]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - virt/kvm/kvm_main.c
KVM: struct kvm_memory_slot.id -> short
[mirror_ubuntu-jammy-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 if (pfn_valid(pfn)) {
106 int reserved;
107 struct page *tail = pfn_to_page(pfn);
108 struct page *head = compound_trans_head(tail);
109 reserved = PageReserved(head);
110 if (head != tail) {
111 /*
112 * "head" is not a dangling pointer
113 * (compound_trans_head takes care of that)
114 * but the hugepage may have been splitted
115 * from under us (and we may not hold a
116 * reference count on the head page so it can
117 * be reused before we run PageReferenced), so
118 * we've to check PageTail before returning
119 * what we just read.
120 */
121 smp_rmb();
122 if (PageTail(tail))
123 return reserved;
124 }
125 return PageReserved(tail);
126 }
127
128 return true;
129 }
130
131 /*
132 * Switches to specified vcpu, until a matching vcpu_put()
133 */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 int cpu;
137
138 if (mutex_lock_killable(&vcpu->mutex))
139 return -EINTR;
140 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141 /* The thread running this VCPU changed. */
142 struct pid *oldpid = vcpu->pid;
143 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144 rcu_assign_pointer(vcpu->pid, newpid);
145 synchronize_rcu();
146 put_pid(oldpid);
147 }
148 cpu = get_cpu();
149 preempt_notifier_register(&vcpu->preempt_notifier);
150 kvm_arch_vcpu_load(vcpu, cpu);
151 put_cpu();
152 return 0;
153 }
154
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157 preempt_disable();
158 kvm_arch_vcpu_put(vcpu);
159 preempt_notifier_unregister(&vcpu->preempt_notifier);
160 preempt_enable();
161 mutex_unlock(&vcpu->mutex);
162 }
163
164 static void ack_flush(void *_completed)
165 {
166 }
167
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170 int i, cpu, me;
171 cpumask_var_t cpus;
172 bool called = true;
173 struct kvm_vcpu *vcpu;
174
175 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176
177 me = get_cpu();
178 kvm_for_each_vcpu(i, vcpu, kvm) {
179 kvm_make_request(req, vcpu);
180 cpu = vcpu->cpu;
181
182 /* Set ->requests bit before we read ->mode */
183 smp_mb();
184
185 if (cpus != NULL && cpu != -1 && cpu != me &&
186 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187 cpumask_set_cpu(cpu, cpus);
188 }
189 if (unlikely(cpus == NULL))
190 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191 else if (!cpumask_empty(cpus))
192 smp_call_function_many(cpus, ack_flush, NULL, 1);
193 else
194 called = false;
195 put_cpu();
196 free_cpumask_var(cpus);
197 return called;
198 }
199
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 long dirty_count = kvm->tlbs_dirty;
203
204 smp_mb();
205 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206 ++kvm->stat.remote_tlb_flush;
207 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214
215 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
216 {
217 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
218 }
219
220 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
221 {
222 struct page *page;
223 int r;
224
225 mutex_init(&vcpu->mutex);
226 vcpu->cpu = -1;
227 vcpu->kvm = kvm;
228 vcpu->vcpu_id = id;
229 vcpu->pid = NULL;
230 init_waitqueue_head(&vcpu->wq);
231 kvm_async_pf_vcpu_init(vcpu);
232
233 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
234 if (!page) {
235 r = -ENOMEM;
236 goto fail;
237 }
238 vcpu->run = page_address(page);
239
240 kvm_vcpu_set_in_spin_loop(vcpu, false);
241 kvm_vcpu_set_dy_eligible(vcpu, false);
242
243 r = kvm_arch_vcpu_init(vcpu);
244 if (r < 0)
245 goto fail_free_run;
246 return 0;
247
248 fail_free_run:
249 free_page((unsigned long)vcpu->run);
250 fail:
251 return r;
252 }
253 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
254
255 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
256 {
257 put_pid(vcpu->pid);
258 kvm_arch_vcpu_uninit(vcpu);
259 free_page((unsigned long)vcpu->run);
260 }
261 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
262
263 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
264 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
265 {
266 return container_of(mn, struct kvm, mmu_notifier);
267 }
268
269 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
270 struct mm_struct *mm,
271 unsigned long address)
272 {
273 struct kvm *kvm = mmu_notifier_to_kvm(mn);
274 int need_tlb_flush, idx;
275
276 /*
277 * When ->invalidate_page runs, the linux pte has been zapped
278 * already but the page is still allocated until
279 * ->invalidate_page returns. So if we increase the sequence
280 * here the kvm page fault will notice if the spte can't be
281 * established because the page is going to be freed. If
282 * instead the kvm page fault establishes the spte before
283 * ->invalidate_page runs, kvm_unmap_hva will release it
284 * before returning.
285 *
286 * The sequence increase only need to be seen at spin_unlock
287 * time, and not at spin_lock time.
288 *
289 * Increasing the sequence after the spin_unlock would be
290 * unsafe because the kvm page fault could then establish the
291 * pte after kvm_unmap_hva returned, without noticing the page
292 * is going to be freed.
293 */
294 idx = srcu_read_lock(&kvm->srcu);
295 spin_lock(&kvm->mmu_lock);
296
297 kvm->mmu_notifier_seq++;
298 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
299 /* we've to flush the tlb before the pages can be freed */
300 if (need_tlb_flush)
301 kvm_flush_remote_tlbs(kvm);
302
303 spin_unlock(&kvm->mmu_lock);
304 srcu_read_unlock(&kvm->srcu, idx);
305 }
306
307 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
308 struct mm_struct *mm,
309 unsigned long address,
310 pte_t pte)
311 {
312 struct kvm *kvm = mmu_notifier_to_kvm(mn);
313 int idx;
314
315 idx = srcu_read_lock(&kvm->srcu);
316 spin_lock(&kvm->mmu_lock);
317 kvm->mmu_notifier_seq++;
318 kvm_set_spte_hva(kvm, address, pte);
319 spin_unlock(&kvm->mmu_lock);
320 srcu_read_unlock(&kvm->srcu, idx);
321 }
322
323 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
324 struct mm_struct *mm,
325 unsigned long start,
326 unsigned long end)
327 {
328 struct kvm *kvm = mmu_notifier_to_kvm(mn);
329 int need_tlb_flush = 0, idx;
330
331 idx = srcu_read_lock(&kvm->srcu);
332 spin_lock(&kvm->mmu_lock);
333 /*
334 * The count increase must become visible at unlock time as no
335 * spte can be established without taking the mmu_lock and
336 * count is also read inside the mmu_lock critical section.
337 */
338 kvm->mmu_notifier_count++;
339 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
340 need_tlb_flush |= kvm->tlbs_dirty;
341 /* we've to flush the tlb before the pages can be freed */
342 if (need_tlb_flush)
343 kvm_flush_remote_tlbs(kvm);
344
345 spin_unlock(&kvm->mmu_lock);
346 srcu_read_unlock(&kvm->srcu, idx);
347 }
348
349 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
350 struct mm_struct *mm,
351 unsigned long start,
352 unsigned long end)
353 {
354 struct kvm *kvm = mmu_notifier_to_kvm(mn);
355
356 spin_lock(&kvm->mmu_lock);
357 /*
358 * This sequence increase will notify the kvm page fault that
359 * the page that is going to be mapped in the spte could have
360 * been freed.
361 */
362 kvm->mmu_notifier_seq++;
363 smp_wmb();
364 /*
365 * The above sequence increase must be visible before the
366 * below count decrease, which is ensured by the smp_wmb above
367 * in conjunction with the smp_rmb in mmu_notifier_retry().
368 */
369 kvm->mmu_notifier_count--;
370 spin_unlock(&kvm->mmu_lock);
371
372 BUG_ON(kvm->mmu_notifier_count < 0);
373 }
374
375 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
376 struct mm_struct *mm,
377 unsigned long address)
378 {
379 struct kvm *kvm = mmu_notifier_to_kvm(mn);
380 int young, idx;
381
382 idx = srcu_read_lock(&kvm->srcu);
383 spin_lock(&kvm->mmu_lock);
384
385 young = kvm_age_hva(kvm, address);
386 if (young)
387 kvm_flush_remote_tlbs(kvm);
388
389 spin_unlock(&kvm->mmu_lock);
390 srcu_read_unlock(&kvm->srcu, idx);
391
392 return young;
393 }
394
395 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
396 struct mm_struct *mm,
397 unsigned long address)
398 {
399 struct kvm *kvm = mmu_notifier_to_kvm(mn);
400 int young, idx;
401
402 idx = srcu_read_lock(&kvm->srcu);
403 spin_lock(&kvm->mmu_lock);
404 young = kvm_test_age_hva(kvm, address);
405 spin_unlock(&kvm->mmu_lock);
406 srcu_read_unlock(&kvm->srcu, idx);
407
408 return young;
409 }
410
411 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
412 struct mm_struct *mm)
413 {
414 struct kvm *kvm = mmu_notifier_to_kvm(mn);
415 int idx;
416
417 idx = srcu_read_lock(&kvm->srcu);
418 kvm_arch_flush_shadow_all(kvm);
419 srcu_read_unlock(&kvm->srcu, idx);
420 }
421
422 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
423 .invalidate_page = kvm_mmu_notifier_invalidate_page,
424 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
425 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
426 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
427 .test_young = kvm_mmu_notifier_test_young,
428 .change_pte = kvm_mmu_notifier_change_pte,
429 .release = kvm_mmu_notifier_release,
430 };
431
432 static int kvm_init_mmu_notifier(struct kvm *kvm)
433 {
434 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
435 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
436 }
437
438 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
439
440 static int kvm_init_mmu_notifier(struct kvm *kvm)
441 {
442 return 0;
443 }
444
445 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
446
447 static void kvm_init_memslots_id(struct kvm *kvm)
448 {
449 int i;
450 struct kvm_memslots *slots = kvm->memslots;
451
452 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
453 slots->id_to_index[i] = slots->memslots[i].id = i;
454 }
455
456 static struct kvm *kvm_create_vm(unsigned long type)
457 {
458 int r, i;
459 struct kvm *kvm = kvm_arch_alloc_vm();
460
461 if (!kvm)
462 return ERR_PTR(-ENOMEM);
463
464 r = kvm_arch_init_vm(kvm, type);
465 if (r)
466 goto out_err_nodisable;
467
468 r = hardware_enable_all();
469 if (r)
470 goto out_err_nodisable;
471
472 #ifdef CONFIG_HAVE_KVM_IRQCHIP
473 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
474 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
475 #endif
476
477 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
478
479 r = -ENOMEM;
480 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
481 if (!kvm->memslots)
482 goto out_err_nosrcu;
483 kvm_init_memslots_id(kvm);
484 if (init_srcu_struct(&kvm->srcu))
485 goto out_err_nosrcu;
486 for (i = 0; i < KVM_NR_BUSES; i++) {
487 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
488 GFP_KERNEL);
489 if (!kvm->buses[i])
490 goto out_err;
491 }
492
493 spin_lock_init(&kvm->mmu_lock);
494 kvm->mm = current->mm;
495 atomic_inc(&kvm->mm->mm_count);
496 kvm_eventfd_init(kvm);
497 mutex_init(&kvm->lock);
498 mutex_init(&kvm->irq_lock);
499 mutex_init(&kvm->slots_lock);
500 atomic_set(&kvm->users_count, 1);
501
502 r = kvm_init_mmu_notifier(kvm);
503 if (r)
504 goto out_err;
505
506 raw_spin_lock(&kvm_lock);
507 list_add(&kvm->vm_list, &vm_list);
508 raw_spin_unlock(&kvm_lock);
509
510 return kvm;
511
512 out_err:
513 cleanup_srcu_struct(&kvm->srcu);
514 out_err_nosrcu:
515 hardware_disable_all();
516 out_err_nodisable:
517 for (i = 0; i < KVM_NR_BUSES; i++)
518 kfree(kvm->buses[i]);
519 kfree(kvm->memslots);
520 kvm_arch_free_vm(kvm);
521 return ERR_PTR(r);
522 }
523
524 /*
525 * Avoid using vmalloc for a small buffer.
