]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/kvm_main.c
be3e7bb73b1083edd2c3e8f207587456b309cbff
[mirror_ubuntu-artful-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 if (pfn_valid(pfn)) {
106 int reserved;
107 struct page *tail = pfn_to_page(pfn);
108 struct page *head = compound_trans_head(tail);
109 reserved = PageReserved(head);
110 if (head != tail) {
111 /*
112 * "head" is not a dangling pointer
113 * (compound_trans_head takes care of that)
114 * but the hugepage may have been splitted
115 * from under us (and we may not hold a
116 * reference count on the head page so it can
117 * be reused before we run PageReferenced), so
118 * we've to check PageTail before returning
119 * what we just read.
120 */
121 smp_rmb();
122 if (PageTail(tail))
123 return reserved;
124 }
125 return PageReserved(tail);
126 }
127
128 return true;
129 }
130
131 /*
132 * Switches to specified vcpu, until a matching vcpu_put()
133 */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 int cpu;
137
138 if (mutex_lock_killable(&vcpu->mutex))
139 return -EINTR;
140 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141 /* The thread running this VCPU changed. */
142 struct pid *oldpid = vcpu->pid;
143 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144 rcu_assign_pointer(vcpu->pid, newpid);
145 synchronize_rcu();
146 put_pid(oldpid);
147 }
148 cpu = get_cpu();
149 preempt_notifier_register(&vcpu->preempt_notifier);
150 kvm_arch_vcpu_load(vcpu, cpu);
151 put_cpu();
152 return 0;
153 }
154
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157 preempt_disable();
158 kvm_arch_vcpu_put(vcpu);
159 preempt_notifier_unregister(&vcpu->preempt_notifier);
160 preempt_enable();
161 mutex_unlock(&vcpu->mutex);
162 }
163
164 static void ack_flush(void *_completed)
165 {
166 }
167
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170 int i, cpu, me;
171 cpumask_var_t cpus;
172 bool called = true;
173 struct kvm_vcpu *vcpu;
174
175 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176
177 me = get_cpu();
178 kvm_for_each_vcpu(i, vcpu, kvm) {
179 kvm_make_request(req, vcpu);
180 cpu = vcpu->cpu;
181
182 /* Set ->requests bit before we read ->mode */
183 smp_mb();
184
185 if (cpus != NULL && cpu != -1 && cpu != me &&
186 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187 cpumask_set_cpu(cpu, cpus);
188 }
189 if (unlikely(cpus == NULL))
190 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191 else if (!cpumask_empty(cpus))
192 smp_call_function_many(cpus, ack_flush, NULL, 1);
193 else
194 called = false;
195 put_cpu();
196 free_cpumask_var(cpus);
197 return called;
198 }
199
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 long dirty_count = kvm->tlbs_dirty;
203
204 smp_mb();
205 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206 ++kvm->stat.remote_tlb_flush;
207 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214
215 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
216 {
217 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
218 }
219
220 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
221 {
222 struct page *page;
223 int r;
224
225 mutex_init(&vcpu->mutex);
226 vcpu->cpu = -1;
227 vcpu->kvm = kvm;
228 vcpu->vcpu_id = id;
229 vcpu->pid = NULL;
230 init_waitqueue_head(&vcpu->wq);
231 kvm_async_pf_vcpu_init(vcpu);
232
233 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
234 if (!page) {
235 r = -ENOMEM;
236 goto fail;
237 }
238 vcpu->run = page_address(page);
239
240 kvm_vcpu_set_in_spin_loop(vcpu, false);
241 kvm_vcpu_set_dy_eligible(vcpu, false);
242
243 r = kvm_arch_vcpu_init(vcpu);
244 if (r < 0)
245 goto fail_free_run;
246 return 0;
247
248 fail_free_run:
249 free_page((unsigned long)vcpu->run);
250 fail:
251 return r;
252 }
253 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
254
255 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
256 {
257 put_pid(vcpu->pid);
258 kvm_arch_vcpu_uninit(vcpu);
259 free_page((unsigned long)vcpu->run);
260 }
261 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
262
263 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
264 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
265 {
266 return container_of(mn, struct kvm, mmu_notifier);
267 }
268
269 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
270 struct mm_struct *mm,
271 unsigned long address)
272 {
273 struct kvm *kvm = mmu_notifier_to_kvm(mn);
274 int need_tlb_flush, idx;
275
276 /*
277 * When ->invalidate_page runs, the linux pte has been zapped
278 * already but the page is still allocated until
279 * ->invalidate_page returns. So if we increase the sequence
280 * here the kvm page fault will notice if the spte can't be
281 * established because the page is going to be freed. If
282 * instead the kvm page fault establishes the spte before
283 * ->invalidate_page runs, kvm_unmap_hva will release it
284 * before returning.
285 *
286 * The sequence increase only need to be seen at spin_unlock
287 * time, and not at spin_lock time.
288 *
289 * Increasing the sequence after the spin_unlock would be
290 * unsafe because the kvm page fault could then establish the
291 * pte after kvm_unmap_hva returned, without noticing the page
292 * is going to be freed.
293 */
294 idx = srcu_read_lock(&kvm->srcu);
295 spin_lock(&kvm->mmu_lock);
296
297 kvm->mmu_notifier_seq++;
298 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
299 /* we've to flush the tlb before the pages can be freed */
300 if (need_tlb_flush)
301 kvm_flush_remote_tlbs(kvm);
302
303 spin_unlock(&kvm->mmu_lock);
304 srcu_read_unlock(&kvm->srcu, idx);
305 }
306
307 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
308 struct mm_struct *mm,
309 unsigned long address,
310 pte_t pte)
311 {
312 struct kvm *kvm = mmu_notifier_to_kvm(mn);
313 int idx;
314
315 idx = srcu_read_lock(&kvm->srcu);
316 spin_lock(&kvm->mmu_lock);
317 kvm->mmu_notifier_seq++;
318 kvm_set_spte_hva(kvm, address, pte);
319 spin_unlock(&kvm->mmu_lock);
320 srcu_read_unlock(&kvm->srcu, idx);
321 }
322
323 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
324 struct mm_struct *mm,
325 unsigned long start,
326 unsigned long end)
327 {
328 struct kvm *kvm = mmu_notifier_to_kvm(mn);
329 int need_tlb_flush = 0, idx;
330
331 idx = srcu_read_lock(&kvm->srcu);
332 spin_lock(&kvm->mmu_lock);
333 /*
334 * The count increase must become visible at unlock time as no
335 * spte can be established without taking the mmu_lock and
336 * count is also read inside the mmu_lock critical section.
337 */
338 kvm->mmu_notifier_count++;
339 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
340 need_tlb_flush |= kvm->tlbs_dirty;
341 /* we've to flush the tlb before the pages can be freed */
342 if (need_tlb_flush)
343 kvm_flush_remote_tlbs(kvm);
344
345 spin_unlock(&kvm->mmu_lock);
346 srcu_read_unlock(&kvm->srcu, idx);
347 }
348
349 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
350 struct mm_struct *mm,
351 unsigned long start,
352 unsigned long end)
353 {
354 struct kvm *kvm = mmu_notifier_to_kvm(mn);
355
356 spin_lock(&kvm->mmu_lock);
357 /*
358 * This sequence increase will notify the kvm page fault that
359 * the page that is going to be mapped in the spte could have
360 * been freed.
361 */
362 kvm->mmu_notifier_seq++;
363 smp_wmb();
364 /*
365 * The above sequence increase must be visible before the
366 * below count decrease, which is ensured by the smp_wmb above
367 * in conjunction with the smp_rmb in mmu_notifier_retry().
