]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/kvm_main.c
spi: allow registering empty spi_board_info lists
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90 * Ordering of locks:
91 *
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93 */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
134 {
135 if (pfn_valid(pfn))
136 return PageReserved(pfn_to_page(pfn));
137
138 return true;
139 }
140
141 /*
142 * Switches to specified vcpu, until a matching vcpu_put()
143 */
144 int vcpu_load(struct kvm_vcpu *vcpu)
145 {
146 int cpu;
147
148 if (mutex_lock_killable(&vcpu->mutex))
149 return -EINTR;
150 cpu = get_cpu();
151 preempt_notifier_register(&vcpu->preempt_notifier);
152 kvm_arch_vcpu_load(vcpu, cpu);
153 put_cpu();
154 return 0;
155 }
156 EXPORT_SYMBOL_GPL(vcpu_load);
157
158 void vcpu_put(struct kvm_vcpu *vcpu)
159 {
160 preempt_disable();
161 kvm_arch_vcpu_put(vcpu);
162 preempt_notifier_unregister(&vcpu->preempt_notifier);
163 preempt_enable();
164 mutex_unlock(&vcpu->mutex);
165 }
166 EXPORT_SYMBOL_GPL(vcpu_put);
167
168 static void ack_flush(void *_completed)
169 {
170 }
171
172 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 {
174 int i, cpu, me;
175 cpumask_var_t cpus;
176 bool called = true;
177 struct kvm_vcpu *vcpu;
178
179 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
180
181 me = get_cpu();
182 kvm_for_each_vcpu(i, vcpu, kvm) {
183 kvm_make_request(req, vcpu);
184 cpu = vcpu->cpu;
185
186 /* Set ->requests bit before we read ->mode. */
187 smp_mb__after_atomic();
188
189 if (cpus != NULL && cpu != -1 && cpu != me &&
190 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191 cpumask_set_cpu(cpu, cpus);
192 }
193 if (unlikely(cpus == NULL))
194 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195 else if (!cpumask_empty(cpus))
196 smp_call_function_many(cpus, ack_flush, NULL, 1);
197 else
198 called = false;
199 put_cpu();
200 free_cpumask_var(cpus);
201 return called;
202 }
203
204 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
205 void kvm_flush_remote_tlbs(struct kvm *kvm)
206 {
207 /*
208 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
209 * kvm_make_all_cpus_request.
210 */
211 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
212
213 /*
214 * We want to publish modifications to the page tables before reading
215 * mode. Pairs with a memory barrier in arch-specific code.
216 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
217 * and smp_mb in walk_shadow_page_lockless_begin/end.
218 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
219 *
220 * There is already an smp_mb__after_atomic() before
221 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
222 * barrier here.
223 */
224 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
225 ++kvm->stat.remote_tlb_flush;
226 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
227 }
228 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
229 #endif
230
231 void kvm_reload_remote_mmus(struct kvm *kvm)
232 {
233 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
234 }
235
236 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
237 {
238 struct page *page;
239 int r;
240
241 mutex_init(&vcpu->mutex);
242 vcpu->cpu = -1;
243 vcpu->kvm = kvm;
244 vcpu->vcpu_id = id;
245 vcpu->pid = NULL;
246 init_swait_queue_head(&vcpu->wq);
247 kvm_async_pf_vcpu_init(vcpu);
248
249 vcpu->pre_pcpu = -1;
250 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
251
252 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
253 if (!page) {
254 r = -ENOMEM;
255 goto fail;
256 }
257 vcpu->run = page_address(page);
258
259 kvm_vcpu_set_in_spin_loop(vcpu, false);
260 kvm_vcpu_set_dy_eligible(vcpu, false);
261 vcpu->preempted = false;
262
263 r = kvm_arch_vcpu_init(vcpu);
264 if (r < 0)
265 goto fail_free_run;
266 return 0;
267
268 fail_free_run:
269 free_page((unsigned long)vcpu->run);
270 fail:
271 return r;
272 }
273 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
274
275 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
276 {
277 put_pid(vcpu->pid);
278 kvm_arch_vcpu_uninit(vcpu);
279 free_page((unsigned long)vcpu->run);
280 }
281 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
282
283 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
284 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
285 {
286 return container_of(mn, struct kvm, mmu_notifier);
287 }
288
289 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
290 struct mm_struct *mm,
291 unsigned long address)
292 {
293 struct kvm *kvm = mmu_notifier_to_kvm(mn);
294 int need_tlb_flush, idx;
295
296 /*
297 * When ->invalidate_page runs, the linux pte has been zapped
298 * already but the page is still allocated until
299 * ->invalidate_page returns. So if we increase the sequence
300 * here the kvm page fault will notice if the spte can't be
301 * established because the page is going to be freed. If
302 * instead the kvm page fault establishes the spte before
303 * ->invalidate_page runs, kvm_unmap_hva will release it
304 * before returning.
305 *
306 * The sequence increase only need to be seen at spin_unlock
307 * time, and not at spin_lock time.
308 *
309 * Increasing the sequence after the spin_unlock would be
310 * unsafe because the kvm page fault could then establish the
311 * pte after kvm_unmap_hva returned, without noticing the page
312 * is going to be freed.
313 */
314 idx = srcu_read_lock(&kvm->srcu);
315 spin_lock(&kvm->mmu_lock);
316
317 kvm->mmu_notifier_seq++;
318 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
319 /* we've to flush the tlb before the pages can be freed */
320 if (need_tlb_flush)
321 kvm_flush_remote_tlbs(kvm);
322
323 spin_unlock(&kvm->mmu_lock);
324
325 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
326
327 srcu_read_unlock(&kvm->srcu, idx);
328 }
329
330 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
331 struct mm_struct *mm,
332 unsigned long address,
333 pte_t pte)
334 {
335 struct kvm *kvm = mmu_notifier_to_kvm(mn);
336 int idx;
337
338 idx = srcu_read_lock(&kvm->srcu);
339 spin_lock(&kvm->mmu_lock);
340 kvm->mmu_notifier_seq++;
341 kvm_set_spte_hva(kvm, address, pte);
342 spin_unlock(&kvm->mmu_lock);
343 srcu_read_unlock(&kvm->srcu, idx);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long start,
349 unsigned long end)
350 {
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 int need_tlb_flush = 0, idx;
353
354 idx = srcu_read_lock(&kvm->srcu);
355 spin_lock(&kvm->mmu_lock);
356 /*
357 * The count increase must become visible at unlock time as no
358 * spte can be established without taking the mmu_lock and
359 * count is also read inside the mmu_lock critical section.
360 */
361 kvm->mmu_notifier_count++;
362 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
363 need_tlb_flush |= kvm->tlbs_dirty;
364 /* we've to flush the tlb before the pages can be freed */
365 if (need_tlb_flush)
366 kvm_flush_remote_tlbs(kvm);
367
368 spin_unlock(&kvm->mmu_lock);
369 srcu_read_unlock(&kvm->srcu, idx);
370 }
371
372 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
373 struct mm_struct *mm,
374 unsigned long start,
375 unsigned long end)
376 {
377 struct kvm *kvm = mmu_notifier_to_kvm(mn);
378
379 spin_lock(&kvm->mmu_lock);
380 /*
381 * This sequence increase will notify the kvm page fault that
382 * the page that is going to be mapped in the spte could have
383 * been freed.
384 */
385 kvm->mmu_notifier_seq++;
386 smp_wmb();
387 /*
388 * The above sequence increase must be visible before the
389 * below count decrease, which is ensured by the smp_wmb above
390 * in conjunction with the smp_rmb in mmu_notifier_retry().
391 */
392 kvm->mmu_notifier_count--;
393 spin_unlock(&kvm->mmu_lock);
394
395 BUG_ON(kvm->mmu_notifier_count < 0);
396 }
397
398 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
399 struct mm_struct *mm,
400 unsigned long start,
401 unsigned long end)
402 {
403 struct kvm *kvm = mmu_notifier_to_kvm(mn);
404 int young, idx;
405
406 idx = srcu_read_lock(&kvm->srcu);
407 spin_lock(&kvm->mmu_lock);
408
409 young = kvm_age_hva(kvm, start, end);
410 if (young)
411 kvm_flush_remote_tlbs(kvm);
412
413 spin_unlock(&kvm->mmu_lock);
414 srcu_read_unlock(&kvm->srcu, idx);
415
416 return young;
417 }
418
419 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
420 struct mm_struct *mm,
421 unsigned long start,
422 unsigned long end)
423 {
424 struct kvm *kvm = mmu_notifier_to_kvm(mn);
425 int young, idx;
426
427 idx = srcu_read_lock(&kvm->srcu);
428 spin_lock(&kvm->mmu_lock);
429 /*
430 * Even though we do not flush TLB, this will still adversely
431 * affect performance on pre-Haswell Intel EPT, where there is
432 * no EPT Access Bit to clear so that we have to tear down EPT
433 * tables instead. If we find this unacceptable, we can always
434 * add a parameter to kvm_age_hva so that it effectively doesn't
435 * do anything on clear_young.
436 *
437 * Also note that currently we never issue secondary TLB flushes
438 * from clear_young, leaving this job up to the regular system
439 * cadence. If we find this inaccurate, we might come up with a
440 * more sophisticated heuristic later.
441 */
442 young = kvm_age_hva(kvm, start, end);
443 spin_unlock(&kvm->mmu_lock);
444 srcu_read_unlock(&kvm->srcu, idx);
445
446 return young;
447 }
448
449 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
450 struct mm_struct *mm,
451 unsigned long address)
452 {
453 struct kvm *kvm = mmu_notifier_to_kvm(mn);
454 int young, idx;
455
456 idx = srcu_read_lock(&kvm->srcu);
457 spin_lock(&kvm->mmu_lock);
458 young = kvm_test_age_hva(kvm, address);
459 spin_unlock(&kvm->mmu_lock);
460 srcu_read_unlock(&kvm->srcu, idx);
461
462 return young;
463 }
464
465 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
466 struct mm_struct *mm)
467 {
468 struct kvm *kvm = mmu_notifier_to_kvm(mn);
469 int idx;
470
471 idx = srcu_read_lock(&kvm->srcu);
472 kvm_arch_flush_shadow_all(kvm);
473 srcu_read_unlock(&kvm->srcu, idx);
474 }
475
476 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
477 .invalidate_page = kvm_mmu_notifier_invalidate_page,
478 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
479 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
480 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
481 .clear_young = kvm_mmu_notifier_clear_young,
482 .test_young = kvm_mmu_notifier_test_young,
483 .change_pte = kvm_mmu_notifier_change_pte,
484 .release = kvm_mmu_notifier_release,
485 };
486
487 static int kvm_init_mmu_notifier(struct kvm *kvm)
488 {
489 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
490 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
491 }
492
493 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
494
495 static int kvm_init_mmu_notifier(struct kvm *kvm)
496 {
497 return 0;
498 }
499
500 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
501
502 static struct kvm_memslots *kvm_alloc_memslots(void)
503 {
504 int i;
505 struct kvm_memslots *slots;
506
507 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
508 if (!slots)
509 return NULL;
510
511 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512 slots->id_to_index[i] = slots->memslots[i].id = i;
513
514 return slots;
515 }
516
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519 if (!memslot->dirty_bitmap)
520 return;
521
522 kvfree(memslot->dirty_bitmap);
523 memslot->dirty_bitmap = NULL;
524 }
525
526 /*
527 * Free any memory in @free but not in @dont.
528 */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530 struct kvm_memory_slot *dont)
531 {
532 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533 kvm_destroy_dirty_bitmap(free);
534
535 kvm_arch_free_memslot(kvm, free, dont);
536
537 free->npages = 0;
538 }
539
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542 struct kvm_memory_slot *memslot;
543
544 if (!slots)
545 return;
546
547 kvm_for_each_memslot(memslot, slots)
548 kvm_free_memslot(kvm, memslot, NULL);
549
550 kvfree(slots);
551 }
552
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555 int i;
556
557 if (!kvm->debugfs_dentry)
558 return;
559
560 debugfs_remove_recursive(kvm->debugfs_dentry);
561
562 if (kvm->debugfs_stat_data) {
563 for (i = 0; i < kvm_debugfs_num_entries; i++)
564 kfree(kvm->debugfs_stat_data[i]);
565 kfree(kvm->debugfs_stat_data);
566 }
567 }
568
569 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
570 {
571 char dir_name[ITOA_MAX_LEN * 2];
572 struct kvm_stat_data *stat_data;
573 struct kvm_stats_debugfs_item *p;
574
575 if (!debugfs_initialized())
576 return 0;
577
578 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
579 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
580 kvm_debugfs_dir);
581 if (!kvm->debugfs_dentry)
582 return -ENOMEM;
583
584 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
585 sizeof(*kvm->debugfs_stat_data),
586 GFP_KERNEL);
587 if (!kvm->debugfs_stat_data)
588 return -ENOMEM;
589
590 for (p = debugfs_entries; p->name; p++) {
591 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
592 if (!stat_data)
593 return -ENOMEM;
594
595 stat_data->kvm = kvm;
596 stat_data->offset = p->offset;
597 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
598 if (!debugfs_create_file(p->name, 0644,
599 kvm->debugfs_dentry,
600 stat_data,
601 stat_fops_per_vm[p->kind]))
602 return -ENOMEM;
603 }
604 return 0;
605 }
606
607 static struct kvm *kvm_create_vm(unsigned long type)
608 {
609 int r, i;
610 struct kvm *kvm = kvm_arch_alloc_vm();
611
612 if (!kvm)
613 return ERR_PTR(-ENOMEM);
614
615 spin_lock_init(&kvm->mmu_lock);
616 mmgrab(current->mm);
617 kvm->mm = current->mm;
618 kvm_eventfd_init(kvm);
619 mutex_init(&kvm->lock);
620 mutex_init(&kvm->irq_lock);
621 mutex_init(&kvm->slots_lock);
622 refcount_set(&kvm->users_count, 1);
623 INIT_LIST_HEAD(&kvm->devices);
624
625 r = kvm_arch_init_vm(kvm, type);
626 if (r)
627 goto out_err_no_disable;
628
629 r = hardware_enable_all();
630 if (r)
631 goto out_err_no_disable;
632
633 #ifdef CONFIG_HAVE_KVM_IRQFD
634 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
635 #endif
636
637 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
638
639 r = -ENOMEM;
640 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
641 struct kvm_memslots *slots = kvm_alloc_memslots();
642 if (!slots)
643 goto out_err_no_srcu;
644 /*
645 * Generations must be different for each address space.