526 * Should not be used when the size is statically known.
527 */
528 void *kvm_kvzalloc(unsigned long size)
529 {
530 if (size > PAGE_SIZE)
531 return vzalloc(size);
532 else
533 return kzalloc(size, GFP_KERNEL);
534 }
535
536 void kvm_kvfree(const void *addr)
537 {
538 if (is_vmalloc_addr(addr))
539 vfree(addr);
540 else
541 kfree(addr);
542 }
543
544 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
545 {
546 if (!memslot->dirty_bitmap)
547 return;
548
549 kvm_kvfree(memslot->dirty_bitmap);
550 memslot->dirty_bitmap = NULL;
551 }
552
553 /*
554 * Free any memory in @free but not in @dont.
555 */
556 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
557 struct kvm_memory_slot *dont)
558 {
559 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
560 kvm_destroy_dirty_bitmap(free);
561
562 kvm_arch_free_memslot(free, dont);
563
564 free->npages = 0;
565 }
566
567 void kvm_free_physmem(struct kvm *kvm)
568 {
569 struct kvm_memslots *slots = kvm->memslots;
570 struct kvm_memory_slot *memslot;
571
572 kvm_for_each_memslot(memslot, slots)
573 kvm_free_physmem_slot(memslot, NULL);
574
575 kfree(kvm->memslots);
576 }
577
578 static void kvm_destroy_vm(struct kvm *kvm)
579 {
580 int i;
581 struct mm_struct *mm = kvm->mm;
582
583 kvm_arch_sync_events(kvm);
584 raw_spin_lock(&kvm_lock);
585 list_del(&kvm->vm_list);
586 raw_spin_unlock(&kvm_lock);
587 kvm_free_irq_routing(kvm);
588 for (i = 0; i < KVM_NR_BUSES; i++)
589 kvm_io_bus_destroy(kvm->buses[i]);
590 kvm_coalesced_mmio_free(kvm);
591 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
592 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
593 #else
594 kvm_arch_flush_shadow_all(kvm);
595 #endif
596 kvm_arch_destroy_vm(kvm);
597 kvm_free_physmem(kvm);
598 cleanup_srcu_struct(&kvm->srcu);
599 kvm_arch_free_vm(kvm);
600 hardware_disable_all();
601 mmdrop(mm);
602 }
603
604 void kvm_get_kvm(struct kvm *kvm)
605 {
606 atomic_inc(&kvm->users_count);
607 }
608 EXPORT_SYMBOL_GPL(kvm_get_kvm);
609
610 void kvm_put_kvm(struct kvm *kvm)
611 {
612 if (atomic_dec_and_test(&kvm->users_count))
613 kvm_destroy_vm(kvm);
614 }
615 EXPORT_SYMBOL_GPL(kvm_put_kvm);
616
617
618 static int kvm_vm_release(struct inode *inode, struct file *filp)
619 {
620 struct kvm *kvm = filp->private_data;
621
622 kvm_irqfd_release(kvm);
623
624 kvm_put_kvm(kvm);
625 return 0;
626 }
627
628 /*
629 * Allocation size is twice as large as the actual dirty bitmap size.
630 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
631 */
632 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
633 {
634 #ifndef CONFIG_S390
635 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
636
637 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
638 if (!memslot->dirty_bitmap)
639 return -ENOMEM;
640
641 #endif /* !CONFIG_S390 */
642 return 0;
643 }
644
645 static int cmp_memslot(const void *slot1, const void *slot2)
646 {
647 struct kvm_memory_slot *s1, *s2;
648
649 s1 = (struct kvm_memory_slot *)slot1;
650 s2 = (struct kvm_memory_slot *)slot2;
651
652 if (s1->npages < s2->npages)
653 return 1;
654 if (s1->npages > s2->npages)
655 return -1;
656
657 return 0;
658 }
659
660 /*
661 * Sort the memslots base on its size, so the larger slots
662 * will get better fit.
663 */
664 static void sort_memslots(struct kvm_memslots *slots)
665 {
666 int i;
667
668 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
669 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
670
671 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
672 slots->id_to_index[slots->memslots[i].id] = i;
673 }
674
675 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
676 {
677 if (new) {
678 int id = new->id;
679 struct kvm_memory_slot *old = id_to_memslot(slots, id);
680 unsigned long npages = old->npages;
681
682 *old = *new;
683 if (new->npages != npages)
684 sort_memslots(slots);
685 }
686
687 slots->generation++;
688 }
689
690 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
691 {
692 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
693
694 #ifdef KVM_CAP_READONLY_MEM
695 valid_flags |= KVM_MEM_READONLY;
696 #endif
697
698 if (mem->flags & ~valid_flags)
699 return -EINVAL;
700
701 return 0;
702 }
703
704 /*
705 * Allocate some memory and give it an address in the guest physical address
706 * space.
707 *
708 * Discontiguous memory is allowed, mostly for framebuffers.
709 *
710 * Must be called holding mmap_sem for write.
711 */
712 int __kvm_set_memory_region(struct kvm *kvm,
713 struct kvm_userspace_memory_region *mem,
714 bool user_alloc)
715 {
716 int r;
717 gfn_t base_gfn;
718 unsigned long npages;
719 struct kvm_memory_slot *memslot, *slot;
720 struct kvm_memory_slot old, new;
721 struct kvm_memslots *slots = NULL, *old_memslots;
722
723 r = check_memory_region_flags(mem);
724 if (r)
725 goto out;
726
727 r = -EINVAL;
728 /* General sanity checks */
729 if (mem->memory_size & (PAGE_SIZE - 1))
730 goto out;
731 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
732 goto out;
733 /* We can read the guest memory with __xxx_user() later on. */
734 if (user_alloc &&
735 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
736 !access_ok(VERIFY_WRITE,
737 (void __user *)(unsigned long)mem->userspace_addr,
738 mem->memory_size)))
739 goto out;
740 if (mem->slot >= KVM_MEM_SLOTS_NUM)
741 goto out;
742 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
743 goto out;
744
745 memslot = id_to_memslot(kvm->memslots, mem->slot);
746 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
747 npages = mem->memory_size >> PAGE_SHIFT;
748
749 r = -EINVAL;
750 if (npages > KVM_MEM_MAX_NR_PAGES)
751 goto out;
752
753 if (!npages)
754 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
755
756 new = old = *memslot;
757
758 new.id = mem->slot;
759 new.base_gfn = base_gfn;
760 new.npages = npages;
761 new.flags = mem->flags;
762
763 /*
764 * Disallow changing a memory slot's size or changing anything about
765 * zero sized slots that doesn't involve making them non-zero.
766 */
767 r = -EINVAL;
768 if (npages && old.npages && npages != old.npages)
769 goto out_free;
770 if (!npages && !old.npages)
771 goto out_free;
772
773 /* Check for overlaps */
774 r = -EEXIST;
775 kvm_for_each_memslot(slot, kvm->memslots) {
776 if (slot->id >= KVM_USER_MEM_SLOTS || slot == memslot)
777 continue;
778 if (!((base_gfn + npages <= slot->base_gfn) ||
779 (base_gfn >= slot->base_gfn + slot->npages)))
780 goto out_free;
781 }
782
783 /* Free page dirty bitmap if unneeded */
784 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
785 new.dirty_bitmap = NULL;
786
787 r = -ENOMEM;
788
789 /*
790 * Allocate if a slot is being created. If modifying a slot,
791 * the userspace_addr cannot change.