368 */
369 kvm->mmu_notifier_count--;
370 spin_unlock(&kvm->mmu_lock);
371
372 BUG_ON(kvm->mmu_notifier_count < 0);
373 }
374
375 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
376 struct mm_struct *mm,
377 unsigned long address)
378 {
379 struct kvm *kvm = mmu_notifier_to_kvm(mn);
380 int young, idx;
381
382 idx = srcu_read_lock(&kvm->srcu);
383 spin_lock(&kvm->mmu_lock);
384
385 young = kvm_age_hva(kvm, address);
386 if (young)
387 kvm_flush_remote_tlbs(kvm);
388
389 spin_unlock(&kvm->mmu_lock);
390 srcu_read_unlock(&kvm->srcu, idx);
391
392 return young;
393 }
394
395 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
396 struct mm_struct *mm,
397 unsigned long address)
398 {
399 struct kvm *kvm = mmu_notifier_to_kvm(mn);
400 int young, idx;
401
402 idx = srcu_read_lock(&kvm->srcu);
403 spin_lock(&kvm->mmu_lock);
404 young = kvm_test_age_hva(kvm, address);
405 spin_unlock(&kvm->mmu_lock);
406 srcu_read_unlock(&kvm->srcu, idx);
407
408 return young;
409 }
410
411 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
412 struct mm_struct *mm)
413 {
414 struct kvm *kvm = mmu_notifier_to_kvm(mn);
415 int idx;
416
417 idx = srcu_read_lock(&kvm->srcu);
418 kvm_arch_flush_shadow_all(kvm);
419 srcu_read_unlock(&kvm->srcu, idx);
420 }
421
422 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
423 .invalidate_page = kvm_mmu_notifier_invalidate_page,
424 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
425 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
426 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
427 .test_young = kvm_mmu_notifier_test_young,
428 .change_pte = kvm_mmu_notifier_change_pte,
429 .release = kvm_mmu_notifier_release,
430 };
431
432 static int kvm_init_mmu_notifier(struct kvm *kvm)
433 {
434 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
435 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
436 }
437
438 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
439
440 static int kvm_init_mmu_notifier(struct kvm *kvm)
441 {
442 return 0;
443 }
444
445 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
446
447 static void kvm_init_memslots_id(struct kvm *kvm)
448 {
449 int i;
450 struct kvm_memslots *slots = kvm->memslots;
451
452 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
453 slots->id_to_index[i] = slots->memslots[i].id = i;
454 }
455
456 static struct kvm *kvm_create_vm(unsigned long type)
457 {
458 int r, i;
459 struct kvm *kvm = kvm_arch_alloc_vm();
460
461 if (!kvm)
462 return ERR_PTR(-ENOMEM);
463
464 r = kvm_arch_init_vm(kvm, type);
465 if (r)
466 goto out_err_nodisable;
467
468 r = hardware_enable_all();
469 if (r)
470 goto out_err_nodisable;
471
472 #ifdef CONFIG_HAVE_KVM_IRQCHIP
473 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
474 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
475 #endif
476
477 r = -ENOMEM;
478 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
479 if (!kvm->memslots)
480 goto out_err_nosrcu;
481 kvm_init_memslots_id(kvm);
482 if (init_srcu_struct(&kvm->srcu))
483 goto out_err_nosrcu;
484 for (i = 0; i < KVM_NR_BUSES; i++) {
485 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
486 GFP_KERNEL);
487 if (!kvm->buses[i])
488 goto out_err;
489 }
490
491 spin_lock_init(&kvm->mmu_lock);
492 kvm->mm = current->mm;
493 atomic_inc(&kvm->mm->mm_count);
494 kvm_eventfd_init(kvm);
495 mutex_init(&kvm->lock);
496 mutex_init(&kvm->irq_lock);
497 mutex_init(&kvm->slots_lock);
498 atomic_set(&kvm->users_count, 1);
499
500 r = kvm_init_mmu_notifier(kvm);
501 if (r)
502 goto out_err;
503
504 raw_spin_lock(&kvm_lock);
505 list_add(&kvm->vm_list, &vm_list);
506 raw_spin_unlock(&kvm_lock);
507
508 return kvm;
509
510 out_err:
511 cleanup_srcu_struct(&kvm->srcu);
512 out_err_nosrcu:
513 hardware_disable_all();
514 out_err_nodisable:
515 for (i = 0; i < KVM_NR_BUSES; i++)
516 kfree(kvm->buses[i]);
517 kfree(kvm->memslots);
518 kvm_arch_free_vm(kvm);
519 return ERR_PTR(r);
520 }
521
522 /*
523 * Avoid using vmalloc for a small buffer.
524 * Should not be used when the size is statically known.
525 */
526 void *kvm_kvzalloc(unsigned long size)
527 {
528 if (size > PAGE_SIZE)
529 return vzalloc(size);
530 else
531 return kzalloc(size, GFP_KERNEL);
532 }
533
534 void kvm_kvfree(const void *addr)
535 {
536 if (is_vmalloc_addr(addr))
537 vfree(addr);
538 else
539 kfree(addr);
540 }
541
542 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
543 {
544 if (!memslot->dirty_bitmap)
545 return;
546
547 kvm_kvfree(memslot->dirty_bitmap);
548 memslot->dirty_bitmap = NULL;
549 }
550
551 /*
552 * Free any memory in @free but not in @dont.
553 */
554 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
555 struct kvm_memory_slot *dont)
556 {
557 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
558 kvm_destroy_dirty_bitmap(free);
559
560 kvm_arch_free_memslot(free, dont);
561
562 free->npages = 0;
563 }
564
565 void kvm_free_physmem(struct kvm *kvm)
566 {
567 struct kvm_memslots *slots = kvm->memslots;
568 struct kvm_memory_slot *memslot;
569
570 kvm_for_each_memslot(memslot, slots)
571 kvm_free_physmem_slot(memslot, NULL);
572
573 kfree(kvm->memslots);
574 }
575
576 static void kvm_destroy_vm(struct kvm *kvm)
577 {
578 int i;
579 struct mm_struct *mm = kvm->mm;
580
581 kvm_arch_sync_events(kvm);
582 raw_spin_lock(&kvm_lock);
583 list_del(&kvm->vm_list);
584 raw_spin_unlock(&kvm_lock);
585 kvm_free_irq_routing(kvm);
586 for (i = 0; i < KVM_NR_BUSES; i++)
587 kvm_io_bus_destroy(kvm->buses[i]);
588 kvm_coalesced_mmio_free(kvm);
589 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
590 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
591 #else
592 kvm_arch_flush_shadow_all(kvm);
593 #endif
594 kvm_arch_destroy_vm(kvm);
595 kvm_free_physmem(kvm);
596 cleanup_srcu_struct(&kvm->srcu);
597 kvm_arch_free_vm(kvm);
598 hardware_disable_all();
599 mmdrop(mm);
600 }
601
602 void kvm_get_kvm(struct kvm *kvm)
603 {
604 atomic_inc(&kvm->users_count);
605 }
606 EXPORT_SYMBOL_GPL(kvm_get_kvm);
607
608 void kvm_put_kvm(struct kvm *kvm)
609 {
610 if (atomic_dec_and_test(&kvm->users_count))
611 kvm_destroy_vm(kvm);
612 }
613 EXPORT_SYMBOL_GPL(kvm_put_kvm);
614
615
616 static int kvm_vm_release(struct inode *inode, struct file *filp)
617 {
618 struct kvm *kvm = filp->private_data;
619
620 kvm_irqfd_release(kvm);
621
622 kvm_put_kvm(kvm);
623 return 0;
624 }
625
626 /*
627 * Allocation size is twice as large as the actual dirty bitmap size.
628 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
629 */
630 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
631 {
632 #ifndef CONFIG_S390
633 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
634
635 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
636 if (!memslot->dirty_bitmap)
637 return -ENOMEM;
638
639 #endif /* !CONFIG_S390 */
640 return 0;
641 }
642
643 static int cmp_memslot(const void *slot1, const void *slot2)
644 {
645 struct kvm_memory_slot *s1, *s2;
646
647 s1 = (struct kvm_memory_slot *)slot1;
648 s2 = (struct kvm_memory_slot *)slot2;
649
650 if (s1->npages < s2->npages)
651 return 1;
652 if (s1->npages > s2->npages)
653 return -1;
654
655 return 0;
656 }
657
658 /*
659 * Sort the memslots base on its size, so the larger slots
660 * will get better fit.
661 */
662 static void sort_memslots(struct kvm_memslots *slots)
663 {
664 int i;
665
666 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
667 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
668
669 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
670 slots->id_to_index[slots->memslots[i].id] = i;
671 }
672
673 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
674 {
675 if (new) {
676 int id = new->id;
677 struct kvm_memory_slot *old = id_to_memslot(slots, id);
678 unsigned long npages = old->npages;
679
680 *old = *new;
681 if (new->npages != npages)
682 sort_memslots(slots);
683 }
684
685 slots->generation++;
686 }
687
688 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
689 {
690 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
691
692 #ifdef KVM_CAP_READONLY_MEM
693 valid_flags |= KVM_MEM_READONLY;
694 #endif
695
696 if (mem->flags & ~valid_flags)
697 return -EINVAL;
698
699 return 0;
700 }
701
702 /*
703 * Allocate some memory and give it an address in the guest physical address
704 * space.
705 *
706 * Discontiguous memory is allowed, mostly for framebuffers.
707 *
708 * Must be called holding mmap_sem for write.
709 */
710 int __kvm_set_memory_region(struct kvm *kvm,
711 struct kvm_userspace_memory_region *mem,
712 int user_alloc)
713 {
714 int r;
715 gfn_t base_gfn;
716 unsigned long npages;
717 unsigned long i;
718 struct kvm_memory_slot *memslot;
719 struct kvm_memory_slot old, new;
720 struct kvm_memslots *slots, *old_memslots;
721
722 r = check_memory_region_flags(mem);
723 if (r)
724 goto out;
725
726 r = -EINVAL;
727 /* General sanity checks */
728 if (mem->memory_size & (PAGE_SIZE - 1))
729 goto out;
730 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
731 goto out;
732 /* We can read the guest memory with __xxx_user() later on. */
733 if (user_alloc &&
734 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
735 !access_ok(VERIFY_WRITE,
736 (void __user *)(unsigned long)mem->userspace_addr,
737 mem->memory_size)))
738 goto out;
739 if (mem->slot >= KVM_MEM_SLOTS_NUM)
740 goto out;
741 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
742 goto out;
743
744 memslot = id_to_memslot(kvm->memslots, mem->slot);
745 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
746 npages = mem->memory_size >> PAGE_SHIFT;
747
748 r = -EINVAL;
749 if (npages > KVM_MEM_MAX_NR_PAGES)
750 goto out;
751
752 if (!npages)
753 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
754
755 new = old = *memslot;
756
757 new.id = mem->slot;
758 new.base_gfn = base_gfn;
759 new.npages = npages;
760 new.flags = mem->flags;
761
762 /* Disallow changing a memory slot's size. */
763 r = -EINVAL;
764 if (npages && old.npages && npages != old.npages)
765 goto out_free;
766
767 /* Check for overlaps */
768 r = -EEXIST;
769 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
770 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
771
772 if (s == memslot || !s->npages)
773 continue;
774 if (!((base_gfn + npages <= s->base_gfn) ||
775 (base_gfn >= s->base_gfn + s->npages)))
776 goto out_free;
777 }
778
779 /* Free page dirty bitmap if unneeded */
780 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
781 new.dirty_bitmap = NULL;
782
783 r = -ENOMEM;
784
785 /* Allocate if a slot is being created */
786 if (npages && !old.npages) {
787 new.user_alloc = user_alloc;
788 new.userspace_addr = mem->userspace_addr;
789
790 if (kvm_arch_create_memslot(&new, npages))
791 goto out_free;
792 }
793
794 /* Allocate page dirty bitmap if needed */
795 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
796 if (kvm_create_dirty_bitmap(&new) < 0)
797 goto out_free;
798 /* destroy any largepage mappings for dirty tracking */
799 }
800
801 if (!npages || base_gfn != old.base_gfn) {
802 struct kvm_memory_slot *slot;
803
804 r = -ENOMEM;
805 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
806 GFP_KERNEL);
807 if (!slots)
808 goto out_free;
809 slot = id_to_memslot(slots, mem->slot);
810 slot->flags |= KVM_MEMSLOT_INVALID;
811
812 update_memslots(slots, NULL);
813
814 old_memslots = kvm->memslots;
815 rcu_assign_pointer(kvm->memslots, slots);
816 synchronize_srcu_expedited(&kvm->srcu);
817 /* From this point no new shadow pages pointing to a deleted,
818 * or moved, memslot will be created.