646 * Init kvm generation close to the maximum to easily test the
647 * code of handling generation number wrap-around.
648 */
649 slots->generation = i * 2 - 150;
650 rcu_assign_pointer(kvm->memslots[i], slots);
651 }
652
653 if (init_srcu_struct(&kvm->srcu))
654 goto out_err_no_srcu;
655 if (init_srcu_struct(&kvm->irq_srcu))
656 goto out_err_no_irq_srcu;
657 for (i = 0; i < KVM_NR_BUSES; i++) {
658 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
659 GFP_KERNEL);
660 if (!kvm->buses[i])
661 goto out_err;
662 }
663
664 r = kvm_init_mmu_notifier(kvm);
665 if (r)
666 goto out_err;
667
668 spin_lock(&kvm_lock);
669 list_add(&kvm->vm_list, &vm_list);
670 spin_unlock(&kvm_lock);
671
672 preempt_notifier_inc();
673
674 return kvm;
675
676 out_err:
677 cleanup_srcu_struct(&kvm->irq_srcu);
678 out_err_no_irq_srcu:
679 cleanup_srcu_struct(&kvm->srcu);
680 out_err_no_srcu:
681 hardware_disable_all();
682 out_err_no_disable:
683 for (i = 0; i < KVM_NR_BUSES; i++)
684 kfree(kvm->buses[i]);
685 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
686 kvm_free_memslots(kvm, kvm->memslots[i]);
687 kvm_arch_free_vm(kvm);
688 mmdrop(current->mm);
689 return ERR_PTR(r);
690 }
691
692 /*
693 * Avoid using vmalloc for a small buffer.
694 * Should not be used when the size is statically known.
695 */
696 void *kvm_kvzalloc(unsigned long size)
697 {
698 if (size > PAGE_SIZE)
699 return vzalloc(size);
700 else
701 return kzalloc(size, GFP_KERNEL);
702 }
703
704 static void kvm_destroy_devices(struct kvm *kvm)
705 {
706 struct kvm_device *dev, *tmp;
707
708 /*
709 * We do not need to take the kvm->lock here, because nobody else
710 * has a reference to the struct kvm at this point and therefore
711 * cannot access the devices list anyhow.
712 */
713 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
714 list_del(&dev->vm_node);
715 dev->ops->destroy(dev);
716 }
717 }
718
719 static void kvm_destroy_vm(struct kvm *kvm)
720 {
721 int i;
722 struct mm_struct *mm = kvm->mm;
723
724 kvm_destroy_vm_debugfs(kvm);
725 kvm_arch_sync_events(kvm);
726 spin_lock(&kvm_lock);
727 list_del(&kvm->vm_list);
728 spin_unlock(&kvm_lock);
729 kvm_free_irq_routing(kvm);
730 for (i = 0; i < KVM_NR_BUSES; i++)
731 kvm_io_bus_destroy(kvm->buses[i]);
732 kvm_coalesced_mmio_free(kvm);
733 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
734 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
735 #else
736 kvm_arch_flush_shadow_all(kvm);
737 #endif
738 kvm_arch_destroy_vm(kvm);
739 kvm_destroy_devices(kvm);
740 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
741 kvm_free_memslots(kvm, kvm->memslots[i]);
742 cleanup_srcu_struct(&kvm->irq_srcu);
743 cleanup_srcu_struct(&kvm->srcu);
744 kvm_arch_free_vm(kvm);
745 preempt_notifier_dec();
746 hardware_disable_all();
747 mmdrop(mm);
748 }
749
750 void kvm_get_kvm(struct kvm *kvm)
751 {
752 refcount_inc(&kvm->users_count);
753 }
754 EXPORT_SYMBOL_GPL(kvm_get_kvm);
755
756 void kvm_put_kvm(struct kvm *kvm)
757 {
758 if (refcount_dec_and_test(&kvm->users_count))
759 kvm_destroy_vm(kvm);
760 }
761 EXPORT_SYMBOL_GPL(kvm_put_kvm);
762
763
764 static int kvm_vm_release(struct inode *inode, struct file *filp)
765 {
766 struct kvm *kvm = filp->private_data;
767
768 kvm_irqfd_release(kvm);
769
770 kvm_put_kvm(kvm);
771 return 0;
772 }
773
774 /*
775 * Allocation size is twice as large as the actual dirty bitmap size.
776 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
777 */
778 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
779 {
780 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
781
782 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
783 if (!memslot->dirty_bitmap)
784 return -ENOMEM;
785
786 return 0;
787 }
788
789 /*
790 * Insert memslot and re-sort memslots based on their GFN,
791 * so binary search could be used to lookup GFN.
792 * Sorting algorithm takes advantage of having initially
793 * sorted array and known changed memslot position.
794 */
795 static void update_memslots(struct kvm_memslots *slots,
796 struct kvm_memory_slot *new)
797 {
798 int id = new->id;
799 int i = slots->id_to_index[id];
800 struct kvm_memory_slot *mslots = slots->memslots;
801
802 WARN_ON(mslots[i].id != id);
803 if (!new->npages) {
804 WARN_ON(!mslots[i].npages);
805 if (mslots[i].npages)
806 slots->used_slots--;
807 } else {
808 if (!mslots[i].npages)
809 slots->used_slots++;
810 }
811
812 while (i < KVM_MEM_SLOTS_NUM - 1 &&
813 new->base_gfn <= mslots[i + 1].base_gfn) {
814 if (!mslots[i + 1].npages)
815 break;
816 mslots[i] = mslots[i + 1];
817 slots->id_to_index[mslots[i].id] = i;
818 i++;
819 }
820
821 /*
822 * The ">=" is needed when creating a slot with base_gfn == 0,
823 * so that it moves before all those with base_gfn == npages == 0.
824 *
825 * On the other hand, if new->npages is zero, the above loop has
826 * already left i pointing to the beginning of the empty part of
827 * mslots, and the ">=" would move the hole backwards in this
828 * case---which is wrong. So skip the loop when deleting a slot.
829 */
830 if (new->npages) {
831 while (i > 0 &&
832 new->base_gfn >= mslots[i - 1].base_gfn) {
833 mslots[i] = mslots[i - 1];
834 slots->id_to_index[mslots[i].id] = i;
835 i--;
836 }
837 } else
838 WARN_ON_ONCE(i != slots->used_slots);
839
840 mslots[i] = *new;
841 slots->id_to_index[mslots[i].id] = i;
842 }
843
844 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
845 {
846 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
847
848 #ifdef __KVM_HAVE_READONLY_MEM
849 valid_flags |= KVM_MEM_READONLY;
850 #endif
851
852 if (mem->flags & ~valid_flags)
853 return -EINVAL;
854
855 return 0;
856 }
857
858 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
859 int as_id, struct kvm_memslots *slots)
860 {
861 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
862
863 /*
864 * Set the low bit in the generation, which disables SPTE caching
865 * until the end of synchronize_srcu_expedited.
866 */
867 WARN_ON(old_memslots->generation & 1);
868 slots->generation = old_memslots->generation + 1;
869
870 rcu_assign_pointer(kvm->memslots[as_id], slots);
871 synchronize_srcu_expedited(&kvm->srcu);
872
873 /*
874 * Increment the new memslot generation a second time. This prevents
875 * vm exits that race with memslot updates from caching a memslot
876 * generation that will (potentially) be valid forever.
877 *
878 * Generations must be unique even across address spaces. We do not need
879 * a global counter for that, instead the generation space is evenly split
880 * across address spaces. For example, with two address spaces, address
881 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
882 * use generations 2, 6, 10, 14, ...
883 */
884 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
885
886 kvm_arch_memslots_updated(kvm, slots);
887
888 return old_memslots;
889 }
890
891 /*
892 * Allocate some memory and give it an address in the guest physical address
893 * space.
894 *
895 * Discontiguous memory is allowed, mostly for framebuffers.
896 *
897 * Must be called holding kvm->slots_lock for write.
898 */
899 int __kvm_set_memory_region(struct kvm *kvm,
900 const struct kvm_userspace_memory_region *mem)
901 {
902 int r;
903 gfn_t base_gfn;
904 unsigned long npages;
905 struct kvm_memory_slot *slot;
906 struct kvm_memory_slot old, new;
907 struct kvm_memslots *slots = NULL, *old_memslots;
908 int as_id, id;
909 enum kvm_mr_change change;
910
911 r = check_memory_region_flags(mem);
912 if (r)
913 goto out;
914
915 r = -EINVAL;
916 as_id = mem->slot >> 16;
917 id = (u16)mem->slot;
918
919 /* General sanity checks */
920 if (mem->memory_size & (PAGE_SIZE - 1))
921 goto out;
922 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
923 goto out;
924 /* We can read the guest memory with __xxx_user() later on. */
925 if ((id < KVM_USER_MEM_SLOTS) &&
926 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
927 !access_ok(VERIFY_WRITE,
928 (void __user *)(unsigned long)mem->userspace_addr,
929 mem->memory_size)))
930 goto out;
931 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
932 goto out;
933 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
934 goto out;
935
936 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
937 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
938 npages = mem->memory_size >> PAGE_SHIFT;
939
940 if (npages > KVM_MEM_MAX_NR_PAGES)
941 goto out;
942
943 new = old = *slot;
944
945 new.id = id;
946 new.base_gfn = base_gfn;
947 new.npages = npages;
948 new.flags = mem->flags;
949
950 if (npages) {
951 if (!old.npages)
952 change = KVM_MR_CREATE;
953 else { /* Modify an existing slot. */
954 if ((mem->userspace_addr != old.userspace_addr) ||
955 (npages != old.npages) ||
956 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
957 goto out;
958
959 if (base_gfn != old.base_gfn)
960 change = KVM_MR_MOVE;
961 else if (new.flags != old.flags)
962 change = KVM_MR_FLAGS_ONLY;
963 else { /* Nothing to change. */
964 r = 0;
965 goto out;
966 }
967 }
968 } else {
969 if (!old.npages)
970 goto out;
971
972 change = KVM_MR_DELETE;
973 new.base_gfn = 0;
974 new.flags = 0;
975 }
976
977 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
978 /* Check for overlaps */
979 r = -EEXIST;
980 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
981 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
982 (slot->id == id))
983 continue;
984 if (!((base_gfn + npages <= slot->base_gfn) ||
985 (base_gfn >= slot->base_gfn + slot->npages)))
986 goto out;
987 }
988 }
989
990 /* Free page dirty bitmap if unneeded */
991 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
992 new.dirty_bitmap = NULL;
993
994 r = -ENOMEM;
995 if (change == KVM_MR_CREATE) {
996 new.userspace_addr = mem->userspace_addr;
997
998 if (kvm_arch_create_memslot(kvm, &new, npages))
999 goto out_free;
1000 }
1001
1002 /* Allocate page dirty bitmap if needed */
1003 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1004 if (kvm_create_dirty_bitmap(&new) < 0)
1005 goto out_free;
1006 }
1007
1008 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
1009 if (!slots)
1010 goto out_free;
1011 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1012
1013 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1014 slot = id_to_memslot(slots, id);
1015 slot->flags |= KVM_MEMSLOT_INVALID;
1016
1017 old_memslots = install_new_memslots(kvm, as_id, slots);
1018
1019 /* slot was deleted or moved, clear iommu mapping */
1020 kvm_iommu_unmap_pages(kvm, &old);
1021 /* From this point no new shadow pages pointing to a deleted,
1022 * or moved, memslot will be created.
1023 *
1024 * validation of sp->gfn happens in:
1025 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1026 * - kvm_is_visible_gfn (mmu_check_roots)
1027 */
1028 kvm_arch_flush_shadow_memslot(kvm, slot);
1029
1030 /*
1031 * We can re-use the old_memslots from above, the only difference
1032 * from the currently installed memslots is the invalid flag. This
1033 * will get overwritten by update_memslots anyway.