792 */
793 if (!old.npages) {
794 new.user_alloc = user_alloc;
795 new.userspace_addr = mem->userspace_addr;
796
797 if (kvm_arch_create_memslot(&new, npages))
798 goto out_free;
799 } else if (npages && mem->userspace_addr != old.userspace_addr) {
800 r = -EINVAL;
801 goto out_free;
802 }
803
804 /* Allocate page dirty bitmap if needed */
805 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
806 if (kvm_create_dirty_bitmap(&new) < 0)
807 goto out_free;
808 /* destroy any largepage mappings for dirty tracking */
809 }
810
811 if (!npages || base_gfn != old.base_gfn) {
812 struct kvm_memory_slot *slot;
813
814 r = -ENOMEM;
815 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
816 GFP_KERNEL);
817 if (!slots)
818 goto out_free;
819 slot = id_to_memslot(slots, mem->slot);
820 slot->flags |= KVM_MEMSLOT_INVALID;
821
822 update_memslots(slots, NULL);
823
824 old_memslots = kvm->memslots;
825 rcu_assign_pointer(kvm->memslots, slots);
826 synchronize_srcu_expedited(&kvm->srcu);
827 /* slot was deleted or moved, clear iommu mapping */
828 kvm_iommu_unmap_pages(kvm, &old);
829 /* From this point no new shadow pages pointing to a deleted,
830 * or moved, memslot will be created.
831 *
832 * validation of sp->gfn happens in:
833 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
834 * - kvm_is_visible_gfn (mmu_check_roots)
835 */
836 kvm_arch_flush_shadow_memslot(kvm, slot);
837 slots = old_memslots;
838 }
839
840 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
841 if (r)
842 goto out_slots;
843
844 r = -ENOMEM;
845 /*
846 * We can re-use the old_memslots from above, the only difference
847 * from the currently installed memslots is the invalid flag. This
848 * will get overwritten by update_memslots anyway.
849 */
850 if (!slots) {
851 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
852 GFP_KERNEL);
853 if (!slots)
854 goto out_free;
855 }
856
857 /* map new memory slot into the iommu */
858 if (npages) {
859 r = kvm_iommu_map_pages(kvm, &new);
860 if (r)
861 goto out_slots;
862 }
863
864 /* actual memory is freed via old in kvm_free_physmem_slot below */
865 if (!npages) {
866 new.dirty_bitmap = NULL;
867 memset(&new.arch, 0, sizeof(new.arch));
868 }
869
870 update_memslots(slots, &new);
871 old_memslots = kvm->memslots;
872 rcu_assign_pointer(kvm->memslots, slots);
873 synchronize_srcu_expedited(&kvm->srcu);
874
875 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
876
877 kvm_free_physmem_slot(&old, &new);
878 kfree(old_memslots);
879
880 return 0;
881
882 out_slots:
883 kfree(slots);
884 out_free:
885 kvm_free_physmem_slot(&new, &old);
886 out:
887 return r;
888
889 }
890 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
891
892 int kvm_set_memory_region(struct kvm *kvm,
893 struct kvm_userspace_memory_region *mem,
894 bool user_alloc)
895 {
896 int r;
897
898 mutex_lock(&kvm->slots_lock);
899 r = __kvm_set_memory_region(kvm, mem, user_alloc);
900 mutex_unlock(&kvm->slots_lock);
901 return r;
902 }
903 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
904
905 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
906 struct
907 kvm_userspace_memory_region *mem,
908 bool user_alloc)
909 {
910 if (mem->slot >= KVM_USER_MEM_SLOTS)
911 return -EINVAL;
912 return kvm_set_memory_region(kvm, mem, user_alloc);
913 }
914
915 int kvm_get_dirty_log(struct kvm *kvm,
916 struct kvm_dirty_log *log, int *is_dirty)
917 {
918 struct kvm_memory_slot *memslot;
919 int r, i;
920 unsigned long n;
921 unsigned long any = 0;
922
923 r = -EINVAL;
924 if (log->slot >= KVM_USER_MEM_SLOTS)
925 goto out;
926
927 memslot = id_to_memslot(kvm->memslots, log->slot);
928 r = -ENOENT;
929 if (!memslot->dirty_bitmap)
930 goto out;
931
932 n = kvm_dirty_bitmap_bytes(memslot);
933
934 for (i = 0; !any && i < n/sizeof(long); ++i)
935 any = memslot->dirty_bitmap[i];
936
937 r = -EFAULT;
938 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
939 goto out;
940
941 if (any)
942 *is_dirty = 1;
943
944 r = 0;
945 out:
946 return r;
947 }
948
949 bool kvm_largepages_enabled(void)
950 {
951 return largepages_enabled;
952 }
953
954 void kvm_disable_largepages(void)
955 {
956 largepages_enabled = false;
957 }
958 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
959
960 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
961 {
962 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
963 }
964 EXPORT_SYMBOL_GPL(gfn_to_memslot);
965
966 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
967 {
968 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
969
970 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
971 memslot->flags & KVM_MEMSLOT_INVALID)
972 return 0;
973
974 return 1;
975 }
976 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
977
978 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
979 {
980 struct vm_area_struct *vma;
981 unsigned long addr, size;
982
983 size = PAGE_SIZE;
984
985 addr = gfn_to_hva(kvm, gfn);
986 if (kvm_is_error_hva(addr))
987 return PAGE_SIZE;
988
989 down_read(&current->mm->mmap_sem);
990 vma = find_vma(current->mm, addr);
991 if (!vma)
992 goto out;
993
994 size = vma_kernel_pagesize(vma);
995
996 out:
997 up_read(&current->mm->mmap_sem);
998
999 return size;
1000 }
1001
1002 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1003 {
1004 return slot->flags & KVM_MEM_READONLY;
1005 }
1006
1007 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1008 gfn_t *nr_pages, bool write)
1009 {
1010 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1011 return KVM_HVA_ERR_BAD;
1012
1013 if (memslot_is_readonly(slot) && write)
1014 return KVM_HVA_ERR_RO_BAD;
1015
1016 if (nr_pages)
1017 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1018
1019 return __gfn_to_hva_memslot(slot, gfn);
1020 }
1021
1022 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1023 gfn_t *nr_pages)
1024 {
1025 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1026 }
1027
1028 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1029 gfn_t gfn)
1030 {
1031 return gfn_to_hva_many(slot, gfn, NULL);
1032 }
1033 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1034
1035 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1036 {
1037 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1038 }
1039 EXPORT_SYMBOL_GPL(gfn_to_hva);
1040
1041 /*
1042 * The hva returned by this function is only allowed to be read.
1043 * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1044 */
1045 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1046 {
1047 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1048 }
1049
1050 static int kvm_read_hva(void *data, void __user *hva, int len)
1051 {
1052 return __copy_from_user(data, hva, len);
1053 }
1054
1055 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1056 {
1057 return __copy_from_user_inatomic(data, hva, len);
1058 }
1059
1060 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1061 unsigned long start, int write, struct page **page)
1062 {
1063 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1064
1065 if (write)
1066 flags |= FOLL_WRITE;
1067
1068 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1069 }
1070
1071 static inline int check_user_page_hwpoison(unsigned long addr)
1072 {
1073 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1074
1075 rc = __get_user_pages(current, current->mm, addr, 1,
1076 flags, NULL, NULL, NULL);
1077 return rc == -EHWPOISON;
1078 }
1079
1080 /*
1081 * The atomic path to get the writable pfn which will be stored in @pfn,
1082 * true indicates success, otherwise false is returned.
1083 */
1084 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1085 bool write_fault, bool *writable, pfn_t *pfn)
1086 {
1087 struct page *page[1];
1088 int npages;
1089
1090 if (!(async || atomic))
1091 return false;
1092
1093 /*
1094 * Fast pin a writable pfn only if it is a write fault request
1095 * or the caller allows to map a writable pfn for a read fault
1096 * request.
1097 */
1098 if (!(write_fault || writable))
1099 return false;
1100
1101 npages = __get_user_pages_fast(addr, 1, 1, page);
1102 if (npages == 1) {
1103 *pfn = page_to_pfn(page[0]);
1104
1105 if (writable)
1106 *writable = true;
1107 return true;
1108 }
1109
1110 return false;
1111 }
1112
1113 /*
1114 * The slow path to get the pfn of the specified host virtual address,
1115 * 1 indicates success, -errno is returned if error is detected.
1116 */
1117 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1118 bool *writable, pfn_t *pfn)
1119 {
1120 struct page *page[1];
1121 int npages = 0;
1122
1123 might_sleep();
1124
1125 if (writable)
1126 *writable = write_fault;
1127
1128 if (async) {
1129 down_read(&current->mm->mmap_sem);
1130 npages = get_user_page_nowait(current, current->mm,
1131 addr, write_fault, page);
1132 up_read(&current->mm->mmap_sem);
1133 } else
1134 npages = get_user_pages_fast(addr, 1, write_fault,
1135 page);
1136 if (npages != 1)
1137 return npages;
1138
1139 /* map read fault as writable if possible */
1140 if (unlikely(!write_fault) && writable) {
1141 struct page *wpage[1];
1142
1143 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1144 if (npages == 1) {
1145 *writable = true;
1146 put_page(page[0]);
1147 page[0] = wpage[0];
1148 }
1149
1150 npages = 1;
1151 }
1152 *pfn = page_to_pfn(page[0]);
1153 return npages;
1154 }
1155
1156 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1157 {
1158 if (unlikely(!(vma->vm_flags & VM_READ)))
1159 return false;
1160
1161 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1162 return false;
1163
1164 return true;
1165 }
1166
1167 /*
1168 * Pin guest page in memory and return its pfn.
1169 * @addr: host virtual address which maps memory to the guest
1170 * @atomic: whether this function can sleep
1171 * @async: whether this function need to wait IO complete if the
1172 * host page is not in the memory
1173 * @write_fault: whether we should get a writable host page
1174 * @writable: whether it allows to map a writable host page for !@write_fault
1175 *
1176 * The function will map a writable host page for these two cases:
1177 * 1): @write_fault = true
1178 * 2): @write_fault = false && @writable, @writable will tell the caller
1179 * whether the mapping is writable.