819 *
820 * validation of sp->gfn happens in:
821 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
822 * - kvm_is_visible_gfn (mmu_check_roots)
823 */
824 kvm_arch_flush_shadow_memslot(kvm, slot);
825 kfree(old_memslots);
826 }
827
828 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
829 if (r)
830 goto out_free;
831
832 /* map/unmap the pages in iommu page table */
833 if (npages) {
834 r = kvm_iommu_map_pages(kvm, &new);
835 if (r)
836 goto out_free;
837 } else
838 kvm_iommu_unmap_pages(kvm, &old);
839
840 r = -ENOMEM;
841 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
842 GFP_KERNEL);
843 if (!slots)
844 goto out_free;
845
846 /* actual memory is freed via old in kvm_free_physmem_slot below */
847 if (!npages) {
848 new.dirty_bitmap = NULL;
849 memset(&new.arch, 0, sizeof(new.arch));
850 }
851
852 update_memslots(slots, &new);
853 old_memslots = kvm->memslots;
854 rcu_assign_pointer(kvm->memslots, slots);
855 synchronize_srcu_expedited(&kvm->srcu);
856
857 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
858
859 kvm_free_physmem_slot(&old, &new);
860 kfree(old_memslots);
861
862 return 0;
863
864 out_free:
865 kvm_free_physmem_slot(&new, &old);
866 out:
867 return r;
868
869 }
870 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
871
872 int kvm_set_memory_region(struct kvm *kvm,
873 struct kvm_userspace_memory_region *mem,
874 int user_alloc)
875 {
876 int r;
877
878 mutex_lock(&kvm->slots_lock);
879 r = __kvm_set_memory_region(kvm, mem, user_alloc);
880 mutex_unlock(&kvm->slots_lock);
881 return r;
882 }
883 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
884
885 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
886 struct
887 kvm_userspace_memory_region *mem,
888 int user_alloc)
889 {
890 if (mem->slot >= KVM_MEMORY_SLOTS)
891 return -EINVAL;
892 return kvm_set_memory_region(kvm, mem, user_alloc);
893 }
894
895 int kvm_get_dirty_log(struct kvm *kvm,
896 struct kvm_dirty_log *log, int *is_dirty)
897 {
898 struct kvm_memory_slot *memslot;
899 int r, i;
900 unsigned long n;
901 unsigned long any = 0;
902
903 r = -EINVAL;
904 if (log->slot >= KVM_MEMORY_SLOTS)
905 goto out;
906
907 memslot = id_to_memslot(kvm->memslots, log->slot);
908 r = -ENOENT;
909 if (!memslot->dirty_bitmap)
910 goto out;
911
912 n = kvm_dirty_bitmap_bytes(memslot);
913
914 for (i = 0; !any && i < n/sizeof(long); ++i)
915 any = memslot->dirty_bitmap[i];
916
917 r = -EFAULT;
918 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
919 goto out;
920
921 if (any)
922 *is_dirty = 1;
923
924 r = 0;
925 out:
926 return r;
927 }
928
929 bool kvm_largepages_enabled(void)
930 {
931 return largepages_enabled;
932 }
933
934 void kvm_disable_largepages(void)
935 {
936 largepages_enabled = false;
937 }
938 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
939
940 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
941 {
942 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
943 }
944 EXPORT_SYMBOL_GPL(gfn_to_memslot);
945
946 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
947 {
948 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
949
950 if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
951 memslot->flags & KVM_MEMSLOT_INVALID)
952 return 0;
953
954 return 1;
955 }
956 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
957
958 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
959 {
960 struct vm_area_struct *vma;
961 unsigned long addr, size;
962
963 size = PAGE_SIZE;
964
965 addr = gfn_to_hva(kvm, gfn);
966 if (kvm_is_error_hva(addr))
967 return PAGE_SIZE;
968
969 down_read(&current->mm->mmap_sem);
970 vma = find_vma(current->mm, addr);
971 if (!vma)
972 goto out;
973
974 size = vma_kernel_pagesize(vma);
975
976 out:
977 up_read(&current->mm->mmap_sem);
978
979 return size;
980 }
981
982 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
983 {
984 return slot->flags & KVM_MEM_READONLY;
985 }
986
987 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
988 gfn_t *nr_pages, bool write)
989 {
990 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
991 return KVM_HVA_ERR_BAD;
992
993 if (memslot_is_readonly(slot) && write)
994 return KVM_HVA_ERR_RO_BAD;
995
996 if (nr_pages)
997 *nr_pages = slot->npages - (gfn - slot->base_gfn);
998
999 return __gfn_to_hva_memslot(slot, gfn);
1000 }
1001
1002 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1003 gfn_t *nr_pages)
1004 {
1005 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1006 }
1007
1008 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1009 gfn_t gfn)
1010 {
1011 return gfn_to_hva_many(slot, gfn, NULL);
1012 }
1013 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1014
1015 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1016 {
1017 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1018 }
1019 EXPORT_SYMBOL_GPL(gfn_to_hva);
1020
1021 /*
1022 * The hva returned by this function is only allowed to be read.
1023 * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1024 */
1025 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1026 {
1027 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1028 }
1029
1030 static int kvm_read_hva(void *data, void __user *hva, int len)
1031 {
1032 return __copy_from_user(data, hva, len);
1033 }
1034
1035 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1036 {
1037 return __copy_from_user_inatomic(data, hva, len);
1038 }
1039
1040 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1041 unsigned long start, int write, struct page **page)
1042 {
1043 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1044
1045 if (write)
1046 flags |= FOLL_WRITE;
1047
1048 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1049 }
1050
1051 static inline int check_user_page_hwpoison(unsigned long addr)
1052 {
1053 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1054
1055 rc = __get_user_pages(current, current->mm, addr, 1,
1056 flags, NULL, NULL, NULL);
1057 return rc == -EHWPOISON;
1058 }
1059
1060 /*
1061 * The atomic path to get the writable pfn which will be stored in @pfn,
1062 * true indicates success, otherwise false is returned.
1063 */
1064 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1065 bool write_fault, bool *writable, pfn_t *pfn)
1066 {
1067 struct page *page[1];
1068 int npages;
1069
1070 if (!(async || atomic))
1071 return false;
1072
1073 /*
1074 * Fast pin a writable pfn only if it is a write fault request
1075 * or the caller allows to map a writable pfn for a read fault
1076 * request.
1077 */
1078 if (!(write_fault || writable))
1079 return false;
1080
1081 npages = __get_user_pages_fast(addr, 1, 1, page);
1082 if (npages == 1) {
1083 *pfn = page_to_pfn(page[0]);
1084
1085 if (writable)
1086 *writable = true;
1087 return true;
1088 }
1089
1090 return false;
1091 }
1092
1093 /*
1094 * The slow path to get the pfn of the specified host virtual address,
1095 * 1 indicates success, -errno is returned if error is detected.
1096 */
1097 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1098 bool *writable, pfn_t *pfn)
1099 {
1100 struct page *page[1];
1101 int npages = 0;
1102
1103 might_sleep();
1104
1105 if (writable)
1106 *writable = write_fault;
1107
1108 if (async) {
1109 down_read(&current->mm->mmap_sem);
1110 npages = get_user_page_nowait(current, current->mm,
1111 addr, write_fault, page);
1112 up_read(&current->mm->mmap_sem);
1113 } else
1114 npages = get_user_pages_fast(addr, 1, write_fault,
1115 page);
1116 if (npages != 1)
1117 return npages;
1118
1119 /* map read fault as writable if possible */
1120 if (unlikely(!write_fault) && writable) {
1121 struct page *wpage[1];
1122
1123 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1124 if (npages == 1) {
1125 *writable = true;
1126 put_page(page[0]);
1127 page[0] = wpage[0];
1128 }
1129
1130 npages = 1;
1131 }
1132 *pfn = page_to_pfn(page[0]);
1133 return npages;
1134 }
1135
1136 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1137 {
1138 if (unlikely(!(vma->vm_flags & VM_READ)))
1139 return false;
1140
1141 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1142 return false;
1143
1144 return true;
1145 }
1146
1147 /*
1148 * Pin guest page in memory and return its pfn.
1149 * @addr: host virtual address which maps memory to the guest
1150 * @atomic: whether this function can sleep
1151 * @async: whether this function need to wait IO complete if the
1152 * host page is not in the memory
1153 * @write_fault: whether we should get a writable host page
1154 * @writable: whether it allows to map a writable host page for !@write_fault
1155 *
1156 * The function will map a writable host page for these two cases:
1157 * 1): @write_fault = true
1158 * 2): @write_fault = false && @writable, @writable will tell the caller
1159 * whether the mapping is writable.