1034 */
1035 slots = old_memslots;
1036 }
1037
1038 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1039 if (r)
1040 goto out_slots;
1041
1042 /* actual memory is freed via old in kvm_free_memslot below */
1043 if (change == KVM_MR_DELETE) {
1044 new.dirty_bitmap = NULL;
1045 memset(&new.arch, 0, sizeof(new.arch));
1046 }
1047
1048 update_memslots(slots, &new);
1049 old_memslots = install_new_memslots(kvm, as_id, slots);
1050
1051 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1052
1053 kvm_free_memslot(kvm, &old, &new);
1054 kvfree(old_memslots);
1055
1056 /*
1057 * IOMMU mapping: New slots need to be mapped. Old slots need to be
1058 * un-mapped and re-mapped if their base changes. Since base change
1059 * unmapping is handled above with slot deletion, mapping alone is
1060 * needed here. Anything else the iommu might care about for existing
1061 * slots (size changes, userspace addr changes and read-only flag
1062 * changes) is disallowed above, so any other attribute changes getting
1063 * here can be skipped.
1064 */
1065 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1066 r = kvm_iommu_map_pages(kvm, &new);
1067 return r;
1068 }
1069
1070 return 0;
1071
1072 out_slots:
1073 kvfree(slots);
1074 out_free:
1075 kvm_free_memslot(kvm, &new, &old);
1076 out:
1077 return r;
1078 }
1079 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1080
1081 int kvm_set_memory_region(struct kvm *kvm,
1082 const struct kvm_userspace_memory_region *mem)
1083 {
1084 int r;
1085
1086 mutex_lock(&kvm->slots_lock);
1087 r = __kvm_set_memory_region(kvm, mem);
1088 mutex_unlock(&kvm->slots_lock);
1089 return r;
1090 }
1091 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1092
1093 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1094 struct kvm_userspace_memory_region *mem)
1095 {
1096 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1097 return -EINVAL;
1098
1099 return kvm_set_memory_region(kvm, mem);
1100 }
1101
1102 int kvm_get_dirty_log(struct kvm *kvm,
1103 struct kvm_dirty_log *log, int *is_dirty)
1104 {
1105 struct kvm_memslots *slots;
1106 struct kvm_memory_slot *memslot;
1107 int i, as_id, id;
1108 unsigned long n;
1109 unsigned long any = 0;
1110
1111 as_id = log->slot >> 16;
1112 id = (u16)log->slot;
1113 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1114 return -EINVAL;
1115
1116 slots = __kvm_memslots(kvm, as_id);
1117 memslot = id_to_memslot(slots, id);
1118 if (!memslot->dirty_bitmap)
1119 return -ENOENT;
1120
1121 n = kvm_dirty_bitmap_bytes(memslot);
1122
1123 for (i = 0; !any && i < n/sizeof(long); ++i)
1124 any = memslot->dirty_bitmap[i];
1125
1126 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1127 return -EFAULT;
1128
1129 if (any)
1130 *is_dirty = 1;
1131 return 0;
1132 }
1133 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1134
1135 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1136 /**
1137 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1138 * are dirty write protect them for next write.
1139 * @kvm: pointer to kvm instance
1140 * @log: slot id and address to which we copy the log
1141 * @is_dirty: flag set if any page is dirty
1142 *
1143 * We need to keep it in mind that VCPU threads can write to the bitmap
1144 * concurrently. So, to avoid losing track of dirty pages we keep the
1145 * following order:
1146 *
1147 * 1. Take a snapshot of the bit and clear it if needed.
1148 * 2. Write protect the corresponding page.
1149 * 3. Copy the snapshot to the userspace.
1150 * 4. Upon return caller flushes TLB's if needed.
1151 *
1152 * Between 2 and 4, the guest may write to the page using the remaining TLB
1153 * entry. This is not a problem because the page is reported dirty using
1154 * the snapshot taken before and step 4 ensures that writes done after
1155 * exiting to userspace will be logged for the next call.
1156 *
1157 */
1158 int kvm_get_dirty_log_protect(struct kvm *kvm,
1159 struct kvm_dirty_log *log, bool *is_dirty)
1160 {
1161 struct kvm_memslots *slots;
1162 struct kvm_memory_slot *memslot;
1163 int i, as_id, id;
1164 unsigned long n;
1165 unsigned long *dirty_bitmap;
1166 unsigned long *dirty_bitmap_buffer;
1167
1168 as_id = log->slot >> 16;
1169 id = (u16)log->slot;
1170 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1171 return -EINVAL;
1172
1173 slots = __kvm_memslots(kvm, as_id);
1174 memslot = id_to_memslot(slots, id);
1175
1176 dirty_bitmap = memslot->dirty_bitmap;
1177 if (!dirty_bitmap)
1178 return -ENOENT;
1179
1180 n = kvm_dirty_bitmap_bytes(memslot);
1181
1182 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1183 memset(dirty_bitmap_buffer, 0, n);
1184
1185 spin_lock(&kvm->mmu_lock);
1186 *is_dirty = false;
1187 for (i = 0; i < n / sizeof(long); i++) {
1188 unsigned long mask;
1189 gfn_t offset;
1190
1191 if (!dirty_bitmap[i])
1192 continue;
1193
1194 *is_dirty = true;
1195
1196 mask = xchg(&dirty_bitmap[i], 0);
1197 dirty_bitmap_buffer[i] = mask;
1198
1199 if (mask) {
1200 offset = i * BITS_PER_LONG;
1201 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1202 offset, mask);
1203 }
1204 }
1205
1206 spin_unlock(&kvm->mmu_lock);
1207 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1208 return -EFAULT;
1209 return 0;
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1212 #endif
1213
1214 bool kvm_largepages_enabled(void)
1215 {
1216 return largepages_enabled;
1217 }
1218
1219 void kvm_disable_largepages(void)
1220 {
1221 largepages_enabled = false;
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1224
1225 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1226 {
1227 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1228 }
1229 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1230
1231 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1232 {
1233 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1234 }
1235
1236 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1237 {
1238 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1239
1240 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1241 memslot->flags & KVM_MEMSLOT_INVALID)
1242 return false;
1243
1244 return true;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1247
1248 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1249 {
1250 struct vm_area_struct *vma;
1251 unsigned long addr, size;
1252
1253 size = PAGE_SIZE;
1254
1255 addr = gfn_to_hva(kvm, gfn);
1256 if (kvm_is_error_hva(addr))
1257 return PAGE_SIZE;
1258
1259 down_read(&current->mm->mmap_sem);
1260 vma = find_vma(current->mm, addr);
1261 if (!vma)
1262 goto out;
1263
1264 size = vma_kernel_pagesize(vma);
1265
1266 out:
1267 up_read(&current->mm->mmap_sem);
1268
1269 return size;
1270 }
1271
1272 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1273 {
1274 return slot->flags & KVM_MEM_READONLY;
1275 }
1276
1277 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1278 gfn_t *nr_pages, bool write)
1279 {
1280 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1281 return KVM_HVA_ERR_BAD;
1282
1283 if (memslot_is_readonly(slot) && write)
1284 return KVM_HVA_ERR_RO_BAD;
1285
1286 if (nr_pages)
1287 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1288
1289 return __gfn_to_hva_memslot(slot, gfn);
1290 }
1291
1292 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1293 gfn_t *nr_pages)
1294 {
1295 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1296 }
1297
1298 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1299 gfn_t gfn)
1300 {
1301 return gfn_to_hva_many(slot, gfn, NULL);
1302 }
1303 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1304
1305 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1306 {
1307 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1308 }
1309 EXPORT_SYMBOL_GPL(gfn_to_hva);
1310
1311 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1312 {
1313 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1314 }
1315 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1316
1317 /*
1318 * If writable is set to false, the hva returned by this function is only
1319 * allowed to be read.
1320 */
1321 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1322 gfn_t gfn, bool *writable)
1323 {
1324 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1325
1326 if (!kvm_is_error_hva(hva) && writable)
1327 *writable = !memslot_is_readonly(slot);
1328
1329 return hva;
1330 }
1331
1332 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1333 {
1334 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1335
1336 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338
1339 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1340 {
1341 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1342
1343 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1344 }
1345
1346 static int get_user_page_nowait(unsigned long start, int write,
1347 struct page **page)
1348 {
1349 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1350
1351 if (write)
1352 flags |= FOLL_WRITE;
1353
1354 return get_user_pages(start, 1, flags, page, NULL);
1355 }
1356
1357 static inline int check_user_page_hwpoison(unsigned long addr)
1358 {
1359 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1360
1361 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1362 return rc == -EHWPOISON;
1363 }
1364
1365 /*
1366 * The atomic path to get the writable pfn which will be stored in @pfn,
1367 * true indicates success, otherwise false is returned.
1368 */
1369 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1370 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1371 {
1372 struct page *page[1];
1373 int npages;
1374
1375 if (!(async || atomic))
1376 return false;
1377
1378 /*
1379 * Fast pin a writable pfn only if it is a write fault request
1380 * or the caller allows to map a writable pfn for a read fault
1381 * request.
1382 */
1383 if (!(write_fault || writable))
1384 return false;
1385
1386 npages = __get_user_pages_fast(addr, 1, 1, page);
1387 if (npages == 1) {
1388 *pfn = page_to_pfn(page[0]);
1389
1390 if (writable)
1391 *writable = true;
1392 return true;
1393 }
1394
1395 return false;
1396 }
1397
1398 /*
1399 * The slow path to get the pfn of the specified host virtual address,
1400 * 1 indicates success, -errno is returned if error is detected.
1401 */
1402 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1403 bool *writable, kvm_pfn_t *pfn)
1404 {
1405 struct page *page[1];
1406 int npages = 0;
1407
1408 might_sleep();
1409
1410 if (writable)
1411 *writable = write_fault;
1412
1413 if (async) {
1414 down_read(&current->mm->mmap_sem);
1415 npages = get_user_page_nowait(addr, write_fault, page);
1416 up_read(&current->mm->mmap_sem);
1417 } else {
1418 unsigned int flags = FOLL_HWPOISON;
1419
1420 if (write_fault)
1421 flags |= FOLL_WRITE;
1422
1423 npages = get_user_pages_unlocked(addr, 1, page, flags);
1424 }
1425 if (npages != 1)
1426 return npages;
1427
1428 /* map read fault as writable if possible */
1429 if (unlikely(!write_fault) && writable) {
1430 struct page *wpage[1];
1431
1432 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1433 if (npages == 1) {
1434 *writable = true;
1435 put_page(page[0]);
1436 page[0] = wpage[0];
1437 }
1438
1439 npages = 1;
1440 }
1441 *pfn = page_to_pfn(page[0]);
1442 return npages;
1443 }
1444
1445 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1446 {
1447 if (unlikely(!(vma->vm_flags & VM_READ)))
1448 return false;
1449
1450 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1451 return false;
1452
1453 return true;
1454 }
1455
1456 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1457 unsigned long addr, bool *async,
1458 bool write_fault, kvm_pfn_t *p_pfn)
1459 {
1460 unsigned long pfn;
1461 int r;
1462
1463 r = follow_pfn(vma, addr, &pfn);
1464 if (r) {
1465 /*
1466 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1467 * not call the fault handler, so do it here.
1468 */
1469 bool unlocked = false;
1470 r = fixup_user_fault(current, current->mm, addr,
1471 (write_fault ? FAULT_FLAG_WRITE : 0),
1472 &unlocked);
1473 if (unlocked)
1474 return -EAGAIN;
1475 if (r)
1476 return r;
1477
1478 r = follow_pfn(vma, addr, &pfn);
1479 if (r)
1480 return r;
1481
1482 }
1483
1484
1485 /*
1486 * Get a reference here because callers of *hva_to_pfn* and
1487 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1488 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1489 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1490 * simply do nothing for reserved pfns.
1491 *
1492 * Whoever called remap_pfn_range is also going to call e.g.
1493 * unmap_mapping_range before the underlying pages are freed,
1494 * causing a call to our MMU notifier.
1495 */
1496 kvm_get_pfn(pfn);
1497
1498 *p_pfn = pfn;
1499 return 0;
1500 }
1501
1502 /*
1503 * Pin guest page in memory and return its pfn.
1504 * @addr: host virtual address which maps memory to the guest
1505 * @atomic: whether this function can sleep
1506 * @async: whether this function need to wait IO complete if the
1507 * host page is not in the memory
1508 * @write_fault: whether we should get a writable host page
1509 * @writable: whether it allows to map a writable host page for !@write_fault
1510 *
1511 * The function will map a writable host page for these two cases:
1512 * 1): @write_fault = true
1513 * 2): @write_fault = false && @writable, @writable will tell the caller
1514 * whether the mapping is writable.