1180 */
1181 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1182 bool write_fault, bool *writable)
1183 {
1184 struct vm_area_struct *vma;
1185 pfn_t pfn = 0;
1186 int npages;
1187
1188 /* we can do it either atomically or asynchronously, not both */
1189 BUG_ON(atomic && async);
1190
1191 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1192 return pfn;
1193
1194 if (atomic)
1195 return KVM_PFN_ERR_FAULT;
1196
1197 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1198 if (npages == 1)
1199 return pfn;
1200
1201 down_read(&current->mm->mmap_sem);
1202 if (npages == -EHWPOISON ||
1203 (!async && check_user_page_hwpoison(addr))) {
1204 pfn = KVM_PFN_ERR_HWPOISON;
1205 goto exit;
1206 }
1207
1208 vma = find_vma_intersection(current->mm, addr, addr + 1);
1209
1210 if (vma == NULL)
1211 pfn = KVM_PFN_ERR_FAULT;
1212 else if ((vma->vm_flags & VM_PFNMAP)) {
1213 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1214 vma->vm_pgoff;
1215 BUG_ON(!kvm_is_mmio_pfn(pfn));
1216 } else {
1217 if (async && vma_is_valid(vma, write_fault))
1218 *async = true;
1219 pfn = KVM_PFN_ERR_FAULT;
1220 }
1221 exit:
1222 up_read(&current->mm->mmap_sem);
1223 return pfn;
1224 }
1225
1226 static pfn_t
1227 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1228 bool *async, bool write_fault, bool *writable)
1229 {
1230 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1231
1232 if (addr == KVM_HVA_ERR_RO_BAD)
1233 return KVM_PFN_ERR_RO_FAULT;
1234
1235 if (kvm_is_error_hva(addr))
1236 return KVM_PFN_NOSLOT;
1237
1238 /* Do not map writable pfn in the readonly memslot. */
1239 if (writable && memslot_is_readonly(slot)) {
1240 *writable = false;
1241 writable = NULL;
1242 }
1243
1244 return hva_to_pfn(addr, atomic, async, write_fault,
1245 writable);
1246 }
1247
1248 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1249 bool write_fault, bool *writable)
1250 {
1251 struct kvm_memory_slot *slot;
1252
1253 if (async)
1254 *async = false;
1255
1256 slot = gfn_to_memslot(kvm, gfn);
1257
1258 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1259 writable);
1260 }
1261
1262 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1263 {
1264 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1265 }
1266 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1267
1268 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1269 bool write_fault, bool *writable)
1270 {
1271 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1272 }
1273 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1274
1275 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1276 {
1277 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1278 }
1279 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1280
1281 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1282 bool *writable)
1283 {
1284 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1285 }
1286 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1287
1288 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1289 {
1290 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1291 }
1292
1293 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1294 {
1295 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1296 }
1297 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1298
1299 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1300 int nr_pages)
1301 {
1302 unsigned long addr;
1303 gfn_t entry;
1304
1305 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1306 if (kvm_is_error_hva(addr))
1307 return -1;
1308
1309 if (entry < nr_pages)
1310 return 0;
1311
1312 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1313 }
1314 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1315
1316 static struct page *kvm_pfn_to_page(pfn_t pfn)
1317 {
1318 if (is_error_noslot_pfn(pfn))
1319 return KVM_ERR_PTR_BAD_PAGE;
1320
1321 if (kvm_is_mmio_pfn(pfn)) {
1322 WARN_ON(1);
1323 return KVM_ERR_PTR_BAD_PAGE;
1324 }
1325
1326 return pfn_to_page(pfn);
1327 }
1328
1329 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1330 {
1331 pfn_t pfn;
1332
1333 pfn = gfn_to_pfn(kvm, gfn);
1334
1335 return kvm_pfn_to_page(pfn);
1336 }
1337
1338 EXPORT_SYMBOL_GPL(gfn_to_page);
1339
1340 void kvm_release_page_clean(struct page *page)
1341 {
1342 WARN_ON(is_error_page(page));
1343
1344 kvm_release_pfn_clean(page_to_pfn(page));
1345 }
1346 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1347
1348 void kvm_release_pfn_clean(pfn_t pfn)
1349 {
1350 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1351 put_page(pfn_to_page(pfn));
1352 }
1353 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1354
1355 void kvm_release_page_dirty(struct page *page)
1356 {
1357 WARN_ON(is_error_page(page));
1358
1359 kvm_release_pfn_dirty(page_to_pfn(page));
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1362
1363 void kvm_release_pfn_dirty(pfn_t pfn)
1364 {
1365 kvm_set_pfn_dirty(pfn);
1366 kvm_release_pfn_clean(pfn);
1367 }
1368 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1369
1370 void kvm_set_page_dirty(struct page *page)
1371 {
1372 kvm_set_pfn_dirty(page_to_pfn(page));
1373 }
1374 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1375
1376 void kvm_set_pfn_dirty(pfn_t pfn)
1377 {
1378 if (!kvm_is_mmio_pfn(pfn)) {
1379 struct page *page = pfn_to_page(pfn);
1380 if (!PageReserved(page))
1381 SetPageDirty(page);
1382 }
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1385
1386 void kvm_set_pfn_accessed(pfn_t pfn)
1387 {
1388 if (!kvm_is_mmio_pfn(pfn))
1389 mark_page_accessed(pfn_to_page(pfn));
1390 }
1391 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1392
1393 void kvm_get_pfn(pfn_t pfn)
1394 {
1395 if (!kvm_is_mmio_pfn(pfn))
1396 get_page(pfn_to_page(pfn));
1397 }
1398 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1399
1400 static int next_segment(unsigned long len, int offset)
1401 {
1402 if (len > PAGE_SIZE - offset)
1403 return PAGE_SIZE - offset;
1404 else
1405 return len;
1406 }
1407
1408 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1409 int len)
1410 {
1411 int r;
1412 unsigned long addr;
1413
1414 addr = gfn_to_hva_read(kvm, gfn);
1415 if (kvm_is_error_hva(addr))
1416 return -EFAULT;
1417 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1418 if (r)
1419 return -EFAULT;
1420 return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1423
1424 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1425 {
1426 gfn_t gfn = gpa >> PAGE_SHIFT;
1427 int seg;
1428 int offset = offset_in_page(gpa);
1429 int ret;
1430
1431 while ((seg = next_segment(len, offset)) != 0) {
1432 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1433 if (ret < 0)
1434 return ret;
1435 offset = 0;
1436 len -= seg;
1437 data += seg;
1438 ++gfn;
1439 }
1440 return 0;
1441 }
1442 EXPORT_SYMBOL_GPL(kvm_read_guest);
1443
1444 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1445 unsigned long len)
1446 {
1447 int r;
1448 unsigned long addr;
1449 gfn_t gfn = gpa >> PAGE_SHIFT;
1450 int offset = offset_in_page(gpa);
1451
1452 addr = gfn_to_hva_read(kvm, gfn);
1453 if (kvm_is_error_hva(addr))
1454 return -EFAULT;
1455 pagefault_disable();
1456 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1457 pagefault_enable();
1458 if (r)
1459 return -EFAULT;
1460 return 0;
1461 }
1462 EXPORT_SYMBOL(kvm_read_guest_atomic);
1463
1464 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1465 int offset, int len)
1466 {
1467 int r;
1468 unsigned long addr;
1469
1470 addr = gfn_to_hva(kvm, gfn);
1471 if (kvm_is_error_hva(addr))
1472 return -EFAULT;
1473 r = __copy_to_user((void __user *)addr + offset, data, len);
1474 if (r)
1475 return -EFAULT;
1476 mark_page_dirty(kvm, gfn);
1477 return 0;
1478 }
1479 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1480
1481 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1482 unsigned long len)
1483 {
1484 gfn_t gfn = gpa >> PAGE_SHIFT;
1485 int seg;
1486 int offset = offset_in_page(gpa);
1487 int ret;
1488
1489 while ((seg = next_segment(len, offset)) != 0) {
1490 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1491 if (ret < 0)
1492 return ret;
1493 offset = 0;
1494 len -= seg;
1495 data += seg;
1496 ++gfn;
1497 }
1498 return 0;
1499 }
1500
1501 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1502 gpa_t gpa)
1503 {
1504 struct kvm_memslots *slots = kvm_memslots(kvm);
1505 int offset = offset_in_page(gpa);
1506 gfn_t gfn = gpa >> PAGE_SHIFT;
1507
1508 ghc->gpa = gpa;
1509 ghc->generation = slots->generation;
1510 ghc->memslot = gfn_to_memslot(kvm, gfn);
1511 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1512 if (!kvm_is_error_hva(ghc->hva))
1513 ghc->hva += offset;
1514 else
1515 return -EFAULT;
1516
1517 return 0;
1518 }
1519 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1520
1521 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1522 void *data, unsigned long len)
1523 {
1524 struct kvm_memslots *slots = kvm_memslots(kvm);
1525 int r;
1526
1527 if (slots->generation != ghc->generation)
1528 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1529
1530 if (kvm_is_error_hva(ghc->hva))
1531 return -EFAULT;
1532
1533 r = __copy_to_user((void __user *)ghc->hva, data, len);
1534 if (r)
1535 return -EFAULT;
1536 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1537
1538 return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1541
1542 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1543 void *data, unsigned long len)
1544 {
1545 struct kvm_memslots *slots = kvm_memslots(kvm);
1546 int r;
1547
1548 if (slots->generation != ghc->generation)
1549 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1550
1551 if (kvm_is_error_hva(ghc->hva))
1552 return -EFAULT;
1553
1554 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1555 if (r)
1556 return -EFAULT;
1557
1558 return 0;
1559 }
1560 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1561
1562 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1563 {
1564 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1565 offset, len);
1566 }
1567 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1568
1569 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1570 {
1571 gfn_t gfn = gpa >> PAGE_SHIFT;
1572 int seg;
1573 int offset = offset_in_page(gpa);
1574 int ret;
1575
1576 while ((seg = next_segment(len, offset)) != 0) {
1577 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1578 if (ret < 0)
1579 return ret;
1580 offset = 0;
1581 len -= seg;
1582 ++gfn;
1583 }
1584 return 0;
1585 }
1586 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1587
1588 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1589 gfn_t gfn)
1590 {
1591 if (memslot && memslot->dirty_bitmap) {
1592 unsigned long rel_gfn = gfn - memslot->base_gfn;
1593
1594 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1595 }
1596 }
1597
1598 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1599 {
1600 struct kvm_memory_slot *memslot;
1601
1602 memslot = gfn_to_memslot(kvm, gfn);
1603 mark_page_dirty_in_slot(kvm, memslot, gfn);
1604 }
1605
1606 /*
1607 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1608 */
1609 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1610 {
1611 DEFINE_WAIT(wait);
1612
1613 for (;;) {
1614 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1615
1616 if (kvm_arch_vcpu_runnable(vcpu)) {
1617 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1618 break;
1619 }
1620 if (kvm_cpu_has_pending_timer(vcpu))
1621 break;
1622 if (signal_pending(current))
1623 break;
1624
1625 schedule();
1626 }
1627
1628 finish_wait(&vcpu->wq, &wait);
1629 }
1630
1631 #ifndef CONFIG_S390
1632 /*
1633 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1634 */
1635 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1636 {
1637 int me;
1638 int cpu = vcpu->cpu;
1639 wait_queue_head_t *wqp;
1640
1641 wqp = kvm_arch_vcpu_wq(vcpu);
1642 if (waitqueue_active(wqp)) {
1643 wake_up_interruptible(wqp);
1644 ++vcpu->stat.halt_wakeup;
1645 }
1646
1647 me = get_cpu();
1648 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1649 if (kvm_arch_vcpu_should_kick(vcpu))
1650 smp_send_reschedule(cpu);
1651 put_cpu();
1652 }
1653 #endif /* !CONFIG_S390 */
1654
1655 void kvm_resched(struct kvm_vcpu *vcpu)
1656 {
1657 if (!need_resched())
1658 return;
1659 cond_resched();
1660 }
1661 EXPORT_SYMBOL_GPL(kvm_resched);
1662
1663 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1664 {
1665 struct pid *pid;
1666 struct task_struct *task = NULL;
1667
1668 rcu_read_lock();
1669 pid = rcu_dereference(target->pid);
1670 if (pid)
1671 task = get_pid_task(target->pid, PIDTYPE_PID);
1672 rcu_read_unlock();
1673 if (!task)
1674 return false;
1675 if (task->flags & PF_VCPU) {
1676 put_task_struct(task);
1677 return false;
1678 }
1679 if (yield_to(task, 1)) {
1680 put_task_struct(task);
1681 return true;
1682 }
1683 put_task_struct(task);
1684 return false;
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1687
1688 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1689 /*
1690 * Helper that checks whether a VCPU is eligible for directed yield.