1160 */
1161 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1162 bool write_fault, bool *writable)
1163 {
1164 struct vm_area_struct *vma;
1165 pfn_t pfn = 0;
1166 int npages;
1167
1168 /* we can do it either atomically or asynchronously, not both */
1169 BUG_ON(atomic && async);
1170
1171 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1172 return pfn;
1173
1174 if (atomic)
1175 return KVM_PFN_ERR_FAULT;
1176
1177 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1178 if (npages == 1)
1179 return pfn;
1180
1181 down_read(&current->mm->mmap_sem);
1182 if (npages == -EHWPOISON ||
1183 (!async && check_user_page_hwpoison(addr))) {
1184 pfn = KVM_PFN_ERR_HWPOISON;
1185 goto exit;
1186 }
1187
1188 vma = find_vma_intersection(current->mm, addr, addr + 1);
1189
1190 if (vma == NULL)
1191 pfn = KVM_PFN_ERR_FAULT;
1192 else if ((vma->vm_flags & VM_PFNMAP)) {
1193 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1194 vma->vm_pgoff;
1195 BUG_ON(!kvm_is_mmio_pfn(pfn));
1196 } else {
1197 if (async && vma_is_valid(vma, write_fault))
1198 *async = true;
1199 pfn = KVM_PFN_ERR_FAULT;
1200 }
1201 exit:
1202 up_read(&current->mm->mmap_sem);
1203 return pfn;
1204 }
1205
1206 static pfn_t
1207 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1208 bool *async, bool write_fault, bool *writable)
1209 {
1210 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1211
1212 if (addr == KVM_HVA_ERR_RO_BAD)
1213 return KVM_PFN_ERR_RO_FAULT;
1214
1215 if (kvm_is_error_hva(addr))
1216 return KVM_PFN_NOSLOT;
1217
1218 /* Do not map writable pfn in the readonly memslot. */
1219 if (writable && memslot_is_readonly(slot)) {
1220 *writable = false;
1221 writable = NULL;
1222 }
1223
1224 return hva_to_pfn(addr, atomic, async, write_fault,
1225 writable);
1226 }
1227
1228 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1229 bool write_fault, bool *writable)
1230 {
1231 struct kvm_memory_slot *slot;
1232
1233 if (async)
1234 *async = false;
1235
1236 slot = gfn_to_memslot(kvm, gfn);
1237
1238 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1239 writable);
1240 }
1241
1242 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1243 {
1244 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1245 }
1246 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1247
1248 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1249 bool write_fault, bool *writable)
1250 {
1251 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1252 }
1253 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1254
1255 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1256 {
1257 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1258 }
1259 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1260
1261 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1262 bool *writable)
1263 {
1264 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1265 }
1266 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1267
1268 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1269 {
1270 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1271 }
1272
1273 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1274 {
1275 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1276 }
1277 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1278
1279 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1280 int nr_pages)
1281 {
1282 unsigned long addr;
1283 gfn_t entry;
1284
1285 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1286 if (kvm_is_error_hva(addr))
1287 return -1;
1288
1289 if (entry < nr_pages)
1290 return 0;
1291
1292 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1293 }
1294 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1295
1296 static struct page *kvm_pfn_to_page(pfn_t pfn)
1297 {
1298 if (is_error_noslot_pfn(pfn))
1299 return KVM_ERR_PTR_BAD_PAGE;
1300
1301 if (kvm_is_mmio_pfn(pfn)) {
1302 WARN_ON(1);
1303 return KVM_ERR_PTR_BAD_PAGE;
1304 }
1305
1306 return pfn_to_page(pfn);
1307 }
1308
1309 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1310 {
1311 pfn_t pfn;
1312
1313 pfn = gfn_to_pfn(kvm, gfn);
1314
1315 return kvm_pfn_to_page(pfn);
1316 }
1317
1318 EXPORT_SYMBOL_GPL(gfn_to_page);
1319
1320 void kvm_release_page_clean(struct page *page)
1321 {
1322 WARN_ON(is_error_page(page));
1323
1324 kvm_release_pfn_clean(page_to_pfn(page));
1325 }
1326 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1327
1328 void kvm_release_pfn_clean(pfn_t pfn)
1329 {
1330 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1331 put_page(pfn_to_page(pfn));
1332 }
1333 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1334
1335 void kvm_release_page_dirty(struct page *page)
1336 {
1337 WARN_ON(is_error_page(page));
1338
1339 kvm_release_pfn_dirty(page_to_pfn(page));
1340 }
1341 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1342
1343 void kvm_release_pfn_dirty(pfn_t pfn)
1344 {
1345 kvm_set_pfn_dirty(pfn);
1346 kvm_release_pfn_clean(pfn);
1347 }
1348 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1349
1350 void kvm_set_page_dirty(struct page *page)
1351 {
1352 kvm_set_pfn_dirty(page_to_pfn(page));
1353 }
1354 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1355
1356 void kvm_set_pfn_dirty(pfn_t pfn)
1357 {
1358 if (!kvm_is_mmio_pfn(pfn)) {
1359 struct page *page = pfn_to_page(pfn);
1360 if (!PageReserved(page))
1361 SetPageDirty(page);
1362 }
1363 }
1364 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1365
1366 void kvm_set_pfn_accessed(pfn_t pfn)
1367 {
1368 if (!kvm_is_mmio_pfn(pfn))
1369 mark_page_accessed(pfn_to_page(pfn));
1370 }
1371 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1372
1373 void kvm_get_pfn(pfn_t pfn)
1374 {
1375 if (!kvm_is_mmio_pfn(pfn))
1376 get_page(pfn_to_page(pfn));
1377 }
1378 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1379
1380 static int next_segment(unsigned long len, int offset)
1381 {
1382 if (len > PAGE_SIZE - offset)
1383 return PAGE_SIZE - offset;
1384 else
1385 return len;
1386 }
1387
1388 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1389 int len)
1390 {
1391 int r;
1392 unsigned long addr;
1393
1394 addr = gfn_to_hva_read(kvm, gfn);
1395 if (kvm_is_error_hva(addr))
1396 return -EFAULT;
1397 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1398 if (r)
1399 return -EFAULT;
1400 return 0;
1401 }
1402 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1403
1404 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1405 {
1406 gfn_t gfn = gpa >> PAGE_SHIFT;
1407 int seg;
1408 int offset = offset_in_page(gpa);
1409 int ret;
1410
1411 while ((seg = next_segment(len, offset)) != 0) {
1412 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1413 if (ret < 0)
1414 return ret;
1415 offset = 0;
1416 len -= seg;
1417 data += seg;
1418 ++gfn;
1419 }
1420 return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(kvm_read_guest);
1423
1424 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1425 unsigned long len)
1426 {
1427 int r;
1428 unsigned long addr;
1429 gfn_t gfn = gpa >> PAGE_SHIFT;
1430 int offset = offset_in_page(gpa);
1431
1432 addr = gfn_to_hva_read(kvm, gfn);
1433 if (kvm_is_error_hva(addr))
1434 return -EFAULT;
1435 pagefault_disable();
1436 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1437 pagefault_enable();
1438 if (r)
1439 return -EFAULT;
1440 return 0;
1441 }
1442 EXPORT_SYMBOL(kvm_read_guest_atomic);
1443
1444 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1445 int offset, int len)
1446 {
1447 int r;
1448 unsigned long addr;
1449
1450 addr = gfn_to_hva(kvm, gfn);
1451 if (kvm_is_error_hva(addr))
1452 return -EFAULT;
1453 r = __copy_to_user((void __user *)addr + offset, data, len);
1454 if (r)
1455 return -EFAULT;
1456 mark_page_dirty(kvm, gfn);
1457 return 0;
1458 }
1459 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1460
1461 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1462 unsigned long len)
1463 {
1464 gfn_t gfn = gpa >> PAGE_SHIFT;
1465 int seg;
1466 int offset = offset_in_page(gpa);
1467 int ret;
1468
1469 while ((seg = next_segment(len, offset)) != 0) {
1470 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1471 if (ret < 0)
1472 return ret;
1473 offset = 0;
1474 len -= seg;
1475 data += seg;
1476 ++gfn;
1477 }
1478 return 0;
1479 }
1480
1481 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1482 gpa_t gpa)
1483 {
1484 struct kvm_memslots *slots = kvm_memslots(kvm);
1485 int offset = offset_in_page(gpa);
1486 gfn_t gfn = gpa >> PAGE_SHIFT;
1487
1488 ghc->gpa = gpa;
1489 ghc->generation = slots->generation;
1490 ghc->memslot = gfn_to_memslot(kvm, gfn);
1491 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1492 if (!kvm_is_error_hva(ghc->hva))
1493 ghc->hva += offset;
1494 else
1495 return -EFAULT;
1496
1497 return 0;
1498 }
1499 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1500
1501 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1502 void *data, unsigned long len)
1503 {
1504 struct kvm_memslots *slots = kvm_memslots(kvm);
1505 int r;
1506
1507 if (slots->generation != ghc->generation)
1508 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1509
1510 if (kvm_is_error_hva(ghc->hva))
1511 return -EFAULT;
1512
1513 r = __copy_to_user((void __user *)ghc->hva, data, len);
1514 if (r)
1515 return -EFAULT;
1516 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1517
1518 return 0;
1519 }
1520 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1521
1522 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1523 void *data, unsigned long len)
1524 {
1525 struct kvm_memslots *slots = kvm_memslots(kvm);
1526 int r;
1527
1528 if (slots->generation != ghc->generation)
1529 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1530
1531 if (kvm_is_error_hva(ghc->hva))
1532 return -EFAULT;
1533
1534 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1535 if (r)
1536 return -EFAULT;
1537
1538 return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1541
1542 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1543 {
1544 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1545 offset, len);
1546 }
1547 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1548
1549 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1550 {
1551 gfn_t gfn = gpa >> PAGE_SHIFT;
1552 int seg;
1553 int offset = offset_in_page(gpa);
1554 int ret;
1555
1556 while ((seg = next_segment(len, offset)) != 0) {
1557 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1558 if (ret < 0)
1559 return ret;
1560 offset = 0;
1561 len -= seg;
1562 ++gfn;
1563 }
1564 return 0;
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1567
1568 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1569 gfn_t gfn)
1570 {
1571 if (memslot && memslot->dirty_bitmap) {
1572 unsigned long rel_gfn = gfn - memslot->base_gfn;
1573
1574 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1575 }
1576 }
1577
1578 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1579 {
1580 struct kvm_memory_slot *memslot;
1581
1582 memslot = gfn_to_memslot(kvm, gfn);
1583 mark_page_dirty_in_slot(kvm, memslot, gfn);
1584 }
1585
1586 /*
1587 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1588 */
1589 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1590 {
1591 DEFINE_WAIT(wait);
1592
1593 for (;;) {
1594 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1595
1596 if (kvm_arch_vcpu_runnable(vcpu)) {
1597 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1598 break;
1599 }
1600 if (kvm_cpu_has_pending_timer(vcpu))
1601 break;
1602 if (signal_pending(current))
1603 break;
1604
1605 schedule();
1606 }
1607
1608 finish_wait(&vcpu->wq, &wait);
1609 }
1610
1611 #ifndef CONFIG_S390
1612 /*
1613 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1614 */
1615 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1616 {
1617 int me;
1618 int cpu = vcpu->cpu;
1619 wait_queue_head_t *wqp;
1620
1621 wqp = kvm_arch_vcpu_wq(vcpu);
1622 if (waitqueue_active(wqp)) {
1623 wake_up_interruptible(wqp);
1624 ++vcpu->stat.halt_wakeup;
1625 }
1626
1627 me = get_cpu();
1628 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1629 if (kvm_arch_vcpu_should_kick(vcpu))
1630 smp_send_reschedule(cpu);
1631 put_cpu();
1632 }
1633 #endif /* !CONFIG_S390 */
1634
1635 void kvm_resched(struct kvm_vcpu *vcpu)
1636 {
1637 if (!need_resched())
1638 return;
1639 cond_resched();
1640 }
1641 EXPORT_SYMBOL_GPL(kvm_resched);
1642
1643 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1644 {
1645 struct pid *pid;
1646 struct task_struct *task = NULL;
1647
1648 rcu_read_lock();
1649 pid = rcu_dereference(target->pid);
1650 if (pid)
1651 task = get_pid_task(target->pid, PIDTYPE_PID);
1652 rcu_read_unlock();
1653 if (!task)
1654 return false;
1655 if (task->flags & PF_VCPU) {
1656 put_task_struct(task);
1657 return false;
1658 }
1659 if (yield_to(task, 1)) {
1660 put_task_struct(task);
1661 return true;
1662 }
1663 put_task_struct(task);
1664 return false;
1665 }
1666 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1667
1668 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1669 /*
1670 * Helper that checks whether a VCPU is eligible for directed yield.