1515 */
1516 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1517 bool write_fault, bool *writable)
1518 {
1519 struct vm_area_struct *vma;
1520 kvm_pfn_t pfn = 0;
1521 int npages, r;
1522
1523 /* we can do it either atomically or asynchronously, not both */
1524 BUG_ON(atomic && async);
1525
1526 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1527 return pfn;
1528
1529 if (atomic)
1530 return KVM_PFN_ERR_FAULT;
1531
1532 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1533 if (npages == 1)
1534 return pfn;
1535
1536 down_read(&current->mm->mmap_sem);
1537 if (npages == -EHWPOISON ||
1538 (!async && check_user_page_hwpoison(addr))) {
1539 pfn = KVM_PFN_ERR_HWPOISON;
1540 goto exit;
1541 }
1542
1543 retry:
1544 vma = find_vma_intersection(current->mm, addr, addr + 1);
1545
1546 if (vma == NULL)
1547 pfn = KVM_PFN_ERR_FAULT;
1548 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1549 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1550 if (r == -EAGAIN)
1551 goto retry;
1552 if (r < 0)
1553 pfn = KVM_PFN_ERR_FAULT;
1554 } else {
1555 if (async && vma_is_valid(vma, write_fault))
1556 *async = true;
1557 pfn = KVM_PFN_ERR_FAULT;
1558 }
1559 exit:
1560 up_read(&current->mm->mmap_sem);
1561 return pfn;
1562 }
1563
1564 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1565 bool atomic, bool *async, bool write_fault,
1566 bool *writable)
1567 {
1568 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1569
1570 if (addr == KVM_HVA_ERR_RO_BAD) {
1571 if (writable)
1572 *writable = false;
1573 return KVM_PFN_ERR_RO_FAULT;
1574 }
1575
1576 if (kvm_is_error_hva(addr)) {
1577 if (writable)
1578 *writable = false;
1579 return KVM_PFN_NOSLOT;
1580 }
1581
1582 /* Do not map writable pfn in the readonly memslot. */
1583 if (writable && memslot_is_readonly(slot)) {
1584 *writable = false;
1585 writable = NULL;
1586 }
1587
1588 return hva_to_pfn(addr, atomic, async, write_fault,
1589 writable);
1590 }
1591 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1592
1593 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1594 bool *writable)
1595 {
1596 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1597 write_fault, writable);
1598 }
1599 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1600
1601 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1602 {
1603 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1604 }
1605 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1606
1607 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1608 {
1609 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1610 }
1611 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1612
1613 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1614 {
1615 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1616 }
1617 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1618
1619 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1620 {
1621 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1622 }
1623 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1624
1625 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1626 {
1627 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1628 }
1629 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1630
1631 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1632 {
1633 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1634 }
1635 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1636
1637 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1638 struct page **pages, int nr_pages)
1639 {
1640 unsigned long addr;
1641 gfn_t entry;
1642
1643 addr = gfn_to_hva_many(slot, gfn, &entry);
1644 if (kvm_is_error_hva(addr))
1645 return -1;
1646
1647 if (entry < nr_pages)
1648 return 0;
1649
1650 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1651 }
1652 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1653
1654 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1655 {
1656 if (is_error_noslot_pfn(pfn))
1657 return KVM_ERR_PTR_BAD_PAGE;
1658
1659 if (kvm_is_reserved_pfn(pfn)) {
1660 WARN_ON(1);
1661 return KVM_ERR_PTR_BAD_PAGE;
1662 }
1663
1664 return pfn_to_page(pfn);
1665 }
1666
1667 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1668 {
1669 kvm_pfn_t pfn;
1670
1671 pfn = gfn_to_pfn(kvm, gfn);
1672
1673 return kvm_pfn_to_page(pfn);
1674 }
1675 EXPORT_SYMBOL_GPL(gfn_to_page);
1676
1677 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1678 {
1679 kvm_pfn_t pfn;
1680
1681 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1682
1683 return kvm_pfn_to_page(pfn);
1684 }
1685 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1686
1687 void kvm_release_page_clean(struct page *page)
1688 {
1689 WARN_ON(is_error_page(page));
1690
1691 kvm_release_pfn_clean(page_to_pfn(page));
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1694
1695 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1696 {
1697 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1698 put_page(pfn_to_page(pfn));
1699 }
1700 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1701
1702 void kvm_release_page_dirty(struct page *page)
1703 {
1704 WARN_ON(is_error_page(page));
1705
1706 kvm_release_pfn_dirty(page_to_pfn(page));
1707 }
1708 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1709
1710 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1711 {
1712 kvm_set_pfn_dirty(pfn);
1713 kvm_release_pfn_clean(pfn);
1714 }
1715
1716 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1717 {
1718 if (!kvm_is_reserved_pfn(pfn)) {
1719 struct page *page = pfn_to_page(pfn);
1720
1721 if (!PageReserved(page))
1722 SetPageDirty(page);
1723 }
1724 }
1725 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1726
1727 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1728 {
1729 if (!kvm_is_reserved_pfn(pfn))
1730 mark_page_accessed(pfn_to_page(pfn));
1731 }
1732 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1733
1734 void kvm_get_pfn(kvm_pfn_t pfn)
1735 {
1736 if (!kvm_is_reserved_pfn(pfn))
1737 get_page(pfn_to_page(pfn));
1738 }
1739 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1740
1741 static int next_segment(unsigned long len, int offset)
1742 {
1743 if (len > PAGE_SIZE - offset)
1744 return PAGE_SIZE - offset;
1745 else
1746 return len;
1747 }
1748
1749 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1750 void *data, int offset, int len)
1751 {
1752 int r;
1753 unsigned long addr;
1754
1755 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1756 if (kvm_is_error_hva(addr))
1757 return -EFAULT;
1758 r = __copy_from_user(data, (void __user *)addr + offset, len);
1759 if (r)
1760 return -EFAULT;
1761 return 0;
1762 }
1763
1764 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1765 int len)
1766 {
1767 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1768
1769 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1770 }
1771 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1772
1773 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1774 int offset, int len)
1775 {
1776 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1777
1778 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1781
1782 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1783 {
1784 gfn_t gfn = gpa >> PAGE_SHIFT;
1785 int seg;
1786 int offset = offset_in_page(gpa);
1787 int ret;
1788
1789 while ((seg = next_segment(len, offset)) != 0) {
1790 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1791 if (ret < 0)
1792 return ret;
1793 offset = 0;
1794 len -= seg;
1795 data += seg;
1796 ++gfn;
1797 }
1798 return 0;
1799 }
1800 EXPORT_SYMBOL_GPL(kvm_read_guest);
1801
1802 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1803 {
1804 gfn_t gfn = gpa >> PAGE_SHIFT;
1805 int seg;
1806 int offset = offset_in_page(gpa);
1807 int ret;
1808
1809 while ((seg = next_segment(len, offset)) != 0) {
1810 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1811 if (ret < 0)
1812 return ret;
1813 offset = 0;
1814 len -= seg;
1815 data += seg;
1816 ++gfn;
1817 }
1818 return 0;
1819 }
1820 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1821
1822 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1823 void *data, int offset, unsigned long len)
1824 {
1825 int r;
1826 unsigned long addr;
1827
1828 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1829 if (kvm_is_error_hva(addr))
1830 return -EFAULT;
1831 pagefault_disable();
1832 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1833 pagefault_enable();
1834 if (r)
1835 return -EFAULT;
1836 return 0;
1837 }
1838
1839 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1840 unsigned long len)
1841 {
1842 gfn_t gfn = gpa >> PAGE_SHIFT;
1843 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1844 int offset = offset_in_page(gpa);
1845
1846 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1847 }
1848 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1849
1850 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1851 void *data, unsigned long len)
1852 {
1853 gfn_t gfn = gpa >> PAGE_SHIFT;
1854 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1855 int offset = offset_in_page(gpa);
1856
1857 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1858 }
1859 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1860
1861 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1862 const void *data, int offset, int len)
1863 {
1864 int r;
1865 unsigned long addr;
1866
1867 addr = gfn_to_hva_memslot(memslot, gfn);
1868 if (kvm_is_error_hva(addr))
1869 return -EFAULT;
1870 r = __copy_to_user((void __user *)addr + offset, data, len);
1871 if (r)
1872 return -EFAULT;
1873 mark_page_dirty_in_slot(memslot, gfn);
1874 return 0;
1875 }
1876
1877 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1878 const void *data, int offset, int len)
1879 {
1880 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1881
1882 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1883 }
1884 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1885
1886 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1887 const void *data, int offset, int len)
1888 {
1889 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1890
1891 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1892 }
1893 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1894
1895 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1896 unsigned long len)
1897 {
1898 gfn_t gfn = gpa >> PAGE_SHIFT;
1899 int seg;
1900 int offset = offset_in_page(gpa);
1901 int ret;
1902
1903 while ((seg = next_segment(len, offset)) != 0) {
1904 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1905 if (ret < 0)
1906 return ret;
1907 offset = 0;
1908 len -= seg;
1909 data += seg;
1910 ++gfn;
1911 }
1912 return 0;
1913 }
1914 EXPORT_SYMBOL_GPL(kvm_write_guest);
1915
1916 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1917 unsigned long len)
1918 {
1919 gfn_t gfn = gpa >> PAGE_SHIFT;
1920 int seg;
1921 int offset = offset_in_page(gpa);
1922 int ret;
1923
1924 while ((seg = next_segment(len, offset)) != 0) {
1925 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1926 if (ret < 0)
1927 return ret;
1928 offset = 0;
1929 len -= seg;
1930 data += seg;
1931 ++gfn;
1932 }
1933 return 0;
1934 }
1935 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1936
1937 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1938 struct gfn_to_hva_cache *ghc,
1939 gpa_t gpa, unsigned long len)
1940 {
1941 int offset = offset_in_page(gpa);
1942 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1943 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1944 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1945 gfn_t nr_pages_avail;
1946
1947 ghc->gpa = gpa;
1948 ghc->generation = slots->generation;
1949 ghc->len = len;
1950 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1951 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1952 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1953 ghc->hva += offset;
1954 } else {
1955 /*
1956 * If the requested region crosses two memslots, we still
1957 * verify that the entire region is valid here.
1958 */
1959 while (start_gfn <= end_gfn) {
1960 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1961 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1962 &nr_pages_avail);
1963 if (kvm_is_error_hva(ghc->hva))
1964 return -EFAULT;
1965 start_gfn += nr_pages_avail;
1966 }
1967 /* Use the slow path for cross page reads and writes. */
1968 ghc->memslot = NULL;
1969 }
1970 return 0;
1971 }
1972
1973 int kvm_vcpu_gfn_to_hva_cache_init(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1974 gpa_t gpa, unsigned long len)
1975 {
1976 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1977 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva_cache_init);
1980
1981 int kvm_vcpu_write_guest_offset_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1982 void *data, int offset, unsigned long len)
1983 {
1984 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1985 int r;
1986 gpa_t gpa = ghc->gpa + offset;
1987
1988 BUG_ON(len + offset > ghc->len);
1989
1990 if (slots->generation != ghc->generation)
1991 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1992
1993 if (unlikely(!ghc->memslot))
1994 return kvm_vcpu_write_guest(vcpu, gpa, data, len);
1995
1996 if (kvm_is_error_hva(ghc->hva))
1997 return -EFAULT;
1998
1999 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2000 if (r)
2001 return -EFAULT;
2002 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2003
2004 return 0;
2005 }
2006 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_offset_cached);
2007
2008 int kvm_vcpu_write_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2009 void *data, unsigned long len)
2010 {
2011 return kvm_vcpu_write_guest_offset_cached(vcpu, ghc, data, 0, len);
2012 }
2013 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_cached);
2014
2015 int kvm_vcpu_read_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2016 void *data, unsigned long len)
2017 {
2018 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2019 int r;
2020
2021 BUG_ON(len > ghc->len);
2022
2023 if (slots->generation != ghc->generation)
2024 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2025
2026 if (unlikely(!ghc->memslot))
2027 return kvm_vcpu_read_guest(vcpu, ghc->gpa, data, len);
2028
2029 if (kvm_is_error_hva(ghc->hva))
2030 return -EFAULT;
2031
2032 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2033 if (r)
2034 return -EFAULT;
2035
2036 return 0;
2037 }
2038 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_cached);
2039
2040 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2041 {
2042 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2043
2044 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2045 }
2046 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2047
2048 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2049 {
2050 gfn_t gfn = gpa >> PAGE_SHIFT;
2051 int seg;
2052 int offset = offset_in_page(gpa);
2053 int ret;
2054
2055 while ((seg = next_segment(len, offset)) != 0) {
2056 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2057 if (ret < 0)
2058 return ret;
2059 offset = 0;
2060 len -= seg;
2061 ++gfn;
2062 }
2063 return 0;
2064 }
2065 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2066
2067 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2068 gfn_t gfn)
2069 {
2070 if (memslot && memslot->dirty_bitmap) {
2071 unsigned long rel_gfn = gfn - memslot->base_gfn;
2072
2073 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2074 }
2075 }
2076
2077 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2078 {
2079 struct kvm_memory_slot *memslot;
2080
2081 memslot = gfn_to_memslot(kvm, gfn);
2082 mark_page_dirty_in_slot(memslot, gfn);
2083 }
2084 EXPORT_SYMBOL_GPL(mark_page_dirty);
2085
2086 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2087 {
2088 struct kvm_memory_slot *memslot;
2089
2090 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2091 mark_page_dirty_in_slot(memslot, gfn);
2092 }
2093 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2094
2095 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2096 {
2097 unsigned int old, val, grow;
2098
2099 old = val = vcpu->halt_poll_ns;
2100 grow = READ_ONCE(halt_poll_ns_grow);
2101 /* 10us base */
2102 if (val == 0 && grow)
2103 val = 10000;
2104 else
2105 val *= grow;
2106
2107 if (val > halt_poll_ns)
2108 val = halt_poll_ns;
2109
2110 vcpu->halt_poll_ns = val;
2111 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2112 }
2113
2114 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2115 {
2116 unsigned int old, val, shrink;
2117
2118 old = val = vcpu->halt_poll_ns;
2119 shrink = READ_ONCE(halt_poll_ns_shrink);
2120 if (shrink == 0)
2121 val = 0;
2122 else
2123 val /= shrink;
2124
2125 vcpu->halt_poll_ns = val;
2126 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2127 }
2128
2129 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2130 {
2131 if (kvm_arch_vcpu_runnable(vcpu)) {
2132 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2133 return -EINTR;
2134 }
2135 if (kvm_cpu_has_pending_timer(vcpu))
2136 return -EINTR;
2137 if (signal_pending(current))
2138 return -EINTR;
2139
2140 return 0;
2141 }
2142
2143 /*
2144 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2145 */
2146 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2147 {
2148 ktime_t start, cur;
2149 DECLARE_SWAITQUEUE(wait);
2150 bool waited = false;
2151 u64 block_ns;
2152
2153 start = cur = ktime_get();
2154 if (vcpu->halt_poll_ns) {
2155 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2156
2157 ++vcpu->stat.halt_attempted_poll;
2158 do {
2159 /*
2160 * This sets KVM_REQ_UNHALT if an interrupt
2161 * arrives.