1691 * Most eligible candidate to yield is decided by following heuristics:
1692 *
1693 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1694 * (preempted lock holder), indicated by @in_spin_loop.
1695 * Set at the beiginning and cleared at the end of interception/PLE handler.
1696 *
1697 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1698 * chance last time (mostly it has become eligible now since we have probably
1699 * yielded to lockholder in last iteration. This is done by toggling
1700 * @dy_eligible each time a VCPU checked for eligibility.)
1701 *
1702 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1703 * to preempted lock-holder could result in wrong VCPU selection and CPU
1704 * burning. Giving priority for a potential lock-holder increases lock
1705 * progress.
1706 *
1707 * Since algorithm is based on heuristics, accessing another VCPU data without
1708 * locking does not harm. It may result in trying to yield to same VCPU, fail
1709 * and continue with next VCPU and so on.
1710 */
1711 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1712 {
1713 bool eligible;
1714
1715 eligible = !vcpu->spin_loop.in_spin_loop ||
1716 (vcpu->spin_loop.in_spin_loop &&
1717 vcpu->spin_loop.dy_eligible);
1718
1719 if (vcpu->spin_loop.in_spin_loop)
1720 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1721
1722 return eligible;
1723 }
1724 #endif
1725 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1726 {
1727 struct kvm *kvm = me->kvm;
1728 struct kvm_vcpu *vcpu;
1729 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1730 int yielded = 0;
1731 int pass;
1732 int i;
1733
1734 kvm_vcpu_set_in_spin_loop(me, true);
1735 /*
1736 * We boost the priority of a VCPU that is runnable but not
1737 * currently running, because it got preempted by something
1738 * else and called schedule in __vcpu_run. Hopefully that
1739 * VCPU is holding the lock that we need and will release it.
1740 * We approximate round-robin by starting at the last boosted VCPU.
1741 */
1742 for (pass = 0; pass < 2 && !yielded; pass++) {
1743 kvm_for_each_vcpu(i, vcpu, kvm) {
1744 if (!pass && i <= last_boosted_vcpu) {
1745 i = last_boosted_vcpu;
1746 continue;
1747 } else if (pass && i > last_boosted_vcpu)
1748 break;
1749 if (vcpu == me)
1750 continue;
1751 if (waitqueue_active(&vcpu->wq))
1752 continue;
1753 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1754 continue;
1755 if (kvm_vcpu_yield_to(vcpu)) {
1756 kvm->last_boosted_vcpu = i;
1757 yielded = 1;
1758 break;
1759 }
1760 }
1761 }
1762 kvm_vcpu_set_in_spin_loop(me, false);
1763
1764 /* Ensure vcpu is not eligible during next spinloop */
1765 kvm_vcpu_set_dy_eligible(me, false);
1766 }
1767 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1768
1769 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1770 {
1771 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1772 struct page *page;
1773
1774 if (vmf->pgoff == 0)
1775 page = virt_to_page(vcpu->run);
1776 #ifdef CONFIG_X86
1777 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1778 page = virt_to_page(vcpu->arch.pio_data);
1779 #endif
1780 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1781 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1782 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1783 #endif
1784 else
1785 return kvm_arch_vcpu_fault(vcpu, vmf);
1786 get_page(page);
1787 vmf->page = page;
1788 return 0;
1789 }
1790
1791 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1792 .fault = kvm_vcpu_fault,
1793 };
1794
1795 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1796 {
1797 vma->vm_ops = &kvm_vcpu_vm_ops;
1798 return 0;
1799 }
1800
1801 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1802 {
1803 struct kvm_vcpu *vcpu = filp->private_data;
1804
1805 kvm_put_kvm(vcpu->kvm);
1806 return 0;
1807 }
1808
1809 static struct file_operations kvm_vcpu_fops = {
1810 .release = kvm_vcpu_release,
1811 .unlocked_ioctl = kvm_vcpu_ioctl,
1812 #ifdef CONFIG_COMPAT
1813 .compat_ioctl = kvm_vcpu_compat_ioctl,
1814 #endif
1815 .mmap = kvm_vcpu_mmap,
1816 .llseek = noop_llseek,
1817 };
1818
1819 /*
1820 * Allocates an inode for the vcpu.
1821 */
1822 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1823 {
1824 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1825 }
1826
1827 /*
1828 * Creates some virtual cpus. Good luck creating more than one.
1829 */
1830 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1831 {
1832 int r;
1833 struct kvm_vcpu *vcpu, *v;
1834
1835 vcpu = kvm_arch_vcpu_create(kvm, id);
1836 if (IS_ERR(vcpu))
1837 return PTR_ERR(vcpu);
1838
1839 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1840
1841 r = kvm_arch_vcpu_setup(vcpu);
1842 if (r)
1843 goto vcpu_destroy;
1844
1845 mutex_lock(&kvm->lock);
1846 if (!kvm_vcpu_compatible(vcpu)) {
1847 r = -EINVAL;
1848 goto unlock_vcpu_destroy;
1849 }
1850 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1851 r = -EINVAL;
1852 goto unlock_vcpu_destroy;
1853 }
1854
1855 kvm_for_each_vcpu(r, v, kvm)
1856 if (v->vcpu_id == id) {
1857 r = -EEXIST;
1858 goto unlock_vcpu_destroy;
1859 }
1860
1861 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1862
1863 /* Now it's all set up, let userspace reach it */
1864 kvm_get_kvm(kvm);
1865 r = create_vcpu_fd(vcpu);
1866 if (r < 0) {
1867 kvm_put_kvm(kvm);
1868 goto unlock_vcpu_destroy;
1869 }
1870
1871 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1872 smp_wmb();
1873 atomic_inc(&kvm->online_vcpus);
1874
1875 mutex_unlock(&kvm->lock);
1876 kvm_arch_vcpu_postcreate(vcpu);
1877 return r;
1878
1879 unlock_vcpu_destroy:
1880 mutex_unlock(&kvm->lock);
1881 vcpu_destroy:
1882 kvm_arch_vcpu_destroy(vcpu);
1883 return r;
1884 }
1885
1886 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1887 {
1888 if (sigset) {
1889 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1890 vcpu->sigset_active = 1;
1891 vcpu->sigset = *sigset;
1892 } else
1893 vcpu->sigset_active = 0;
1894 return 0;
1895 }
1896
1897 static long kvm_vcpu_ioctl(struct file *filp,
1898 unsigned int ioctl, unsigned long arg)
1899 {
1900 struct kvm_vcpu *vcpu = filp->private_data;
1901 void __user *argp = (void __user *)arg;
1902 int r;
1903 struct kvm_fpu *fpu = NULL;
1904 struct kvm_sregs *kvm_sregs = NULL;
1905
1906 if (vcpu->kvm->mm != current->mm)
1907 return -EIO;
1908
1909 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1910 /*
1911 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1912 * so vcpu_load() would break it.