1671 * Most eligible candidate to yield is decided by following heuristics:
1672 *
1673 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1674 * (preempted lock holder), indicated by @in_spin_loop.
1675 * Set at the beiginning and cleared at the end of interception/PLE handler.
1676 *
1677 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1678 * chance last time (mostly it has become eligible now since we have probably
1679 * yielded to lockholder in last iteration. This is done by toggling
1680 * @dy_eligible each time a VCPU checked for eligibility.)
1681 *
1682 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1683 * to preempted lock-holder could result in wrong VCPU selection and CPU
1684 * burning. Giving priority for a potential lock-holder increases lock
1685 * progress.
1686 *
1687 * Since algorithm is based on heuristics, accessing another VCPU data without
1688 * locking does not harm. It may result in trying to yield to same VCPU, fail
1689 * and continue with next VCPU and so on.
1690 */
1691 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1692 {
1693 bool eligible;
1694
1695 eligible = !vcpu->spin_loop.in_spin_loop ||
1696 (vcpu->spin_loop.in_spin_loop &&
1697 vcpu->spin_loop.dy_eligible);
1698
1699 if (vcpu->spin_loop.in_spin_loop)
1700 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1701
1702 return eligible;
1703 }
1704 #endif
1705 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1706 {
1707 struct kvm *kvm = me->kvm;
1708 struct kvm_vcpu *vcpu;
1709 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1710 int yielded = 0;
1711 int pass;
1712 int i;
1713
1714 kvm_vcpu_set_in_spin_loop(me, true);
1715 /*
1716 * We boost the priority of a VCPU that is runnable but not
1717 * currently running, because it got preempted by something
1718 * else and called schedule in __vcpu_run. Hopefully that
1719 * VCPU is holding the lock that we need and will release it.
1720 * We approximate round-robin by starting at the last boosted VCPU.
1721 */
1722 for (pass = 0; pass < 2 && !yielded; pass++) {
1723 kvm_for_each_vcpu(i, vcpu, kvm) {
1724 if (!pass && i <= last_boosted_vcpu) {
1725 i = last_boosted_vcpu;
1726 continue;
1727 } else if (pass && i > last_boosted_vcpu)
1728 break;
1729 if (vcpu == me)
1730 continue;
1731 if (waitqueue_active(&vcpu->wq))
1732 continue;
1733 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1734 continue;
1735 if (kvm_vcpu_yield_to(vcpu)) {
1736 kvm->last_boosted_vcpu = i;
1737 yielded = 1;
1738 break;
1739 }
1740 }
1741 }
1742 kvm_vcpu_set_in_spin_loop(me, false);
1743
1744 /* Ensure vcpu is not eligible during next spinloop */
1745 kvm_vcpu_set_dy_eligible(me, false);
1746 }
1747 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1748
1749 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1750 {
1751 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1752 struct page *page;
1753
1754 if (vmf->pgoff == 0)
1755 page = virt_to_page(vcpu->run);
1756 #ifdef CONFIG_X86
1757 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1758 page = virt_to_page(vcpu->arch.pio_data);
1759 #endif
1760 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1761 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1762 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1763 #endif
1764 else
1765 return kvm_arch_vcpu_fault(vcpu, vmf);
1766 get_page(page);
1767 vmf->page = page;
1768 return 0;
1769 }
1770
1771 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1772 .fault = kvm_vcpu_fault,
1773 };
1774
1775 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1776 {
1777 vma->vm_ops = &kvm_vcpu_vm_ops;
1778 return 0;
1779 }
1780
1781 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1782 {
1783 struct kvm_vcpu *vcpu = filp->private_data;
1784
1785 kvm_put_kvm(vcpu->kvm);
1786 return 0;
1787 }
1788
1789 static struct file_operations kvm_vcpu_fops = {
1790 .release = kvm_vcpu_release,
1791 .unlocked_ioctl = kvm_vcpu_ioctl,
1792 #ifdef CONFIG_COMPAT
1793 .compat_ioctl = kvm_vcpu_compat_ioctl,
1794 #endif
1795 .mmap = kvm_vcpu_mmap,
1796 .llseek = noop_llseek,
1797 };
1798
1799 /*
1800 * Allocates an inode for the vcpu.
1801 */
1802 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1803 {
1804 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1805 }
1806
1807 /*
1808 * Creates some virtual cpus. Good luck creating more than one.
1809 */
1810 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1811 {
1812 int r;
1813 struct kvm_vcpu *vcpu, *v;
1814
1815 vcpu = kvm_arch_vcpu_create(kvm, id);
1816 if (IS_ERR(vcpu))
1817 return PTR_ERR(vcpu);
1818
1819 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1820
1821 r = kvm_arch_vcpu_setup(vcpu);
1822 if (r)
1823 goto vcpu_destroy;
1824
1825 mutex_lock(&kvm->lock);
1826 if (!kvm_vcpu_compatible(vcpu)) {
1827 r = -EINVAL;
1828 goto unlock_vcpu_destroy;
1829 }
1830 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1831 r = -EINVAL;
1832 goto unlock_vcpu_destroy;
1833 }
1834
1835 kvm_for_each_vcpu(r, v, kvm)
1836 if (v->vcpu_id == id) {
1837 r = -EEXIST;
1838 goto unlock_vcpu_destroy;
1839 }
1840
1841 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1842
1843 /* Now it's all set up, let userspace reach it */
1844 kvm_get_kvm(kvm);
1845 r = create_vcpu_fd(vcpu);
1846 if (r < 0) {
1847 kvm_put_kvm(kvm);
1848 goto unlock_vcpu_destroy;
1849 }
1850
1851 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1852 smp_wmb();
1853 atomic_inc(&kvm->online_vcpus);
1854
1855 mutex_unlock(&kvm->lock);
1856 return r;
1857
1858 unlock_vcpu_destroy:
1859 mutex_unlock(&kvm->lock);
1860 vcpu_destroy:
1861 kvm_arch_vcpu_destroy(vcpu);
1862 return r;
1863 }
1864
1865 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1866 {
1867 if (sigset) {
1868 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1869 vcpu->sigset_active = 1;
1870 vcpu->sigset = *sigset;
1871 } else
1872 vcpu->sigset_active = 0;
1873 return 0;
1874 }
1875
1876 static long kvm_vcpu_ioctl(struct file *filp,
1877 unsigned int ioctl, unsigned long arg)
1878 {
1879 struct kvm_vcpu *vcpu = filp->private_data;
1880 void __user *argp = (void __user *)arg;
1881 int r;
1882 struct kvm_fpu *fpu = NULL;
1883 struct kvm_sregs *kvm_sregs = NULL;
1884
1885 if (vcpu->kvm->mm != current->mm)
1886 return -EIO;
1887
1888 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1889 /*
1890 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1891 * so vcpu_load() would break it.