2162 */
2163 if (kvm_vcpu_check_block(vcpu) < 0) {
2164 ++vcpu->stat.halt_successful_poll;
2165 if (!vcpu_valid_wakeup(vcpu))
2166 ++vcpu->stat.halt_poll_invalid;
2167 goto out;
2168 }
2169 cur = ktime_get();
2170 } while (single_task_running() && ktime_before(cur, stop));
2171 }
2172
2173 kvm_arch_vcpu_blocking(vcpu);
2174
2175 for (;;) {
2176 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2177
2178 if (kvm_vcpu_check_block(vcpu) < 0)
2179 break;
2180
2181 waited = true;
2182 schedule();
2183 }
2184
2185 finish_swait(&vcpu->wq, &wait);
2186 cur = ktime_get();
2187
2188 kvm_arch_vcpu_unblocking(vcpu);
2189 out:
2190 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2191
2192 if (!vcpu_valid_wakeup(vcpu))
2193 shrink_halt_poll_ns(vcpu);
2194 else if (halt_poll_ns) {
2195 if (block_ns <= vcpu->halt_poll_ns)
2196 ;
2197 /* we had a long block, shrink polling */
2198 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2199 shrink_halt_poll_ns(vcpu);
2200 /* we had a short halt and our poll time is too small */
2201 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2202 block_ns < halt_poll_ns)
2203 grow_halt_poll_ns(vcpu);
2204 } else
2205 vcpu->halt_poll_ns = 0;
2206
2207 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2208 kvm_arch_vcpu_block_finish(vcpu);
2209 }
2210 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2211
2212 #ifndef CONFIG_S390
2213 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2214 {
2215 struct swait_queue_head *wqp;
2216
2217 wqp = kvm_arch_vcpu_wq(vcpu);
2218 if (swait_active(wqp)) {
2219 swake_up(wqp);
2220 ++vcpu->stat.halt_wakeup;
2221 }
2222
2223 }
2224 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2225
2226 /*
2227 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2228 */
2229 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2230 {
2231 int me;
2232 int cpu = vcpu->cpu;
2233
2234 kvm_vcpu_wake_up(vcpu);
2235 me = get_cpu();
2236 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2237 if (kvm_arch_vcpu_should_kick(vcpu))
2238 smp_send_reschedule(cpu);
2239 put_cpu();
2240 }
2241 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2242 #endif /* !CONFIG_S390 */
2243
2244 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2245 {
2246 struct pid *pid;
2247 struct task_struct *task = NULL;
2248 int ret = 0;
2249
2250 rcu_read_lock();
2251 pid = rcu_dereference(target->pid);
2252 if (pid)
2253 task = get_pid_task(pid, PIDTYPE_PID);
2254 rcu_read_unlock();
2255 if (!task)
2256 return ret;
2257 ret = yield_to(task, 1);
2258 put_task_struct(task);
2259
2260 return ret;
2261 }
2262 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2263
2264 /*
2265 * Helper that checks whether a VCPU is eligible for directed yield.
2266 * Most eligible candidate to yield is decided by following heuristics:
2267 *
2268 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2269 * (preempted lock holder), indicated by @in_spin_loop.
2270 * Set at the beiginning and cleared at the end of interception/PLE handler.
2271 *
2272 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2273 * chance last time (mostly it has become eligible now since we have probably
2274 * yielded to lockholder in last iteration. This is done by toggling
2275 * @dy_eligible each time a VCPU checked for eligibility.)
2276 *
2277 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2278 * to preempted lock-holder could result in wrong VCPU selection and CPU
2279 * burning. Giving priority for a potential lock-holder increases lock
2280 * progress.
2281 *
2282 * Since algorithm is based on heuristics, accessing another VCPU data without
2283 * locking does not harm. It may result in trying to yield to same VCPU, fail
2284 * and continue with next VCPU and so on.
2285 */
2286 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2287 {
2288 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2289 bool eligible;
2290
2291 eligible = !vcpu->spin_loop.in_spin_loop ||
2292 vcpu->spin_loop.dy_eligible;
2293
2294 if (vcpu->spin_loop.in_spin_loop)
2295 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2296
2297 return eligible;
2298 #else
2299 return true;
2300 #endif
2301 }
2302
2303 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2304 {
2305 struct kvm *kvm = me->kvm;
2306 struct kvm_vcpu *vcpu;
2307 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2308 int yielded = 0;
2309 int try = 3;
2310 int pass;
2311 int i;
2312
2313 kvm_vcpu_set_in_spin_loop(me, true);
2314 /*
2315 * We boost the priority of a VCPU that is runnable but not
2316 * currently running, because it got preempted by something
2317 * else and called schedule in __vcpu_run. Hopefully that
2318 * VCPU is holding the lock that we need and will release it.
2319 * We approximate round-robin by starting at the last boosted VCPU.
2320 */
2321 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2322 kvm_for_each_vcpu(i, vcpu, kvm) {
2323 if (!pass && i <= last_boosted_vcpu) {
2324 i = last_boosted_vcpu;
2325 continue;
2326 } else if (pass && i > last_boosted_vcpu)
2327 break;
2328 if (!ACCESS_ONCE(vcpu->preempted))
2329 continue;
2330 if (vcpu == me)
2331 continue;
2332 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2333 continue;
2334 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2335 continue;
2336
2337 yielded = kvm_vcpu_yield_to(vcpu);
2338 if (yielded > 0) {
2339 kvm->last_boosted_vcpu = i;
2340 break;
2341 } else if (yielded < 0) {
2342 try--;
2343 if (!try)
2344 break;
2345 }
2346 }
2347 }
2348 kvm_vcpu_set_in_spin_loop(me, false);
2349
2350 /* Ensure vcpu is not eligible during next spinloop */
2351 kvm_vcpu_set_dy_eligible(me, false);
2352 }
2353 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2354
2355 static int kvm_vcpu_fault(struct vm_fault *vmf)
2356 {
2357 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2358 struct page *page;
2359
2360 if (vmf->pgoff == 0)
2361 page = virt_to_page(vcpu->run);
2362 #ifdef CONFIG_X86
2363 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2364 page = virt_to_page(vcpu->arch.pio_data);
2365 #endif
2366 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2367 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2368 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2369 #endif
2370 else
2371 return kvm_arch_vcpu_fault(vcpu, vmf);
2372 get_page(page);
2373 vmf->page = page;
2374 return 0;
2375 }
2376
2377 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2378 .fault = kvm_vcpu_fault,
2379 };
2380
2381 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2382 {
2383 vma->vm_ops = &kvm_vcpu_vm_ops;
2384 return 0;
2385 }
2386
2387 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2388 {
2389 struct kvm_vcpu *vcpu = filp->private_data;
2390
2391 debugfs_remove_recursive(vcpu->debugfs_dentry);
2392 kvm_put_kvm(vcpu->kvm);
2393 return 0;
2394 }
2395
2396 static struct file_operations kvm_vcpu_fops = {
2397 .release = kvm_vcpu_release,
2398 .unlocked_ioctl = kvm_vcpu_ioctl,
2399 #ifdef CONFIG_KVM_COMPAT
2400 .compat_ioctl = kvm_vcpu_compat_ioctl,
2401 #endif
2402 .mmap = kvm_vcpu_mmap,
2403 .llseek = noop_llseek,
2404 };
2405
2406 /*
2407 * Allocates an inode for the vcpu.
2408 */
2409 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2410 {
2411 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2412 }
2413
2414 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2415 {
2416 char dir_name[ITOA_MAX_LEN * 2];
2417 int ret;
2418
2419 if (!kvm_arch_has_vcpu_debugfs())
2420 return 0;
2421
2422 if (!debugfs_initialized())
2423 return 0;
2424
2425 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2426 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2427 vcpu->kvm->debugfs_dentry);
2428 if (!vcpu->debugfs_dentry)
2429 return -ENOMEM;
2430
2431 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2432 if (ret < 0) {
2433 debugfs_remove_recursive(vcpu->debugfs_dentry);
2434 return ret;
2435 }
2436
2437 return 0;
2438 }
2439
2440 /*
2441 * Creates some virtual cpus. Good luck creating more than one.
2442 */
2443 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2444 {
2445 int r;
2446 struct kvm_vcpu *vcpu;
2447
2448 if (id >= KVM_MAX_VCPU_ID)
2449 return -EINVAL;
2450
2451 mutex_lock(&kvm->lock);
2452 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2453 mutex_unlock(&kvm->lock);
2454 return -EINVAL;
2455 }
2456
2457 kvm->created_vcpus++;
2458 mutex_unlock(&kvm->lock);
2459
2460 vcpu = kvm_arch_vcpu_create(kvm, id);
2461 if (IS_ERR(vcpu)) {
2462 r = PTR_ERR(vcpu);
2463 goto vcpu_decrement;
2464 }
2465
2466 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2467
2468 r = kvm_arch_vcpu_setup(vcpu);
2469 if (r)
2470 goto vcpu_destroy;
2471
2472 r = kvm_create_vcpu_debugfs(vcpu);
2473 if (r)
2474 goto vcpu_destroy;
2475
2476 mutex_lock(&kvm->lock);
2477 if (kvm_get_vcpu_by_id(kvm, id)) {
2478 r = -EEXIST;
2479 goto unlock_vcpu_destroy;
2480 }
2481
2482 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2483
2484 /* Now it's all set up, let userspace reach it */
2485 kvm_get_kvm(kvm);
2486 r = create_vcpu_fd(vcpu);
2487 if (r < 0) {
2488 kvm_put_kvm(kvm);
2489 goto unlock_vcpu_destroy;
2490 }
2491
2492 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2493
2494 /*
2495 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2496 * before kvm->online_vcpu's incremented value.
2497 */
2498 smp_wmb();
2499 atomic_inc(&kvm->online_vcpus);
2500
2501 mutex_unlock(&kvm->lock);
2502 kvm_arch_vcpu_postcreate(vcpu);
2503 return r;
2504
2505 unlock_vcpu_destroy:
2506 mutex_unlock(&kvm->lock);
2507 debugfs_remove_recursive(vcpu->debugfs_dentry);
2508 vcpu_destroy:
2509 kvm_arch_vcpu_destroy(vcpu);
2510 vcpu_decrement:
2511 mutex_lock(&kvm->lock);
2512 kvm->created_vcpus--;
2513 mutex_unlock(&kvm->lock);
2514 return r;
2515 }
2516
2517 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2518 {
2519 if (sigset) {
2520 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2521 vcpu->sigset_active = 1;
2522 vcpu->sigset = *sigset;
2523 } else
2524 vcpu->sigset_active = 0;
2525 return 0;
2526 }
2527
2528 static long kvm_vcpu_ioctl(struct file *filp,
2529 unsigned int ioctl, unsigned long arg)
2530 {
2531 struct kvm_vcpu *vcpu = filp->private_data;
2532 void __user *argp = (void __user *)arg;
2533 int r;
2534 struct kvm_fpu *fpu = NULL;
2535 struct kvm_sregs *kvm_sregs = NULL;
2536
2537 if (vcpu->kvm->mm != current->mm)
2538 return -EIO;
2539
2540 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2541 return -EINVAL;
2542
2543 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2544 /*
2545 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2546 * so vcpu_load() would break it.