1913 */
1914 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1915 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1916 #endif
1917
1918
1919 r = vcpu_load(vcpu);
1920 if (r)
1921 return r;
1922 switch (ioctl) {
1923 case KVM_RUN:
1924 r = -EINVAL;
1925 if (arg)
1926 goto out;
1927 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1928 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1929 break;
1930 case KVM_GET_REGS: {
1931 struct kvm_regs *kvm_regs;
1932
1933 r = -ENOMEM;
1934 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1935 if (!kvm_regs)
1936 goto out;
1937 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1938 if (r)
1939 goto out_free1;
1940 r = -EFAULT;
1941 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1942 goto out_free1;
1943 r = 0;
1944 out_free1:
1945 kfree(kvm_regs);
1946 break;
1947 }
1948 case KVM_SET_REGS: {
1949 struct kvm_regs *kvm_regs;
1950
1951 r = -ENOMEM;
1952 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1953 if (IS_ERR(kvm_regs)) {
1954 r = PTR_ERR(kvm_regs);
1955 goto out;
1956 }
1957 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1958 kfree(kvm_regs);
1959 break;
1960 }
1961 case KVM_GET_SREGS: {
1962 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1963 r = -ENOMEM;
1964 if (!kvm_sregs)
1965 goto out;
1966 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1967 if (r)
1968 goto out;
1969 r = -EFAULT;
1970 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1971 goto out;
1972 r = 0;
1973 break;
1974 }
1975 case KVM_SET_SREGS: {
1976 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1977 if (IS_ERR(kvm_sregs)) {
1978 r = PTR_ERR(kvm_sregs);
1979 kvm_sregs = NULL;
1980 goto out;
1981 }
1982 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1983 break;
1984 }
1985 case KVM_GET_MP_STATE: {
1986 struct kvm_mp_state mp_state;
1987
1988 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1989 if (r)
1990 goto out;
1991 r = -EFAULT;
1992 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1993 goto out;
1994 r = 0;
1995 break;
1996 }
1997 case KVM_SET_MP_STATE: {
1998 struct kvm_mp_state mp_state;
1999
2000 r = -EFAULT;
2001 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2002 goto out;
2003 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2004 break;
2005 }
2006 case KVM_TRANSLATE: {
2007 struct kvm_translation tr;
2008
2009 r = -EFAULT;
2010 if (copy_from_user(&tr, argp, sizeof tr))
2011 goto out;
2012 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2013 if (r)
2014 goto out;
2015 r = -EFAULT;
2016 if (copy_to_user(argp, &tr, sizeof tr))
2017 goto out;
2018 r = 0;
2019 break;
2020 }
2021 case KVM_SET_GUEST_DEBUG: {
2022 struct kvm_guest_debug dbg;
2023
2024 r = -EFAULT;
2025 if (copy_from_user(&dbg, argp, sizeof dbg))
2026 goto out;
2027 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2028 break;
2029 }
2030 case KVM_SET_SIGNAL_MASK: {
2031 struct kvm_signal_mask __user *sigmask_arg = argp;
2032 struct kvm_signal_mask kvm_sigmask;
2033 sigset_t sigset, *p;
2034
2035 p = NULL;
2036 if (argp) {
2037 r = -EFAULT;
2038 if (copy_from_user(&kvm_sigmask, argp,
2039 sizeof kvm_sigmask))
2040 goto out;
2041 r = -EINVAL;
2042 if (kvm_sigmask.len != sizeof sigset)
2043 goto out;
2044 r = -EFAULT;
2045 if (copy_from_user(&sigset, sigmask_arg->sigset,
2046 sizeof sigset))
2047 goto out;
2048 p = &sigset;
2049 }
2050 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2051 break;
2052 }
2053 case KVM_GET_FPU: {
2054 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2055 r = -ENOMEM;
2056 if (!fpu)
2057 goto out;
2058 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2059 if (r)
2060 goto out;
2061 r = -EFAULT;
2062 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2063 goto out;
2064 r = 0;
2065 break;
2066 }
2067 case KVM_SET_FPU: {
2068 fpu = memdup_user(argp, sizeof(*fpu));
2069 if (IS_ERR(fpu)) {
2070 r = PTR_ERR(fpu);
2071 fpu = NULL;
2072 goto out;
2073 }
2074 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2075 break;
2076 }
2077 default:
2078 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2079 }
2080 out:
2081 vcpu_put(vcpu);
2082 kfree(fpu);
2083 kfree(kvm_sregs);
2084 return r;
2085 }
2086
2087 #ifdef CONFIG_COMPAT
2088 static long kvm_vcpu_compat_ioctl(struct file *filp,
2089 unsigned int ioctl, unsigned long arg)
2090 {
2091 struct kvm_vcpu *vcpu = filp->private_data;
2092 void __user *argp = compat_ptr(arg);
2093 int r;
2094
2095 if (vcpu->kvm->mm != current->mm)
2096 return -EIO;
2097
2098 switch (ioctl) {
2099 case KVM_SET_SIGNAL_MASK: {
2100 struct kvm_signal_mask __user *sigmask_arg = argp;
2101 struct kvm_signal_mask kvm_sigmask;
2102 compat_sigset_t csigset;
2103 sigset_t sigset;
2104
2105 if (argp) {
2106 r = -EFAULT;
2107 if (copy_from_user(&kvm_sigmask, argp,
2108 sizeof kvm_sigmask))
2109 goto out;
2110 r = -EINVAL;
2111 if (kvm_sigmask.len != sizeof csigset)
2112 goto out;
2113 r = -EFAULT;
2114 if (copy_from_user(&csigset, sigmask_arg->sigset,
2115 sizeof csigset))
2116 goto out;
2117 sigset_from_compat(&sigset, &csigset);
2118 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2119 } else
2120 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2121 break;
2122 }
2123 default:
2124 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2125 }
2126
2127 out:
2128 return r;
2129 }
2130 #endif
2131
2132 static long kvm_vm_ioctl(struct file *filp,
2133 unsigned int ioctl, unsigned long arg)
2134 {
2135 struct kvm *kvm = filp->private_data;
2136 void __user *argp = (void __user *)arg;
2137 int r;
2138
2139 if (kvm->mm != current->mm)
2140 return -EIO;
2141 switch (ioctl) {
2142 case KVM_CREATE_VCPU:
2143 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2144 break;
2145 case KVM_SET_USER_MEMORY_REGION: {
2146 struct kvm_userspace_memory_region kvm_userspace_mem;
2147
2148 r = -EFAULT;
2149 if (copy_from_user(&kvm_userspace_mem, argp,
2150 sizeof kvm_userspace_mem))
2151 goto out;
2152
2153 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, true);
2154 break;
2155 }
2156 case KVM_GET_DIRTY_LOG: {
2157 struct kvm_dirty_log log;
2158
2159 r = -EFAULT;
2160 if (copy_from_user(&log, argp, sizeof log))
2161 goto out;
2162 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2163 break;
2164 }
2165 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2166 case KVM_REGISTER_COALESCED_MMIO: {
2167 struct kvm_coalesced_mmio_zone zone;
2168 r = -EFAULT;
2169 if (copy_from_user(&zone, argp, sizeof zone))
2170 goto out;
2171 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2172 break;
2173 }
2174 case KVM_UNREGISTER_COALESCED_MMIO: {
2175 struct kvm_coalesced_mmio_zone zone;
2176 r = -EFAULT;
2177 if (copy_from_user(&zone, argp, sizeof zone))
2178 goto out;
2179 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2180 break;
2181 }
2182 #endif
2183 case KVM_IRQFD: {
2184 struct kvm_irqfd data;
2185
2186 r = -EFAULT;
2187 if (copy_from_user(&data, argp, sizeof data))
2188 goto out;
2189 r = kvm_irqfd(kvm, &data);
2190 break;
2191 }
2192 case KVM_IOEVENTFD: {
2193 struct kvm_ioeventfd data;
2194
2195 r = -EFAULT;
2196 if (copy_from_user(&data, argp, sizeof data))
2197 goto out;
2198 r = kvm_ioeventfd(kvm, &data);
2199 break;
2200 }
2201 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2202 case KVM_SET_BOOT_CPU_ID:
2203 r = 0;
2204 mutex_lock(&kvm->lock);
2205 if (atomic_read(&kvm->online_vcpus) != 0)
2206 r = -EBUSY;
2207 else
2208 kvm->bsp_vcpu_id = arg;
2209 mutex_unlock(&kvm->lock);
2210 break;
2211 #endif
2212 #ifdef CONFIG_HAVE_KVM_MSI
2213 case KVM_SIGNAL_MSI: {
2214 struct kvm_msi msi;
2215
2216 r = -EFAULT;
2217 if (copy_from_user(&msi, argp, sizeof msi))
2218 goto out;
2219 r = kvm_send_userspace_msi(kvm, &msi);
2220 break;
2221 }
2222 #endif
2223 #ifdef __KVM_HAVE_IRQ_LINE
2224 case KVM_IRQ_LINE_STATUS:
2225 case KVM_IRQ_LINE: {
2226 struct kvm_irq_level irq_event;
2227
2228 r = -EFAULT;
2229 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2230 goto out;