1892 */
1893 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1894 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1895 #endif
1896
1897
1898 r = vcpu_load(vcpu);
1899 if (r)
1900 return r;
1901 switch (ioctl) {
1902 case KVM_RUN:
1903 r = -EINVAL;
1904 if (arg)
1905 goto out;
1906 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1907 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1908 break;
1909 case KVM_GET_REGS: {
1910 struct kvm_regs *kvm_regs;
1911
1912 r = -ENOMEM;
1913 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1914 if (!kvm_regs)
1915 goto out;
1916 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1917 if (r)
1918 goto out_free1;
1919 r = -EFAULT;
1920 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1921 goto out_free1;
1922 r = 0;
1923 out_free1:
1924 kfree(kvm_regs);
1925 break;
1926 }
1927 case KVM_SET_REGS: {
1928 struct kvm_regs *kvm_regs;
1929
1930 r = -ENOMEM;
1931 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1932 if (IS_ERR(kvm_regs)) {
1933 r = PTR_ERR(kvm_regs);
1934 goto out;
1935 }
1936 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1937 kfree(kvm_regs);
1938 break;
1939 }
1940 case KVM_GET_SREGS: {
1941 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1942 r = -ENOMEM;
1943 if (!kvm_sregs)
1944 goto out;
1945 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1946 if (r)
1947 goto out;
1948 r = -EFAULT;
1949 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1950 goto out;
1951 r = 0;
1952 break;
1953 }
1954 case KVM_SET_SREGS: {
1955 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1956 if (IS_ERR(kvm_sregs)) {
1957 r = PTR_ERR(kvm_sregs);
1958 kvm_sregs = NULL;
1959 goto out;
1960 }
1961 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1962 break;
1963 }
1964 case KVM_GET_MP_STATE: {
1965 struct kvm_mp_state mp_state;
1966
1967 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1968 if (r)
1969 goto out;
1970 r = -EFAULT;
1971 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1972 goto out;
1973 r = 0;
1974 break;
1975 }
1976 case KVM_SET_MP_STATE: {
1977 struct kvm_mp_state mp_state;
1978
1979 r = -EFAULT;
1980 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1981 goto out;
1982 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1983 break;
1984 }
1985 case KVM_TRANSLATE: {
1986 struct kvm_translation tr;
1987
1988 r = -EFAULT;
1989 if (copy_from_user(&tr, argp, sizeof tr))
1990 goto out;
1991 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1992 if (r)
1993 goto out;
1994 r = -EFAULT;
1995 if (copy_to_user(argp, &tr, sizeof tr))
1996 goto out;
1997 r = 0;
1998 break;
1999 }
2000 case KVM_SET_GUEST_DEBUG: {
2001 struct kvm_guest_debug dbg;
2002
2003 r = -EFAULT;
2004 if (copy_from_user(&dbg, argp, sizeof dbg))
2005 goto out;
2006 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2007 break;
2008 }
2009 case KVM_SET_SIGNAL_MASK: {
2010 struct kvm_signal_mask __user *sigmask_arg = argp;
2011 struct kvm_signal_mask kvm_sigmask;
2012 sigset_t sigset, *p;
2013
2014 p = NULL;
2015 if (argp) {
2016 r = -EFAULT;
2017 if (copy_from_user(&kvm_sigmask, argp,
2018 sizeof kvm_sigmask))
2019 goto out;
2020 r = -EINVAL;
2021 if (kvm_sigmask.len != sizeof sigset)
2022 goto out;
2023 r = -EFAULT;
2024 if (copy_from_user(&sigset, sigmask_arg->sigset,
2025 sizeof sigset))
2026 goto out;
2027 p = &sigset;
2028 }
2029 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2030 break;
2031 }
2032 case KVM_GET_FPU: {
2033 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2034 r = -ENOMEM;
2035 if (!fpu)
2036 goto out;
2037 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2038 if (r)
2039 goto out;
2040 r = -EFAULT;
2041 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2042 goto out;
2043 r = 0;
2044 break;
2045 }
2046 case KVM_SET_FPU: {
2047 fpu = memdup_user(argp, sizeof(*fpu));
2048 if (IS_ERR(fpu)) {
2049 r = PTR_ERR(fpu);
2050 fpu = NULL;
2051 goto out;
2052 }
2053 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2054 break;
2055 }
2056 default:
2057 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2058 }
2059 out:
2060 vcpu_put(vcpu);
2061 kfree(fpu);
2062 kfree(kvm_sregs);
2063 return r;
2064 }
2065
2066 #ifdef CONFIG_COMPAT
2067 static long kvm_vcpu_compat_ioctl(struct file *filp,
2068 unsigned int ioctl, unsigned long arg)
2069 {
2070 struct kvm_vcpu *vcpu = filp->private_data;
2071 void __user *argp = compat_ptr(arg);
2072 int r;
2073
2074 if (vcpu->kvm->mm != current->mm)
2075 return -EIO;
2076
2077 switch (ioctl) {
2078 case KVM_SET_SIGNAL_MASK: {
2079 struct kvm_signal_mask __user *sigmask_arg = argp;
2080 struct kvm_signal_mask kvm_sigmask;
2081 compat_sigset_t csigset;
2082 sigset_t sigset;
2083
2084 if (argp) {
2085 r = -EFAULT;
2086 if (copy_from_user(&kvm_sigmask, argp,
2087 sizeof kvm_sigmask))
2088 goto out;
2089 r = -EINVAL;
2090 if (kvm_sigmask.len != sizeof csigset)
2091 goto out;
2092 r = -EFAULT;
2093 if (copy_from_user(&csigset, sigmask_arg->sigset,
2094 sizeof csigset))
2095 goto out;
2096 sigset_from_compat(&sigset, &csigset);
2097 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2098 } else
2099 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2100 break;
2101 }
2102 default:
2103 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2104 }
2105
2106 out:
2107 return r;
2108 }
2109 #endif
2110
2111 static long kvm_vm_ioctl(struct file *filp,
2112 unsigned int ioctl, unsigned long arg)
2113 {
2114 struct kvm *kvm = filp->private_data;
2115 void __user *argp = (void __user *)arg;
2116 int r;
2117
2118 if (kvm->mm != current->mm)
2119 return -EIO;
2120 switch (ioctl) {
2121 case KVM_CREATE_VCPU:
2122 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2123 break;
2124 case KVM_SET_USER_MEMORY_REGION: {
2125 struct kvm_userspace_memory_region kvm_userspace_mem;
2126
2127 r = -EFAULT;
2128 if (copy_from_user(&kvm_userspace_mem, argp,
2129 sizeof kvm_userspace_mem))
2130 goto out;
2131
2132 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2133 break;
2134 }
2135 case KVM_GET_DIRTY_LOG: {
2136 struct kvm_dirty_log log;
2137
2138 r = -EFAULT;
2139 if (copy_from_user(&log, argp, sizeof log))
2140 goto out;
2141 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2142 break;
2143 }
2144 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2145 case KVM_REGISTER_COALESCED_MMIO: {
2146 struct kvm_coalesced_mmio_zone zone;
2147 r = -EFAULT;
2148 if (copy_from_user(&zone, argp, sizeof zone))
2149 goto out;
2150 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2151 break;
2152 }
2153 case KVM_UNREGISTER_COALESCED_MMIO: {
2154 struct kvm_coalesced_mmio_zone zone;
2155 r = -EFAULT;
2156 if (copy_from_user(&zone, argp, sizeof zone))
2157 goto out;
2158 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2159 break;
2160 }
2161 #endif
2162 case KVM_IRQFD: {
2163 struct kvm_irqfd data;
2164
2165 r = -EFAULT;
2166 if (copy_from_user(&data, argp, sizeof data))
2167 goto out;
2168 r = kvm_irqfd(kvm, &data);
2169 break;
2170 }
2171 case KVM_IOEVENTFD: {
2172 struct kvm_ioeventfd data;
2173
2174 r = -EFAULT;
2175 if (copy_from_user(&data, argp, sizeof data))
2176 goto out;
2177 r = kvm_ioeventfd(kvm, &data);
2178 break;
2179 }
2180 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2181 case KVM_SET_BOOT_CPU_ID:
2182 r = 0;
2183 mutex_lock(&kvm->lock);
2184 if (atomic_read(&kvm->online_vcpus) != 0)
2185 r = -EBUSY;
2186 else
2187 kvm->bsp_vcpu_id = arg;
2188 mutex_unlock(&kvm->lock);
2189 break;
2190 #endif
2191 #ifdef CONFIG_HAVE_KVM_MSI
2192 case KVM_SIGNAL_MSI: {
2193 struct kvm_msi msi;
2194
2195 r = -EFAULT;
2196 if (copy_from_user(&msi, argp, sizeof msi))
2197 goto out;
2198 r = kvm_send_userspace_msi(kvm, &msi);
2199 break;
2200 }
2201 #endif
2202 #ifdef __KVM_HAVE_IRQ_LINE
2203 case KVM_IRQ_LINE_STATUS:
2204 case KVM_IRQ_LINE: {
2205 struct kvm_irq_level irq_event;
2206
2207 r = -EFAULT;
2208 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2209 goto out;
