216
3217 kvm_preempt_ops.sched_in = kvm_sched_in;
3218 kvm_preempt_ops.sched_out = kvm_sched_out;
3219
3220 r = kvm_init_debug();
3221 if (r) {
3222 printk(KERN_ERR "kvm: create debugfs files failed\n");
3223 goto out_undebugfs;
3224 }
3225
3226 return 0;
3227
3228 out_undebugfs:
3229 unregister_syscore_ops(&kvm_syscore_ops);
3230 misc_deregister(&kvm_dev);
3231 out_unreg:
3232 kvm_async_pf_deinit();
3233 out_free:
3234 kmem_cache_destroy(kvm_vcpu_cache);
3235 out_free_3:
3236 unregister_reboot_notifier(&kvm_reboot_notifier);
3237 unregister_cpu_notifier(&kvm_cpu_notifier);
3238 out_free_2:
3239 out_free_1:
3240 kvm_arch_hardware_unsetup();
3241 out_free_0a:
3242 free_cpumask_var(cpus_hardware_enabled);
3243 out_free_0:
3244 kvm_irqfd_exit();
3245 out_irqfd:
3246 kvm_arch_exit();
3247 out_fail:
3248 return r;
3249 }
3250 EXPORT_SYMBOL_GPL(kvm_init);
3251
3252 void kvm_exit(void)
3253 {
3254 kvm_exit_debug();
3255 misc_deregister(&kvm_dev);
3256 kmem_cache_destroy(kvm_vcpu_cache);
3257 kvm_async_pf_deinit();
3258 unregister_syscore_ops(&kvm_syscore_ops);
3259 unregister_reboot_notifier(&kvm_reboot_notifier);
3260 unregister_cpu_notifier(&kvm_cpu_notifier);
3261 on_each_cpu(hardware_disable_nolock, NULL, 1);
3262 kvm_arch_hardware_unsetup();
3263 kvm_arch_exit();
3264 kvm_irqfd_exit();
3265 free_cpumask_var(cpus_hardware_enabled);
3266 }
3267 EXPORT_SYMBOL_GPL(kvm_exit);