2231
2232 r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
2233 if (r)
2234 goto out;
2235
2236 r = -EFAULT;
2237 if (ioctl == KVM_IRQ_LINE_STATUS) {
2238 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2239 goto out;
2240 }
2241
2242 r = 0;
2243 break;
2244 }
2245 #endif
2246 default:
2247 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2248 if (r == -ENOTTY)
2249 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2250 }
2251 out:
2252 return r;
2253 }
2254
2255 #ifdef CONFIG_COMPAT
2256 struct compat_kvm_dirty_log {
2257 __u32 slot;
2258 __u32 padding1;
2259 union {
2260 compat_uptr_t dirty_bitmap; /* one bit per page */
2261 __u64 padding2;
2262 };
2263 };
2264
2265 static long kvm_vm_compat_ioctl(struct file *filp,
2266 unsigned int ioctl, unsigned long arg)
2267 {
2268 struct kvm *kvm = filp->private_data;
2269 int r;
2270
2271 if (kvm->mm != current->mm)
2272 return -EIO;
2273 switch (ioctl) {
2274 case KVM_GET_DIRTY_LOG: {
2275 struct compat_kvm_dirty_log compat_log;
2276 struct kvm_dirty_log log;
2277
2278 r = -EFAULT;
2279 if (copy_from_user(&compat_log, (void __user *)arg,
2280 sizeof(compat_log)))
2281 goto out;
2282 log.slot = compat_log.slot;
2283 log.padding1 = compat_log.padding1;
2284 log.padding2 = compat_log.padding2;
2285 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2286
2287 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2288 break;
2289 }
2290 default:
2291 r = kvm_vm_ioctl(filp, ioctl, arg);
2292 }
2293
2294 out:
2295 return r;
2296 }
2297 #endif
2298
2299 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2300 {
2301 struct page *page[1];
2302 unsigned long addr;
2303 int npages;
2304 gfn_t gfn = vmf->pgoff;
2305 struct kvm *kvm = vma->vm_file->private_data;
2306
2307 addr = gfn_to_hva(kvm, gfn);
2308 if (kvm_is_error_hva(addr))
2309 return VM_FAULT_SIGBUS;
2310
2311 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2312 NULL);
2313 if (unlikely(npages != 1))
2314 return VM_FAULT_SIGBUS;
2315
2316 vmf->page = page[0];
2317 return 0;
2318 }
2319
2320 static const struct vm_operations_struct kvm_vm_vm_ops = {
2321 .fault = kvm_vm_fault,
2322 };
2323
2324 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2325 {
2326 vma->vm_ops = &kvm_vm_vm_ops;
2327 return 0;
2328 }
2329
2330 static struct file_operations kvm_vm_fops = {
2331 .release = kvm_vm_release,
2332 .unlocked_ioctl = kvm_vm_ioctl,
2333 #ifdef CONFIG_COMPAT
2334 .compat_ioctl = kvm_vm_compat_ioctl,
2335 #endif
2336 .mmap = kvm_vm_mmap,
2337 .llseek = noop_llseek,
2338 };
2339
2340 static int kvm_dev_ioctl_create_vm(unsigned long type)
2341 {
2342 int r;
2343 struct kvm *kvm;
2344
2345 kvm = kvm_create_vm(type);
2346 if (IS_ERR(kvm))
2347 return PTR_ERR(kvm);
2348 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2349 r = kvm_coalesced_mmio_init(kvm);
2350 if (r < 0) {
2351 kvm_put_kvm(kvm);
2352 return r;
2353 }
2354 #endif
2355 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2356 if (r < 0)
2357 kvm_put_kvm(kvm);
2358
2359 return r;
2360 }
2361
2362 static long kvm_dev_ioctl_check_extension_generic(long arg)
2363 {
2364 switch (arg) {
2365 case KVM_CAP_USER_MEMORY:
2366 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2367 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2368 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2369 case KVM_CAP_SET_BOOT_CPU_ID:
2370 #endif
2371 case KVM_CAP_INTERNAL_ERROR_DATA:
2372 #ifdef CONFIG_HAVE_KVM_MSI
2373 case KVM_CAP_SIGNAL_MSI:
2374 #endif
2375 return 1;
2376 #ifdef KVM_CAP_IRQ_ROUTING
2377 case KVM_CAP_IRQ_ROUTING:
2378 return KVM_MAX_IRQ_ROUTES;
2379 #endif
2380 default:
2381 break;
2382 }
2383 return kvm_dev_ioctl_check_extension(arg);
2384 }
2385
2386 static long kvm_dev_ioctl(struct file *filp,
2387 unsigned int ioctl, unsigned long arg)
2388 {
2389 long r = -EINVAL;
2390
2391 switch (ioctl) {
2392 case KVM_GET_API_VERSION:
2393 r = -EINVAL;
2394 if (arg)
2395 goto out;
2396 r = KVM_API_VERSION;
2397 break;
2398 case KVM_CREATE_VM:
2399 r = kvm_dev_ioctl_create_vm(arg);
2400 break;
2401 case KVM_CHECK_EXTENSION:
2402 r = kvm_dev_ioctl_check_extension_generic(arg);
2403 break;
2404 case KVM_GET_VCPU_MMAP_SIZE:
2405 r = -EINVAL;
2406 if (arg)
2407 goto out;
2408 r = PAGE_SIZE; /* struct kvm_run */
2409 #ifdef CONFIG_X86
2410 r += PAGE_SIZE; /* pio data page */
2411 #endif
2412 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2413 r += PAGE_SIZE; /* coalesced mmio ring page */
2414 #endif
2415 break;
2416 case KVM_TRACE_ENABLE:
2417 case KVM_TRACE_PAUSE:
2418 case KVM_TRACE_DISABLE:
2419 r = -EOPNOTSUPP;
2420 break;
2421 default:
2422 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2423 }
2424 out:
2425 return r;
2426 }
2427
2428 static struct file_operations kvm_chardev_ops = {
2429 .unlocked_ioctl = kvm_dev_ioctl,
2430 .compat_ioctl = kvm_dev_ioctl,
2431 .llseek = noop_llseek,
2432 };
2433
2434 static struct miscdevice kvm_dev = {
2435 KVM_MINOR,
2436 "kvm",
2437 &kvm_chardev_ops,
2438 };
2439
2440 static void hardware_enable_nolock(void *junk)
2441 {
2442 int cpu = raw_smp_processor_id();
2443 int r;
2444
2445 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2446 return;
2447
2448 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2449
2450 r = kvm_arch_hardware_enable(NULL);
2451
2452 if (r) {
2453 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2454 atomic_inc(&hardware_enable_failed);
2455 printk(KERN_INFO "kvm: enabling virtualization on "
2456 "CPU%d failed\n", cpu);
2457 }
2458 }
2459
2460 static void hardware_enable(void *junk)
2461 {
2462 raw_spin_lock(&kvm_lock);
2463 hardware_enable_nolock(junk);
2464 raw_spin_unlock(&kvm_lock);
2465 }
2466
2467 static void hardware_disable_nolock(void *junk)
2468 {
2469 int cpu = raw_smp_processor_id();
2470
2471 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2472 return;
2473 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2474 kvm_arch_hardware_disable(NULL);
2475 }
2476
2477 static void hardware_disable(void *junk)
2478 {
2479 raw_spin_lock(&kvm_lock);
2480 hardware_disable_nolock(junk);
2481 raw_spin_unlock(&kvm_lock);
2482 }
2483
2484 static void hardware_disable_all_nolock(void)
2485 {
2486 BUG_ON(!kvm_usage_count);
2487
2488 kvm_usage_count--;
2489 if (!kvm_usage_count)
2490 on_each_cpu(hardware_disable_nolock, NULL, 1);
2491 }
2492
2493 static void hardware_disable_all(void)
2494 {
2495 raw_spin_lock(&kvm_lock);
2496 hardware_disable_all_nolock();
2497 raw_spin_unlock(&kvm_lock);
2498 }
2499
2500 static int hardware_enable_all(void)
2501 {
2502 int r = 0;
2503
2504 raw_spin_lock(&kvm_lock);
2505
2506 kvm_usage_count++;
2507 if (kvm_usage_count == 1) {
2508 atomic_set(&hardware_enable_failed, 0);
2509 on_each_cpu(hardware_enable_nolock, NULL, 1);
2510
2511 if (atomic_read(&hardware_enable_failed)) {
2512 hardware_disable_all_nolock();
2513 r = -EBUSY;
2514 }
2515 }
2516
2517 raw_spin_unlock(&kvm_lock);
2518
2519 return r;
2520 }
2521
2522 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2523 void *v)
2524 {
2525 int cpu = (long)v;
2526
2527 if (!kvm_usage_count)
2528 return NOTIFY_OK;
2529
2530 val &= ~CPU_TASKS_FROZEN;
2531 switch (val) {
2532 case CPU_DYING:
2533 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2534 cpu);
2535 hardware_disable(NULL);
2536 break;
2537 case CPU_STARTING:
2538 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2539 cpu);
2540 hardware_enable(NULL);
2541 break;
2542 }
2543 return NOTIFY_OK;
2544 }
2545
2546
2547 asmlinkage void kvm_spurious_fault(void)
2548 {
2549 /* Fault while not rebooting. We want the trace. */
2550 BUG();
2551 }
2552 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2553
2554 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2555 void *v)
2556 {
2557 /*
2558 * Some (well, at least mine) BIOSes hang on reboot if
2559 * in vmx root mode.
2560 *
2561 * And Intel TXT required VMX off for all cpu when system shutdown.