2210
2211 r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
2212 if (r)
2213 goto out;
2214
2215 r = -EFAULT;
2216 if (ioctl == KVM_IRQ_LINE_STATUS) {
2217 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2218 goto out;
2219 }
2220
2221 r = 0;
2222 break;
2223 }
2224 #endif
2225 default:
2226 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2227 if (r == -ENOTTY)
2228 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2229 }
2230 out:
2231 return r;
2232 }
2233
2234 #ifdef CONFIG_COMPAT
2235 struct compat_kvm_dirty_log {
2236 __u32 slot;
2237 __u32 padding1;
2238 union {
2239 compat_uptr_t dirty_bitmap; /* one bit per page */
2240 __u64 padding2;
2241 };
2242 };
2243
2244 static long kvm_vm_compat_ioctl(struct file *filp,
2245 unsigned int ioctl, unsigned long arg)
2246 {
2247 struct kvm *kvm = filp->private_data;
2248 int r;
2249
2250 if (kvm->mm != current->mm)
2251 return -EIO;
2252 switch (ioctl) {
2253 case KVM_GET_DIRTY_LOG: {
2254 struct compat_kvm_dirty_log compat_log;
2255 struct kvm_dirty_log log;
2256
2257 r = -EFAULT;
2258 if (copy_from_user(&compat_log, (void __user *)arg,
2259 sizeof(compat_log)))
2260 goto out;
2261 log.slot = compat_log.slot;
2262 log.padding1 = compat_log.padding1;
2263 log.padding2 = compat_log.padding2;
2264 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2265
2266 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2267 break;
2268 }
2269 default:
2270 r = kvm_vm_ioctl(filp, ioctl, arg);
2271 }
2272
2273 out:
2274 return r;
2275 }
2276 #endif
2277
2278 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2279 {
2280 struct page *page[1];
2281 unsigned long addr;
2282 int npages;
2283 gfn_t gfn = vmf->pgoff;
2284 struct kvm *kvm = vma->vm_file->private_data;
2285
2286 addr = gfn_to_hva(kvm, gfn);
2287 if (kvm_is_error_hva(addr))
2288 return VM_FAULT_SIGBUS;
2289
2290 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2291 NULL);
2292 if (unlikely(npages != 1))
2293 return VM_FAULT_SIGBUS;
2294
2295 vmf->page = page[0];
2296 return 0;
2297 }
2298
2299 static const struct vm_operations_struct kvm_vm_vm_ops = {
2300 .fault = kvm_vm_fault,
2301 };
2302
2303 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2304 {
2305 vma->vm_ops = &kvm_vm_vm_ops;
2306 return 0;
2307 }
2308
2309 static struct file_operations kvm_vm_fops = {
2310 .release = kvm_vm_release,
2311 .unlocked_ioctl = kvm_vm_ioctl,
2312 #ifdef CONFIG_COMPAT
2313 .compat_ioctl = kvm_vm_compat_ioctl,
2314 #endif
2315 .mmap = kvm_vm_mmap,
2316 .llseek = noop_llseek,
2317 };
2318
2319 static int kvm_dev_ioctl_create_vm(unsigned long type)
2320 {
2321 int r;
2322 struct kvm *kvm;
2323
2324 kvm = kvm_create_vm(type);
2325 if (IS_ERR(kvm))
2326 return PTR_ERR(kvm);
2327 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2328 r = kvm_coalesced_mmio_init(kvm);
2329 if (r < 0) {
2330 kvm_put_kvm(kvm);
2331 return r;
2332 }
2333 #endif
2334 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2335 if (r < 0)
2336 kvm_put_kvm(kvm);
2337
2338 return r;
2339 }
2340
2341 static long kvm_dev_ioctl_check_extension_generic(long arg)
2342 {
2343 switch (arg) {
2344 case KVM_CAP_USER_MEMORY:
2345 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2346 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2347 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2348 case KVM_CAP_SET_BOOT_CPU_ID:
2349 #endif
2350 case KVM_CAP_INTERNAL_ERROR_DATA:
2351 #ifdef CONFIG_HAVE_KVM_MSI
2352 case KVM_CAP_SIGNAL_MSI:
2353 #endif
2354 return 1;
2355 #ifdef KVM_CAP_IRQ_ROUTING
2356 case KVM_CAP_IRQ_ROUTING:
2357 return KVM_MAX_IRQ_ROUTES;
2358 #endif
2359 default:
2360 break;
2361 }
2362 return kvm_dev_ioctl_check_extension(arg);
2363 }
2364
2365 static long kvm_dev_ioctl(struct file *filp,
2366 unsigned int ioctl, unsigned long arg)
2367 {
2368 long r = -EINVAL;
2369
2370 switch (ioctl) {
2371 case KVM_GET_API_VERSION:
2372 r = -EINVAL;
2373 if (arg)
2374 goto out;
2375 r = KVM_API_VERSION;
2376 break;
2377 case KVM_CREATE_VM:
2378 r = kvm_dev_ioctl_create_vm(arg);
2379 break;
2380 case KVM_CHECK_EXTENSION:
2381 r = kvm_dev_ioctl_check_extension_generic(arg);
2382 break;
2383 case KVM_GET_VCPU_MMAP_SIZE:
2384 r = -EINVAL;
2385 if (arg)
2386 goto out;
2387 r = PAGE_SIZE; /* struct kvm_run */
2388 #ifdef CONFIG_X86
2389 r += PAGE_SIZE; /* pio data page */
2390 #endif
2391 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2392 r += PAGE_SIZE; /* coalesced mmio ring page */
2393 #endif
2394 break;
2395 case KVM_TRACE_ENABLE:
2396 case KVM_TRACE_PAUSE:
2397 case KVM_TRACE_DISABLE:
2398 r = -EOPNOTSUPP;
2399 break;
2400 default:
2401 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2402 }
2403 out:
2404 return r;
2405 }
2406
2407 static struct file_operations kvm_chardev_ops = {
2408 .unlocked_ioctl = kvm_dev_ioctl,
2409 .compat_ioctl = kvm_dev_ioctl,
2410 .llseek = noop_llseek,
2411 };
2412
2413 static struct miscdevice kvm_dev = {
2414 KVM_MINOR,
2415 "kvm",
2416 &kvm_chardev_ops,
2417 };
2418
2419 static void hardware_enable_nolock(void *junk)
2420 {
2421 int cpu = raw_smp_processor_id();
2422 int r;
2423
2424 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2425 return;
2426
2427 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2428
2429 r = kvm_arch_hardware_enable(NULL);
2430
2431 if (r) {
2432 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2433 atomic_inc(&hardware_enable_failed);
2434 printk(KERN_INFO "kvm: enabling virtualization on "
2435 "CPU%d failed\n", cpu);
2436 }
2437 }
2438
2439 static void hardware_enable(void *junk)
2440 {
2441 raw_spin_lock(&kvm_lock);
2442 hardware_enable_nolock(junk);
2443 raw_spin_unlock(&kvm_lock);
2444 }
2445
2446 static void hardware_disable_nolock(void *junk)
2447 {
2448 int cpu = raw_smp_processor_id();
2449
2450 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2451 return;
2452 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2453 kvm_arch_hardware_disable(NULL);
2454 }
2455
2456 static void hardware_disable(void *junk)
2457 {
2458 raw_spin_lock(&kvm_lock);
2459 hardware_disable_nolock(junk);
2460 raw_spin_unlock(&kvm_lock);
2461 }
2462
2463 static void hardware_disable_all_nolock(void)
2464 {
2465 BUG_ON(!kvm_usage_count);
2466
2467 kvm_usage_count--;
2468 if (!kvm_usage_count)
2469 on_each_cpu(hardware_disable_nolock, NULL, 1);
2470 }
2471
2472 static void hardware_disable_all(void)
2473 {
2474 raw_spin_lock(&kvm_lock);
2475 hardware_disable_all_nolock();
2476 raw_spin_unlock(&kvm_lock);
2477 }
2478
2479 static int hardware_enable_all(void)
2480 {
2481 int r = 0;
2482
2483 raw_spin_lock(&kvm_lock);
2484
2485 kvm_usage_count++;
2486 if (kvm_usage_count == 1) {
2487 atomic_set(&hardware_enable_failed, 0);
2488 on_each_cpu(hardware_enable_nolock, NULL, 1);
2489
2490 if (atomic_read(&hardware_enable_failed)) {
2491 hardware_disable_all_nolock();
2492 r = -EBUSY;
2493 }
2494 }
2495
2496 raw_spin_unlock(&kvm_lock);
2497
2498 return r;
2499 }
2500
2501 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2502 void *v)
2503 {
2504 int cpu = (long)v;
2505
2506 if (!kvm_usage_count)
2507 return NOTIFY_OK;
2508
2509 val &= ~CPU_TASKS_FROZEN;
2510 switch (val) {
2511 case CPU_DYING:
2512 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2513 cpu);
2514 hardware_disable(NULL);
2515 break;
2516 case CPU_STARTING:
2517 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2518 cpu);
2519 hardware_enable(NULL);
2520 break;
2521 }
2522 return NOTIFY_OK;
2523 }
2524
2525
2526 asmlinkage void kvm_spurious_fault(void)
2527 {
2528 /* Fault while not rebooting. We want the trace. */
2529 BUG();
2530 }
2531 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2532
2533 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2534 void *v)
2535 {
2536 /*
2537 * Some (well, at least mine) BIOSes hang on reboot if
2538 * in vmx root mode.
2539 *
2540 * And Intel TXT required VMX off for all cpu when system shutdown.