2547 */
2548 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2549 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2550 #endif
2551
2552
2553 r = vcpu_load(vcpu);
2554 if (r)
2555 return r;
2556 switch (ioctl) {
2557 case KVM_RUN:
2558 r = -EINVAL;
2559 if (arg)
2560 goto out;
2561 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2562 /* The thread running this VCPU changed. */
2563 struct pid *oldpid = vcpu->pid;
2564 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2565
2566 rcu_assign_pointer(vcpu->pid, newpid);
2567 if (oldpid)
2568 synchronize_rcu();
2569 put_pid(oldpid);
2570 }
2571 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2572 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2573 break;
2574 case KVM_GET_REGS: {
2575 struct kvm_regs *kvm_regs;
2576
2577 r = -ENOMEM;
2578 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2579 if (!kvm_regs)
2580 goto out;
2581 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2582 if (r)
2583 goto out_free1;
2584 r = -EFAULT;
2585 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2586 goto out_free1;
2587 r = 0;
2588 out_free1:
2589 kfree(kvm_regs);
2590 break;
2591 }
2592 case KVM_SET_REGS: {
2593 struct kvm_regs *kvm_regs;
2594
2595 r = -ENOMEM;
2596 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2597 if (IS_ERR(kvm_regs)) {
2598 r = PTR_ERR(kvm_regs);
2599 goto out;
2600 }
2601 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2602 kfree(kvm_regs);
2603 break;
2604 }
2605 case KVM_GET_SREGS: {
2606 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2607 r = -ENOMEM;
2608 if (!kvm_sregs)
2609 goto out;
2610 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2611 if (r)
2612 goto out;
2613 r = -EFAULT;
2614 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2615 goto out;
2616 r = 0;
2617 break;
2618 }
2619 case KVM_SET_SREGS: {
2620 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2621 if (IS_ERR(kvm_sregs)) {
2622 r = PTR_ERR(kvm_sregs);
2623 kvm_sregs = NULL;
2624 goto out;
2625 }
2626 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2627 break;
2628 }
2629 case KVM_GET_MP_STATE: {
2630 struct kvm_mp_state mp_state;
2631
2632 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2633 if (r)
2634 goto out;
2635 r = -EFAULT;
2636 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2637 goto out;
2638 r = 0;
2639 break;
2640 }
2641 case KVM_SET_MP_STATE: {
2642 struct kvm_mp_state mp_state;
2643
2644 r = -EFAULT;
2645 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2646 goto out;
2647 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2648 break;
2649 }
2650 case KVM_TRANSLATE: {
2651 struct kvm_translation tr;
2652
2653 r = -EFAULT;
2654 if (copy_from_user(&tr, argp, sizeof(tr)))
2655 goto out;
2656 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2657 if (r)
2658 goto out;
2659 r = -EFAULT;
2660 if (copy_to_user(argp, &tr, sizeof(tr)))
2661 goto out;
2662 r = 0;
2663 break;
2664 }
2665 case KVM_SET_GUEST_DEBUG: {
2666 struct kvm_guest_debug dbg;
2667
2668 r = -EFAULT;
2669 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2670 goto out;
2671 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2672 break;
2673 }
2674 case KVM_SET_SIGNAL_MASK: {
2675 struct kvm_signal_mask __user *sigmask_arg = argp;
2676 struct kvm_signal_mask kvm_sigmask;
2677 sigset_t sigset, *p;
2678
2679 p = NULL;
2680 if (argp) {
2681 r = -EFAULT;
2682 if (copy_from_user(&kvm_sigmask, argp,
2683 sizeof(kvm_sigmask)))
2684 goto out;
2685 r = -EINVAL;
2686 if (kvm_sigmask.len != sizeof(sigset))
2687 goto out;
2688 r = -EFAULT;
2689 if (copy_from_user(&sigset, sigmask_arg->sigset,
2690 sizeof(sigset)))
2691 goto out;
2692 p = &sigset;
2693 }
2694 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2695 break;
2696 }
2697 case KVM_GET_FPU: {
2698 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2699 r = -ENOMEM;
2700 if (!fpu)
2701 goto out;
2702 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2703 if (r)
2704 goto out;
2705 r = -EFAULT;
2706 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2707 goto out;
2708 r = 0;
2709 break;
2710 }
2711 case KVM_SET_FPU: {
2712 fpu = memdup_user(argp, sizeof(*fpu));
2713 if (IS_ERR(fpu)) {
2714 r = PTR_ERR(fpu);
2715 fpu = NULL;
2716 goto out;
2717 }
2718 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2719 break;
2720 }
2721 default:
2722 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2723 }
2724 out:
2725 vcpu_put(vcpu);
2726 kfree(fpu);
2727 kfree(kvm_sregs);
2728 return r;
2729 }
2730
2731 #ifdef CONFIG_KVM_COMPAT
2732 static long kvm_vcpu_compat_ioctl(struct file *filp,
2733 unsigned int ioctl, unsigned long arg)
2734 {
2735 struct kvm_vcpu *vcpu = filp->private_data;
2736 void __user *argp = compat_ptr(arg);
2737 int r;
2738
2739 if (vcpu->kvm->mm != current->mm)
2740 return -EIO;
2741
2742 switch (ioctl) {
2743 case KVM_SET_SIGNAL_MASK: {
2744 struct kvm_signal_mask __user *sigmask_arg = argp;
2745 struct kvm_signal_mask kvm_sigmask;
2746 compat_sigset_t csigset;
2747 sigset_t sigset;
2748
2749 if (argp) {
2750 r = -EFAULT;
2751 if (copy_from_user(&kvm_sigmask, argp,
2752 sizeof(kvm_sigmask)))
2753 goto out;
2754 r = -EINVAL;
2755 if (kvm_sigmask.len != sizeof(csigset))
2756 goto out;
2757 r = -EFAULT;
2758 if (copy_from_user(&csigset, sigmask_arg->sigset,
2759 sizeof(csigset)))
2760 goto out;
2761 sigset_from_compat(&sigset, &csigset);
2762 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2763 } else
2764 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2765 break;
2766 }
2767 default:
2768 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2769 }
2770
2771 out:
2772 return r;
2773 }
2774 #endif
2775
2776 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2777 int (*accessor)(struct kvm_device *dev,
2778 struct kvm_device_attr *attr),
2779 unsigned long arg)
2780 {
2781 struct kvm_device_attr attr;
2782
2783 if (!accessor)
2784 return -EPERM;
2785
2786 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2787 return -EFAULT;
2788
2789 return accessor(dev, &attr);
2790 }
2791
2792 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2793 unsigned long arg)
2794 {
2795 struct kvm_device *dev = filp->private_data;
2796
2797 switch (ioctl) {
2798 case KVM_SET_DEVICE_ATTR:
2799 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2800 case KVM_GET_DEVICE_ATTR:
2801 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2802 case KVM_HAS_DEVICE_ATTR:
2803 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2804 default:
2805 if (dev->ops->ioctl)
2806 return dev->ops->ioctl(dev, ioctl, arg);
2807
2808 return -ENOTTY;
2809 }
2810 }
2811
2812 static int kvm_device_release(struct inode *inode, struct file *filp)
2813 {
2814 struct kvm_device *dev = filp->private_data;
2815 struct kvm *kvm = dev->kvm;
2816
2817 kvm_put_kvm(kvm);
2818 return 0;
2819 }
2820
2821 static const struct file_operations kvm_device_fops = {
2822 .unlocked_ioctl = kvm_device_ioctl,
2823 #ifdef CONFIG_KVM_COMPAT
2824 .compat_ioctl = kvm_device_ioctl,
2825 #endif
2826 .release = kvm_device_release,
2827 };
2828
2829 struct kvm_device *kvm_device_from_filp(struct file *filp)
2830 {
2831 if (filp->f_op != &kvm_device_fops)
2832 return NULL;
2833
2834 return filp->private_data;
2835 }
2836
2837 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2838 #ifdef CONFIG_KVM_MPIC
2839 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2840 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2841 #endif
2842
2843 #ifdef CONFIG_KVM_XICS
2844 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2845 #endif
2846 };
2847
2848 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2849 {
2850 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2851 return -ENOSPC;
2852
2853 if (kvm_device_ops_table[type] != NULL)
2854 return -EEXIST;
2855
2856 kvm_device_ops_table[type] = ops;
2857 return 0;
2858 }
2859
2860 void kvm_unregister_device_ops(u32 type)
2861 {
2862 if (kvm_device_ops_table[type] != NULL)
2863 kvm_device_ops_table[type] = NULL;
2864 }
2865
2866 static int kvm_ioctl_create_device(struct kvm *kvm,
2867 struct kvm_create_device *cd)
2868 {
2869 struct kvm_device_ops *ops = NULL;
2870 struct kvm_device *dev;
2871 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2872 int ret;
2873
2874 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2875 return -ENODEV;
2876
2877 ops = kvm_device_ops_table[cd->type];
2878 if (ops == NULL)
2879 return -ENODEV;
2880
2881 if (test)
2882 return 0;
2883
2884 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2885 if (!dev)
2886 return -ENOMEM;
2887
2888 dev->ops = ops;
2889 dev->kvm = kvm;
2890
2891 mutex_lock(&kvm->lock);
2892 ret = ops->create(dev, cd->type);
2893 if (ret < 0) {
2894 mutex_unlock(&kvm->lock);
2895 kfree(dev);
2896 return ret;
2897 }
2898 list_add(&dev->vm_node, &kvm->devices);
2899 mutex_unlock(&kvm->lock);
2900
2901 if (ops->init)
2902 ops->init(dev);
2903
2904 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2905 if (ret < 0) {
2906 mutex_lock(&kvm->lock);
2907 list_del(&dev->vm_node);
2908 mutex_unlock(&kvm->lock);
2909 ops->destroy(dev);
2910 return ret;
2911 }
2912
2913 kvm_get_kvm(kvm);
2914 cd->fd = ret;
2915 return 0;
2916 }
2917
2918 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2919 {
2920 switch (arg) {
2921 case KVM_CAP_USER_MEMORY:
2922 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2923 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2924 case KVM_CAP_INTERNAL_ERROR_DATA:
2925 #ifdef CONFIG_HAVE_KVM_MSI
2926 case KVM_CAP_SIGNAL_MSI:
2927 #endif
2928 #ifdef CONFIG_HAVE_KVM_IRQFD
2929 case KVM_CAP_IRQFD:
2930 case KVM_CAP_IRQFD_RESAMPLE:
2931 #endif
2932 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2933 case KVM_CAP_CHECK_EXTENSION_VM:
2934 return 1;
2935 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2936 case KVM_CAP_IRQ_ROUTING:
2937 return KVM_MAX_IRQ_ROUTES;
2938 #endif
2939 #if KVM_ADDRESS_SPACE_NUM > 1
2940 case KVM_CAP_MULTI_ADDRESS_SPACE:
2941 return KVM_ADDRESS_SPACE_NUM;
2942 #endif
2943 case KVM_CAP_MAX_VCPU_ID:
2944 return KVM_MAX_VCPU_ID;
2945 default:
2946 break;
2947 }
2948 return kvm_vm_ioctl_check_extension(kvm, arg);
2949 }
2950
2951 static long kvm_vm_ioctl(struct file *filp,
2952 unsigned int ioctl, unsigned long arg)
2953 {
2954 struct kvm *kvm = filp->private_data;
2955 void __user *argp = (void __user *)arg;
2956 int r;
2957
2958 if (kvm->mm != current->mm)
2959 return -EIO;
2960 switch (ioctl) {
2961 case KVM_CREATE_VCPU:
2962 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2963 break;
2964 case KVM_SET_USER_MEMORY_REGION: {
2965 struct kvm_userspace_memory_region kvm_userspace_mem;
2966
2967 r = -EFAULT;
2968 if (copy_from_user(&kvm_userspace_mem, argp,
2969 sizeof(kvm_userspace_mem)))
2970 goto out;
2971
2972 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2973 break;
2974 }
2975 case KVM_GET_DIRTY_LOG: {
2976 struct kvm_dirty_log log;
2977
2978 r = -EFAULT;
2979 if (copy_from_user(&log, argp, sizeof(log)))
2980 goto out;
2981 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2982 break;
2983 }
2984 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2985 case KVM_REGISTER_COALESCED_MMIO: {
2986 struct kvm_coalesced_mmio_zone zone;
2987
2988 r = -EFAULT;
2989 if (copy_from_user(&zone, argp, sizeof(zone)))
2990 goto out;
2991 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2992 break;
2993 }
2994 case KVM_UNREGISTER_COALESCED_MMIO: {
2995 struct kvm_coalesced_mmio_zone zone;
2996
2997 r = -EFAULT;
2998 if (copy_from_user(&zone, argp, sizeof(zone)))
2999 goto out;
3000 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3001 break;
3002 }
3003 #endif
3004 case KVM_IRQFD: {
3005 struct kvm_irqfd data;
3006
3007 r = -EFAULT;
3008 if (copy_from_user(&data, argp, sizeof(data)))
3009 goto out;
3010 r = kvm_irqfd(kvm, &data);
3011 break;
3012 }
3013 case KVM_IOEVENTFD: {
3014 struct kvm_ioeventfd data;
3015
3016 r = -EFAULT;