2562 */
2563 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2564 kvm_rebooting = true;
2565 on_each_cpu(hardware_disable_nolock, NULL, 1);
2566 return NOTIFY_OK;
2567 }
2568
2569 static struct notifier_block kvm_reboot_notifier = {
2570 .notifier_call = kvm_reboot,
2571 .priority = 0,
2572 };
2573
2574 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2575 {
2576 int i;
2577
2578 for (i = 0; i < bus->dev_count; i++) {
2579 struct kvm_io_device *pos = bus->range[i].dev;
2580
2581 kvm_iodevice_destructor(pos);
2582 }
2583 kfree(bus);
2584 }
2585
2586 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2587 {
2588 const struct kvm_io_range *r1 = p1;
2589 const struct kvm_io_range *r2 = p2;
2590
2591 if (r1->addr < r2->addr)
2592 return -1;
2593 if (r1->addr + r1->len > r2->addr + r2->len)
2594 return 1;
2595 return 0;
2596 }
2597
2598 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2599 gpa_t addr, int len)
2600 {
2601 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2602 .addr = addr,
2603 .len = len,
2604 .dev = dev,
2605 };
2606
2607 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2608 kvm_io_bus_sort_cmp, NULL);
2609
2610 return 0;
2611 }
2612
2613 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2614 gpa_t addr, int len)
2615 {
2616 struct kvm_io_range *range, key;
2617 int off;
2618
2619 key = (struct kvm_io_range) {
2620 .addr = addr,
2621 .len = len,
2622 };
2623
2624 range = bsearch(&key, bus->range, bus->dev_count,
2625 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2626 if (range == NULL)
2627 return -ENOENT;
2628
2629 off = range - bus->range;
2630
2631 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2632 off--;
2633
2634 return off;
2635 }
2636
2637 /* kvm_io_bus_write - called under kvm->slots_lock */
2638 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2639 int len, const void *val)
2640 {
2641 int idx;
2642 struct kvm_io_bus *bus;
2643 struct kvm_io_range range;
2644
2645 range = (struct kvm_io_range) {
2646 .addr = addr,
2647 .len = len,
2648 };
2649
2650 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2651 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2652 if (idx < 0)
2653 return -EOPNOTSUPP;
2654
2655 while (idx < bus->dev_count &&
2656 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2657 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2658 return 0;
2659 idx++;
2660 }
2661
2662 return -EOPNOTSUPP;
2663 }
2664
2665 /* kvm_io_bus_read - called under kvm->slots_lock */
2666 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2667 int len, void *val)
2668 {
2669 int idx;
2670 struct kvm_io_bus *bus;
2671 struct kvm_io_range range;
2672
2673 range = (struct kvm_io_range) {
2674 .addr = addr,
2675 .len = len,
2676 };
2677
2678 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2679 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2680 if (idx < 0)
2681 return -EOPNOTSUPP;
2682
2683 while (idx < bus->dev_count &&
2684 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2685 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2686 return 0;
2687 idx++;
2688 }
2689
2690 return -EOPNOTSUPP;
2691 }
2692
2693 /* Caller must hold slots_lock. */
2694 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2695 int len, struct kvm_io_device *dev)
2696 {
2697 struct kvm_io_bus *new_bus, *bus;
2698
2699 bus = kvm->buses[bus_idx];
2700 if (bus->dev_count > NR_IOBUS_DEVS - 1)
2701 return -ENOSPC;
2702
2703 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2704 sizeof(struct kvm_io_range)), GFP_KERNEL);
2705 if (!new_bus)
2706 return -ENOMEM;
2707 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2708 sizeof(struct kvm_io_range)));
2709 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2710 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2711 synchronize_srcu_expedited(&kvm->srcu);
2712 kfree(bus);
2713
2714 return 0;
2715 }
2716
2717 /* Caller must hold slots_lock. */
2718 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2719 struct kvm_io_device *dev)
2720 {
2721 int i, r;
2722 struct kvm_io_bus *new_bus, *bus;
2723
2724 bus = kvm->buses[bus_idx];
2725 r = -ENOENT;
2726 for (i = 0; i < bus->dev_count; i++)
2727 if (bus->range[i].dev == dev) {
2728 r = 0;
2729 break;
2730 }
2731
2732 if (r)
2733 return r;
2734
2735 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2736 sizeof(struct kvm_io_range)), GFP_KERNEL);
2737 if (!new_bus)
2738 return -ENOMEM;
2739
2740 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2741 new_bus->dev_count--;
2742 memcpy(new_bus->range + i, bus->range + i + 1,
2743 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2744
2745 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2746 synchronize_srcu_expedited(&kvm->srcu);
2747 kfree(bus);
2748 return r;
2749 }
2750
2751 static struct notifier_block kvm_cpu_notifier = {
2752 .notifier_call = kvm_cpu_hotplug,
2753 };
2754
2755 static int vm_stat_get(void *_offset, u64 *val)
2756 {
2757 unsigned offset = (long)_offset;
2758 struct kvm *kvm;
2759
2760 *val = 0;
2761 raw_spin_lock(&kvm_lock);
2762 list_for_each_entry(kvm, &vm_list, vm_list)
2763 *val += *(u32 *)((void *)kvm + offset);
2764 raw_spin_unlock(&kvm_lock);
2765 return 0;
2766 }
2767
2768 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2769
2770 static int vcpu_stat_get(void *_offset, u64 *val)
2771 {
2772 unsigned offset = (long)_offset;
2773 struct kvm *kvm;
2774 struct kvm_vcpu *vcpu;
2775 int i;
2776
2777 *val = 0;
2778 raw_spin_lock(&kvm_lock);
2779 list_for_each_entry(kvm, &vm_list, vm_list)
2780 kvm_for_each_vcpu(i, vcpu, kvm)
2781 *val += *(u32 *)((void *)vcpu + offset);
2782
2783 raw_spin_unlock(&kvm_lock);
2784 return 0;
2785 }
2786
2787 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2788
2789 static const struct file_operations *stat_fops[] = {
2790 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2791 [KVM_STAT_VM] = &vm_stat_fops,
2792 };
2793
2794 static int kvm_init_debug(void)
2795 {
2796 int r = -EFAULT;
2797 struct kvm_stats_debugfs_item *p;
2798
2799 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2800 if (kvm_debugfs_dir == NULL)
2801 goto out;
2802
2803 for (p = debugfs_entries; p->name; ++p) {
2804 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2805 (void *)(long)p->offset,
2806 stat_fops[p->kind]);
2807 if (p->dentry == NULL)
2808 goto out_dir;
2809 }
2810
2811 return 0;
2812
2813 out_dir:
2814 debugfs_remove_recursive(kvm_debugfs_dir);
2815 out:
2816 return r;
2817 }
2818
2819 static void kvm_exit_debug(void)
2820 {
2821 struct kvm_stats_debugfs_item *p;
2822
2823 for (p = debugfs_entries; p->name; ++p)
2824 debugfs_remove(p->dentry);
2825 debugfs_remove(kvm_debugfs_dir);
2826 }
2827
2828 static int kvm_suspend(void)
2829 {
2830 if (kvm_usage_count)
2831 hardware_disable_nolock(NULL);
2832 return 0;
2833 }
2834
2835 static void kvm_resume(void)
2836 {
2837 if (kvm_usage_count) {
2838 WARN_ON(raw_spin_is_locked(&kvm_lock));
2839 hardware_enable_nolock(NULL);
2840 }
2841 }
2842
2843 static struct syscore_ops kvm_syscore_ops = {
2844 .suspend = kvm_suspend,
2845 .resume = kvm_resume,
2846 };
2847
2848 static inline
2849 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2850 {
2851 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2852 }
2853
2854 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2855 {
2856 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2857
2858 kvm_arch_vcpu_load(vcpu, cpu);
2859 }
2860
2861 static void kvm_sched_out(struct preempt_notifier *pn,
2862 struct task_struct *next)
2863 {
2864 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2865
2866 kvm_arch_vcpu_put(vcpu);
2867 }
2868
2869 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2870 struct module *module)
2871 {
2872 int r;
2873 int cpu;
2874
2875 r = kvm_arch_init(opaque);
2876 if (r)
2877 goto out_fail;
2878
2879 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2880 r = -ENOMEM;
2881 goto out_free_0;
2882 }
2883
2884 r = kvm_arch_hardware_setup();
2885 if (r < 0)
2886 goto out_free_0a;
2887
2888 for_each_online_cpu(cpu) {
2889 smp_call_function_single(cpu,
2890 kvm_arch_check_processor_compat,
2891 &r, 1);
2892 if (r < 0)
2893 goto out_free_1;
2894 }
2895
2896 r = register_cpu_notifier(&kvm_cpu_notifier);
2897 if (r)
2898 goto out_free_2;
2899 register_reboot_notifier(&kvm_reboot_notifier);
2900
2901 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2902 if (!vcpu_align)
2903 vcpu_align = __alignof__(struct kvm_vcpu);
2904 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2905 0, NULL);
2906 if (!kvm_vcpu_cache) {
2907 r = -ENOMEM;
2908 goto out_free_3;
2909 }
2910
2911 r = kvm_async_pf_init();
2912 if (r)
2913 goto out_free;
2914
2915 kvm_chardev_ops.owner = module;
2916 kvm_vm_fops.owner = module;
2917 kvm_vcpu_fops.owner = module;
2918
2919 r = misc_register(&kvm_dev);
2920 if (r) {
2921 printk(KERN_ERR "kvm: misc device register failed\n");
2922 goto out_unreg;
2923 }
2924
2925 register_syscore_ops(&kvm_syscore_ops);
2926
2927 kvm_preempt_ops.sched_in = kvm_sched_in;
2928 kvm_preempt_ops.sched_out = kvm_sched_out;
2929
2930 r = kvm_init_debug();
2931 if (r) {
2932 printk(KERN_ERR "kvm: create debugfs files failed\n");
2933 goto out_undebugfs;
2934 }
2935
2936 return 0;
2937
2938 out_undebugfs:
2939 unregister_syscore_ops(&kvm_syscore_ops);
2940 out_unreg:
2941 kvm_async_pf_deinit();
2942 out_free:
2943 kmem_cache_destroy(kvm_vcpu_cache);
2944 out_free_3:
2945 unregister_reboot_notifier(&kvm_reboot_notifier);
2946 unregister_cpu_notifier(&kvm_cpu_notifier);
2947 out_free_2:
2948 out_free_1:
2949 kvm_arch_hardware_unsetup();
2950 out_free_0a:
2951 free_cpumask_var(cpus_hardware_enabled);
2952 out_free_0:
2953 kvm_arch_exit();
2954 out_fail:
2955 return r;
2956 }
2957 EXPORT_SYMBOL_GPL(kvm_init);
2958
2959 void kvm_exit(void)
2960 {
2961 kvm_exit_debug();
2962 misc_deregister(&kvm_dev);
2963 kmem_cache_destroy(kvm_vcpu_cache);
2964 kvm_async_pf_deinit();
2965 unregister_syscore_ops(&kvm_syscore_ops);
2966 unregister_reboot_notifier(&kvm_reboot_notifier);
2967 unregister_cpu_notifier(&kvm_cpu_notifier);
2968 on_each_cpu(hardware_disable_nolock, NULL, 1);
2969 kvm_arch_hardware_unsetup();
2970 kvm_arch_exit();
2971 free_cpumask_var(cpus_hardware_enabled);
2972 }
2973 EXPORT_SYMBOL_GPL(kvm_exit);