2541 */
2542 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2543 kvm_rebooting = true;
2544 on_each_cpu(hardware_disable_nolock, NULL, 1);
2545 return NOTIFY_OK;
2546 }
2547
2548 static struct notifier_block kvm_reboot_notifier = {
2549 .notifier_call = kvm_reboot,
2550 .priority = 0,
2551 };
2552
2553 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2554 {
2555 int i;
2556
2557 for (i = 0; i < bus->dev_count; i++) {
2558 struct kvm_io_device *pos = bus->range[i].dev;
2559
2560 kvm_iodevice_destructor(pos);
2561 }
2562 kfree(bus);
2563 }
2564
2565 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2566 {
2567 const struct kvm_io_range *r1 = p1;
2568 const struct kvm_io_range *r2 = p2;
2569
2570 if (r1->addr < r2->addr)
2571 return -1;
2572 if (r1->addr + r1->len > r2->addr + r2->len)
2573 return 1;
2574 return 0;
2575 }
2576
2577 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2578 gpa_t addr, int len)
2579 {
2580 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2581 .addr = addr,
2582 .len = len,
2583 .dev = dev,
2584 };
2585
2586 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2587 kvm_io_bus_sort_cmp, NULL);
2588
2589 return 0;
2590 }
2591
2592 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2593 gpa_t addr, int len)
2594 {
2595 struct kvm_io_range *range, key;
2596 int off;
2597
2598 key = (struct kvm_io_range) {
2599 .addr = addr,
2600 .len = len,
2601 };
2602
2603 range = bsearch(&key, bus->range, bus->dev_count,
2604 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2605 if (range == NULL)
2606 return -ENOENT;
2607
2608 off = range - bus->range;
2609
2610 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2611 off--;
2612
2613 return off;
2614 }
2615
2616 /* kvm_io_bus_write - called under kvm->slots_lock */
2617 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2618 int len, const void *val)
2619 {
2620 int idx;
2621 struct kvm_io_bus *bus;
2622 struct kvm_io_range range;
2623
2624 range = (struct kvm_io_range) {
2625 .addr = addr,
2626 .len = len,
2627 };
2628
2629 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2630 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2631 if (idx < 0)
2632 return -EOPNOTSUPP;
2633
2634 while (idx < bus->dev_count &&
2635 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2636 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2637 return 0;
2638 idx++;
2639 }
2640
2641 return -EOPNOTSUPP;
2642 }
2643
2644 /* kvm_io_bus_read - called under kvm->slots_lock */
2645 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2646 int len, void *val)
2647 {
2648 int idx;
2649 struct kvm_io_bus *bus;
2650 struct kvm_io_range range;
2651
2652 range = (struct kvm_io_range) {
2653 .addr = addr,
2654 .len = len,
2655 };
2656
2657 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2658 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2659 if (idx < 0)
2660 return -EOPNOTSUPP;
2661
2662 while (idx < bus->dev_count &&
2663 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2664 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2665 return 0;
2666 idx++;
2667 }
2668
2669 return -EOPNOTSUPP;
2670 }
2671
2672 /* Caller must hold slots_lock. */
2673 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2674 int len, struct kvm_io_device *dev)
2675 {
2676 struct kvm_io_bus *new_bus, *bus;
2677
2678 bus = kvm->buses[bus_idx];
2679 if (bus->dev_count > NR_IOBUS_DEVS - 1)
2680 return -ENOSPC;
2681
2682 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2683 sizeof(struct kvm_io_range)), GFP_KERNEL);
2684 if (!new_bus)
2685 return -ENOMEM;
2686 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2687 sizeof(struct kvm_io_range)));
2688 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2689 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2690 synchronize_srcu_expedited(&kvm->srcu);
2691 kfree(bus);
2692
2693 return 0;
2694 }
2695
2696 /* Caller must hold slots_lock. */
2697 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2698 struct kvm_io_device *dev)
2699 {
2700 int i, r;
2701 struct kvm_io_bus *new_bus, *bus;
2702
2703 bus = kvm->buses[bus_idx];
2704 r = -ENOENT;
2705 for (i = 0; i < bus->dev_count; i++)
2706 if (bus->range[i].dev == dev) {
2707 r = 0;
2708 break;
2709 }
2710
2711 if (r)
2712 return r;
2713
2714 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2715 sizeof(struct kvm_io_range)), GFP_KERNEL);
2716 if (!new_bus)
2717 return -ENOMEM;
2718
2719 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2720 new_bus->dev_count--;
2721 memcpy(new_bus->range + i, bus->range + i + 1,
2722 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2723
2724 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2725 synchronize_srcu_expedited(&kvm->srcu);
2726 kfree(bus);
2727 return r;
2728 }
2729
2730 static struct notifier_block kvm_cpu_notifier = {
2731 .notifier_call = kvm_cpu_hotplug,
2732 };
2733
2734 static int vm_stat_get(void *_offset, u64 *val)
2735 {
2736 unsigned offset = (long)_offset;
2737 struct kvm *kvm;
2738
2739 *val = 0;
2740 raw_spin_lock(&kvm_lock);
2741 list_for_each_entry(kvm, &vm_list, vm_list)
2742 *val += *(u32 *)((void *)kvm + offset);
2743 raw_spin_unlock(&kvm_lock);
2744 return 0;
2745 }
2746
2747 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2748
2749 static int vcpu_stat_get(void *_offset, u64 *val)
2750 {
2751 unsigned offset = (long)_offset;
2752 struct kvm *kvm;
2753 struct kvm_vcpu *vcpu;
2754 int i;
2755
2756 *val = 0;
2757 raw_spin_lock(&kvm_lock);
2758 list_for_each_entry(kvm, &vm_list, vm_list)
2759 kvm_for_each_vcpu(i, vcpu, kvm)
2760 *val += *(u32 *)((void *)vcpu + offset);
2761
2762 raw_spin_unlock(&kvm_lock);
2763 return 0;
2764 }
2765
2766 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2767
2768 static const struct file_operations *stat_fops[] = {
2769 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2770 [KVM_STAT_VM] = &vm_stat_fops,
2771 };
2772
2773 static int kvm_init_debug(void)
2774 {
2775 int r = -EFAULT;
2776 struct kvm_stats_debugfs_item *p;
2777
2778 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2779 if (kvm_debugfs_dir == NULL)
2780 goto out;
2781
2782 for (p = debugfs_entries; p->name; ++p) {
2783 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2784 (void *)(long)p->offset,
2785 stat_fops[p->kind]);
2786 if (p->dentry == NULL)
2787 goto out_dir;
2788 }
2789
2790 return 0;
2791
2792 out_dir:
2793 debugfs_remove_recursive(kvm_debugfs_dir);
2794 out:
2795 return r;
2796 }
2797
2798 static void kvm_exit_debug(void)
2799 {
2800 struct kvm_stats_debugfs_item *p;
2801
2802 for (p = debugfs_entries; p->name; ++p)
2803 debugfs_remove(p->dentry);
2804 debugfs_remove(kvm_debugfs_dir);
2805 }
2806
2807 static int kvm_suspend(void)
2808 {
2809 if (kvm_usage_count)
2810 hardware_disable_nolock(NULL);
2811 return 0;
2812 }
2813
2814 static void kvm_resume(void)
2815 {
2816 if (kvm_usage_count) {
2817 WARN_ON(raw_spin_is_locked(&kvm_lock));
2818 hardware_enable_nolock(NULL);
2819 }
2820 }
2821
2822 static struct syscore_ops kvm_syscore_ops = {
2823 .suspend = kvm_suspend,
2824 .resume = kvm_resume,
2825 };
2826
2827 static inline
2828 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2829 {
2830 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2831 }
2832
2833 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2834 {
2835 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2836
2837 kvm_arch_vcpu_load(vcpu, cpu);
2838 }
2839
2840 static void kvm_sched_out(struct preempt_notifier *pn,
2841 struct task_struct *next)
2842 {
2843 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2844
2845 kvm_arch_vcpu_put(vcpu);
2846 }
2847
2848 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2849 struct module *module)
2850 {
2851 int r;
2852 int cpu;
2853
2854 r = kvm_arch_init(opaque);
2855 if (r)
2856 goto out_fail;
2857
2858 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2859 r = -ENOMEM;
2860 goto out_free_0;
2861 }
2862
2863 r = kvm_arch_hardware_setup();
2864 if (r < 0)
2865 goto out_free_0a;
2866
2867 for_each_online_cpu(cpu) {
2868 smp_call_function_single(cpu,
2869 kvm_arch_check_processor_compat,
2870 &r, 1);
2871 if (r < 0)
2872 goto out_free_1;
2873 }
2874
2875 r = register_cpu_notifier(&kvm_cpu_notifier);
2876 if (r)
2877 goto out_free_2;
2878 register_reboot_notifier(&kvm_reboot_notifier);
2879
2880 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2881 if (!vcpu_align)
2882 vcpu_align = __alignof__(struct kvm_vcpu);
2883 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2884 0, NULL);
2885 if (!kvm_vcpu_cache) {
2886 r = -ENOMEM;
2887 goto out_free_3;
2888 }
2889
2890 r = kvm_async_pf_init();
2891 if (r)
2892 goto out_free;
2893
2894 kvm_chardev_ops.owner = module;
2895 kvm_vm_fops.owner = module;
2896 kvm_vcpu_fops.owner = module;
2897
2898 r = misc_register(&kvm_dev);
2899 if (r) {
2900 printk(KERN_ERR "kvm: misc device register failed\n");
2901 goto out_unreg;
2902 }
2903
2904 register_syscore_ops(&kvm_syscore_ops);
2905
2906 kvm_preempt_ops.sched_in = kvm_sched_in;
2907 kvm_preempt_ops.sched_out = kvm_sched_out;
2908
2909 r = kvm_init_debug();
2910 if (r) {
2911 printk(KERN_ERR "kvm: create debugfs files failed\n");
2912 goto out_undebugfs;
2913 }
2914
2915 return 0;
2916
2917 out_undebugfs:
2918 unregister_syscore_ops(&kvm_syscore_ops);
2919 out_unreg:
2920 kvm_async_pf_deinit();
2921 out_free:
2922 kmem_cache_destroy(kvm_vcpu_cache);
2923 out_free_3:
2924 unregister_reboot_notifier(&kvm_reboot_notifier);
2925 unregister_cpu_notifier(&kvm_cpu_notifier);
2926 out_free_2:
2927 out_free_1:
2928 kvm_arch_hardware_unsetup();
2929 out_free_0a:
2930 free_cpumask_var(cpus_hardware_enabled);
2931 out_free_0:
2932 kvm_arch_exit();
2933 out_fail:
2934 return r;
2935 }
2936 EXPORT_SYMBOL_GPL(kvm_init);
2937
2938 void kvm_exit(void)
2939 {
2940 kvm_exit_debug();
2941 misc_deregister(&kvm_dev);
2942 kmem_cache_destroy(kvm_vcpu_cache);
2943 kvm_async_pf_deinit();
2944 unregister_syscore_ops(&kvm_syscore_ops);
2945 unregister_reboot_notifier(&kvm_reboot_notifier);
2946 unregister_cpu_notifier(&kvm_cpu_notifier);
2947 on_each_cpu(hardware_disable_nolock, NULL, 1);
2948 kvm_arch_hardware_unsetup();
2949 kvm_arch_exit();
2950 free_cpumask_var(cpus_hardware_enabled);
2951 }
2952 EXPORT_SYMBOL_GPL(kvm_exit);