3017 if (copy_from_user(&data, argp, sizeof(data)))
3018 goto out;
3019 r = kvm_ioeventfd(kvm, &data);
3020 break;
3021 }
3022 #ifdef CONFIG_HAVE_KVM_MSI
3023 case KVM_SIGNAL_MSI: {
3024 struct kvm_msi msi;
3025
3026 r = -EFAULT;
3027 if (copy_from_user(&msi, argp, sizeof(msi)))
3028 goto out;
3029 r = kvm_send_userspace_msi(kvm, &msi);
3030 break;
3031 }
3032 #endif
3033 #ifdef __KVM_HAVE_IRQ_LINE
3034 case KVM_IRQ_LINE_STATUS:
3035 case KVM_IRQ_LINE: {
3036 struct kvm_irq_level irq_event;
3037
3038 r = -EFAULT;
3039 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3040 goto out;
3041
3042 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3043 ioctl == KVM_IRQ_LINE_STATUS);
3044 if (r)
3045 goto out;
3046
3047 r = -EFAULT;
3048 if (ioctl == KVM_IRQ_LINE_STATUS) {
3049 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3050 goto out;
3051 }
3052
3053 r = 0;
3054 break;
3055 }
3056 #endif
3057 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3058 case KVM_SET_GSI_ROUTING: {
3059 struct kvm_irq_routing routing;
3060 struct kvm_irq_routing __user *urouting;
3061 struct kvm_irq_routing_entry *entries = NULL;
3062
3063 r = -EFAULT;
3064 if (copy_from_user(&routing, argp, sizeof(routing)))
3065 goto out;
3066 r = -EINVAL;
3067 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3068 goto out;
3069 if (routing.flags)
3070 goto out;
3071 if (routing.nr) {
3072 r = -ENOMEM;
3073 entries = vmalloc(routing.nr * sizeof(*entries));
3074 if (!entries)
3075 goto out;
3076 r = -EFAULT;
3077 urouting = argp;
3078 if (copy_from_user(entries, urouting->entries,
3079 routing.nr * sizeof(*entries)))
3080 goto out_free_irq_routing;
3081 }
3082 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3083 routing.flags);
3084 out_free_irq_routing:
3085 vfree(entries);
3086 break;
3087 }
3088 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3089 case KVM_CREATE_DEVICE: {
3090 struct kvm_create_device cd;
3091
3092 r = -EFAULT;
3093 if (copy_from_user(&cd, argp, sizeof(cd)))
3094 goto out;
3095
3096 r = kvm_ioctl_create_device(kvm, &cd);
3097 if (r)
3098 goto out;
3099
3100 r = -EFAULT;
3101 if (copy_to_user(argp, &cd, sizeof(cd)))
3102 goto out;
3103
3104 r = 0;
3105 break;
3106 }
3107 case KVM_CHECK_EXTENSION:
3108 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3109 break;
3110 default:
3111 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3112 }
3113 out:
3114 return r;
3115 }
3116
3117 #ifdef CONFIG_KVM_COMPAT
3118 struct compat_kvm_dirty_log {
3119 __u32 slot;
3120 __u32 padding1;
3121 union {
3122 compat_uptr_t dirty_bitmap; /* one bit per page */
3123 __u64 padding2;
3124 };
3125 };
3126
3127 static long kvm_vm_compat_ioctl(struct file *filp,
3128 unsigned int ioctl, unsigned long arg)
3129 {
3130 struct kvm *kvm = filp->private_data;
3131 int r;
3132
3133 if (kvm->mm != current->mm)
3134 return -EIO;
3135 switch (ioctl) {
3136 case KVM_GET_DIRTY_LOG: {
3137 struct compat_kvm_dirty_log compat_log;
3138 struct kvm_dirty_log log;
3139
3140 if (copy_from_user(&compat_log, (void __user *)arg,
3141 sizeof(compat_log)))
3142 return -EFAULT;
3143 log.slot = compat_log.slot;
3144 log.padding1 = compat_log.padding1;
3145 log.padding2 = compat_log.padding2;
3146 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3147
3148 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3149 break;
3150 }
3151 default:
3152 r = kvm_vm_ioctl(filp, ioctl, arg);
3153 }
3154 return r;
3155 }
3156 #endif
3157
3158 static struct file_operations kvm_vm_fops = {
3159 .release = kvm_vm_release,
3160 .unlocked_ioctl = kvm_vm_ioctl,
3161 #ifdef CONFIG_KVM_COMPAT
3162 .compat_ioctl = kvm_vm_compat_ioctl,
3163 #endif
3164 .llseek = noop_llseek,
3165 };
3166
3167 static int kvm_dev_ioctl_create_vm(unsigned long type)
3168 {
3169 int r;
3170 struct kvm *kvm;
3171 struct file *file;
3172
3173 kvm = kvm_create_vm(type);
3174 if (IS_ERR(kvm))
3175 return PTR_ERR(kvm);
3176 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3177 r = kvm_coalesced_mmio_init(kvm);
3178 if (r < 0) {
3179 kvm_put_kvm(kvm);
3180 return r;
3181 }
3182 #endif
3183 r = get_unused_fd_flags(O_CLOEXEC);
3184 if (r < 0) {
3185 kvm_put_kvm(kvm);
3186 return r;
3187 }
3188 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3189 if (IS_ERR(file)) {
3190 put_unused_fd(r);
3191 kvm_put_kvm(kvm);
3192 return PTR_ERR(file);
3193 }
3194
3195 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3196 put_unused_fd(r);
3197 fput(file);
3198 return -ENOMEM;
3199 }
3200
3201 fd_install(r, file);
3202 return r;
3203 }
3204
3205 static long kvm_dev_ioctl(struct file *filp,
3206 unsigned int ioctl, unsigned long arg)
3207 {
3208 long r = -EINVAL;
3209
3210 switch (ioctl) {
3211 case KVM_GET_API_VERSION:
3212 if (arg)
3213 goto out;
3214 r = KVM_API_VERSION;
3215 break;
3216 case KVM_CREATE_VM:
3217 r = kvm_dev_ioctl_create_vm(arg);
3218 break;
3219 case KVM_CHECK_EXTENSION:
3220 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3221 break;
3222 case KVM_GET_VCPU_MMAP_SIZE:
3223 if (arg)
3224 goto out;
3225 r = PAGE_SIZE; /* struct kvm_run */
3226 #ifdef CONFIG_X86
3227 r += PAGE_SIZE; /* pio data page */
3228 #endif
3229 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3230 r += PAGE_SIZE; /* coalesced mmio ring page */
3231 #endif
3232 break;
3233 case KVM_TRACE_ENABLE:
3234 case KVM_TRACE_PAUSE:
3235 case KVM_TRACE_DISABLE:
3236 r = -EOPNOTSUPP;
3237 break;
3238 default:
3239 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3240 }
3241 out:
3242 return r;
3243 }
3244
3245 static struct file_operations kvm_chardev_ops = {
3246 .unlocked_ioctl = kvm_dev_ioctl,
3247 .compat_ioctl = kvm_dev_ioctl,
3248 .llseek = noop_llseek,
3249 };
3250
3251 static struct miscdevice kvm_dev = {
3252 KVM_MINOR,
3253 "kvm",
3254 &kvm_chardev_ops,
3255 };
3256
3257 static void hardware_enable_nolock(void *junk)
3258 {
3259 int cpu = raw_smp_processor_id();
3260 int r;
3261
3262 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3263 return;
3264
3265 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3266
3267 r = kvm_arch_hardware_enable();
3268
3269 if (r) {
3270 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3271 atomic_inc(&hardware_enable_failed);
3272 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3273 }
3274 }
3275
3276 static int kvm_starting_cpu(unsigned int cpu)
3277 {
3278 raw_spin_lock(&kvm_count_lock);
3279 if (kvm_usage_count)
3280 hardware_enable_nolock(NULL);
3281 raw_spin_unlock(&kvm_count_lock);
3282 return 0;
3283 }
3284
3285 static void hardware_disable_nolock(void *junk)
3286 {
3287 int cpu = raw_smp_processor_id();
3288
3289 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3290 return;
3291 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3292 kvm_arch_hardware_disable();
3293 }
3294
3295 static int kvm_dying_cpu(unsigned int cpu)
3296 {
3297 raw_spin_lock(&kvm_count_lock);
3298 if (kvm_usage_count)
3299 hardware_disable_nolock(NULL);
3300 raw_spin_unlock(&kvm_count_lock);
3301 return 0;
3302 }
3303
3304 static void hardware_disable_all_nolock(void)
3305 {
3306 BUG_ON(!kvm_usage_count);
3307
3308 kvm_usage_count--;
3309 if (!kvm_usage_count)
3310 on_each_cpu(hardware_disable_nolock, NULL, 1);
3311 }
3312
3313 static void hardware_disable_all(void)
3314 {
3315 raw_spin_lock(&kvm_count_lock);
3316 hardware_disable_all_nolock();
3317 raw_spin_unlock(&kvm_count_lock);
3318 }
3319
3320 static int hardware_enable_all(void)
3321 {
3322 int r = 0;
3323
3324 raw_spin_lock(&kvm_count_lock);
3325
3326 kvm_usage_count++;
3327 if (kvm_usage_count == 1) {
3328 atomic_set(&hardware_enable_failed, 0);
3329 on_each_cpu(hardware_enable_nolock, NULL, 1);
3330
3331 if (atomic_read(&hardware_enable_failed)) {
3332 hardware_disable_all_nolock();
3333 r = -EBUSY;
3334 }
3335 }
3336
3337 raw_spin_unlock(&kvm_count_lock);
3338
3339 return r;
3340 }
3341
3342 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3343 void *v)
3344 {
3345 /*
3346 * Some (well, at least mine) BIOSes hang on reboot if
3347 * in vmx root mode.
3348 *
3349 * And Intel TXT required VMX off for all cpu when system shutdown.
3350 */
3351 pr_info("kvm: exiting hardware virtualization\n");
3352 kvm_rebooting = true;
3353 on_each_cpu(hardware_disable_nolock, NULL, 1);
3354 return NOTIFY_OK;
3355 }
3356
3357 static struct notifier_block kvm_reboot_notifier = {
3358 .notifier_call = kvm_reboot,
3359 .priority = 0,
3360 };
3361
3362 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3363 {
3364 int i;
3365
3366 for (i = 0; i < bus->dev_count; i++) {
3367 struct kvm_io_device *pos = bus->range[i].dev;
3368
3369 kvm_iodevice_destructor(pos);
3370 }
3371 kfree(bus);
3372 }
3373
3374 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3375 const struct kvm_io_range *r2)
3376 {
3377 gpa_t addr1 = r1->addr;
3378 gpa_t addr2 = r2->addr;
3379
3380 if (addr1 < addr2)
3381 return -1;
3382
3383 /* If r2->len == 0, match the exact address. If r2->len != 0,
3384 * accept any overlapping write. Any order is acceptable for
3385 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3386 * we process all of them.
3387 */
3388 if (r2->len) {
3389 addr1 += r1->len;
3390 addr2 += r2->len;
3391 }
3392
3393 if (addr1 > addr2)
3394 return 1;
3395
3396 return 0;
3397 }
3398
3399 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3400 {
3401 return kvm_io_bus_cmp(p1, p2);
3402 }
3403
3404 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3405 gpa_t addr, int len)
3406 {
3407 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3408 .addr = addr,
3409 .len = len,
3410 .dev = dev,
3411 };
3412
3413 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3414 kvm_io_bus_sort_cmp, NULL);
3415
3416 return 0;
3417 }
3418
3419 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3420 gpa_t addr, int len)
3421 {
3422 struct kvm_io_range *range, key;
3423 int off;
3424
3425 key = (struct kvm_io_range) {
3426 .addr = addr,
3427 .len = len,
3428 };
3429
3430 range = bsearch(&key, bus->range, bus->dev_count,
3431 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3432 if (range == NULL)
3433 return -ENOENT;
3434
3435 off = range - bus->range;
3436
3437 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3438 off--;
3439
3440 return off;
3441 }
3442
3443 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3444 struct kvm_io_range *range, const void *val)
3445 {
3446 int idx;
3447
3448 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3449 if (idx < 0)
3450 return -EOPNOTSUPP;
3451
3452 while (idx < bus->dev_count &&
3453 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3454 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3455 range->len, val))
3456 return idx;
3457 idx++;
3458 }
3459
3460 return -EOPNOTSUPP;
3461 }
3462
3463 /* kvm_io_bus_write - called under kvm->slots_lock */
3464 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3465 int len, const void *val)
3466 {
3467 struct kvm_io_bus *bus;
3468 struct kvm_io_range range;
3469 int r;
3470
3471 range = (struct kvm_io_range) {
3472 .addr = addr,
3473 .len = len,
3474 };
3475
3476 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3477 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3478 return r < 0 ? r : 0;
3479 }
3480
3481 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3482 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3483 gpa_t addr, int len, const void *val, long cookie)
3484 {
3485 struct kvm_io_bus *bus;
3486 struct kvm_io_range range;
3487
3488 range = (struct kvm_io_range) {
3489 .addr = addr,
3490 .len = len,
3491 };
3492
3493 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3494
3495 /* First try the device referenced by cookie. */
3496 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3497 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3498 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3499 val))
3500 return cookie;
3501
3502 /*
3503 * cookie contained garbage; fall back to search and return the
3504 * correct cookie value.
3505 */
3506 return __kvm_io_bus_write(vcpu, bus, &range, val);
3507 }
3508
3509 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3510 struct kvm_io_range *range, void *val)
3511 {
3512 int idx;
3513
3514 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3515 if (idx < 0)
3516 return -EOPNOTSUPP;
3517
3518 while (idx < bus->dev_count &&
3519 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3520 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3521 range->len, val))
3522 return idx;
3523 idx++;
3524 }
3525
3526 return -EOPNOTSUPP;
3527 }
3528 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3529
3530 /* kvm_io_bus_read - called under kvm->slots_lock */
3531 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3532 int len, void *val)
3533 {
3534 struct kvm_io_bus *bus;
3535 struct kvm_io_range range;
3536 int r;
3537
3538 range = (struct kvm_io_range) {
3539 .addr = addr,
3540 .len = len,
3541 };
3542
3543 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3544 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3545 return r < 0 ? r : 0;
3546 }
3547
3548
3549 /* Caller must hold slots_lock. */
3550 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3551 int len, struct kvm_io_device *dev)
3552 {
3553 struct kvm_io_bus *new_bus, *bus;
3554
3555 bus = kvm->buses[bus_idx];
3556 /* exclude ioeventfd which is limited by maximum fd */
3557 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3558 return -ENOSPC;
3559
3560 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3561 sizeof(struct kvm_io_range)), GFP_KERNEL);
3562 if (!new_bus)
3563 return -ENOMEM;
3564 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3565 sizeof(struct kvm_io_range)));
3566 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3567 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3568 synchronize_srcu_expedited(&kvm->srcu);
3569 kfree(bus);
3570
3571 return 0;
3572 }
3573
3574 /* Caller must hold slots_lock. */
3575 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3576 struct kvm_io_device *dev)
3577 {
3578 int i, r;
3579 struct kvm_io_bus *new_bus, *bus;
3580
3581 bus = kvm->buses[bus_idx];
3582 r = -ENOENT;
3583 for (i = 0; i < bus->dev_count; i++)
3584 if (bus->range[i].dev == dev) {
3585 r = 0;
3586 break;
3587 }
3588
3589 if (r)
3590 return r;
3591
3592 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3593 sizeof(struct kvm_io_range)), GFP_KERNEL);
3594 if (!new_bus)
3595 return -ENOMEM;
3596
3597 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3598 new_bus->dev_count--;
3599 memcpy(new_bus->range + i, bus->range + i + 1,
3600 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3601
3602 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3603 synchronize_srcu_expedited(&kvm->srcu);
3604 kfree(bus);
3605 return r;
3606 }
3607
3608 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3609 gpa_t addr)
3610 {
3611 struct kvm_io_bus *bus;
3612 int dev_idx, srcu_idx;
3613 struct kvm_io_device *iodev = NULL;
3614
3615 srcu_idx = srcu_read_lock(&kvm->srcu);
3616
3617 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3618
3619 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3620 if (dev_idx < 0)
3621 goto out_unlock;
3622
3623 iodev = bus->range[dev_idx].dev;
3624
3625 out_unlock:
3626 srcu_read_unlock(&kvm->srcu, srcu_idx);
3627
3628 return iodev;
3629 }
3630 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3631
3632 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3633 int (*get)(void *, u64 *), int (*set)(void *, u64),
3634 const char *fmt)
3635 {
3636 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3637 inode->i_private;
3638
3639 /* The debugfs files are a reference to the kvm struct which
3640 * is still valid when kvm_destroy_vm is called.
3641 * To avoid the race between open and the removal of the debugfs
3642 * directory we test against the users count.
3643 */
3644 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3645 return -ENOENT;
3646
3647 if (simple_attr_open(inode, file, get, set, fmt)) {
3648 kvm_put_kvm(stat_data->kvm);
3649 return -ENOMEM;
3650 }
3651
3652 return 0;
3653 }
3654
3655 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3656 {
3657 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3658 inode->i_private;
3659
3660 simple_attr_release(inode, file);
3661 kvm_put_kvm(stat_data->kvm);
3662
3663 return 0;
3664 }
3665
3666 static int vm_stat_get_per_vm(void *data, u64 *val)
3667 {
3668 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3669
3670 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3671
3672 return 0;
3673 }
3674
3675 static int vm_stat_clear_per_vm(void *data, u64 val)
3676 {
3677 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3678
3679 if (val)
3680 return -EINVAL;
3681
3682 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3683
3684 return 0;
3685 }
3686
3687 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3688 {
3689 __simple_attr_check_format("%llu\n", 0ull);
3690 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3691 vm_stat_clear_per_vm, "%llu\n");
3692 }
3693
3694 static const struct file_operations vm_stat_get_per_vm_fops = {
3695 .owner = THIS_MODULE,
3696 .open = vm_stat_get_per_vm_open,
3697 .release = kvm_debugfs_release,
3698 .read = simple_attr_read,
3699 .write = simple_attr_write,
3700 .llseek = generic_file_llseek,
3701 };
3702
3703 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3704 {
3705 int i;
3706 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3707 struct kvm_vcpu *vcpu;
3708
3709 *val = 0;
3710
3711 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3712 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3713
3714 return 0;
3715 }
3716
3717 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3718 {
3719 int i;
3720 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3721 struct kvm_vcpu *vcpu;
3722
3723 if (val)
3724 return -EINVAL;
3725
3726 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3727 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3728
3729 return 0;
3730 }
3731
3732 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3733 {
3734 __simple_attr_check_format("%llu\n", 0ull);
3735 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3736 vcpu_stat_clear_per_vm, "%llu\n");
3737 }
3738
3739 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3740 .owner = THIS_MODULE,
3741 .open = vcpu_stat_get_per_vm_open,
3742 .release = kvm_debugfs_release,
3743 .read = simple_attr_read,
3744 .write = simple_attr_write,
3745 .llseek = generic_file_llseek,
3746 };
3747
3748 static const struct file_operations *stat_fops_per_vm[] = {
3749 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3750 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3751 };
3752
3753 static int vm_stat_get(void *_offset, u64 *val)
3754 {
3755 unsigned offset = (long)_offset;
3756 struct kvm *kvm;
3757 struct kvm_stat_data stat_tmp = {.offset = offset};
3758 u64 tmp_val;
3759
3760 *val = 0;
3761 spin_lock(&kvm_lock);
3762 list_for_each_entry(kvm, &vm_list, vm_list) {
3763 stat_tmp.kvm = kvm;
3764 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3765 *val += tmp_val;
3766 }
3767 spin_unlock(&kvm_lock);
3768 return 0;
3769 }
3770
3771 static int vm_stat_clear(void *_offset, u64 val)
3772 {
3773 unsigned offset = (long)_offset;
3774 struct kvm *kvm;
3775 struct kvm_stat_data stat_tmp = {.offset = offset};
3776
3777 if (val)
3778 return -EINVAL;
3779
3780 spin_lock(&kvm_lock);
3781 list_for_each_entry(kvm, &vm_list, vm_list) {
3782 stat_tmp.kvm = kvm;
3783 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3784 }
3785 spin_unlock(&kvm_lock);
3786
3787 return 0;
3788 }
3789
3790 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3791
3792 static int vcpu_stat_get(void *_offset, u64 *val)
3793 {
3794 unsigned offset = (long)_offset;
3795 struct kvm *kvm;
3796 struct kvm_stat_data stat_tmp = {.offset = offset};
3797 u64 tmp_val;
3798
3799 *val = 0;
3800 spin_lock(&kvm_lock);
3801 list_for_each_entry(kvm, &vm_list, vm_list) {
3802 stat_tmp.kvm = kvm;
3803 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3804 *val += tmp_val;
3805 }
3806 spin_unlock(&kvm_lock);
3807 return 0;
3808 }
3809
3810 static int vcpu_stat_clear(void *_offset, u64 val)
3811 {
3812 unsigned offset = (long)_offset;
3813 struct kvm *kvm;
3814 struct kvm_stat_data stat_tmp = {.offset = offset};
3815
3816 if (val)
3817 return -EINVAL;
3818
3819 spin_lock(&kvm_lock);
3820 list_for_each_entry(kvm, &vm_list, vm_list) {
3821 stat_tmp.kvm = kvm;
3822 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3823 }
3824 spin_unlock(&kvm_lock);
3825
3826 return 0;
3827 }
3828
3829 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3830 "%llu\n");
3831
3832 static const struct file_operations *stat_fops[] = {
3833 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3834 [KVM_STAT_VM] = &vm_stat_fops,
3835 };
3836
3837 static int kvm_init_debug(void)
3838 {
3839 int r = -EEXIST;
3840 struct kvm_stats_debugfs_item *p;
3841
3842 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3843 if (kvm_debugfs_dir == NULL)
3844 goto out;
3845
3846 kvm_debugfs_num_entries = 0;
3847 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3848 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3849 (void *)(long)p->offset,
3850 stat_fops[p->kind]))
3851 goto out_dir;
3852 }
3853
3854 return 0;
3855
3856 out_dir:
3857 debugfs_remove_recursive(kvm_debugfs_dir);
3858 out:
3859 return r;
3860 }
3861
3862 static int kvm_suspend(void)
3863 {
3864 if (kvm_usage_count)
3865 hardware_disable_nolock(NULL);
3866 return 0;
3867 }
3868
3869 static void kvm_resume(void)
3870 {
3871 if (kvm_usage_count) {
3872 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3873 hardware_enable_nolock(NULL);
3874 }
3875 }
3876
3877 static struct syscore_ops kvm_syscore_ops = {
3878 .suspend = kvm_suspend,
3879 .resume = kvm_resume,
3880 };
3881
3882 static inline
3883 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3884 {
3885 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3886 }
3887
3888 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3889 {
3890 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3891
3892 if (vcpu->preempted)
3893 vcpu->preempted = false;
3894
3895 kvm_arch_sched_in(vcpu, cpu);
3896
3897 kvm_arch_vcpu_load(vcpu, cpu);
3898 }
3899
3900 static void kvm_sched_out(struct preempt_notifier *pn,
3901 struct task_struct *next)
3902 {
3903 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3904
3905 if (current->state == TASK_RUNNING)
3906 vcpu->preempted = true;
3907 kvm_arch_vcpu_put(vcpu);
3908 }
3909
3910 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3911 struct module *module)
3912 {
3913 int r;
3914 int cpu;
3915
3916 r = kvm_arch_init(opaque);
3917 if (r)
3918 goto out_fail;
3919
3920 /*
3921 * kvm_arch_init makes sure there's at most one caller
3922 * for architectures that support multiple implementations,
3923 * like intel and amd on x86.
3924 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3925 * conflicts in case kvm is already setup for another implementation.
3926 */
3927 r = kvm_irqfd_init();
3928 if (r)
3929 goto out_irqfd;
3930
3931 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3932 r = -ENOMEM;
3933 goto out_free_0;
3934 }
3935
3936 r = kvm_arch_hardware_setup();
3937 if (r < 0)
3938 goto out_free_0a;
3939
3940 for_each_online_cpu(cpu) {
3941 smp_call_function_single(cpu,
3942 kvm_arch_check_processor_compat,
3943 &r, 1);
3944 if (r < 0)
3945 goto out_free_1;
3946 }
3947
3948 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3949 kvm_starting_cpu, kvm_dying_cpu);
3950 if (r)
3951 goto out_free_2;
3952 register_reboot_notifier(&kvm_reboot_notifier);
3953
3954 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3955 if (!vcpu_align)
3956 vcpu_align = __alignof__(struct kvm_vcpu);
3957 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3958 0, NULL);
3959 if (!kvm_vcpu_cache) {
3960 r = -ENOMEM;
3961 goto out_free_3;
3962 }
3963
3964 r = kvm_async_pf_init();
3965 if (r)
3966 goto out_free;
3967
3968 kvm_chardev_ops.owner = module;
3969 kvm_vm_fops.owner = module;
3970 kvm_vcpu_fops.owner = module;
3971
3972 r = misc_register(&kvm_dev);
3973 if (r) {
3974 pr_err("kvm: misc device register failed\n");
3975 goto out_unreg;
3976 }
3977
3978 register_syscore_ops(&kvm_syscore_ops);
3979
3980 kvm_preempt_ops.sched_in = kvm_sched_in;
3981 kvm_preempt_ops.sched_out = kvm_sched_out;
3982
3983 r = kvm_init_debug();
3984 if (r) {
3985 pr_err("kvm: create debugfs files failed\n");
3986 goto out_undebugfs;
3987 }
3988
3989 r = kvm_vfio_ops_init();
3990 WARN_ON(r);
3991
3992 return 0;
3993
3994 out_undebugfs:
3995 unregister_syscore_ops(&kvm_syscore_ops);
3996 misc_deregister(&kvm_dev);
3997 out_unreg:
3998 kvm_async_pf_deinit();
3999 out_free:
4000 kmem_cache_destroy(kvm_vcpu_cache);
4001 out_free_3:
4002 unregister_reboot_notifier(&kvm_reboot_notifier);
4003 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4004 out_free_2:
4005 out_free_1:
4006 kvm_arch_hardware_unsetup();
4007 out_free_0a:
4008 free_cpumask_var(cpus_hardware_enabled);
4009 out_free_0:
4010 kvm_irqfd_exit();
4011 out_irqfd:
4012 kvm_arch_exit();
4013 out_fail:
4014 return r;
4015 }
4016 EXPORT_SYMBOL_GPL(kvm_init);
4017
4018 void kvm_exit(void)
4019 {
4020 debugfs_remove_recursive(kvm_debugfs_dir);
4021 misc_deregister(&kvm_dev);
4022 kmem_cache_destroy(kvm_vcpu_cache);
4023 kvm_async_pf_deinit();
4024 unregister_syscore_ops(&kvm_syscore_ops);
4025 unregister_reboot_notifier(&kvm_reboot_notifier);
4026 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4027 on_each_cpu(hardware_disable_nolock, NULL, 1);
4028 kvm_arch_hardware_unsetup();
4029 kvm_arch_exit();
4030 kvm_irqfd_exit();
4031 free_cpumask_var(cpus_hardware_enabled);
4032 kvm_vfio_ops_exit();
4033 }
4034 EXPORT_SYMBOL_GPL(kvm_exit);